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Urban areas account for over 70% of global CO, emissions. Recent studies show
that urban morphology’'s impact on carbon emissions is more complex than
traditional linear models suggest, with critical implications for low-carbon urban
planning in China. This study contrasts linear spatial regression models with non-
linear geographical Gaussian process regression (GGPR) to analyze morphology-
emission relationships across 286 Chinese cities (2005-2020). Linear spatial
regression suggests that urban aggregation (UAI) consistently increases
emissions with elasticity rising from 0.754 to 0.781, while synchronized
vertical-horizontal development (UGSI) reduces emissions with tripling
effectiveness from -0.096 to -0.297. However, GGPR with GeoShapley
explainability exposes a fundamental paradox: the same morphological
features show opposite effects depending on development stage and spatial
context. While linear models and non-linear analysis both confirm UAI's complex
role, they reveal it through different mechanisms. Linear models capture average
effects across cities showing positive correlations, while GeoShapley analysis
unveils location-specific variations where UAI can reduce per capita emissions in
certain contexts. Critical thresholds for key indicators like LPI remain relatively
stable around 15, but cities’ sensitivity to these thresholds has intensified
dramatically. Eastern coastal megacities have reached saturation where further
densification increases emissions, while western cities still benefit from compact
development. The emergence of 3D indicators as significant factors by
2015-2020 marks a fundamental shift from 2D to 3D morphological
influence. Based on the above findings, cities are suggested to implement
threshold-based zoning that triggers mixed-use requirements at locally-
calibrated limits and synchronized floor-area-ratio systems linking vertical
development rights to infrastructure maturity. Also, performance-based
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carbon intensity targets need to replace uniform morphological standards,
enabling regionally-differentiated strategies aligned with local development
stages and spatial contexts.

KEYWORDS

carbon emission, urban form, 3D morphological indicators, geographical Gaussian process
regression, non-linear effect

1 Introduction

Urban areas, while comprising only about 3% of the Earth’s
surface, are responsible for over 70% of global CO, emissions (Hong
et al, 2022a). Understanding the relationship between urban
morphology and carbon emissions is crucial for developing
effective climate mitigation policies (Sun et al., 2022; Privitera
et al,, 2018; Kang et al., 2024). However, this relationship exhibits
fundamental complexity that challenges traditional analytical
approaches. Urban systems operate as complex adaptive systems
where spatial dependencies, threshold effects, and scale-dependent
relationships coexist, necessitating methodological approaches that
can capture both global patterns and local variations (Batty, 2013;
Portugali, 2016; Bettencourt, 2013).

The theoretical rationale for expecting complex relationships
emerges from three interconnected frameworks. First, urban system
complexity theory posits that cities undergo phase transitions as they
develop, agglomeration are
counterbalanced by congestion externalities (Batty, 2013; Martinez-

wherein efficiency gains from
Zarzoso and Maruotti, 2011). Second, the environmental Kuznets curve
inverted U-shaped between

development and emissions, implying that morphology-emission

hypothesis  suggests relationships
relationships shift qualitatively at different development stages (Kar,
2024). Third, Tobler’s First Law of Geography dictates that spatial
autocorrelation underlies all urban phenomena, which creates linear
spatial dependencies that interact with local non-linearities (Tobler,
1970). These frameworks suggest that urban carbon dynamics operate
through dual mechanisms: linear spatial processes creating regional
patterns, and non-linear local dynamics generating threshold effects
and context-specific variations (Newman and Kenworthy, 2015).

Earlier studies primarily examined urban form metrics from a
two-dimensional perspective using linear regression models.
Makido et al. established that CO, emissions from transportation
in compact cities were lower than in sprawled cities, providing an
empirical foundation for the compact city hypothesis (Makido et al.,
2012). Liu et al. quantified this relationship, estimating that a 1%
increase in urban area correlated with a 0.901% increase in CO,
emissions, suggesting a sub-linear scaling effect (Liu et al., 2020).
Fang et al. identified stronger linear correlations, revealing that
urban land growth was positively associated with carbon emissions
(Fang et al., 2015). These pioneering studies effectively captured
spatial autocorrelation through regression models and provided
interpretable coefficients essential for initial policy formulation.
However, linear approaches proved fundamentally insufficient for
capturing urban carbon complexity. Wu and Li synthesized this
growing concern, observing that most existing research assumed
linear relationships, thereby overlooking critical nuances that could
better inform spatial planning strategies (Wu and Li, 2024).

As methodological sophistication increased, researchers began
uncovering that

increasingly complex non-linear patterns
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fundamentally  challenged early

demonstrated that creating cohesive building masses could

assumptions. Li et al

significantly reduce CO, emissions, with an additional 1% of
landscape pattern index leading to a 1.3% decrease in emissions
(Lietal, 2022). This finding suggested that spatial arrangement, not
just quantity, critically influences carbon outcomes. Zheng et al.
expanded this understanding by revealing complex relationships
where CO, emissions were strongly correlated with urban area and
indicators of patchiness and irregularity, while showing inverse
Their
demonstrated an 8.8% reduction in petrol CO, emissions

correlation with urban form compactness. research
through cohesive development, highlighting the role of urban
cohesion (Zheng et al., 2022).

Meanwhile, the discovery of threshold effects marked a
fundamental paradigm shift in understanding urban form-carbon
relationships. Ding et al. pioneered this approach by identifying two
critical compactness thresholds at 0.662 and 0.746, indicating that a
1% increase in urban form compactness resulted in a 1.8% reduction
in emissions between these thresholds but only 0.9% beyond the
upper threshold (Ding et al, 2022). This non-constant elasticity
revealed that densification strategies’ effectiveness fundamentally
depends on existing urban conditions. The following research has
discovered multiple threshold dimensions operating across different
scales. At the city scale, Ribeiro et al. established a critical threshold
at population x area = 1.93 x 10% above which the relationship
between city size and emissions fundamentally reversed, where
larger cities showed 1.17% emission increases per 1% population
growth versus 0.92% for smaller cities (Ribeiro et al., 2019). Multiple
studies now converge on a one-million population threshold as a
fundamental breakpoint where urban density effects reverse,
revealing a U-shaped relationship that completely contradicts
linear assumptions (Gudipudi et al, 2016). The transcendental
logarithm modeling approach by Ribeiro et al. represented a
methodological breakthrough, revealing that urban emissions
display non-constant elasticity of scale depending on city size
and density interactions (Ribeiro et al., 2019). At neighborhood
scale, threshold effects manifest in infrastructure and land use
patterns with remarkable consistency across different contexts.
Fan et al. identified optimal population density ranges of
2000-2500 persons/km® and land-use mix entropy values of
0.8-0.9 for maximum carbon reduction, with diminishing or
even negative returns beyond these ranges (Fan et al, 2025).
These that

improvements may yield minimal benefits until critical mass is

findings  collectively ~ suggest incremental
achieved, fundamentally challenging gradual transition strategies.
Geographic context critically moderates these relationships. Ou
et al. demonstrated that dense urban forms raised emissions in tier-one
Chinese cities while reducing them in lower-tier cities (Ou et al., 2019).
Shi et al. employed geographically and temporally weighted regression

(GTWR) across 256 Chinese cities, demonstrating compactness benefits
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FIGURE 1

Research framework to analyze the linear and non-linear morphology-carbon relationship.

only in eastern coastal cities, while inland regions showed opposite
patterns (Shi et al, 2022). International evidence also confirms this
heterogeneity, with European studies documenting North-South
gradients (Cortinovis et al, 2019) and North American research
revealing that 10-fold density increases correspond to only 25%
emission reductions (Jones and Kammen, 2014).

The shift from two-dimensional to three-dimensional urban
analysis revealed entirely new dynamics that traditional planning
strategies had overlooked. He et al. demonstrated that optimizing
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3D building compactness could lead to a 7% decrease in building
operational energy consumption, suggesting vertical configuration
matters as much as horizontal layout (He et al., 2024). Xu et al.
provided precise quantification of these complex effects: a 1%
increase in total building volume resulted in a 0.558% rise in
emissions, while increases in building coverage ratio and density
entropy index led to reductions of 0.382% and 0.072% respectively
(Xuetal, 2021). Yang and Zhao noted that CO, emissions increased
linearly with population and built-up area but exhibited sub-linear
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TABLE 1 Definitions of 2D urban morphological indices.

10.3389/fenvs.2025.1658538

Category Index name Equation Interpretation
Compactness and PAF (Perimeter-Area Fractal Y, n(p)-ln@)® (Y, In(p)ina))’ . Measures patch shape complexity of impervious
. ) . 2/(& T X ) pi @ perimeter of :
Concentration Dimension) 2. el X, WP surfaces. Higher values suggest compact shapes.
patch i; a; : area of patch i
UAI (Urban Aggregation (#’(’g)) - 10 Measures clustering of urban impervious surface

Index)

LPI (Largest Patch Index) . 100, amay:area of largest patch

TCA (Total Core Area)
city center

z ¢;, ¢; : area of core patch i within the 10 km buffer of the

patches. Higher values indicate compact,
aggregated urban areas.

