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Introduction: Accurate identification of environmental issues in river and lake
ecosystems is essential for the protection, management, and sustainable use of
water resources. Traditional inspection-based approaches are limited by their
extensive spatial scope, high labor demands, prolonged execution time, and
increased likelihood of overlooking hazards.

Methods: To overcome these limitations, this study investigates intelligent
methods for detecting environmental hazards in river and lake settings.
Images representing 12 common types of water-related hazards were
collected. Using image augmentation techniques, including rotation,
transformation, and annotation, a dataset comprising over 1,500 samples of
river and lake environmental hazards was constructed. An intelligent
recognition model was then developed based on the YOLOv1l algorithm,
incorporating transfer learning techniques to enable the detection of pollution
categories, pollutant types, sewage outfalls, and shoreline encroachments.
Results: The experimental results demonstrate that, with adequate training data,
appropriate categorization, and accurate annotation, the proposed method
achieves reliable performance, yielding a balanced F1 score of 0.72.
Discussion: This approach can be deployed on devices such as smartphones,
cameras, and unmanned aerial vehicles, offering practical tools for water
pollution surveillance, shoreline monitoring, and the broader management of
aquatic ecosystems.

KEYWORDS

water environment, hazard identification, deep learning, object detection, transfer
learning, YOLOV11 algorithm

1 Introduction

Water resources are of utmost importance for human survival and social development.
Currently, problems such as industrial and domestic sewage discharge and non-point
source pollution originating from arable land and artificial surfaces located in waterbody
catchments have severely endangered their quality (Shakuli, 2021; Kutyla et al., 2024). These
pressures accelerate natural eutrophication (Heathcote, 2013). Additional stressors,
including overfishing, the construction of hydraulic engineering projects, and
inappropriate operation and scheduling practices, have disrupted the ecological balance
of river and lake systems, further compromising both the quantity and quality of water
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resources (Lai et al., 2024). Disasters such as floods, droughts,
sudden water surges, and bank collapses not only inflict
substantial losses on nearby populations but also complicate the
safe operation and regulation of water conservancy infrastructure,
thereby posing risks to overall water resource security.

Accurate identification of existing issues in river and lake water
systems is therefore essential to ensure the sustainable development,
utilization, and protection of water resources. It also contributes
significantly to the ecological security of aquatic environments, the
clarification and enforcement of regulatory responsibilities,
comprehensive monitoring of watershed pollution, and informed
decision-making by local authorities. As human activity and
urbanization continue to accelerate, river and lake environmental
hazards are becoming more frequent, widespread, and severe. This
growing urgency necessitates the development of effective
technologies for the identification of such hazards to support
resource management and ecological governance (Yan et al., 2025).

Due to the extensive spatial coverage of river and lake systems,
effective inspection and monitoring remain challenging, and
environmental hazards often go undetected. Rapid identification
of these hazards continues to be a major technical bottleneck (Shi,
2017). Traditional detection methods typically rely on laboratory
analysis, which demands highly skilled personnel and maintenance
of sophisticated instrumentation. In field-based inspections, issues
such as high professional thresholds, intensive workloads, and
inadequate responsiveness persist (Wei et al, 2022; Liu, 2019;
Ren et al., 2022; Lin, 2024).

With the rapid advancement of artificial intelligence (AI) and
computer vision, numerous sectors have begun applying these
technologies to address domain-specific problems (Aziz et al,
2020). For instance, image recognition in autonomous driving
(Xu et al, 2024; Du et al, 2024; Li, 2022; Cai et al., 2020),
image-based diagnostics in healthcare (Guzel et al., 2024; Zhou
etal., 2023; Liu et al., 2024; Chen et al., 2022; Lee et al., 2024; Li et al.,
2024; Ronneberger et al., 2015; Xu et al.,, 2023), and agricultural
applications such as fruit classification and detection (Anand et al.,
2019 Guzel et al., 2024; Zhou et al,, 2023; Liu et al., 2024) have
yielded notable results. In this context, the integration of AI and
computer vision presents new opportunities for enhancing the
efficiency and effectiveness of environmental hazard identification
in river and lake ecosystems.

