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The Inner Mongolia Western Sandy Area (IMWSA) is a vital component of China’s
northern ecological security barrier, with its ecological environment highly
sensitive to both climate change and human activities. Investigating the
spatiotemporal dynamics of the eco-environmental quality (EEQ) in this region
is essential for enhancing ecological governance and promoting sustainable
development in sandy areas. Building on the traditional Remote Sensing
Ecological Index (RSEI), this study adapted it to the ecological characteristics
of the IMWSA by incorporating five indicators—greenness, humidity, land surface
temperature, dryness, and salinity—to develop an enhanced eRSEI model suitable
for regional EEQ assessment. Using this model, the spatiotemporal evolution of
EEQ in the IMWSA from 2000 to 2024 was systematically analyzed. The optimal-
parameter Geodetector Model (GDM) and partial correlation analysis were
employed to identify the driving factors responsible for its spatial
differentiation and temporal variation. We found that EEQ was generally better
in the southeast and declined towards the northwest. During the study period, the
eRSEl exhibited an overall upward trend, at a rate of 0.0056 per decade, indicating
a generalimprovementin EEQ, with the spatial extent of significant improvement
(9.52%) clearly exceeding that of significant deterioration (1.69%). The Hurst
exponent of the IMWSA was 0.38, which indicated anti-persistent
characteristics and suggested that future EEQ improvement might slightly
outweigh deterioration. Land use types and meteorological variables were the
main driving factors influencing the spatial distribution and variation of eRSEI.
Positive correlations were observed between eRSEI and temperature,
precipitation, and solar radiation, with precipitation showing the strongest
association. Recent climate change has generally hindered EEQ improvement.
In contrast, human-induced land use changes, particularly ecological restoration,
have enhanced vegetation cover and regional microclimates, resulting in an
average eRSEl increase of 0.07 in areas where land use had changed compared to
those that remained unchanged, making them the primary drivers of ecological
improvement.

Inner Mongolia western sandy area, eco-environmental quality, enhanced remote
sensingecological index, spatiotemporal dynamics, driving factors
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1 Introduction

Climate change and human activities are exerting growing
pressure on both global and regional ecosystems (Aizizi et al,
2023). Observational data indicate that 2024 was the hottest year
on record, with the global average surface temperature increasing by
1.55°C + 0.13°C above pre-industrial levels (WMO, 2025). This
warming trend is expected to persist, with global average
temperatures projected to increase by at least 4°C by 2,100
(Wang C. et al, 2023). Against this backdrop, global drought
conditions are projected to worsen, increasing the vulnerability of
ecosystems in semi-arid and arid regions (Yuan et al., 2023; Zhang L.
Y. etal., 2025). Meanwhile, the ecological impact of human activities
continues to intensify. On the one hand, rapid economic
development has led to urban expansion, growing urbanization
and irrational land wuse, all of which exacerbate ecological
problems such as soil erosion and desertification (Shi and Li,
2021). On the other hand, large-scale ecological restoration
projects have significantly contributed to the improvement of
regional ecological conditions (Zhang et al., 2024a). In response
to the challenges posed by climate warming and human activities,
accurate and timely monitoring of regional ecological conditions is
essential for developing science-based ecological protection policies
and promoting sustainable socio-economic development.

Eco-environmental quality (EEQ) assessment refers to the
qualitative or quantitative evaluation of ecological conditions
within a defined spatial and temporal context, considering the
impacts of human activities and socio-economic development. It
serves as a critical indicator for assessing the degree of coordination
between anthropogenic production activities and the natural
environment (Bai et al, 2023; Wu et al, 2024). A variety of
methods have been developed to assess EEQ, including the
(Kim et al, 2021), fuzzy
2024), grey
clustering analysis, artificial neural networks (ANN) (Nourani

analytic hierarchy process (AHP)

comprehensive evaluation (Zhang and Shang,
et al, 2021), and index construction. AHP and fuzzy evaluation
rely heavily on expert judgment for indicator weighting, introducing
subjectivity, especially when dealing with large indicator sets. Grey
clustering analysis, based on the whitening functions of grey
numbers, involves complex implementation, while ANN models
high
index construction

require large, datasets and involve

computational complexity. In

representative
contrast,
methods—particularly those supported by satellite-based Earth
observation—have gained increasing attention in recent years due
to their efficiency and scalability. Remote sensing Earth observation
technology, with its high spatial resolution, strong temporal
periodicity, broad coverage, and rich spectral information (Yang
T. F.etal, 2022; Liu et al,, 2021), has become the primary approach
for monitoring and assessing EEQ (Qin et al., 2024). The evaluation
of EEQ initially relied on single-factor remote sensing indicators,
such as the normalized difference vegetation index (NDVI) and
enhanced vegetation index (EVI) for assessing vegetation conditions
(Gillespie et al., 2018; Cornejo-Denman et al., 2018), as well as land
surface temperature (LST) and the impervious surface index for
evaluating urban surface heat effects (Bian et al., 2017; Mathew et al.,
2018; Qian and Wu, 2019). Although these indicators effectively
capture specific ecological aspects, they are inadequate for
comprehensively reflecting ecosystem conditions due to their
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In 2012, the Chinese
index (EI) to
comprehensive evaluation of EEQ (Yue and Zhang, 2018).

inherent complexity. government

introduced the environmental achieve a
However, its practical application is constrained by limited data
accessibility, low update frequency, and poor result visualization.
Hazbavi et al. (2020) employed the pressure-state-response (PSR)
framework to evaluate ecological conditions by integrating multiple
indicators. However, the method involved manual selection of
indicators and weight assignments, which weakened the
objectivity of the evaluation to some extent. In light of these
limitations, a more comprehensive and scientifically grounded
system is needed to enable more accurate and timely
assessments of EEQ.

Hu and Xu, 2018 proposed the remote sensing ecological index
(RSEI) by integrating four key indicators (Hu and Xu, 2018):
greenness (NDVI), wetness (WET), dryness (NDBSI), and heat
(LST). Principal component analysis (PCA) was used to assign
weights and construct a comprehensive evaluation model,
enhancing the scientific rigor and objectivity of EEQ. In recent
years, scholars have utilized the Google Earth Engine (GEE)
platform to calculate RSEI, effectively addressing technical
challenges associated with numerous evaluation indicators and
complex data processing (Yang X. Y. et al., 2022). This approach
enables rapid quantitative assessment of ecosystems using remote
sensing imagery and has established RSEI as one of the most widely
applied models in evaluation (Kamran and
Yamamoto, 2023).