Reflects dominance of a single large urban patch.
Higher values suggest consolidated urban cores.

Represents total stable urban core areas.

ADA (Area Dynamic u

Aggregation Index) Atotal

k=1

Fragmentation and

MEI (Mean Elongation % z
Distribution i

Index)

PDI (Patch Density Index) £.100, n : number of patches; A : total urban area

Connectivity and CBC (Gradient Area Under

Z A By Ay : area of ring k

CBC =) (Ci xdy)

Quantifies the radial concentration of building
footprints. Higher values suggest directional
horizontal intensity; lower values indicate
dispersed urban spread.

Quantifies average elongation of urban impervious
surface patches. Higher values indicate linear
structures (e.g., roads), and lower values suggest
more compact patches.

Indicates fragmentation of impervious surfaces,
higher values suggest dispersed urban form.

Measures cumulative building coverage across

Integration Curve) &= distance. Higher values indicate compact
Ci= % : building coverage ratios Sy : area of ring k development; lower values suggest discontinuous
* or leapfrog patterns.
COH (Patch Cohesion (1- >, p ). (1= 100 Quantifies connectivity of urban impervious
Index) DR VA surface patches. Higher values indicate well-
connected urban areas, potentially reducing
emissions by enhancing infrastructure efficiency.
Diversity SDI (Shannon’s Diversity Measures diversity of land use types.

Index)

m
—z (P; - In(P;)), P;: proportion of landscape occupied by
i1

class i within the urban boundary

growth between specific built-up area and volume, illustrating the
carbon efficiency advantages of vertical development (Yang and
Zhao, 2023). Wang et al.’s comprehensive analysis of 53 Chinese
cities demonstrated that 3D morphology explained building energy
efficiency better than traditional economic factors, with lower
building height, larger volume, and compact morphology
showing greater energy-saving potential (Wang et al, 2024).
Huang et al. used random forest with partial dependence plots to
discover platform, V-shaped, and N-shaped relationships between
building form and emissions, identifying building congestion degree
and sky view factor as pivotal determinants with specific threshold
values (Huang et al., 2025). These findings highlight multi-scale
dependencies and interaction effects between height, volume, and
coverage that exhibit both linear and non-linear characteristics,
requiring analytical frameworks that transcend traditional 2D
planning approaches.

Yet, the literature reveals fundamental contradictions. Whereas
Hong et al. found density and land use mix reduced emissions
(Hong et al., 2022a), Ye et al. revealed positive correlations between
compactness and household emissions (Ye et al., 2015). Hong et al.
identified a one-million inhabitant threshold where density
decreased emissions in smaller cities but increased them in larger
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ones (Hong et al, 2022a). Jin and Xu advocated for polycentric
development in central cities but compact forms in peripheries (Jin
and Xu, 2024). Liu et al. synthesized these contradictions, finding
large compact cities may paradoxically generate higher emissions
(Liu et al., 2025). These contradictions reflect not measurement
error but the duality of morphology-emission relationships,
simultaneously linear and non-linear, global and local, stable and
threshold-dependent (Caprotti and Bailey, 2014). This necessitates
methodological triangulation to capture different aspects of the
same phenomenon (Carter et al, 2014; Noble and Heale, 2019;
Denzin, 2017). Linear spatial models excel at identifying
dependencies through spatial weight matrices but miss threshold
effects (Wu et al., 2025; Jacobs et al., 2025). Machine learning
captures non-linearities but often violates spatial principles and
lacks interpretability (Santos et al., 2019; Georganos et al., 2021).

Analytical methods evolved from conventional statistics to
sophisticated approaches. The stochastic impacts by regression on
population, affluence and technology (STIRPAT) framework was
refined through ridge regression and panel threshold regression to
address multicollinearity and identify non-linear effects (Ding et al.,
2022; Xu et al,, 2021). Panel data methods enabled better temporal
control, with Cai et al. employing year-fixed effects with Lasso
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TABLE 2 Definitions of 3D urban morphological indices.
Category Index name

Compactness and
Concentration

VDAI (Volume Dynamic
Aggregation Index)

Equation

n
Z (V‘:)fal X %),Vk : volume in ring k, Ad =
k=

the 1 km buffer distance, # : number of rings

10.3389/fenvs.2025.1658538

Interpretation

Measures the radial concentration of building volume. Higher
values indicate stronger volumetric aggregation toward the city
center.

. » . oo
ECYR (Edge-Core Volume zqf . Vi P core rings (i.e. 1-10 km); q : start of Cﬁ)mg)ares perlpheral' to core building Yolumes. Values >
Ratio) e VE 1 indicate edge-dominated growth, while values < 1 suggest
edge rings (e.g., 21) core-dominated development.
Fragmentation and VGKI (Volumetric Gradient LY View) S Assesses the peakedness of volume distribution along the urban
A . &5, uy, - mean building volume of all X X o R
Distribution Kurtosis Index) EX L Vi) gradient. Higher values indicate monocentric, peaked patterns,
buffers and lower value suggest uniform, polycentric patterns.

VGDR (Volumetric Gradient

n
1 Z ViV
Decay Rate) " Vi

UGSI (Urban Gradient & AH. . AC
Z (534 % &4)> Hi : average building height in
k=1

ring k

Connectivity and

Integration Synergy Development Index)

Building Heightim)

I High : 428.8
I Low:35

FIGURE 2
Building height distribution across city's concentric zones
(Shanghai as an example).

regression (Cai et al., 2023) and Falahatkar and Rezaei utilizing fixed
effects models (Falahatkar and Rezaei, 2020). Spatial regression models
like the spatial Durbin model captured autocorrelation (Li et al., 2022).
Geographically weighted regression (GWR) addressed spatial
heterogeneity (Jin and Xu, 2024; Zuo et al, 2020), extended by
GTWR for spatiotemporal non-stationarity (Shi et al, 2022; Zhang
et al, 2025). Machine learning achieved unprecedented accuracy. For
instance, Li et al’s integrated spatiotemporal nonlinear regression
(ISTNR) reached a R* of 0.924 combining GTWR, random forest,
and SHapley Additive exPlanations (SHAP) methods (Li et al., 2025).
Wau et al. identified double-threshold effects (Wu et al,, 2025). Zeng et al.
compared multiple approaches across 337 cities (Zeng et al., 2024).
However, spatial models assume local linearity while machine learning
violates geographical principles (Tobler, 1970; Comber et al, 2011).
CO, measurement methodologies vary across studies. Inventory
approaches based on the intergovernmental panel on climate change
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Quantifies the rate of volume decrease from the city center.
Higher values indicate rapid and centralized decay; lower values
suggest gradual, polycentric patterns.

Evaluates the synchronized change in building height and
coverage with distance. Positive values indicate concurrent
decay; negative values suggest divergent trends.

(IPCC) guidelines relied on statistical yearbook data on energy
consumption (Xu et al,, 2021). Alternative satellite-based techniques,
such as the open-data inventory for anthropogenic carbon dioxide and
the visible infrared imaging radiometer suite (VIIRS) on board the
suomi national polar-orbiting partnership (NPP) satellite for nighttime
light data, offered higher spatial resolution (Yang and Zhao, 2023). Most
studies focused on direct emissions within administrative borders,
although some accounted for indirect emissions from electricity (Cai
et al, 2023). Ahn et al. advanced satellite-based methods using
spaceborne CO, and NO, observations to estimate emissions for
54 global cities, employing non-linear least squares methods and
Gaussian fitting approaches (Ahn et al., 2025).

Despite advances, critical gaps persist. For example, studies
employ linear or non-linear methods in isolation, preventing
distinction between spatial variation and genuine thresholds
(Hagenauer and Helbich, 2022). Integrated three-dimensional
morphology effects remain underexplored. Temporal dynamics as
cities evolve require investigation. This study addresses these gaps by
systematically comparing linear spatial regression models (e.g.,
ordinary least squares, spatial lag model) with non-linear
geographical Gaussian process regression (GGPR) enhanced by
GeoShapley analysis across 286 Chinese cities from 2005 to 2020.
This methodological triangulation recognizes that linear models
identify global patterns essential for policy while non-linear
methods detect thresholds critical for local planning (Li, 2024).