Image recognition and object detection technologies are central
to feature extraction, classification, and pattern matching in visual
data. These technologies significantly enhance the efficiency and
accuracy of identifying environmental hazards in river and lake
systems, while also accelerating computational processes and
lowering operational costs (Wei et al., 2022; Zeng, 2024). Within
the context of environmental monitoring, artificial intelligence (AI)
holds considerable potential for analyzing the color of water bodies
(Gao, 2023) and for detecting the types, locations, pollution levels,
and discharge characteristics of contaminants with scientific
precision and timeliness.

Since the introduction of AlexNet by Krizhevsky et al. (2012),
convolutional neural networks (CNNs) have undergone substantial
advancements. A notable milestone was the development of R-CNN
in 2014, which marked significant progress in object detection
algorithm research (Girshick et al, 2014). This was followed by
Fast R-CNN (Girshick, 2015), which integrated classification and
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detection using a multi-task loss function, thereby improving
computational efficiency. In the same year, Ren et al. (2015)
enhanced detection performance by sharing weights between
Region Proposal Networks (RPN) and convolutional layers.
Subsequent developments included the Single Shot MultiBox
Detector (SSD) introduced by Liu et al. (2016), which offered
improved speed over Faster R-CNN, and the one-stage detection
algorithm You Only Look Once (YOLO) proposed by Redmon et al.
(2016), which further increased real-time detection capabilities. The
YOLO algorithm has since evolved through multiple iterations,
reaching YOLOV11 as of 2024. This latest version provides faster
detection speeds and higher accuracy, supporting a wide range of
industry applications through advanced computer vision solutions.

Object detection algorithms based on computer vision have also
been extensively applied in the water conservancy sector. Huang
(2022) investigated defect detection in transmission lines of water
infrastructure using unmanned aerial vehicle (UAV) imagery. Lu
and Gao (2023) examined the role of image recognition in
monitoring construction quality within water conservancy
projects. Ding et al. (2024) proposed an improved underwater
image recognition model based on the EfficientNet architecture,
while Ge et al. (2024) developed five models for dam defect
recognition. In the context of river and lake hazard identification,
Shen (2022) employed deep learning to detect the “four disorder”
problems, unauthorized occupation, mining, dumping, and
construction, based on satellite remote sensing imagery. This
approach enabled large-scale identification of issues within
aquatic environments. Nonetheless, current research remains
limited in two key areas. First, local-scale detection of water
problems requires further investigation. Second, the scope of
detectable targets in previous studies has been narrow, focusing
mainly on structures such as greenhouses and buildings, and thus
requires expansion.

The objective of this study is to assess the effectiveness of a deep
learning-based object detection model (YOLOv11) in automatically
identifying environmental hazards from visual data of river and lake
ecosystems, thereby supporting surface water monitoring and
evaluation. Photographic data depicting typical environmental
hazards were collected and annotated to construct a benchmark
dataset containing over 1,500 images. These images include
representative cases such as discoloration from water pollution,
garbage accumulation, floating fish, drainage outlets, sand yards,
and unauthorized buildings. Utilizing the YOLOv11 algorithm in
conjunction with transfer learning, a model for hazard identification
was developed and evaluated for its performance. This study offers
both a standard dataset and an intelligent detection approach
applicable to in situ monitoring of river and lake water
environments.

2 Data and methods

The identification of environmental hazards in river and lake
systems involves the recognition, classification, and analysis of
various ecological and hydrological issues. These hazards typically
pertain to both “quantity” and “quality” aspects of water bodies,
encompassing indicators such as water quality parameters,
hydrological volumes, and forms of visible pollution.
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TABLE 1 Categories and descriptions of target objects for river and lake environmental hazard detection.