However, given its developmental background and original

ecological

focus on urban ecosystems, the RSEI faces limitations when applied
to complex environments, such as forests, wetlands, deserts, and
heavily polluted areas. Variations in ecological structures across
these regions can lead to discrepancies between RSEI-based
assessments and actual ecological conditions (Wang Z. W. et al,,
2023; Zheng et al, 2022). In light of this, researchers have
conducted extensive studies on optimizing and improving the
RSEIL These efforts focus on replacing and supplementing its
component indicators to enhance the model’s adaptability to the
geographical characteristics of specific regions. For example, to
address pollution in mining areas, the MSEEI model was proposed
by incorporating PM2.5 concentration changes (Zhang P. P. et al,,
2023). To overcome the NDVI saturation problem in densely
forested regions, a three-dimensional greenness-based RSEI
model was developed (Liu Y. et al, 2023). The NRSEI model
was introduced to reflect human activity intensity in
economically developed and densely populated areas (Lu et al,
2025). In addition, the nmRSEI model was designed to more
accurately  capture  surface  drought and  degradation
characteristics in arid regions (Zhang et al, 2024a). These
improvements enhance the model’s flexibility and assessment
accuracy under diverse environmental conditions by accounting
for region-specific geographical features.

EEQ is shaped by both natural and anthropogenic influences,
such as climate change, topographic features, and land use. In
previous studies, methods such as correlation analysis, regression
analysis, and the Geodetector Model (GDM) have been widely used
to quantitatively evaluate the driving mechanisms. Among them, the
GDM has become an important tool for identifying spatially

heterogeneous driving factors due to its independence from strict
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statistical assumptions, simple parameter settings, and ability to
effectively avoid multicollinearity among input variables (Cha et al.,
2022). However, the GDM can only assess the explanatory power of
influencing factors and cannot determine the direction (positive or
negative) of their effects. Therefore, when analyzing the driving
mechanisms of EEQ dynamics, it is necessary to combine correlation
analysis, partial correlation analysis, and other methods to further
clarify the specific relationships between EEQ and its driving factors.

The Inner Mongolia Western Sandy Area (IMWSA), an
essential part of China’s northern sand control barrier, comprises
four major deserts: Badain Jaran, Tengger, Ulan Buh, and Kubugi,
along with the Mu Us Sandy Land. Desertified land in the region
covers approximately 2.75 x 10° km? (Xie et al., 2023; Wang and
Hasi, 2023). The region is characterized by an arid climate, with over
80% of its area having annual precipitation below 150 mm. It is also
subject to frequent strong winds due to its position as a key corridor
for cold air intrusion from the Mongolian anticyclone (Chen et al.,
2022), resulting in poor vegetation stability and an extremely fragile
ecological environment (Wang J. J. et al,, 2022). As a major corridor
for dust storm transmission and a significant source of aeolian sand
in northwest China (Gao et al., 2006), this region is a critical and
challenging area for desertification control in Inner Mongolia and
across China. The EEQ of this region directly affects the ecological
security of the Beijing-Tianjin-Hebei region, North China,
Northwest China, and the entire country (Li C. Y. et al,, 2024).
The ecosystem in IMWSA is highly sensitive to environmental
changes (Zhang J. et al, 2023). Under ongoing global warming,
regional temperature rise in IMWSA significantly exceeds the
2010),
evapotranspiration and regional aridity (Zhao et al., 2024). Since
the mid-20th century, unsustainable farming and overgrazing have

national  average  (Piao et  al, intensifying

exacerbated soil salinization, desertification, and soil erosion (Wang
et al,, 2024). Although ecological engineering projects such as the
“Three North” Shelterbelt Forest Program and the Grain-for-Green
Program have improved regional EEQ (Zhang Y. Q. et al,, 2024), the
process of ecosystem restoration still faces considerable challenges.
Currently, most EEQ studies on IMWSA rely on single indicators
such as NDVI, FVC, and desertification severity (Shi et al., 2023;
Zhang H. et al., 2021; Yu et al,, 2020). In many of these studies,
IMWSA is analyzed as part of the broader Inner Mongolia region.
However, Inner Mongolia spans nearly 30° of longitude and exhibits
substantial variation in climate, vegetation, soil, and overall
ecological conditions. At such a large spatial scale, it is difficult
to account for regional details, which limits the ability to perform
targeted optimization of models such as RSEIL Other studies have
focused on individual deserts or localized areas, but systematic
assessments of the entire western sandy region remain scarce
(Dong et al,, 2024). Due to the combined effects of arid climate,
shallow groundwater depth, high groundwater salinity, and intense
aeolian activity (Zhao et al., 2017; Zhao et al,, 2024), IMWSA has
become one of the most severely salinized regions in both Inner
Mongolia and China (Feng et al., 2024). This poses serious threats to
vegetation growth, agricultural production, ecological stability, and
infrastructure development in the region (Yin et al, 2022).
Therefore, when evaluating the EEQ of IMWSA, soil salinization
must be taken into account to more accurately and comprehensively
reflect the spatial distribution and dynamic changes of the local
ecological environment.
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Based on the above, this study aims to develop an ecological
IMWSA,
comprehensively analyzing the trends and driving factors of
local EEQ changes from 2000 to 2024. The specific objectives
are as follows: (1) Based on the traditional RSEI, an enhanced

environment evaluation index suitable for

remote sensing ecological index (eRSEI) incorporating a salinity
index (SI-T) is constructed, to better capture the impact of
salinization on the local ecological environment. (2) The
spatiotemporal variation of EEQ in the IMWSA is analyzed
through Theil-Sen and Mann-Kendall tests, the
coefficient of variation, and the Hurst exponent. (3) The

trend

driving factors influencing the spatial distribution of EEQ
changes are identified using the GDM and partial correlation
analysis. This study aims to provide a reference for ecological
restoration and protection of IMWSA.

2 Materials and methods

2.1 Study area

IMWSA encompasses four leagues/cities: Alashan League,
Ordos City, Wuhai City, and Bayannur City (37°21'-42°47'N,
97°10'-111°27'E), covering an area of approximately 4.24 x
10° km? The from 718 to 3,526 m
1),and the region features with
desertified land accounting for over 60% of the total area.

elevation ranges

(Figure complex terrain,
Characterized by a typical temperate continental climate, the
region has an average annual temperature ranging from 8.9°C to
9.8°C. Annual precipitation ranges from 110.9 mm to 246.8 mm,
and decreases gradually from east to west. Annual evaporation
ranges from 2,000 mm to 4,000 mm, and increases from east to
west. The vegetation is primarily composed of sparse mesophytes
and xerophytes (Zhu et al., 2024). Soil types mainly include entisols
and aridisols, characterized by loose texture, poor water retention,
and high soluble salt content, making them susceptible to
wind erosion.

2.2 Data sources and processing

MODIS remote sensing imagery (June—August 2000-2024) was
obtained from the GEE platform. After cloud removal, regional
clipping, and water body masking based on the JRC Global Surface
Water History dataset, the (¢)RSEI for the study area was generated
using mean composite synthesis. Meteorological variables for the
same period were obtained from the ERA5-Land reanalysis dataset
provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF). Soil type and digital elevation model
(DEM) data
Environmental Science Data Center, Chinese Academy of

were acquired from the Resource and
Sciences, while the land use data were obtained from the China
Land Cover Dataset (CLCD). Spatial distribution data for deserts
and sandy lands were collected from the National Tibetan Plateau
Data Center. All raster datasets were resampled to a uniform spatial
resolution of 500 m and projected to the WGS_1984_UTM_Zone_
49N coordinate system. The detailed specifications of the datasets

are listed in Table 1.
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FIGURE 1

The location of the study area. (a) Distribution of desertified land types, (b) distribution of elevation, (c) distribution of land use/cover in 2010.