The research makes three contributions: First, it provides
evidence for complementarity between linear and non-linear
spatial methods, and demonstrates how contradictions result
from methods capturing different relationship aspects. Second, it
integrates comprehensive three-dimensional indicators revealing
transition from 2D to 3D influence patterns. Third, it documents
temporal evolution emphasizing synchronized vertical-horizontal
development strategies. Through this dual framework, we advance
theoretical understanding while informing context-specific
interventions. In this study, “urban form” specifically refers to
the physical configuration of built environments, encompassing
both horizontal patterns (e.g., compactness, fragmentation) and

vertical dimensions (e.g., building heights, volumes). This
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TABLE 3 Global Moran'’s | statistics for CO, emissions in Chinese cities
(2005-2020).

Year 2005 2010 2015 2020
Moran’s I 0.255 0257 0257 0257
z-score 12.893 12.899 12.898 12.892

definition focuses on measurable morphological characteristics
rather than socio-economic or functional dimensions, which
distinguishes it from broader conceptualizations that include land
use patterns or activity distributions.

2 Methodology

2.1 Assessment of linear morphology-
carbon relationship with spatial
regression models

We apply ordinary least squares (OLS) and three spatial
regression models, including spatial lag model (SLM), spatial
error model (SEM), and spatial Durbin model (SDM), to explore
the linear relationships between urban form and CO, emissions.
The spatial models account for spatial dependence, which OLS
overlooks. And below is a summary of the model formulations.

The SLM posits that a city’s CO, emissions are influenced not
only by its own morphological characteristics but also by the
emissions of neighboring cities, thereby capturing the spatial
autocorrelation of the dependent variable (Gao et al., 2020). The
model is expressed as follows (Equation 1):

y=pWy+XB+ee~N(0,01) (1)

10.3389/fenvs.2025.1658538

where y is the vector of In (CO,) emissions, Wy represents the
spatial lag of the dependent variable, p is the spatial autoregressive
parameter, X is the matrix of morphological predictors with log
transformations, f3 is the vector of regression coefficients, and I is the
identity matrix, and € is the error term. The spatial weights matrix W
is defined based on queen contiguity, meaning that cities sharing a
boundary are considered neighbors.

The SEM accounts for autocorrelation in error terms by
assuming that unobserved factors influencing emissions are
spatially correlated (Golgher and Voss, 2016). Its formulation is
as follows (Equation 2):

y=XB+uu=AWu+ee~N(0,0I) ()

where u is the spatially dependent error term, A is the spatial error
coefficient, and Wu represents the spatially lagged errors. This
model is particularly beneficial for addressing spatial dependence
due to omitted variables or measurement errors with
spatial patterns.

The SDM extends the SLM by incorporating spatially lagged
variables, acknowledging that emissions and morphological features
of neighboring cities can influence the emissions of the target city (Li

and Li, 2020). The model is expressed in Equation 3:
y=pWy+XB+WXy+ee~N(0,01) (3)

where WX is the matrix of spatially lagged covariates, and y is the
vector of coefficients for these covariates. The SDM accommodates
both endogenous and exogenous spatial effects via Wy and WX,
respectively, thereby providing a more comprehensive analysis at the
expense of increased model complexity.

Model estimation is conducted using maximum likelihood, with
the weight appropriate
interpretation of spatial effects. Models are evaluated based on
R’ adjusted R’ and Akaike information criterion (AIC).

matrix W row-standardized for

Not Significant
High-High Cluster
I High-Low Outlier
I Low-High Outlier N
Low-Low Cluster

[ 500

1,000 km ( a) {

FIGURE 3

Not Significant
High-High Cluster B .
I High-Low Outlier 5 : /
[ Low-High Outlier \ oo O
Low-Low Cluster g

0 500

1,000 km (b) (

Local Moran's | analysis results of carbon emissions for year 2005 (a) and year 2020 (b).
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TABLE 4 Descriptive statistics of morphological indices.

Variable Mean SD Min Max Median
PAF 1.330 0.041 1.212 1.507 1.326
MEI 866.652 | 75.962 626.342 1147.033  868.114
TCA 2331393 2475399 | 1024545 | 168616.6  14347.35
PDI 1.235 0.882 0.031 6213 1.049
UAI 85515 6.389 42.024 97.521 86.435
LPI 4753 6.64 0.126 50.037 2.134
COH 98.032 2.621 65.748 99.972 98.693
SDI 0.262 0.168 0.023 0.693 0.236
VDAI 0.004 0.071 -0.356 0.933 0.004
ADA 0.010 0.031 -0.265 0.074 0.014
VGKI 3.858 2718 1.375 28.034 3233
CBC 45.376 46.237 035 318526  29.569
VGDR -0.219 0.507 -8.326 0.167 -0.098
UGSI 0.856 0.578 -0.889 3.440 0.782
ECVR 32.803 719.142  0.022 2353943 | 2.375

Additionally, Moran’s I test is performed to assess residual spatial
autocorrelation. Variance inflation factors (VIFs) are calculated
iteratively until correlations among predictors are below a
threshold of 5, ensuring a stable final set of predictors.

2.2 Assessment of non-linear morphology-
carbon relationship with GGPR

Geographical Gaussian process regression (GGPR) represents
an advanced extension of Gaussian process regression specifically
designed to address fundamental challenges in geospatial data
analysis, including spatial autocorrelation, small sample
prediction, and model interpretability (Jiao and Tao, 2025).
Traditional machine learning methods such as random forests
operate under the assumption of independence and identical
distribution (ii.d.), which fundamentally contradicts the spatial
autocorrelation principles described by Tobler’s First Law,
consequently leading to biased predictions (Dale and Fortin,
2014). GGPR addresses this limitation through a non-parametric
Gaussian process framework that explicitly captures spatial
dependencies using specialized covariance functions.

The mathematical foundation of GGPR rests on the Gaussian
process definition, characterized by a mean function m(x) and a
covariance function k (x, x). For a given set of input features X and
corresponding target values y, the GGPR model provides
predictions for the posterior mean and variance at an unknown

point xx through Equation 4:

H(x00) = K (05, X) [K (X, X)] ™'y, 0% ()

= K (300, %4) = K (306, X) [K (X, X)]'K (X, x#)  (4)
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where K denotes the covariance matrix defined by the kernel
functions. The key innovation of GGPR lies in its composite
kernel design that effectively captures the multi-scale nature of
urban carbon emissions. This approach combines a spatial
similarity kernel (SSK) with a Matérn kernel (MK) through the
formulation (SSK + w x MK), where w represents a weighting
parameter. The SSK parameterizes spatial similarity through
geographical configuration vectors e = (ej, ez, . ..,e,), measuring
the similarity between spatial units i and j using Equation 5:

(e (i) — e, (j))2>

202
where P(-) is a weighted averaging function and o, parameters are

$(i,j) =P ] exp (— (5)
v=1

optimized using limited-memory Broyden-Fletcher-Goldfarb-
Shanno bound or Bayesian optimization methods (L-BFGS-B)
(Morita et al, 2022). This kernel captures broad geographical
patterns reflecting regional energy infrastructure and policy
effects. Complementing the SSK, the MK model’s local spatial
autocorrelation as a function of Euclidean distance r through
Equation 6:

217

__(\/5

v r
T T(w)

7) (v )

where hyperparameters ¢ (length scale) and v (smoothness) are

k(r) (6)

learned during training. This component effectively captures fine-
scale neighborhood effects arising from local urban morphological
variations. The composite kernel approach addresses the inherent
challenge that single-kernel methods face: SSK alone would miss
local spatial structure, while MK alone would fail to capture broader
the
effectiveness of this composite kernel strategy. Across the years

geographical patterns. Empirical validation confirms
2005-2020, it achieves an average reduction of 43.9% in cross-
validation root mean square error (RMSE) compared to the SSK
alone and an average reduction of 2.4% compared to the MK alone,
demonstrating substantial improvement over the SSK and modest
gains or comparable performance relative to the MK depending
on the year.

The hyperparameter optimization procedure employs Bayesian
optimization with Gaussian process priors over the hyperparameter
space, utilizing expected improvement as the acquisition function.
The optimization procedure runs for 100 iterations with 5-fold
spatial cross-validation, searching across a carefully defined
parameter space that includes SSK parameters ¢, € [0.1, 10] for
each geographical configuration dimension, Matérn kernel
parameters with length scale £ € [10, 500] and smoothness v €
[0.5, 5], and composite weight w € [0.05, 0.2] initialized at 0.1. All
parameters are constrained using the L-BFGS-B algorithm to ensure
both numerical stability and physical interpretability throughout the
optimization process.

To enhance model interpretability, GGPR is integrated with
GeoShapley, a game theory-based framework that extends the
Shapley value methodology to quantify spatial effects in machine
learning models (Li, 2024). GeoShapley conceptualizes location
features as joint players in a model prediction game, treating
coordinates such as latitude and longitude as a single joint player
rather than individual features. This approach enables the

quantification of both intrinsic location effects and synergies
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TABLE 5 Results of OLS, SLM, SEM, SDM regression models for CO, emissions in year 2005,2010, 2015, and 2020.