Serial number

Identification target

Monitoring description

Number of samples

1 Algae Pollution Green discoloration in river or lake water, with visible floating green algae 150
2 Oil Film Pollution Surface signs of oil contamination in river or lake water 80
3 Red Pollution Reddish coloration observed in the water body 150
4 Yellow Pollution Yellowish discoloration present in the water 150
5 Foam Pollution Presence of surface foam indicating pollution 150
6 Sewage Blackish or grayish water coloration associated with sewage contamination 150
7 Garbage Floating or shoreline debris in rivers and lakes 150
8 Fish Floating dead fish on the water surface, typically in large numbers 80
9 Leaves Floating leaves observed on the water surface 80
10 Sewage Outlet Visible sewage or drainage pipes along the waterbody banks 150
11 Sand Yard Evidence of sand mining along river or lake banks 150
12 Building Presence of buildings adjacent to river or lake banks 150

2.1 Construction of the river and lake water
environmental hazards dataset

2.1.1 Data collection

To support the task of environmental hazard detection, a dataset
titled WATER-DET was compiled using relevant image data. The
sources of these images included field photography, surveillance
camera footage, and UAV-based aerial imaging. To ensure diversity
within the dataset, images were collected across multiple types of
water bodies (including rivers, lakes, and reservoirs), various
categories of environmental hazards (e.g., pollutant types, sand
mining operations, unauthorized structures), differing lighting
conditions, and across multiple seasons.

Online sources were also used to supplement the dataset. Keyword-
based searches were conducted to retrieve news articles, reports, and
field imagery depicting relevant scenes. The selection process involved
evaluating both the content of reports and expert input to identify
representative instances of water-related hazards. These images were
then annotated to ensure both representativeness and labeling accuracy,
providing a reliable foundation for model training and validation.

2.1.2 Target classification

Target classification depends on the application context. This
paper proposes three main scenarios. First, monitoring water color
as a quality indicator that helps preliminarily identify the type of
pollution. Second, monitoring floating objects on the surface of
rivers and lakes to assess the ecosystem’s condition and detect
pollution on the water and along the banks. Third, monitoring
river courses in accordance with national regulations and water
protection policies.

Following a systematic analysis, the identification tasks for
common river and lake water hazards were categorized into four
main detection types.

« Water Pollution Detection: Identifies pollution types based on

water color and detects visible pollutants such as oil films,
algae, and floating waste.
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« Surface Floating Object Detection: Identifies objects floating
on the water surface, including branches, leaves, debris along
the banks, and dead fish.

o Sewage Outlet Detection: Detects pipelines and discharge
outlets to assess their location and operating conditions.

Detection of Regulatory Violation Targets (related to “Four
Hazards” Elimination): Includes illegal sand mining within
protected river zones, soil excavation in management areas,
and unauthorized construction that obstructs flood pathways.

These target types were selected based on their direct
environmental impact, alignment with regulatory priorities, and
the technical feasibility of automated identification. A detailed
breakdown of the classification scheme is presented in Table 1,
which outlines the 12 selected target categories: (1) Algae pollution,
(2) Oil film pollution, (3) Red-colored pollution, (4) Yellow-colored
pollution, (5) Foam pollution, (6) Sewage (black or grey), (7)
Garbage (on the water surface or along the bank), (8) Floating
fish, (9) Floating leaves, (10) Sewage outlets, (11) Sand yards, and
(12) Buildings (adjacent to riverbanks). These categories are
mutually exclusive and precisely defined to ensure both the
rationality and scalability of image classification.

2.1.3 Data annotation

The labellmg software was used for manual annotation of the
collected images. Annotation included both the classification of
environmental hazard types (e.g., pollution, physical obstructions)
and the spatial information of targets, marked using rectangular
bounding boxes. All annotations followed a standardized protocol to
ensure quality. A cross-verification approach involving multiple
annotators was employed to validate the labeling consistency and
accuracy. Representative annotation samples are displayed in
Figure 1, showing data collected from various water environments.

The annotation process was organized as a multi-step,
collaborative workflow. Initially, the annotation framework and
classification schema were established. Data were then named
and organized The

according to predefined conventions.
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FIGURE 1
Sample images after data annotation.

workflow included task assignment by an administrator, annotation
by trained annotators, and review by dedicated reviewers. This was
followed by data augmentation and automated annotation
processes, with a final round of review and dataset partitioning.
Once validated, the annotated data were exported for use in
model training.