2.3 Methods

This study consisted of the following three main steps: (1)
Considering the ecological characteristics of IMWSA, we
developed an enhanced eRSEI model based on the classical RSEI
by incorporating a salinity index (SI-T), and verified its applicability.
(2) By analyzing the spatiotemporal distribution and variation of
eRSEI, we investigated the dynamic evolution of EEQ in IMWSA
from 2000 to 2024. (3) The driving factors of eRSEI distribution and
variation in IMWSA were identified and interpreted using GDM,
partial correlation analysis, and the transfer matrix. A detailed
overview of the workflow is illustrated in Figure 2.
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2.3.1 Construction of eRSEI

Soil salinization is a widespread form of land degradation in arid
and semi-arid regions (Kumar et al., 2024). This phenomenon not
only inhibits vegetation growth and accelerates land degradation,
but also undermines desertification control efforts, triggers
secondary degradation, and threatens agricultural production and
infrastructure. (Yin et al., 2022; Sahbeni et al.,, 2023). Therefore,
the degree of soil salinization should be incorporated as a key
indicator in assessing the EEQ of IMWSA. Previous studies have
shown that in semi-arid and arid regions, the Salinity Index-
Transformed (SI-T) has the highest correlation with soil salt
content and is more applicable to sparsely vegetated lands

frontiersin.org
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TABLE 1 Dataset details and sources.

Dataset

Data type

Description

Resolution/
Duration

10.3389/fenvs.2025.1658175

eRSEI MOD09A1 Surface reflectance synthesized products for
calculating WET, NDBSI and SI-T
MOD11A2 V6 LST synthesized products
MODI13A1 V6 NDVI products

500 m/2000-2024

GEE platform datase

Water body data JRC Global Surface

Water dataset

Meteorological ERA5-land
data
Land use/cover CLCD

Monthly temperature, precipitation, and solar
radiation

Annual China Land Cover Dataset, from

30 m/2000-2021

0.1 " x 0.1 °/2000-2024

30 m/2000-2023

GEE platform dataset (JRC/GSW1_3/
YearlyHistory)

GEE platform dataset (ECMWE/
ERA5_LAND/MONTHLY_AGGR)

https://zenodo.org/records/12779975

data Wuhan University

Desert/Sandy land data Desert/Sandy land distribution dataset for China =~ 100 m/2013 https://data.tpdc.ac.cn/
Elevation data SRTM V4.1 Elevation spatial data for China 90 m/2003 http://www.resdc.cn
Soil data Soil type Soil type spatial distribution data for China 1000 m/2000

Calculation of enhanced Romote Sensing Ecological Index (eRSEI)

MODI3A1

preprocessing

Data

o g

Earth Engine

; § MOD09AI | L

eRSEI from 2000 to 2024

Applicability
analysis of eRSEI

v

Spatiotemporal variation of eRSEI

_" Linear regression |

Temporal
variations analysis
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Spatial
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.
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|
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Temperature

Climate change
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Land uses |,
change
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FIGURE 2

Overview of the framework of this study.

(Allbed et al, 2014; Wang et al, 2019). Therefore, this study
incorporates SI-T as a salinity index into the classic RSEI model
to more comprehensively characterize the impact of soil salinization
on EEQ and enhance the sensitivity of RSEI to ecological changes in

Frontiers in Environmental Science
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the study area. Table 2 outlines the equations for computing the
various indicators (Ye et al., 2025; Zhang et al., 2024c).

The functional expression of the constructed eRSEI is given as
Equation 1:
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TABLE 2 Formulas for calculating component indicators.

Indicator Calculation formula
Greenness NDVI = (pnir1-Pred)! (Pnir1 +Pred)
(NDVI)

Wetness (WET) =~ WET = 0.2408ppjye + 0.3132ppce, + 0.1147pred

+ 0.2489p1i51-0.31221112-0.6416 Pyt -

0.5087Pmira
Dryness ) NDBS)I c (I(BI + SI?/Z " .
_ 2Pumint/ (Punier +Puie) = [Prirr/ (Pt +Prea)+Pyreen’ (Pgreen *Prnint
(NDBSD) IBI = 2Pt/ Paniet *Prie1 )+ [Priet / (Priet +Prea) *Pgreen’ PgreenPanirt )]
SI = (Prmir *Pred) = (Puir *Pbiue)
(Prric*Prea) (Prirt +Poiue)
Heat (LST) LST = 0.02DN-273.15

10.3389/fenvs.2025.1658175

Details

Preds Polues Pgreens Prirls Pnirzs Pmirls Pmirz Tespectively represent the red band, blue band, green

band, near-infrared 1/2 bands and mid-infrared 1/2 bands

SI: soil index
IBI: building index

DN: gray value of surface temperature

Salinity (SI-T) SI-T = pred/Pnirt

eRSEI = f{NDVI, WET, NDBSI, LST, SI - T} (1)

Prior to index integration and PCA, normalization was
performed to eliminate dimensional differences and to avoid
weight imbalance among principal components caused by
differing indicator units. The specific formula is given in
Equation 2 (Zhang et al., 2022):

NIi = (Ii = Inin)/ Imnax = Tmin) 2)

where, NIi is the normalized value of the i th indicator, Ii is the
original value of pixel i, and I,,,, and I, are the maximum and
minimum values of the indicator in the study area, respectively.

Based on the PCA, the five indicators mentioned above were
integrated, and the calculation method for eRSEI was determined
based on the sign of the factor loadings of the first principal
component (PCl1), as shown in Equation 3.

e¢RSEI,

PC, f [NDVI, WET, NDBSL LST, SI-T] Vxpyi > 0, Viygr > 0
1-PC, f [NDVI, WET, NDBSI, LST, SI-T] Vipy < 0, Viygr <0
(3)

where, eRSEI, represents the initial eRSEI value, PC1 denotes the
first principal component, and Vypyr and Viygr correspond to the
eigenvector values of NDVI and WET in PCI, respectively. To
facilitate interannual comparisons, eRSEI values were normalized to
the [0, 1] range, values near one suggest favorable EEQ, whereas
values near 0 point to poorer conditions. Following previous studies
(Xu et al., 2018), the normalized eRSEI was classified into five levels:
(0.0-0.2], (02-04], (0.4-0.6], (0.6-0.8], and (0.8-1.0],
corresponding to poor, fair, moderate, good, and excellent EEQ,
respectively.