Year Model PAF TCA UAI LPI ADA VGDR UGSI R? p A AIC
2005 OLS -0.181 0.181 0.74300¢ —-0.504 —0.540*** 0.182 —0.096** 0.642 - - 520.25
SLM 0.210 0.080 0.691** -0.367 —0.578*** 0.240 -0.088** 0.659 0.214* - 510.76
SEM -0.316 0.262* 0.754¢ 0.155 —0.513*** 0.262* —0.096*** 0.701 - 0.487*%* 485.56
SDM -0.377 0.298* 0.752*** 0.256 —-0.517*** 0.242* —0.098*** 0.702 0.471* - 497.99
2010 OLS —-0.498 0.186 0.766* —-0.436 -0.308** 0.207 —0.157*** 0.646 - - 508.77
SLM -0.257 0.118 0.727*%* —-0.512 -0.337** 0.249 -0.146*** 0.655 0.155** - 504.80
SEM -0.367 0.263* 0.7730¢ 0.216 -0.329** 0.271* —0.147** 0.686 0.4140¢ 486.90
SDM —-0.366 0.351* 0.779*** 0.387 —0.294** 0.240 —0.150*** 0.688 0.379* - 498.20
2015 OLS -0.503 0.142 0.781°* —-2.152 -0.170 0.160 —0.255%** 0.624 - - 524.76
SLM —-0.253 0.081 0.736*** —-2.044 -0.200 0.182 —0.247* 0.633 0.148* - 521.55
SEM —-0.269 0.217 0.778* -1.137 -0.219* 0.199 —0.251*** 0.662 0.3957¢ 506.11
SDM -0.230 0.339* 0.793*+¢ -1.016 —-0.157 0.184 —0.255%** 0.667 0.350%** - 514.29
2020 OLS -0.630 0.151 0.802** -4.615 —0.091 -0.014 —0.287*** 0.616 - - 530.5
SLM -0.414 0.094 0.756*** -4.431 -0.119 0.029 —0.278*** 0.625 0.151* - 527.13
SEM —-0.388 0.217 0.781** —-2.747 —-0.129 0.044 —0.297*** 0.648 - 0.367** 515.27
SDM —-0.238 0.327* 0.797** -3.001 -0.059 0.023 —0.301*** 0.657 519.73

between location and other features. The GeoShapley value for
location features is calculated using Equation 7:

boro = z

SCM\GEO

(p-s—g)!
H[f (SU{GEOhH - f(9)] ()

where GEO denotes a set of location features of size g. S represents a
feature subset excluding GEO with size s. M is the set of all features,
and p is the total number of features in the model. f (-) is the model
prediction function.

For non-spatial features, the GeoShapley value is given by
Equation 8:

sp-s-9) ,
SEM\{J'} m [f (S U {]}) - f(s)] (8)

¢j =
The interaction effect between the location feature set and a
specific feature j is computed using Equation 9:

sl(p-s—-g-1)!

(p-g+1) - Agro,j )

baro, i~
sem\(GEOu{j})

where the interaction term Aggo,; is defined using Equation 10:

Acroj = f(SU{GEO, j}) - f(SU{GEO}) - f(SU {j}) + f(S)
(10)

The final model prediction y can then be decomposed using
Equation 11:

P P
Y=+ baro +z¢j +Z¢GEO,;’

j=1 Jj=1
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where ¢, is a constant base value; ¢ represents the intrinsic effect of
location features; ¢; captures the location-invariant effect of each non-
spatial feature j; and ¢¢p, ; quantifies the spatially varying interaction
effect between the location features and feature j (Li, 2024). The
GeoShapley values are estimated using an extended kernel SHAP
method through a weighted least squares framework, making the
approach computationally feasible for practical applications (Chen Y.
et al, 2025). By combining GeoShapley with GGPR, the proposed
framework simultaneously captures complex spatial dependencies and
interpretable feature contributions, providing comprehensive insights
into spatial heterogeneity and nonlinear relationships in geospatial
phenomena, as summarized in Figure 1.

3 Urban morphological and
emission data

3.1 2D urban morphological indices

The land use data from Yang and Huang is used to compute
two-dimensional urban morphological indices that describe various
aspects of urban spatial structure (Yang and Huang, 2021). These
indices, derived from existing studies that measure the shape,
arrangement, and diversity of impervious surfaces and land use
types within a city (Moudon, 1994; McGarigal et al., 2002; Dai et al.,
2018; Jia et al., 2019; Olsen et al., 2019; Ge et al., 2021), can be
organized into four functional categories as indicated in Table 1.
capture
concentrated and compact the urban form is: the perimeter-area

Compactness and concentration indicators how

fractal dimension (PAF) measures the shape complexity of
impervious surface patches, with higher values indicating more
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TABLE 6 Model fitting results of GGPR in year 2005,2010, 2015, and 2020.
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Year MAE MAPE RMSE R?
2005 43633.736 0.024 76431.542 0.999
2010 44502.017 0.016 72112.630 0.999
2015 50435.891 0.018 77957.925 0.999
2020 77496.869 0.024 122961.372 0.999
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FIGURE 4

Correlations between urban morphological indices and carbon emissions.

compact, less irregular shapes. Whilst the urban aggregation index
(UAI) evaluates the clustering of patches, with higher values
reflecting more aggregated, compact urban areas. The largest
patch index (LPI) quantifies the dominance of the largest patch
relative to the total urban area, where higher values suggest a
consolidated urban core, whereas and the total core area (TCA)
represents the sum of stable core areas within a 10 km buffer of the
city center, reflecting the extent of robust urban patches. And the
built area dynamic aggregation index (ADA) emphasizes the
horizontal footprints of buildings and their radial concentration
pattern. Fragmentation and distribution indicators measure
dispersion and spatial distribution patterns. For instance, the
patch density index (PDI) assesses fragmentation by calculating
the number of patches per unit area, with higher values indicating a
more dispersed urban form. While the mean elongation index (MEI)
quantifies the average elongation of patches, where higher values
suggest linear structures (e.g., roads) and lower values indicate
compact forms (e.g., impervious surfaces). The patch cohesion
index (COH), as a connectivity and integration indicator,
measures the connectivity of patches, with higher values
indicating well-connected urban areas that may enhance
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infrastructure efficiency, whilst the cumulative building coverage
continuity (CBC) serves as an accumulated indicator of built density
decay based on distance-weighted information concerning the area
occupied by buildings. Finally, Shannon’s diversity index (SDI),
representing the diversity indicator, evaluates the diversity of land
use types within the urban boundary, with higher values indicating
greater land use variety.

3.2 3D urban morphological indices

In this study, 3D morphological indices are computed using an
innovative concentric zone approach. The analysis focuses on
286 Chinese cities and their government buildings as of 2005.
We plot 30 concentric circles at 1 km intervals, radiating
outward from the centers of these cities (Figure 2). The selection
of government office locations as city center is significant, as urban
development typically extends from historic city centers where
municipal offices are located, thereby reflecting the spatial
expansion patterns of Chinese cities. A 30 km concentric circular
buffer is methodologically appropriate for delineating urban extent
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FIGURE 5
Summary of GeoShapley values for urban form indicators affecting carbon emissions in 2005 (Each point represents a city, with variables ordered by
mean absolute GeoShapley value. Positive values indicate factors that increase carbon emissions, while negative values indicate factors that

decrease emissions).

because it aligns with the spatial zone of most rapid land expansion.
In Beijing, land development intensity peaked within the 10-30 km
buffer from the city center, marking it as the core zone of outward
urban growth and suburban transition (Huang et al, 2020).
Similarly, gradient-based urban studies have operationalized
buffers up to 30 km, categorizing 0-14 km as urban core,
14-24 km as suburban, and 24-30 km as fringe areas, effectively
distinguishing morphological zones within the urban gradient (Ma
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et al., 2024). Moreover, the 30 km scale bridges neighborhood-
focused analysis and city-region planning, offering both conceptual
and empirical relevance.

These circles define 30 circular geographic buffer zones
surrounding each city’s core. We employ building footprints and
height data from 2005 to 2020 in 5-year intervals, examining
building coverage area, volume, and average height statistics
across various buffer zones. Each city is represented by
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FIGURE 6

Summary of GeoShapley values for urban form indicators affecting carbon emissions in 2020.