The final named WATER-DET, comprises
1,500 RGB images depicting various lake
environmental hazards. To accommodate the diversity of

dataset,
river and
target categories, the test set size was slightly increased. The
dataset was divided into training, validation, and test sets in a 7:1:
2 ratio. Specifically, the training set includes 1,050 images, the
validation set contains 150, and the test set includes 300 images.
This partitioning strategy was designed to maintain data diversity
and support the effective application of transfer learning in
model development, validation, and evaluation.

2.2 Development of a transfer learning
model for environmental hazard detection
in river and lake systems based on YOLOv11

This the
YOLOvI11 architecture to construct a model for detecting
environmental hazards in river and lake ecosystems. The
network
implementation process are detailed in the following subsections.

study employs transfer learning using

algorithm’s  core  principles, structure,  and
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2.2.1 YOLOvV11 algorithm principle

YOLOvI11 incorporates an enhanced backbone and neck
architecture to improve feature extraction and increase object
detection accuracy. Through refined architectural design and
advanced training strategies, the algorithm delivers faster
processing speeds while maintaining detection precision. It also
reduces parameter complexity, thereby improving computational
efficiency. In addition to object detection, YOLOv11 supports a
range of computer vision tasks, including instance segmentation,
image classification, pose estimation, and oriented object detection.

Compared with earlier iterations such as YOLOv5 and YOLOVS,
YOLOVI11 introduces several notable innovations. It integrates the
newly developed C3K2 module to enhance feature extraction
efficiency and incorporates the Cross Stage Partial with Spatial
Attention (C2PSA) mechanism to better emphasize relevant
spatial regions. While retaining optimized elements such as the
Spatial Pyramid Pooling-Fast (SPPF) module, YOLOv11 achieves
superior accuracy, faster inference, and a reduction in parameter
count. Its multi-task capability enables the execution of diverse
computer vision functions within a unified and efficient framework.

2.2.1.1 Network architecture

YOLOV11 adopts a redesigned network architecture composed
of three primary components: a backbone network, a neck network,
and a head network. The backbone network is responsible for
extracting features from the input image through a sequence of
convolutional and pooling operations. These operations gradually
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reduce the spatial resolution of the image while increasing the level
of feature abstraction. The extracted features capture various aspects
of objects in the image, such as edges, textures, and color patterns.
Through continuous learning, the backbone network is capable of
representing both low-level and high-level image features, thereby
providing  essential  information for the  subsequent
detection process.

The neck network functions as an intermediary between the
backbone and head networks. It further processes and integrates the
features extracted by the backbone. This component applies
specialized convolutional and pooling layers to adjust feature
dimensions and scales, allowing for the effective combination of
features across different hierarchical levels. As a result, the model
can leverage both detailed spatial information and high-level
semantic context, which improves overall detection accuracy.

The head network generates predictions for target objects based
on the refined features provided by the neck. It outputs the
classification, location, and confidence scores of detected objects.
For each prediction, the model estimates the probability of each class
along with the spatial coordinates of the object, typically represented
by the bounding box parameters. These parameters include the
center point, width, and height, all of which are computed relative to
the original image dimensions.

The detection process in YOLOv1l includes grid division,
bounding box prediction, and category classification. The input
image is first divided into a set of grid cells, with each cell
responsible for detecting objects that fall within its area. This
approach enables localized image analysis, reduces computation, and
enhances detection speed. For each grid cell, the model predicts multiple
bounding boxes, each containing positional information relative to the
cell. These predictions are transformed into absolute coordinates using
predefined formulas, and refined during training to better approximate
ground truth values. In addition, each grid cell estimates the object
category based on local features and learned classification patterns. The
model then outputs class probabilities, and the category with the highest
probability is selected as the final classification result.