2.3.2 Trend analysis methods

A combination of Theil-Sen Median and Mann-Kendall test
methods was adopted to quantitatively analyze the spatiotemporal
variation trends of eRSEI in IMWSA. The Sen slope estimation
method characterizes the intensity of change trends by calculating
the median slope of time series data, with its mathematical
expression being shown in Equation 4 (Liu et al., 2025):

B =median[(f; - f;)/ (j—i)].Vj>i (4)

Frontiers in Environmental Science

where f represents the observed values of the eRSEI time series, and
median is the median statistical measure. When S > 0, it
characterizes an upward trend in eRSEI, while negative values
indicate a downward trend.

The Mann-Kendall non-parametric test method was used for
significance testing, implemented through the standardized test
statistic Z: when |Z| <Z; .5, the null hypothesis is accepted,
when |Z|>Z, o, the null hypothesis is rejected. This study sets
the significance level at a = 0.05, corresponding to the two-sided test
critical value Z = +1.96. On this basis, the variation trend of eRSEI
can be classified into five categories: significant increase, non-
significant increase, no obvious change, non-significant decrease,
and significant decrease. (Haas et al., 2025; Xu et al., 2025).

2.3.3 Variation analysis methods

The coefficient of variation (C,) was used to evaluate the
temporal variability of eRSEI in IMWSA, as shown in Equation 5.
(C,) was used to evaluate the temporal variability of eRSEI in

IMWSA as:
1 1 n 2
C, = % mzizl (x; = X) (5)

where C, represents the coefficient of variation, i is the time series, n
is the total number of years, x; represents the eRSEI of the ith year,
and X represents the average eRSEI value for all years within this
period. The larger the C,, the stronger the fluctuation of eRSEI C, is
classified into five levels: low variation (C, <0.10), relatively low
variation (0.10< C, <0.20), moderate variation (0.20< C, <0.30),
relatively strong variation (0.30< C, <0.40), and

variation (C, >0.40).

strong

2.3.4 Persistence analysis methods

The Hurst exponent (H) was calculated based on the rescaled
range method (R/S method), which is widely applied in predicting
long-term trends in meteorology, hydrology, and ecological systems
(Li et al., 2025; Bashir et al., 2020; Wang J. Y. et al., 2025). According
to the range of H values, the persistence characteristics of the time
series evolution trend could be determined: when 0.5 < H < 1, the
future change trend of the time series is in the same direction as the
historical phase, showing persistent characteristics; when H = 0.5,
there is no long-term correlation between sequence values, and the
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future trend contains uncertainty; when 0 < H < 0.5, the sequence
shows anti-persistent characteristics, and the future evolution
direction is opposite to the historical trend. On this basis,
combined with the Sen trend analysis, the future change trends
of eRSEI could be divided into five categories: continued increase
(B > 0.0005, H > 0.5), reversed to increase ( < -0.0005, H < 0.5),
relatively stable (|3]<0.0005), reversed to decrease (8 > 0.0005, H <
0.5), and continued decrease ( < -0.0005, H > 0.5).

2.3.5 GDM with optimal parameters

The GDM, utilizing optimal parameters suggested by Song et al.
(2020), was employed to systematically examine the driving
mechanism of IMWSA eRSEI through three modules: factor
detection, interaction detection, and risk detection. (1) Factor
detection: Factor detection is the core component of GDM, used
to determine the degree to which driving factors explain the spatial
differentiation of the dependent variable, represented by the g
statistic, with a numerical range of [0,1]. A higher q value
indicates a greater explanatory power of that driving factor for
eRSEL (2) Interaction detection: By calculating the interaction
parameter g between two factors, the explanatory power of their
combined influence on the spatial distribution of eRSEI can be
assessed, revealing both the type and strength of their interaction
(Table 4). (3) Risk detection: This module identifies whether
significant differences exist in the mean values of eRSEI across
different categories defined by driving factors. It helps determine the
specific value ranges or classes most associated with high EEQ levels,
thereby revealing optimal ecological conditions (Wang R. B.
et al.,, 2025).

2.3.6 Partial correlation analysis method

Partial correlation analysis enables a systematic examination of
the direction and strength of the relationships between the target
variable and multiple driving factors. Building on the results of
GDM, it further reveals the promoting or suppressing effects of
meteorological changes on eRSEIL The formula for calculating the
g-order partial correlation coefficient is given in Equation 6
(Wan et al., 2023):

Tijhly - lgy — ril,g,l,z...,g_l1’;'l,g,1,2..,,g_1

Yiilil-l, =
Jlilylg
2 _ 2
\/(1 ril’glllz""_q—l )<1 rjl,gzllz..‘1g71>

where  ij1,1,..1, is the partial correlation coefficient between

(6)

variables i and j under the condition of controlling variables
Lily---14, with a numerical range of [-1,1]. A larger absolute value
indicates a stronger correlation between the variables.

3 Results
3.1 Applicability analysis of eRSEI

Based on the IMWSA time series data from 2000 to 2024, eRSEI
and RSEI models were established respectively, and principal
component analysis was conducted. As shown in Table 3, the
PC1 contribution rate of eRSEI ranged from 65.96% to 80.78%,
with an average value of 76.30% and a range of 14.82%. For RSEI, the
PC1 contribution rate ranged from 65.07% to 80.23%, with an
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TABLE 3 Comparison of PCA results between eRSEI and RSEI.

Year  Contribution rate (%) Eigenvalue
eRSEI eRSEI|
2000 65.96 65.07 0.028 0.026
2001 67.51 65.82 0.035 0.030
2002 79.47 78.81 0.041 0.038
2003 76.65 75.68 0.045 0.039
2004 7492 7424 0.039 0.036
2005 68.91 67.72 0.034 0.031
2006 7141 70.54 0.041 0.038
2007 76.64 75.47 0.046 0.040
2008 76.6 75.29 0.042 0.036
2009 75.27 73.86 0.041 0.035
2010 73.96 7337 0.038 0.036
2011 7478 72.72 0.042 0.034
2012 80.78 80.23 0.055 0.051
2013 79.81 79.43 0.052 0.049
2014 77.45 77.27 0.042 0.041
2015 75.88 75.61 0.035 0.034
2016 80.30 80.00 0.046 0.044
2017 77.43 77.25 0.040 0.039
2018 79.37 79.16 0.053 0.051
2019 80.15 79.78 0.049 0.046
2020 78.62 77.49 0.052 0.047
2021 78.20 77.04 0.050 0.044
2022 80.82 79.13 0.068 0.058
2023 79.45 79.06 0.053 0.051
2024 7727 76.88 0.054 0.052

average of 75.47% and a range of 15.16%. Throughout the study
period, eRSEI consistently exhibited a higher PC1 contribution rate
than RSEI, indicating a stronger capacity for information integration
regional EEQ. Further
PC1 eigenvalues showed that those of eRSEI ranged from
0.028 to 0.055, with an average of 0.045, while those of RSEI
ranged from 0.026 to 0.052, with an average of 0.041. In all
years, the eigenvalues of eRSEI were higher than those of RSEI,

in representing analysis of the

indicating that the eRSEI feature vectors contained more
information and were more effective in synthesizing the
characteristics of multiple indicators.