30 measurements per year. Figure 2 illustrates the building height
distribution across the concentric zones of Shanghai. Building height
data were sourced from Chen et al. (Chen P. et al., 2025), who
utilized the ALOS World 3D 30 m digital surface model (DSM)
alongside NASA’s digital elevation model (DEM), global artificial
impervious area, and global roads inventory project data. A
normalized DSM was generated by calculating the difference
between the digital terrain model (DTM) and DSM on Google
Earth Engine, resulting in a 30 m national map. Validation against
field measurements demonstrated good accuracy for flat/mixed
roofs (R* = 0.81, RMSE = 4.26-3.51 m) across 6 Chinese cities
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(R*=0.64-0.79, RMSE = 4.65-5.35 m), yielding an overall accuracy
of RMSE = 4.98 m and R*> = 0.75 (Huang et al., 2022). Data for
Chinese cities were collected for 2005, 2010, 2015, and 2020 for
this analysis.

The 3D morphological indices employed in this study are
determined by referring to similar 3D urban form measurement
concepts from previous studies (Li and Zeng, 2024; Liu et al,, 2021;
Guo et al., 2022), and can be categorized into 3 groups (Table 2).
Compactness and concentration indicators in three dimensions
focus more on the radial concentration patterns. The volumetric
dynamic aggregation index (VDAI) quantifies the radial decrease in
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FIGURE 7

Feature importance ranking of urban form indicators based on mean absolute GeoShapley values and relative contribution of different urban form

indicator categories to carbon emission predictions in 2005.

volumetric mass of buildings, measuring how building volume is
concentrated toward the urban center, and the edge-core volume
ratio (ECVR) compares peripheral and core volumes to evaluate the
extent of suburban sprawl relative to central concentration.
three-
dimensional dispersion patterns: the volumetric gradient kurtosis

Fragmentation and distribution indicators capture
(VGKI) assesses the peakedness of volume distribution along the
urban gradient, facilitating differentiation between monocentric and
polycentric structures. Whilst the volumetric gradient decay rate
(VGDR) measures the average decrease in volume intensity from the
city center to the surrounding areas. Connectivity and integration
indicators measure synchronized development: the urban gradient
synergy index (UGSI) captures the interaction between changes in
building heights and coverage, revealing whether vertical and

horizontal densities decline concurrently with distance.

3.3 Carbon emission data

The open data inventory for anthropogenic CO, (ODIAC)
provides one of the most detailed global estimates of fossil fuel
CO, emissions, with a spatial resolution of 1 km* (Oda and
Maksyutov, 2011). Developed by Japan’s national institute for
environmental studies, this inventory uniquely integrates
satellite-based nighttime light data with an extensive database
of individual power plant emissions and their locations. National
totals, derived from energy statistics, are allocated to non-point
sources based on calibrated nighttime light radiance, while

Frontiers in Environmental Science

emissions from more than 17,000 individual power plants are
precisely located at their geographic coordinates. This hybrid
approach transcends the spatial limitations of population-based
or coarse-resolution inventories, accommodating both diffuse
urban footprints and concentrated point sources. First published
in 2011, ODIAC has undergone numerous refinements and
updates since its inception. It now includes NASA’s Black
Marble nighttime light product, enhancing estimates in
response to recent developments in energy use and
urbanization. The ODIAC data can support a variety of
applications, including atmospheric CO, flux inversions and
city-scale emission mapping, and serves as a benchmark for
fine spatial resolution, globally consistent anthropogenic CO,
modeling. For this study, we utilized a 30 km buffer around the
city center for extracting CO, emissions data from 2005 to 2020,
to align with the spatial and temporal scopes of the urban

morphological indices.

4 Spatial regression results

4.1 Global and local Moran’s | analysis of
CO, emissions

The global Moran’s I values for CO, emissions in 2005, 2010,
2015, and 2020 ranged from 0.255 to 0.257, which indicated
significant positive autocorrelation with z-scores exceeding 12.890
(Table 3). Local Moran’s I statistics revealed distinct spatial patterns
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across China. High-High clusters were concentrated in eastern and
central provinces, with Shandong, Jiangsu, and Henan identified as
high-emission areas. In contrast, Low-Low clusters dominated the
western regions, particularly in Tibet and Qinghai, which were
characterized as low-emission areas. High-Low and Low-High
outliers were observed in transitional zones between these
clusters, suggesting that the spatial aggregation of high CO,
emissions was significantly influenced by economic and industrial
development patterns in eastern China, as illustrated in Figure 3.
Morphological characteristics varied significantly among cities,
as detailed in Table 4. PAF exhibited an average fusiform shape
complexity with a mean of 1.33. MEI averaged 866.65,
demonstrating drastic heterogeneity across cities. TCA was
notably heterogeneous with a mean of 23,313.93, while PDI
displayed a wide range, reflecting urban density variations.
Aggregation and connectivity were strong across the studied
cities. UAI showed a mean of 85.52, and COH averaged 98.03,
indicating well-connected urban areas. LPI presented the greatest
variability, reaching up to 50.04, whereas SDI showed a mean of
0.262, suggesting low to moderate diversity. Both VDAI and ADA
were low and consistent, while the ECVR was highly variable.
CO, emissions displayed significant positive correlations with
several morphological indices. The strongest correlations were
observed with TCA at 0.808, LPI at 0.805, and CBC at 0.739,
suggesting that emissions increased with larger and more
aggregated patches. Moderate correlations were found with UAI
at 0.444 and SDI at 0.696, while weak-to-moderate correlations were
observed with PDI at 0.121 and COH at 0.313. Weak negative
correlations were noted with PAF and MEI, though the correlation
with PAF was not significant. UGSI also showed a weak negative
correlation at —0.199. The indices VDAL, ADA, VGDR, and ECVR
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showed very weak correlations with emissions. Notably, TCA
emerged as a strong predictor of both LPI with a correlation of
0.954 and SDI with a correlation of 0.930, as shown in Figure 4.

4.2 Results of spatial regression models for
CO, emissions

The spatial regression analysis showed consistent patterns across
the study period, with the SEM emerged as the superior model.
These findings illuminated the fundamental spatial dependence
structure underlying urban carbon emissions and showed how
morphological factors operated through spatially mediated
mechanisms. In 2005, whilst the OLS model yielded an R* of
0.642, the SEM outperformed other models with an R* of 0.701.
The improvement over OLS (AR* = 0.059) indicated that
approximately 6% of emission variance was explained by spatially
correlated unobserved factors, suggesting that urban carbon
dynamics were fundamentally influenced by spillover effects from
shared infrastructure networks,
economic linkages, and regional industrial policies. The SEM

neighboring cities through
included a spatial error term A of 0.487 and demonstrated an
AIC of 48556, thereby effectively eliminating the residual
autocorrelation. Although the SDM performed slightly better
with an R® of 0.702, its higher AIC of 497.99 and the fact that
only the lagged UAI proved significant reinforced the preference for
the SEM (Table 5).

The temporal evolution of model performance displayed critical
insights into China’s changing urban carbon landscape. For 2010,
the OLS model had an R* of 0.646. The SEM produced an R* of
0.686 with a A of 0.414 and an AIC of 486.90, showing no residual
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Partial dependence plots showing the marginal effects of urban form indicators on carbon emissions in (a) 2005 and (b) 2020.

autocorrelation. The decline in spatial error coefficient from 0.487 to
0.414 suggested that inter-city spatial dependence in carbon
emissions had weakened over time, which potentially reflected
the importance of  city-specific
technological that had differentiated emission
patterns across neighboring urban areas. In 2015, the OLS model
recorded an R® of 0.624. The SEM achieved an R* of 0.662 with A of
0.395 and AIC of 506.11. The continued decline in spatial
dependence coupled with slightly reduced overall explanatory

increasing policies and

innovations

power suggested the increased urban carbon heterogeneity, where
local morphological characteristics had begun to dominate regional
patterns. By 2020, the OLS model had an R* of 0.616. The SEM fitted
with an R? of 0.648, a A of 0.367, and an AIC of 515.27. The further
reduction in spatial dependence (A = 0.367) reflected the maturation
of China’s urban system, where cities had developed increasingly
distinct carbon profiles based on their specific morphological
characteristics and local policy environments.

Across all years studied, the SEM consistently provided the best
fit. This superiority was evidenced by the lowest AIC values, ranging
from 485.56 in 2005 to 515.27 in 2020, and a lack of residual spatial
autocorrelation with Moran’s I p-values exceeding 0.5, compared to
OLS, SLM, and SDM models. While the SDM offered marginal R?
improvements, these were accompanied by higher AIC values and
generally insignificant lagged covariates. Likelihood ratio tests
confirmed the significance of spatial effects. The SEM’s ability to
account for spatially dependent errors while avoiding the empirical
need for lagged covariates rendered it the most parsimonious model.
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Although the SLM outperformed the OLS model, it still exhibited
residual autocorrelation, which further supported the choice of
SEM. The insignificance of spatially lagged covariates (WX) in
the SDM, despite theoretical expectations of spillover effects,
suggested that carbon emissions were more influenced by
spatially correlated unobserved factors (captured by the spatial
error term A) rather than direct spillovers from neighboring
cities’ morphological characteristics. This pattern was consistent
with emissions having been driven by regional energy infrastructure
and economic structures that created spatial clustering in the error
terms rather than direct morphological contagion effects.