2.2.1.2 Loss function

YOLOvI11 employs a composite loss function that integrates
three components: bounding box regression loss (Box Loss),
classification loss (CSL), and confidence loss (CFL). The Box
Loss (BL) component optimizes the spatial discrepancy between
the predicted bounding boxes and the corresponding ground truth
boxes. The formula for BL is expressed as Formula 1:

s B
BL = Aeaora ) ) 1 ( (i = xi )" + (i = yi )

i=0j=0

s 2 1)
+ Acoordszzl?jbj<( VWi — VWI) + (\/ﬁl _ \/ﬁl)2>
i=0j=0

Here, S denotes the grid size, B represents the number of
obj
i
whether the j-th bounding box in the i-th grid cell is responsible

bounding boxes predicted per grid cell, and 1;;/ indicates
for predicting the target. The variables x, y correspond to the center
coordinates of the bounding box, while w, / represent its width and
height. The coefficient A.,orq serves as a balancing factor to manage
the relative contributions of different loss components.
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The CSL quantifies the discrepancy between the predicted
probability distribution and the actual class labels. It is calculated
as Formula 2:

CSL=Y 1" % (pile) - pi(e))’ )
i=0 ¢ € classes

In this equation, p; (c) denotes the predicted probability that the
object in the i-th grid cell belongs to category ¢, while p,(c)
represents the true label. The other variables follow the same
definitions as above.

CFL evaluates the accuracy of the model’s predictions regarding
the presence or absence of a target within each grid cell. A high
confidence value is expected when a target exists, while a low
This
component enhances the model’s ability to distinguish between

confidence is preferred when no object is present.

object and background regions and reduces the likelihood of false
positives. CFL is typically implemented using a variation of the
cross-entropy loss, which is adjusted to focus more on difficult-to-
classify samples. Its formulation is given by Formula 3:

N C
CFL=-Y"Y yic(a(1 - pi)log (pic) 3)
i=lc=1

+(1 - “)Picy log(l - Pic))

Here, N is the number of training samples, C is the number of
categories, ;. represents the one-hot encoded ground truth label for
the i-th sample, and p;. is the model’s predicted probability that the
-th sample belongs to class c. The parameter « is a balance factor
controlling the emphasis on positive and negative samples, while y is
the focusing parameter used to emphasize hard examples
during training.

2.2.2 Transfer learning strategy

This study applies a transfer learning approach based on fine-
tuning to adapt a general-purpose YOLOvI11 model for detecting
environmental hazards in river and lake systems. Transfer learning
methods generally fall into two categories: feature-based and model-
based learning. The fine-tuning strategy used here belongs to the
latter category. Its core principle involves retraining the final layers
of a pre-trained model, typically the fully connected layers, while
retaining the parameters of the earlier layers. This selective
retraining enables the model to adapt more effectively to the new
task by leveraging general feature representations learned from
large-scale datasets.

2.2.3 Technical framework and model training

An intelligent identification model for detecting environmental
hazards in river and lake water systems was developed using the
deep learning framework TensorFlow. The model training and
validation were implemented in Python within the Anaconda
environment. The overall technical framework is illustrated
in Figure 2.

The transfer learning process consists of several stages. First, the
collected samples of river and lake environmental hazards were
reconstructed and divided into training, validation, and test subsets.
The training set was used to fine-tune the parameters of the

YOLO1ln model, while the validation set was employed to
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FIGURE 2

Technical framework and model training process.

optimize the hyperparameter configuration. Next, the test set was
used to evaluate the fine-tuned YOLOvI1 model and assess its
detection precision. Finally, the trained model was exported,
water hazard

localized, and deployed within a practical

identification system.

2.2.4 Model training strategy

Selection of Pre-trained Model: The YOLOIlIn model pre-
trained on the COCO (Common Objects in Context) dataset was
selected as the foundation for transfer learning. These pre-trained
models provide robust feature representations learned from large-
scale visual data, offering effective initial weights for the river and
lake environmental hazard detection task.

Fine-tuning Strategy: To adapt the model to the specific
classification requirements of this study, the final classification
layer was replaced to match the number of target categories. A
fine-tuning strategy was applied wherein the weights of lower
convolutional layers were frozen, and only the upper layers,
along with the newly added classification layer, were retrained.
This approach preserves the general feature extraction capacity of
the base model while reducing training time and computational cost.

Setting of Training Parameters: Hyperparameters such as the
learning rate, batch size, and number of training epochs were
configured using the YAML settings file provided by the
YOLOV11 framework.