The results of the analysis of PC1 loadings for eRSEI are
presented in Table 4. In PCl, the loadings of NDVI and WET
remained consistently positive, suggesting their positive effect on
EEQ, whereas the loadings of NDBSI, LST, and SI-T remained
consistently negative, indicating a suppressive impact on EEQ. This
pattern aligns with the observed ecological conditions. Across the
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TABLE 4 Loading values of PC1 of eRSEI Model from 2000 to 2024.

Year NDVI WET NBDSI LST SI-T
2000 0.46 0.24 -0.76 -0.27 -0.29
2001 0.42 0.26 -0.73 -0.27 -0.38
2002 0.50 0.27 -0.70 -0.30 -0.30
2003 0.47 0.25 -0.71 -0.32 -0.33
2004 0.49 0.25 -0.73 -0.31 -0.27
2005 0.49 0.35 -0.67 -0.29 -0.31
2006 0.46 0.32 -0.72 -0.29 -0.29
2007 0.49 0.31 -0.68 -0.29 -0.34
2008 0.49 0.23 -0.70 —-0.28 -0.38
2009 0.50 0.31 -0.65 -0.30 -0.38
2010 0.52 0.36 -0.65 -0.33 -0.25
2011 0.47 0.26 -0.37 —-0.26 -0.43
2012 0.50 0.27 -0.69 —-0.36 -0.28
2013 0.52 0.34 -0.65 -0.37 -0.23
2014 0.56 0.30 -0.68 -0.33 -0.14
2015 0.55 0.30 -0.67 -0.35 -0.18
2016 0.55 0.27 -0.70 —-0.30 -0.21
2017 0.57 0.35 -0.65 —-0.31 —-0.14
2018 0.58 0.31 -0.68 -0.29 -0.16
2019 0.55 0.28 -0.69 -0.29 -0.25
2020 0.56 0.32 -0.59 -0.35 —-0.34
2021 0.53 0.35 -0.60 —-0.32 -0.35
2022 0.53 0.29 -0.60 —-0.34 -0.40
2023 0.56 0.31 -0.68 -0.30 -0.21
2024 0.57 0.32 -0.64 -0.35 -0.20

study area, the combined absolute loadings of NDBSI, LST, and SI-
T—representing ecological degradation pressures—consistently
exceeded those of NDVI and WET, which reflect ecological
resilience. This indicates that, in IMWSA, the inhibitory effects
of surface desiccation, thermal stress, and salinization substantially
outweigh the positive regulatory influences of vegetation and
available moisture.

3.2 Spatiotemporal dynamics of eRSEI

3.2.1 Temporal variation of eRSEl and its
component indicators

The temporal variation characteristics of each component
indicator and the eRSEI in IMWSA are shown in Figure 3 From
2000 to 2024, NDVI exhibited an highly significant upward trend
(P < 0.01), with an increase rate of approximately 0.020/10a. WET
exhibited a non-significant upward trend at a rate of 0.010/10a (P >
0.05). Both NDBSI and SI-T displayed significant decreasing trends
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(P < 0.05), with rates of —0.020/10a and —0.070/10a, respectively. No
significant trend was observed for LST. Under the combined
influence of these indicators, eRSEI showed an overall increasing
trend, with a rate of approximately 0.006/10a (P > 0.05). The
temporal pattern could be divided into two phases: a decreasing
trend from 2000 to 2010 at a rate of —0.005/10a (P > 0.05), followed
by an increasing trend after 2010 at a rate of 0.009/10a (P > 0.05).
Although the overall trend was not statistically significant, the three
highest values in the time series all occurred after 2015, with a
maximum of 0.236 recorded in 2018, suggesting an overall
improvement in recent years.

3.2.2 Spatial variation of eRSEI

To characterize the spatial distribution of eRSEI in IMWSA across
different time periods, eRSEI images from 2000, 2005, 2010, 2015,
2020, and 2024 were selected and classified into five grades: poor, fair,
moderate, good, and excellent (Figure 4). A clear spatial pattern
emerged during the study period, as eRSEI values were generally
higher in the east and declined toward the west. The poor-grade
dominated most of the region, whereas good and excellent grades
together accounted for less than 4% of the total area. Spatially, poor-
grade areas were primarily distributed in Alxa, northern Bayannur,
and the Kubugi Desert in northern Ordos. Fair-grade areas were
mainly found in central and eastern Bayannur, Wuhai, and around
the Mu Us Desert in southern Ordos. The loess hilly region in eastern
Ordos largely fell into the moderate grade. Good and excellent grades
were concentrated in the Hetao Plain in southern Bayannur and in
farmland and dense forest-grassland areas along the Yellow River in
northern Ordos. Temporally, from 2000 to 2010, poor-grade areas
expanded significantly, particularly in the Badain Jaran Desert and
western Bayannur. Between 2010 and 2015, these areas slightly
contracted. After 2020, regional divergence became more apparent:
poor-grade areas increased in the Badain Jaran Desert but continued
to decline in western Bayannur. Between 2020 and 2024, excellent-
grade areas expanded markedly in the Hetao Plain. Meanwhile, the
EEQ grade structure of the Mu Us Desert gradually shifted from a
dominance of fair grades to a more balanced distribution of fair and
moderate grades.

As shown in Figure 5, the statistical analysis of eRSEI grades
from 2000 to 2024 indicates that the study area has been
predominantly characterized by poor and fair grades, which
together accounted for 81%-95% of the total area. Among these,
the proportion of poor-grade areas remained relatively stable at
approximately 63%. Fair-grade areas showed a marked decline,
decreasing from 33% in 2000 to 23% in 2024, with a highly
significant downward trend (P < 0.01). The proportion of
moderate-grade areas fluctuated between 3% and 14%, displaying
more variability than other grades, though they remained around
10% over the past 3 years. Good-grade areas exhibited the most
pronounced expansion (P < 0.01), with a 2.5-fold increase in
2024 compared to 2000. Excellent-grade areas consistently
represented the smallest proportion among all grades, remaining
below 0.1% in more than half of the years. However, after 2018, a
noticeable increase was observed, reaching 1.1% by 2024. Overall,
the EEQ structure of the region exhibited a transitional pattern,
characterized by a reduction in low-grade areas and expansion of
moderate to high-grade areas, indicating a general improvement in
EEQ of IMWSA.
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FIGURE 3

Temporal variation of component indicators and eRSEl in IMWSA from 2000 to 2024 (a) NDVI, (b) WET, (c) NDBSI, (d) LST, (e) SI-T, (f) eRSEI.
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3.2.3 Trend variation of eRSElI

Pixel-level spatial changes of eRSEI in the IMWSA from 2000 to
2024 are shown in Figure 6ala2. The results indicated that eRSEI
values increased in approximately 33.67% of the total area, with
9.52% showing statistically significant increase (P < 0.05).
Decreasing eRSEI values were observed in 39.96% of the region,
though only 1.69% exhibited a significant decrease (P < 0.05), while
the remaining areas displayed no obvious change. Spatially,
increases in eRSEI were primarily observed in most areas of
Ordos, northern Bayannur, and the Ejina River Basin in central
Alxa. Decreases were mainly concentrated in western and southern
Alxa, as well as parts of northern Bayannur, with smaller patches
also occurring in eastern Ordos. The major desert and sandy systems
within the region exhibited differentiated evolutionary patterns. The
most pronounced increase in eRSEI values was observed in the Mu
Us Sandy Land, while the southern Tengger Desert and eastern
Kubugi Desert also exhibited upward trends. Meanwhile, eRSEI
values generally decreased in the continuous sandy areas including
the Badain Jaran Desert, Ulan Buh Desert, northern Tengger Desert,
and western Kubugqi Desert, suggesting these regions have continued
to undergo EEQ deterioration.