4.3 Importance of the independent variables
and trends over time

Elasticity, defined as the percentage change in CO, emissions in
response to a 1% change in the predictor variable, could be interpreted
through the SEM coefficients as reflecting the relationship between
urban compactness and CO, emissions. Among compactness
indicators, UAI emerged as the most influential predictor of CO,
emissions. The elasticity of emissions with respect to UAI increased
from 0.754 in 2005 to 0.781 in 2020, indicating an intensifying
relationship where urban clustering became increasingly carbon-
intensive. This strengthening effect suggested that while compact
development initially provided efficiency gains, Chinese cities may
have been approaching or exceeding optimal density thresholds
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FIGURE 10
The relationship between morphological indices and urban carbon emissions (year 2005).
where agglomeration diseconomies, including congestion, concentrated ~ urban  expansion influenced emissions. ADA depicted

industrial activities, and infrastructure stress, began to outweigh the
carbon benefits of compactness.

TCA’s moderate significance primarily in 2010 reflected the
critical period when China’s urbanization accelerated after 2008.
During this phase, core area expansion became a key determinant
of emission patterns, suggesting that the spatial organization of
urban centers played a crucial role in carbon dynamics during
rapid growth periods. The temporal dynamics of ADA
demonstrated a fundamental transition in how directional
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significant negative effects in the early study years, with a 1%
increase associated with 0.513% emission reduction in 2005 and
0.329% reduction in 2010. Nevertheless, this effect became
insignificant by 2015-2020. This evolution suggested that
during the initial phase (2005-2010), directional compact
growth effectively reduced emissions through infrastructure
efficiency and reduced sprawl. However, as cities matured and
growth patterns stabilized, the carbon benefits of directional
development diminished.
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The relationship between morphological indices and urban carbon emissions (year 2020).

UGST’s evolution represented perhaps the most significant finding
for urban carbon management. Its negative impact intensified
dramatically over time, with elasticity increasing from —0.096 in
2005 to —0297 in 2020. This tripling effect revealed that
synchronized  vertical-horizontal ~ development had  become
increasingly critical as Chinese cities transitioned from extensive to
intensive growth models. The intensifying effectiveness suggested that
as urban land became scarce and development became more three-
dimensional, the coordination between building height and coverage

became a primary determinant of carbon efficiency.

Frontiers in Environmental Science

5 GeoShapley analysis of urban
morphology and carbon emissions

5.1 Model fitting results of GGPR

The GGPR filtered morphological variables for each year of the
study period by computing mutual information (MI) scores between
CO, emissions and all predictors. Morphological variables with MI
scores above a threshold of 0.1 were selected, to ensure only those
with significant predictive power were retained for modeling, while
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less informative variables were excluded if their MI scores fell below
the threshold (Paninski, 2003). The GGPR model demonstrated
exceptionally strong performance across all years with consistently
low mean absolute percentage error (MAPE) values ranging from
1.6% to 2.4%, indicating excellent relative accuracy in predicting
CO, emissions. While absolute error metrics increased over time,
with mean absolute error (MAE) rising from 43,634 in 2005 to
77,497 in 2020 (a 78% increase) and RMSE increasing from
76,432 to 122,961 (a 61% increase), the R® values remained
remarkably stable at 0.999 across all years from 2005 to
2020 (Table 6).

The GeoShapley analysis revealed complex spatial patterns in
how wurban morphological characteristics influenced carbon
emissions across Chinese cities between 2005 and 2020, as seen
in Figures 5, 6, Supplementary Figures S1, S2. Contrary to
conventional expectations, several key urban form indicators
demonstrated predominantly negative contributions to emissions,
suggesting that certain aspects of urbanization actually mitigated
carbon output. LPI exhibited a consistently negative impact on
emissions, with mean GeoShapley values of -1.924 x 10°
(£1.256 x 10°) in 2005 evolving to —1.300 x 10° (£1.506 x 10°)
in 2020. This finding indicated that larger continuous urban patches
facilitated more efficient infrastructure and reduced per capita
emissions. Only 12.9% of cities showed positive LPI values by
2020, concentrated primarily in rapidly expanding second-tier
cities. The spatial distribution showed a clear east-west gradient,
with eastern coastal megacities showing less negative values while
western cities demonstrated strongly negative values.

COH presented a nuanced picture, transitioning from slightly
negative mean values of —0.106 x 10° (+0.337 x 10° in
2005 to —0.103 x 10° (+£0.387 x 10°) in 2020. Approximately
48.6% of cities showed positive COH values by 2020, indicating
substantial spatial heterogeneity. Eastern metropolitan areas
demonstrated positive contributions, while central and western
cities predominantly showed negative values, suggesting that
urban connectivity’s impact on emissions was highly context-
dependent. TCA showed the strongest negative association with
emissions among compactness indicators, with mean values
of —=1.053 x 10° (£0.610 x 10°) in 2005 deepening to —1.226 x
10° (£1.503 x 10°) by 2020. This increased variance indicated
growing spatial differentiation, with only 21% of cities showing
positive TCA values in 2020, primarily provincial capitals and major
economic centers where larger urban cores concentrated high-
emission activities. Fragmentation indicators revealed important
regional variations. PDI demonstrated predominantly negative
but weak effects with mean values of —0.069 x 10° (£0.441 x 10°)
in 2020. The quartile distribution (Q25 = -0.292 x 105,
Q50 = —0.059 x 10°% Q75 = 0.121 x 10°) revealed significant
regional variation, with central Chinese cities, particularly in
Henan and Hubei provinces showing positive PDI values,
suggesting that in these

fragmented development rapidly

urbanizing regions increased emissions. SDI maintained
consistently negative impacts, with mean values of —0.768 x 10°
(£0.512 x 10° in 2005 shifting to —-0.706 x 10° (£1.059 X
109 in 2020.

Meanwhile, 3D urban form indicators demonstrated evolving
patterns. VDAI showed a notable reversal from negative values

of —0.107 x 10° (+0.335 x 10°) in 2005 to slightly positive values of
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0.025 x 10° (£0.326 x 10°) by 2020, representing the only indicator
to transition from negative to positive mean impact. This suggested
that asymmetric vertical development patterns were increasingly
associated with higher emissions, particularly in rapidly verticalizing
cities. ECVR showed mean values of —0.055 x 10° (+0.711 x 10°) by
2020, with substantial spatial variation. Eastern coastal cities tended
toward positive values while inland cities showed negative
contributions, reflecting different peripheral development patterns.

The spatial distribution maps from 2005 to 2020 revealed
evolving regional patterns. Eastern coastal regions consistently
showed less negative or slightly positive GeoShapley values across
most indicators, suggesting that mature urbanization in these areas
had reached a point where further densification might increase
emissions. Central regions exhibited high variance across all
indicators, reflecting cities in rapid transition with diverse
development trajectories. Western regions consistently showed
strongly negative values across most indicators, showing that
urbanization patterns in these cities helped mitigate emissions,
possibly due to lower development intensity. Northeast regions
demonstrated unique patterns with increasingly negative values
over time, potentially reflecting economic restructuring and
population decline. One of the most interesting findings was the
paradigm shift in understanding urban compactness impacts.
(LP, TCA, CBC)
predominantly showed negative associations with emissions, with
CBC values of —-1.149 x 10° (£0.681 x 10°) in 2005 evolving
to —0.851 x 10° (£1.191 x 10° in 2020. The coefficient of
variation for most indicators increased between 2005 and 2020,

Moreover, compactness indicators

indicating growing spatial differentiation in how urban form
influenced emissions. The impact of urban morphology on
emissions proved highly dependent on regional development
stage, with mature eastern cities showing different patterns than
developing central and western cities. While horizontal compactness
reduced emissions, asymmetric vertical development showed
increasing positive associations with emissions, which clearly
suggested the need for balanced three-dimensional urban planning.