2.2.5 Model validation
The dataset was divided into training, validation, and test sets in
a 7:1:2 ratio. Manual adjustments were applied to ensure an even
distribution of various hazard categories across the subsets, thereby
enhancing the generalizability of the model evaluation.
Performance metrics used in this study include Precision (P),
Recall (R), Fl-score, and Average Precision (AP). Precision

Frontiers in Environmental Science

measures the proportion of correctly identified positive samples
relative to all samples predicted as positive. Recall evaluates the
proportion of true positives among all actual positive cases. Since an
improvement in one metric may lead to a decline in the other, the
Fl-score, defined as the harmonic mean of precision and recall,
provides a balanced assessment. Average Precision offers a
summarization of model performance across different recall
thresholds. The corresponding formulas are as follows as
Formula 4-7:

TP

po_ 1P 4)
TP + FP
TP
R=—— 5
TP+ FN ®)
2*P*R
Fl = (6)
P+R
AP=1 / N*J. APk )
k=1

In the equations above, TP (True Positives) represents correctly
identified positive samples, FP (False Positives) indicates negative
samples incorrectly classified as positive, and FN (False Negatives)
denotes positive samples that were not identified by the model.

Model Adjustment and Optimization: Model adjustments and
optimization were conducted iteratively based on performance
metrics obtained from the validation set.

Adjusting Parameters Based on Model Performance Evaluation
Indicators: Model performance was evaluated using indicators such
as Average Precision (AP), recall, and precision. AP provides a
comprehensive assessment by integrating both precision and recall
across different confidence thresholds, thus reflecting overall
detection effectiveness. Recall indicates the proportion of true
positives successfully identified, while precision refers to the
proportion of correct detections among all predicted positives.
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These metrics directly reflect the model’s ability to recognize various
target types. If the model exhibits low recall for a particular category,
it suggests that many true positives are being missed, requiring
parameter adjustments to improve sensitivity to that category.
Conversely, low precision indicates a high rate of false positives,
suggesting that optimization is needed to reduce misclassification.
For instance, in this study, the detection accuracy for floating fish
was relatively low, likely due to the visual complexity of such targets.
To improve performance, additional annotated samples of floating
fish were introduced, enabling the model to learn more
representative features and enhance prediction accuracy.

Adjusting Parameters Based on Overfitting and Underfitting
Conditions: The training process also involved monitoring for signs
of overfitting or underfitting by analyzing loss curves and validation
performance. Overfitting was identified when the training loss
continued to decline while validation loss increased and accuracy
fluctuated. This indicated that the model was too complex and had
begun memorizing noise and fine-grained details, reducing its
generalization capacity. In such cases, regularization techniques
such as L1 and L2 were applied to constrain model complexity,
or the network architecture was simplified by reducing the number
of parameters. Underfitting was diagnosed when both training and
validation losses remained high and decreased slowly, implying that
the model lacked the complexity to effectively learn from the data.
To address this, the model architecture was enhanced by increasing
the number of layers or neurons, and training parameters were
adjusted, such as increasing the learning rate, to accelerate
convergence and improve performance.

Adjusting According to the Influence of Parameters on the
Model: Further optimization was carried out by analyzing the
impact of training parameters on model behavior. The learning
rate, which governs the magnitude of parameter updates,
significantly affects convergence. An excessively high learning
rate may cause the model to overshoot optimal values, leading to
unstable loss patterns, while a rate that is too low slows convergence
substantially. In practice, the learning rate was increased when
convergence was too slow and reduced when the loss became
unstable. Similarly, batch size influenced training efficiency and
stability. Larger batch sizes contributed to more stable training
dynamics but required greater memory resources, whereas
smaller batch sizes allowed faster iterations but increased
convergence variability. Therefore, the batch size was selected
based on available computational resources and the observed
training behavior.

In the experiments conducted in this study, overall model
performance was improved by expanding the training dataset,
fine-tuning training parameters, and modifying the model
architecture to better suit the characteristics of river and lake
water environmental hazards.

3 Exloerimenjcal design and
result analysis
3.1 Experimental environment

The experiments were conducted on a system running the

Windows 10 operating system, equipped with 16 GB of memory.
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The central processing unit (CPU) was an Intel Core i7-10700K
with a base clock frequency of 3.8 GHz, and the graphics
processing unit (GPU) was an NVIDIA GeForce RTX 3060.
The TensorFlow deep learning framework, integrated through
Anaconda, was employed within a Python 3.8.16 environment to
support the implementation and execution of the

YOLOv11 model.