The coefficient of variation of eRSEI in the study area ranged
from 0.02 to 0.97, with a mean value of 0.17 (Figure 6b1b2). Low
variation was observed in 7.46% of the area, primarily concentrated
in the Hetao Plain. Relatively low variation was identified in 68.21%
of the area, exhibiting a continuous spatial distribution across the
entire region. Moderate variation was present in 21.83% of the area,
mainly distributed across most of Alxa, extending into northern
Bayannur and western Ordos. Relatively strong and strong
variations were found in only 2.50% of the area, primarily
concentrated in the Badain Jaran Desert and its surrounding regions.

The average H value of the study area was 0.38 (Figure 6¢clc2),
indicating an overall anti-persistence characteristic. In conjunction
with Figure 6al, areas projected to experience an increase in eRSEI
accounted for 32.60% of the total area, with 2.20% classified as areas
of continued increase, scattered across the Hetao Plain and Ejina
River Basin, and 30.40% were identified as reversed to increase areas,
mainly concentrated in the central part of the study area, suggesting
ecological restoration potential in these regions. Areas projected to
experience a future decrease in eRSEI accounted for 30.21%, with
2.1% classified as areas of continued decrease, sporadically
distributed across the Tengger Desert, Ulan Buh Desert, and
surrounding regions, and 28.11% were identified as reversed to
decrease areas, mainly covering most of Ordos, the northern Hetao
Plain in Bayannur, and the Ejina Basin in Alxa, which are currently
high-value zones requiring targeted prevention and management
efforts to mitigate ecological deterioration risks.

3.3 Driving factors of eRSEIl distribution
and variation

3.3.1 Driving factors of eRSEI distribution

The spatial differentiation of eRSEI in the IMWSA from 2000 to
2024 was analyzed using GDM. As shown in Figure 7, the factor
detection results indicated that, at a 1% significance level (P < 0.01),
all selected driving factors significantly explained the spatial
heterogeneity of EEQ in the study area. The factors’ explanatory
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power (gq-values), listed in descending order, were as follows: land
use type (0.734) > precipitation (0.534) > temperature (0.405) > soil
type (0.295) > solar radiation (0.051) > elevation (0.041). Among
these, land use type exhibited the highest q-value and was identified
as the primary driving factor influencing eRSEI in the IMWSA.
Precipitation and temperature also showed significant effects.
Although solar radiation and elevation had relatively low
q-values, their explanatory power was substantially enhanced
through interaction with other factors.

The interaction detection results indicated that the combined
influence of any two factors exceeded that of each individual factor,
exhibiting both bivariate enhancement and nonlinear enhancement
effects. The highest interaction explanatory power was observed
between land use type and precipitation (q = 0.827), suggesting that
the synergistic effect of human activities, represented by land use,
and climatic factors could significantly improve the explanatory
power of eRSEIL In addition, the interaction q-values between land
use type and soil type, temperature, solar radiation, and elevation, as
well as between solar radiation and precipitation, all exceeded 0.730.
This highlighted the important role of multi-factor coupling in
shaping the spatial distribution of eRSEL

Based on the risk detection module, the optimal ranges or
categories of each driving factor in relation to eRSEI were
analyzed. The results indicated a positive correlation between
eRSEI and precipitation within the study area, with eRSEI
increasing as precipitation rises. The highest eRSEI values were
observed when summer precipitation ranged from 249 to 307 mm.
Elevated eRSEI levels were sustained when summer temperatures
averaged 16.4°C-22.5°C, accompanied by solar radiation ranging
from 1,570 to 1640 MJ m™. The highest eRSEI values occurred at
elevations between 1,600 and 3,300 m. Among different soil types,
semi-hydromorphic soils corresponded to the highest eRSEI values.
Regarding land use types, woodland exhibited significantly higher
eRSEI values than unused land and grassland, highlighting the
positive impact of vegetation cover on ecological quality.

3.3.2 Response of eRSEI to climate change

Partial correlation analysis (Figure 8) revealed that eRSEI in
IMWSA was generally positively correlated with temperature,
precipitation, and solar radiation, with mean partial correlation
coefficients of 0.02, 0.26, and 0.03, respectively. Among these,
precipitation exhibited the strongest correlation with eRSEIL
Areas showing a positive correlation between eRSEI and
temperature accounted for 53.78% of the region, primarily
distributed in the northwestern and southeastern parts of the
study area. Areas with significant and highly significant positive
correlations accounted for 2.62%, mainly concentrated in the Hetao
Plain, with scattered patches in the central Mu Us Sandy Land and
the northern edge of Alxa. In contrast, negative correlation with
temperature was found in 46.22% of the region, among which 1.37%
showed significant or highly significant negative correlation,
primarily distributed in the Badain Jaran Desert and Tengger
Desert. Partial correlation between eRSEI and precipitation
showed a general east-west gradient. Over 88% of the study area
showed positive correlation with precipitation, including 14.96%
with significant and 9.41% with highly significant positive
correlation, mainly distributed in southern Bayannur, the Mu Us
Sandy Land, and the Tengger Desert. Regions showing a negative
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FIGURE 7
Results of g-values and interaction detection for each driving factor in IMWSA. (a) The g-values of driving factors influencing eRSEI's spatial pattern,
(b) Results of interaction detection among driving factors affecting the spatial distribution of eRSEI.
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correlation with precipitation were primarily located around the  were mainly concentrated around the Ejina River Basin, accounting
Badain Jaran Desert; however, less than 0.1% exhibited statistical ~ for about 1.24%.

significance. Regarding solar radiation, positive and negative According to the absolute values of the partial correlation
correlation with eRSEI were observed in 55.34% and 44.66% of  coefficients (Figure 9), precipitation is identified as the most
the study area, respectively. Areas with significant and highly  critical factor influencing eRSEI variation in IMWSA, dominating
significant positive correlations were scattered in the central part  changes in 58.07% of the area. Temperature ranked second, with a
of the study area, accounting for approximately 2.64%. Conversely,  dominant influence on 22.42% of the region, while solar radiation
areas with significant and highly significant negative correlations  contributed the least, primarily affecting 19.51% of the area. From a
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Distribution and proportion of dominant meteorological factors influencing eRSEI variation in IMWSA. (a) Distribution of dominant meteorological

factors, (b) Proportion of dominant meteorological factors.