5.2 Spatiotemporal changes in the
morphology-emission relationship

Feature importance analysis revealed a fundamental
reorganization of urban carbon drivers (Figure 7; Supplementary
Figures S3-55). The LPI consistently dominated as the most
stable
importance values ranging from 1.820 to 2.152 x 10° between
2005 and 2020 (Figure 8). This consistency suggested that patch

dominance served as a core organizing principle in urban carbon

important predictor over the study period, with

systems, persisting despite temporal variations in technology, policy,
and economic conditions. The observed stability of LPT’s influence
indicated that the spatial configuration of the largest urban patches
produced path-dependent carbon emission patterns that remained
robust in the face of shorter-term interventions. A dramatic rise of
TCA was also detected: it grew from a secondary importance of
1.146 x 10° in 2005 to nearly matching LPI (1.695 x 10°) by 2020
(Figure 8). This approximately 48% increase indicated a critical
transition in urban carbon dynamics. It suggested that as Chinese
cities matured, the cumulative effect of multiple urban cores became
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more influential than that of a single large patch. This evolution
mirrored China’s shift from monocentric to polycentric urban
structures, wherein the aggregate carbon impact of distributed
urban  centers traditional
core-periphery patterns.

fundamental shift in emission drivers, with compactness and

increasingly ~ outperformed

The categorical analysis found a
concentration indicators increasing their collective contribution
from 58.13% in 2005 to a peak of 69.54% in 2015, before
moderating to 65.73% in 2020 (Figure 7; Supplementary Figures
$3-55). This trajectory indicates that urban compactness has
the

characteristic influencing emissions, while connectivity and

become overwhelmingly =~ dominant  morphological
integration indicators showed a corresponding decline from
20.47% in 2005 to 16.00% in 2015, suggesting that as cities
densified, the role of inter-patch connectivity diminished relative
to concentration effects.

GeoShapley spatial interaction analysis indicated the emergence
of location-dependent morphological effects that fundamentally
challenged universal urban planning approaches. GEO exhibited
the widest value distribution (=10.0 to 7.5 x 10°), confirming that
geographical context acted as a meta-variable moderating all
morphological relationships. This result implied that identical
urban forms vyielded markedly different carbon outcomes
depending on their geographical location. Interaction terms
further demonstrated the evolution toward spatially contingent
urban carbon systems. The coefficient for LPI x GEO was
predominantly positive and increased from approximately 2.5 x
10° in 2005 to 5.0 x 10° by 2020 (Figure 9; Supplementary Figure S6).
This doubling effect suggested that large urban patches increasingly
incurred location-specific carbon penalties, likely reflecting regional
energy systems, industrial and
transportation networks as Chinese cities expanded. Finally, the
emergence of 3D  morphological
2015-2020 marked a paradigm shift in urban carbon
determinants. Both VDAI x GEO and ECVR x GEO acquired
measurable impacts (around 1.0 x 10°) that had been absent in

variations in structures,

interactions  during

earlier periods. This finding indicated that vertical urban
development began producing regionally differentiated carbon
impacts. It suggested that future urban carbon management must
integrate vertical development

patterns and  geographical

context—moving beyond traditional 2D planning frameworks.

5.3 Non-linearities and threshold effects

The threshold analysis discovered distinct patterns in the
relationship between urban morphological indices and CO,
emissions over the study period (Figures 10, 11; Supplementary
Figures S7, S8). Among the key findings, several morphological
indices demonstrated evolving relationships with carbon emissions
across the examined years. LPI exhibited positive GeoShapley values
when exceeding thresholds of approximately 15. And TCA
consistently showed positive contributions when exceeding
thresholds ranging from 100,000 in 2005-2010 to 50,000 in
2015-2020, suggesting that extensive core urban areas were
associated with higher emission levels. SDI showed monotonic
increases with positive contributions above thresholds of 0.6 in
2005, progressively lowering to around 0.45 in 2015 and 2020. COH
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exhibited positive contributions with thresholds of around 97. UAI
similarly maintained positive relationships when exceeding
thresholds around 88-92 across all years. The temporal dynamics
of 3D morphological indicators revealed particularly complex
evolutionary patterns. VGKI underwent a notable transformation,
showing positive contributions when values fell below 4 in 2005 and
below 6 in 2010. VDAI demonstrated non-linear relationships that
shifted dramatically over time, with positive contributions observed
in the range of —0.03 to 0.14 in 2005, expanding to 0.0 to 0.2 in 2010,
then shifting to —0.02 to 0.23 in 2015, before transitioning to a
monotonic decrease pattern by 2020.

The analysis also revealed patterns of threshold evolution and
emergence of new factors over time. PDI showed positive
contributions below thresholds of 1.7 in 2010, within the range
1.1-1.9 in 2015, and below 1.4 in 2020, indicating that moderate
patch density levels were associated with higher emissions. ECVR
showed monotonic decrease patterns with positive contributions
below 13 in 2010, dropping to below 4 in 2015 and below 2 in 2020,
highlighting the growing importance but diminishing threshold of
edge effects in urban carbon dynamics. ADA maintained relatively
stable positive contribution ranges across all years, typically
between —0.02 and 0.06, suggesting consistent impacts of
directional horizonal urban development patterns on emissions.
Most significantly, the analysis revealed that CBC consistently
showed positive contributions above thresholds ranging from
213 in 2005 to values around 150-160 in later years, while
VGDR transitioned from positive contributions above -0.3 in
2010 to showing no clear patterns in subsequent years. The
general trend toward lower thresholds and narrower positive
contribution ranges for many indices over time potentially
indicated improved urban planning practices and more efficient
urban forms that had successfully reduced fragmentation-related
emissions by 2020.

Furthermore, bootstrap resampling with 1,000 iterations
quantified threshold uncertainty and temporal stability of
morphological metrics from 2005 to 2020. Coefficient of
variation (CV) and 95% confidence intervals were computed,
with stability classified based on cross-year CV and confidence
interval (CI) overlap. LPI, COH, and UAI exhibited high
temporal stability (CV < 0.10, CI overlap > 60%). LPI
maintained a stable threshold around 15 (CV = 0.067), with
narrow confidence intervals, confirming its reliability as a
threshold indicator. COH and UAI showed stable thresholds
(CV = 0.084 and 0.093, respectively). Whilst VDAI and ECVR
displayed higher variability, indicating context-dependent
thresholds. Of 15 metrics, 7 achieved high to very high stability,
with CV < 0.10, 4 showed moderate stability, with CV ranges from
0.10 to 0.15), and 4 had low to very low stability, with CV > 0.15.

6 Discussions and limitations

This study significantly advances our understanding of how
urban morphology affects CO, emissions by addressing critical gaps
identified through our literature review. Specifically, it explores the
non-linear relationships between urban morphological parameters
and carbon emissions within the urban core areas, as well as the
temporal dynamics of these relationships. By employing a
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combination of linear spatial regression models (OLS, SLM, SEM,
SDM) and contrasting their performances with GGPR and
GeoShapley explainability methods, we observed both linear and
non-linear, spatially varying associations between urban form and
emissions across 286 Chinese cities from 2005 to 2020. In this
section, we discuss how these findings address the identified gaps,
their implications for carbon management in light of spatial
heterogeneity, and potential limitations that require further
investigations.

6.1 Reconciling linear and non-linear
relationships in morphology-
emission dynamics

This study discovers a fundamental duality in how urban
morphological characteristics influence carbon emissions, as
observed through a triangulation of spatial regression, threshold
modeling, and GeoShapley analysis. While spatial regression models
consistently identify UAI as the strongest positive predictor of
with to 0.781.
GeoShapley analysis presents a contrasting picture, revealing
predominantly negative UAI (-0.312 x 10°
-0.316 x 10°) across Rather than
contradiction, this divergence reflects the differing lenses of
spatial captures
relationships, indicating that more aggregated cities emit more

emissions, elasticity ranging from 0.754
contributions

to spatial  contexts.

analysis: regression system-wide average
carbon in total due to economic clustering and intensified
activity, whereas GeoShapley highlights local efficiency patterns,
showing that aggregation often reduces per capita emissions by
enabling infrastructure sharing, reduced travel distances, and spatial
compactness.

This apparent paradox extends to other compactness indicators
such as LPI, TCA, and CBC. GeoShapley reveals negative
associations between these metrics and emissions, yet threshold
analysis shows that once values exceed critical limits, such as LPI >
15 or TCA > 50,000, these same traits begin to increase emissions.
This nonlinear tipping behavior suggests that cities initially benefit
from agglomeration economies, but beyond certain morphological
thresholds, diseconomies such as congestion, longer intra-urban
trips, and concentrated industrial outputs offset early gains. Over
time, these thresholds have shifted, TCA’s critical value declined
from 100,000 to 50,000 between 2005 and 2020, which indicates
adaptive morphological recalibrations under policy and land-use
constraints.

6.2 The evolving role of 2D versus 3D
morphological indicators in carbon
management

Our finding that 3D morphological indicators emerged as
significant carbon emission predictors by 2015-2020 represents a
critical advancement beyond traditional 2D-focused studies. While
earlier research by Fang et al. analyzing 30 Chinese provincial
capitals relied exclusively on 2D morphological variables
achieving R* values of 0.13-0.18 (Fang et al, 2015), our GGPR
approach incorporating 3D morphological variables achieved R*
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values consistently above 0.99. This surpasses even recent studies
like Tian et al. examining Wuhan, which introduced advanced 3D
indicators including sky view factor and street topology but achieved
lower explanatory power using random forest models (Tian et al.,
2024). Particularly critical is our discovery that UGST’s emission
reduction impact tripled from —-0.096 to —0.297, demonstrating that
synchronized vertical-horizontal development has become the most
powerful morphological mitigation factor, a finding that extends
beyond Wang et al’s analysis of 53 Chinese cities, which found
building height increased energy consumption while building
volume reduced it, but did not capture the synergistic effects of
synchronized development (Wang et al., 2024).