TABLE 5 Effects of land use change on eRSEI variations in IMWSA.

Land use type in 2000

Cropland

Woodland

Land use type in 2023

Grassland Unused land Built-up land

Cropland 0.13 (3.52%) 0.07 (0.03%) 0.10 (0.82%) -0.02 (0.02%) 0.05 (0.09%)
Woodland - 0.04 (0.07%) - - -
Grassland 0.19 (1.72%) 0.10 (0.02%) 0.05 (22.61%) -0.01 (2.6%) 0.10 (0.21%)

Unused land 0.28 (0.20%) -

Built-up land 0.14 (0.02%) -

0.06 (3.70%) -0.01 (64.10%) 0.08 (0.07%)

0.08 (0.03%) - 0.07 (0.15%)

« »

Percentages in parentheses represent the share of total area for each land use type conversion (%); “-” indicates that the proportion was less than 0.01% over the study period.

spatial perspective, precipitation exerted a predominantly positive
influence on eRSEI variation across most of the study area. However,
in regions with severe desertification and extremely low vegetation
cover, short-term heavy rainfall can induce soil erosion, leading to
potential negative ecological impacts. Areas dominated by
temperature and solar radiation were mainly concentrated in
central Alxa, whereas in agricultural zones such as the Hetao
Plain, where soil moisture conditions are regulated by human
activities, EEQ was more sensitive to changes in temperature.

3.3.3 Response of eRSEl to land use changes

Land use change serves as a direct reflection of both the direction
and intensity of human activities in modifying the natural
environment. As shown in Table 5, land use changes in IMWSA
from 2000 to 2023 accounted for 9.54% of the total area. The
proportions of grassland converted into other land types and
converted from other land types were nearly balanced, both
around 4.55%. Cropland experienced a 0.96% area loss but
gained 1.93% through conversion, leading to a net increase of
about 0.97%. Unused land decreased, as 3.97% was converted to
other uses while only 2.63% was gained through conversion.
Although the areas of woodland and built-up land showed an
overall increasing trend, their spatial proportions remained
relatively low within the study area.
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In terms of the impact of land use type conversion on EEQ, most
land transitions had a positive effect on eRSEI, except for the
conversion of cropland and grassland into unused land, which
led to a decline in eRSEL Specifically, the conversion from
unused land to cropland resulted in the most significant
improvement in eRSEI, with an increase of 0.28. The conversions
from grassland to cropland (0.19) and from built-up land to
cropland (0.14) also notably enhanced eRSEIL During the study
period, the average eRSEI in areas undergoing land use change
increased by 0.09, while that in stable land use areas rose by only
0.02. This difference confirms that land use transformation played a
promotive role in enhancing regional EEQ.

4 Discussion

4.1 Spatial distribution and spatiotemporal
variation of eRSEI

This study’s findings indicate that eRSEI in the study area has
generally increased from 2000 to 2024, reflecting an overall
improvement in EEQ. This outcome is consistent with previous
regional studies (Li S. W. et al, 2024; Zhang L. Y. et al,, 2025).
Between 2000 and 2010, NDVI and WET values showed significant
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increases, while NDBSI and SI-T declined. These changes positively
influenced eRSEIL. However, the rapid increase in LST during this
period imposed thermal stress that outweighed the positive effects of
other indicators, leading to a temporary decline in eRSEL After 2010,
the continued increase in NDVT, together with the further reduction
in NDBSI and SI-T, significantly enhanced the positive ecological
effects. These combined improvements effectively offset local
negative impacts from declining WET, thereby propelling the
ecological environment into a stage of accelerated improvement.
These findings also demonstrated that the variations in a single
indicator may not fully reflect the true condition of the ecological
system. Thus, integrated analysis of multiple indicators is essential to
capture the complex, coupled dynamics of the ecological
environment.

A clear east-west gradient was observed in eRSEI values, with the
200 mm precipitation line acting as a defining ecological boundary.
High-value zones were primarily concentrated along the Yellow
River, benefiting from relatively sufficient precipitation and artificial
irrigation (Li C. Y. et al., 2024), these zones formed major clusters of
croplands and woodlands. In contrast, the western part of the region
was dominated by desert landscapes, where arid climatic conditions
contributed to more fragile ecosystems (Xie et al., 2023; Li M. Y.
et al., 2024). Between 2000 and 2024, the spatial pattern of eRSEI
change in IMWSA showed a slightly greater extent of decline than
improvement; however, the proportion of areas exhibiting
significant positive correlation was markedly higher than those
with A EEQ
improvement was observed in the Mu Us Sandy Land, with

significant  negative  correlation. notable
concurrent positive trends in the southern Tengger Desert and
eastern Kubuqi Desert. It is worth noting that these regions
exhibited H values below 0.5, suggesting anti-persistent
characteristics. Given the concentration of human activities in
these areas (Ah et al, 2022), including intensive mining and
industrial development (Zhang et al, 2022), compounded by
afforestation-related land degradation and grassland deterioration
(Zhao et al., 2023; Li et al., 2023; Zhang Z. P. et al., 2025), as well as
an increasing frequency of extreme weather events (Tong et al,
2019), there remains a substantial risk of EEQ degradation in

the future.

4.2 Driving factors of eRSEI

This study employed both the GDM and partial correlation
analysis to evaluate the driving factors of eRSEI distribution and
variation in IMWSA. The results showed that land use patterns and
meteorological factors were the primary determinants of EEQ in the
region. Among the meteorological variables, eRSEI was generally
positively correlated with temperature, precipitation, and solar
radiation, with precipitation playing the dominant role. This
finding aligns with the conclusions of Higgins et al. (2023)
regarding moisture-limitation mechanisms in arid regions.
Approximately half of the study area was characterized by annual
precipitation below 100 mm, making water scarcity the principal
constraint on vegetation growth and ecosystem stability. Increased
precipitation alleviates plant water stress and, in turn, contributes
positively to ecological quality. While temperature and solar

radiation also had positive effects on eRSEI overall, their spatial

Frontiers in Environmental Science

14

10.3389/fenvs.2025.1658175

influence and statistical significance were much weaker than those of
precipitation (Figure 7). Although increases in temperature and
solar radiation generally enhance photosynthesis and promote
vegetation growth, these effects can become detrimental under
severe water scarcity. In such areas, elevated thermal and
radiative inputs intensify surface and accelerate
thereby
negatively affecting all ecological components of eRSEI (Bai et al.,
2020; Shao et al, 2024). According to Figure 10, over the past

25 years, the summer climate in IMWSA has been characterized by

heating

evapotranspiration, exacerbating soil dryness and

rising temperature, along with decreasing precipitation and solar
radiation, consistent with the findings of Rao et al. (2024) and Fang
etal. (2021). Partial correlation analysis further indicated that these
climatic changes could exert negative effects on regional eRSEI,
particularly when increasing temperatures are coupled with
that
aridification. Notably, since 2015, precipitation variability has

declining precipitation, a pattern intensifies regional
increased. In vegetation-scarce arid areas, increased climate
extremes undermine ecosystem resilience: drought limits survival,
and heavy rains strip topsoil and damage roots, subtly driving
desertification forward (Liu J. et al., 2023).

Land use change was a major driver of eRSEI evolution. As a
critical component of China’s northern ecological security barrier,
IMWSA fulfills a dual strategic role, serving both as the core zone of
the Northern Sand Prevention Belt and as a key area for ecological
protection and high-quality development in the Yellow River Basin.
Since the implementation of large-scale ecological restoration
the Three-North Shelterbelt
(initiated in 1978) and the Grain-for-Green Program (Li et al,
20215 Lin et al,, 2024; Qin et al., 2024), forest coverage in the study

area has steadily increased, while the extent of unused land has

programs, including Program

gradually declined. Overall vegetation conditions have improved,
with the NDVI increasing at a rate of 0.0188/10a (Figure 3A).
However, NDVI trends exhibited marked spatial heterogeneity.
As illustrated in Figure 9B, surface vegetation cover in the
Kubugi Desert and Mu Us Sandy Land within Ordos City has
significantly improved (Zhang Y. et al., 2025; Chen et al., 2022), with
spatial patterns largely corresponding to areas of increasing eRSEI
In the Hetao Plain, NDVT has shown a clear upward trend driven by
the synergistic effects of forest expansion, cropland development,
and advancements in agricultural technology. In contrast, the
central part of the study area, which has been affected by
intensive human disturbances such as excessive cultivation,
overgrazing, and mineral resource exploitation, has experienced
vegetation degradation. Under the pressure of climate change,
forest and grassland systems in the region have deteriorated,
making it a representative area of concurrent declines in both
vegetation cover and eRSEIL

In summary, climate change over the past 25 years has generally
exerted a suppressive effect on EEQ in IMWSA. In ecologically
fragile arid regions, the warming and drying trend has intensified
water stress, leading to localized vegetation degradation and soil
desiccation, thereby highlighting the potential threat of climate
change to arid-zone ecosystems. In contrast, land use changes
driven by human activities have played a pivotal role in
improving EEQ. Large-scale ecological restoration projects, by
land
microclimates (Zheng et al., 2020), have become core factors in

optimizing cover patterns and improving regional
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promoting EEQ enhancement. Notably, semi-arid to arid regions in
northwestern China—such as Xinjiang, Gansu, and Qinghai—have
experienced substantial EEQ enhancement under similar restoration
initiatives (Wang S. N. et al., 2022; Duo et al., 2023; Kang et al,,
2025). For instance, in Xinjiang, only 3.55% of the land area showed
EEQ degradation between 2000 and 2020, a rate significantly lower
than that observed in the IMWSA. Moreover, areas of improvement
have expanded considerably into desert—oasis transition zones and
even deeper into desert interiors. This regional disparity is closely
linked to climate dynamics. Unlike the IMWSA, much of
northwestern China has undergone a warming and moistening
trend, with increasing precipitation markedly improving soil
moisture and supporting vegetation recovery. Concurrently,
accelerated glacier melt has generated abundant runoff, providing
vital ecological water resources that have further supported
environmental restoration efforts (Zhang Q. et al, 2021).
Therefore, to some extent, the IMWSA faces more severe
challenges compared to other arid regions in northwestern
China. To address  these
strategies—such as scientifically guided ecological engineering

effectively issues, adaptive
and improved land management—are urgently needed to

maintain and enhance EEQ under persistent climatic pressure.

4.3 Limitations and future work

By integrating multiple remote sensing indicators, RSEI
effectively overcomes the limitations of single-variable approaches
in representing regional ecological conditions. It combines the
advantages of objective quantification with strong spatial
visualization capabilities and has become a widely used tool for
assessing EEQ at the regional scale. However, since the selection of
indicators in RSEI was primarily designed for generalized terrestrial
ecosystems, its applicability is not always optimal in regions with

distinct ecological structures, such as forests, deserts, or areas with
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dense water networks. Therefore, when evaluating ecological quality
in specific regions, it is essential to consider local environmental
characteristics. This study focused on IMWSA, where severe soil
salinization threatens both agricultural productivity and ecological
restoration. A salinity index was introduced based on previous
research to better capture the ecological conditions of the region.
Nevertheless, several limitations still remain. First, the IMWSA is
one of the most dust storm-prone regions in both Inner Mongolia
and China. Future research may consider incorporating indicators
that reflect atmospheric dust aerosol concentrations, in order to
better evaluate the impact of dust storms on EEQ. Second, the
NDBSI used in this study could be further refined into indices such
as land degradation or desertification indicators, which may allow
for a more detailed characterization of local ecological conditions. In
addition, although the influence of meteorological factors on eRSEI
was examined using a partial correlation approach, the effects of
climate variables on vegetation and ecosystems are often subject to
time-lag and cumulative effects. Incorporating these temporal
dynamics into the eRSEI driver analysis framework remains a
key methodological challenge. Due to the constraints of the
current available
comprehensive investigation of these complex research directions
is not feasible within the scope of this study. However, these issues
possess significant scientific value, and we aim to address them in

research framework and resources, a

future research, with the objective of overcoming the existing
technical and resource limitations.

5 Conclusion

In this study, the eRSEI was employed to examine the
spatiotemporal dynamics of EEQ within the IMWSA from
2000 to 2024. Research revealed that in the past 25 years, EEQ
was generally better in the southeast and declined towards the
northwest. Over this period, eRSEI exhibited an overall upward
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trend, indicating a general improvement in EEQ. Although
degraded areas (39.9%) slightly outnumbered improved areas
(33.7%), significantly improved areas (9.52%) greatly exceeded
significantly degraded ones (1.69%). According to the Hurst
exponent, IMWSA exhibited anti-persistent characteristics
overall, and the spatial extent of EEQ improvement (32.6%) is
slightly larger than that of deterioration (30.21%) in the future.
Land use type and meteorological variables were identified as the
dominant factors influencing the spatial distribution of eRSEI in
IMWSA. The driving factors were ranked in the following order of
importance: land use type > precipitation > temperature > soil
type > solar radiation > elevation. The effects of these drivers on
eRSEI were characterized by interaction mechanisms, including
bivariate enhancement and nonlinear enhancement. Positive
correlations were found between eRSEI and temperature,
precipitation, and solar radiation, with precipitation exhibiting
the strongest association. Recent climate change has generally
hindered EEQ improvement. In contrast, human-induced land
use changes, particularly ecological restoration, have enhanced
vegetation cover and regional microclimates, making these the
primary drivers of ecological improvement.
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