The transition we document from 2D to 3D dominance aligns
with but extends beyond recent methodological advances in the
field. Hong et al’s literature review noted that although most past
research has focused on 2D metrics to describe urban layout and
density, 3D measures such as volumetric density and building
elevation are gaining importance in shaping policy frameworks
(Hong et al,, 2022b). Our temporal analysis reveals the dynamic
nature of this transition: VDAI shifted from negative to positive
impacts over the study period, marking a critical threshold where
asymmetric vertical development transformed from an efficiency
strategy to an emission liability. This temporal dimension was
overlooked in Wang et al’s commercial building analysis in
Beijing, which established correlations between building shape
factor and carbon emissions but remained static in approach
(Wang et al., 2023).

Our GeoShapley analysis advances the field by revealing
location-specific variations that reconcile conflicting findings in
previous research. Our findings demonstrate that the same 3D
indicators can reduce per capita emissions in developing western
cities while increasing them in saturated eastern megacities. The
emergence of significant 3D interaction terms (VDAI x GEO,
ECVR x GEO) by 2015-2020 confirms Tian et al.’s assertion that
the configuration of the built environment plays a more substantial
role in shaping emissions than classic determinants such as land use
or population density (Tian et al., 2024).

6.3 Policy implications for carbon-
responsive urban planning

Our findings suggest several transformative policy interventions
that could reshape urban carbon management in China. Cities are
suggested to implement performance-based planning frameworks
that establish carbon intensity benchmarks linked to morphological
thresholds. When LPI approaches critical values (15 for eastern
cities, lower for western regions), planning authorities could require
mandatory mixed-use development and green corridor integration
to prevent over-concentration. These thresholds would serve as
performance indicators rather than rigid boundaries, allowing
flexibility in how cities achieve carbon reduction goals while
respecting local development contexts. Furthermore, the strong
of UGSI suggests should
synchronized height-density frameworks through performance-

negative impact cities adopt
based floor-area-ratio systems. This approach would link vertical
development rights to demonstrated infrastructure capacity and

carbon performance metrics. New urban districts would begin

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1658538

He et al.

with baseline height allowances that increase based on achieved
performance in transportation connectivity, utility provision, and
measured carbon intensity reductions. Areas experiencing rapid
horizontal expansion would face height limitations until meeting
specific infrastructure and carbon performance benchmarks. This
performance-oriented approach ensures that vertical development
proceeds in tandem with horizontal infrastructure readiness without
requiring complex real-time adjustment mechanisms.
The regional heterogeneity revealed by our analysis demands
targets
Eastern megacities

differentiated performance rather than uniform

morphological standards. approaching
saturation could establish carbon intensity reduction targets
achievable through polycentric restructuring and vertical
optimization strategies. Central cities in transition could set
moderate performance goals attainable through selective
densification combined with green infrastructure integration.
Western cities maintaining development potential could adopt
absolute emission caps while continuing compact development,
with regular performance reviews to identify when diminishing
returns emerge. These insights contribute to a broader theoretical
shift toward adaptive urban carbon science. The first key
contribution is the recognition of scale-dependent
optimization: while system-level aggregation may increase
total emissions, it can simultaneously enhance local carbon
efficiency, requiring policies that balance absolute and per
capita targets. Second, the analysis highlights threshold-
mediated nonlinearity, where seemingly linear relationships
break down once morphological indicators cross critical
values, prompting the need for graduated response strategies.
Finally, the study establishes the principle of spatially intelligent
morphology, showing that identical urban forms can yield
divergent carbon outcomes depending on their geographic and
infrastructural context. Collectively, these findings challenge the
prevailing logic of uniform planning standards and advocate for a
new paradigm in which urban form is governed not by fixed
metrics or automatic mechanisms, but by performance-based
targets, spatial contingencies, and development-stage-specific
interventions that remain implementable within existing

governance frameworks.

6.4 Limitations and generalizability
of findings

Our study offers significant insights into urban morphology-
emission dynamics in 286 Chinese cities from 2005 to 2020, yet
its scope is bounded by several limitations that shape its
generalizability. The reliance on city-level data, while robust
for broad trends, may mask intra-urban heterogeneity, as
Lugman et al. demonstrated that urban CO, emissions
patterns differ significantly according to development level
2023).
Potential biases in our data sources, such as inconsistencies in

across their global city analysis (Lugman et al,

satellite-derived morphological metrics or incomplete emissions
inventories, could further skew results, a concern echoed by
Privitera et al. in their global review of urban climate studies
(Privitera et al., 2018). Moreover, the specific thresholds
identified (e.g., for LPI or TCA) are tied to China’s unique
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urbanization trajectory, marked by rapid growth and state-
driven planning, which may not translate to regions with
slower development paces or decentralized governance.
Despite these constraints, the core mechanisms we discover,
namely, the non-linear relationships, the rise of 3D morphology,
and evolving thresholds, offer transferable value. The tension
between compactness and emission efficiency could inform
urban strategies in other developing nations, as Li et al
suggest in their cross-sectional analysis of urban form and
2022).
increasing relevance of vertical development might resonate in

socioeconomic drivers (Li et al, Similarly, the
global cities embracing high-rise typologies, a trend Frolking
et al. quantified by showing a profound global shift from lateral
urban expansion to vertical development across around
1,550 cities, with growth rates in building volume increasing
in essentially all regions even as horizontal expansion rates
declined (Frolking et al, 2024). Generalizability hinges on
contextual factors such as economic development, governance
structures, and cultural attitudes toward sustainability. For
instance, our findings may apply less readily to cities with
robust green infrastructure or stringent environmental
policies, where morphology-emission links might be mediated
differently. Future research could address these limitations by
testing our framework across diverse regions, incorporating
micro-scale data, and expanding the suite of morphological
indicators to include transportation networks or building
efficiency, thereby refining and broadening the applicability of

our conclusions for global carbon mitigation efforts.

7 Conclusion

This study discovers a fundamental paradox in urban
through
analytical framework combining linear spatial regression with

morphology-carbon emission relationships a dual
non-linear GGPR analysis across 286 Chinese cities from 2005 to
2020. Our contrasting methodologies expose how conventional
linear approaches mask critical threshold dynamics and spatial
heterogeneity essential for effective urban carbon management.
The spatial error model emerged as the superior linear approach,
identifying UAI as the dominant emission driver with elasticity
increasing from 0.754 to 0.781. Simultaneously, UGSI demonstrated
dramatically amplifying mitigation potential, with its negative
impact tripling from —0.096 to —0.297, establishing synchronized
vertical-horizontal development as an increasingly powerful carbon
reduction mechanism.

Non-linear GGPR analysis, achieving R* values consistently
exceeding 0.99, demonstrated hidden complexity through three
First,
heterogeneity characterizes morphology-emission relationships, as

paradigm-shifting  discoveries. profound  spatial

GeoShapley analysis reveals that 51.4% of cities exhibit negative UAI
contributions, concentrated in less-developed western regions. This
demonstrates that aggregation’s carbon impact fundamentally
depends on local development context. Second, regional
divergence has crystallized, with eastern coastal megacities
reaching saturation thresholds where additional densification
exacerbates emissions, whereas western cities retain substantial
emission reduction potential continued

through compact
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development. Third, the emergence of 3D morphological indicators
as significant predictors by 2015-2020 represents a fundamental
shift in urban carbon dynamics, with VDAI transitioning from
negative to positive impacts and location-specific 3D interaction
terms gaining measurable influence.

shift
performance-based

These findings necessitate a from prescriptive

morphological ~standards to carbon
management strategies. Cities are suggested to adopt carbon
intensity targets establishing emission benchmarks per unit of
built area or economic output, enabling locally-appropriate
could meet

morphological pathways. Eastern megacities

targets through polycentric restructuring and vertical
optimization, central cities through selective densification with
green infrastructure, and western cities through continued
compact  development with  performance

Moreover, carbon emission performance targets should be

monitoring.

calibrated regionally, with stringent intensity reductions for
saturated eastern cities and absolute emission caps for
developing western cities to prevent high-carbon lock-in.
Future research should develop robust carbon accounting
methodologies to

linking morphological configurations

measured emissions and create decision-support tools
translating threshold findings into practical planning guidance.
As cities navigate increasingly constrained carbon futures,
effective mitigation requires spatially-intelligent, performance-
oriented strategies that harness the fundamental non-linearity

and geographical contingency of urban carbon systems.
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