3.2 Experimental setup

In view of computational and memory constraints, and to
ensure that the model sufficiently learns the data features, the
batch size was set to 16 images per iteration, with an input
resolution of 160 x 160 pixels. The training process was executed
over 200 epochs. Following each training cycle, the classification
losses for both the training set (train/cls loss) and the validation set
(val/cls loss) were monitored. If the loss curves failed to converge or
showed instability, the training outcome was considered suboptimal,
necessitating dataset adjustment, an increase in training epochs, or
reconfiguration of model parameters.

After several training rounds, the optimal results are presented
in Figure 3. As illustrated, the bounding box loss for the training set
(train/box loss) showed a steady downward trend and reached
convergence. Similarly, the bounding box loss for the validation
set (val/box loss) also decreased consistently and approached
stability. The classification losses for both the training and
validation sets were also observed to stabilize, indicating that the
model achieved synchronous convergence across both datasets and
that the training process was effective.

The precision metric (Metrics/Precision) reached approximately
90%, suggesting a high proportion of correct detections among all
predicted positive instances. The recall metric (Metrics/Recall)
exceeded 0.7, reflecting strong sensitivity to actual positive
samples. The mean Average Precision (mAP), a key performance
metric in object detection and information retrieval tasks, was also
evaluated. Specifically, mAP50-95 refers to the mean of average
precision values computed at intersection-over-union (IoU)
thresholds ranging from 0.5 to 0.95 in increments of 0.05
(i.e, 0.50, 0.55, 0.60, ..., 0.95). As shown in Figure 3, after
200 training epochs, the mAP50-95 exceeded 70%. The mAP50,
which corresponds to an IoU threshold of 0.5, also surpassed 70%,
further indicating that the model achieved a relatively high level of
prediction accuracy.

3.3 Result analysis

The analysis of results in this study is presented from two
perspectives. First, the accuracy of the model is assessed across
the training, validation, and test sets. Second, the performance of the
model after transfer learning, referred to as Water-YOLO11n, is
compared with the baseline YOLO11n model in terms of target
classification and detection accuracy across problem categories.

3.3.1 Analysis of experimental results

The confusion matrix for the improved model is displayed in
Figure 4, where the horizontal axis indicates the true class labels
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Training results.

and the vertical axis represents the predicted class labels. The
matrix shows that most predictions align with the actual labels,
demonstrating that the model exhibits strong predictive
capability.

Figure 5 illustrates the precision values (y-axis) at varying
confidence thresholds (x-axis). This precision-confidence curve
allows an assessment of the model’s performance across different
threshold settings. At a confidence threshold of 1.0, the model
achieves an overall average precision of 0.99, indicating a high
level of classification accuracy. However, the precision associated
with floating fish is comparatively low. This may be attributed to the
variability in appearance between individual fish and fish schools,
which introduces complexity in feature learning. To improve
performance in this category, further image samples representing
diverse fish scenarios are needed.

The P-R curve is presented in Figure 6, showing the mAP@
0.5 value for each target category, along with the overall mAP@
0.5 for the Water-YOLO11n model following transfer learning. The
results indicate that the transfer learning process improved the
overall mAP@0.5%-74.4%,
detection accuracy. However, the mAP values for floating fish

reflecting a significant gain in
and leaves remain lower than for other categories. This
likely due to the
characteristics of these targets and limited sample representation.

performance gap s complex visual
Expanding the dataset with more images of these categories is
expected to improve detection accuracy.

The Fl-score performance across confidence thresholds is
shown in Figure 7. According to the curve, the optimal Fl-score
of 0.72 is achieved at a threshold of 0.796. This indicates that the
model maintains balanced precision and recall at that threshold,
with an average Fl-score of 0.72 across all categories. The results
confirm that the Water-YOLOI11n model delivers a high level of
detection performance following transfer learning.
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3.3.2 Instance-level verification

To further assess the effectiveness of the proposed method, the
Water-YOLO11n model, developed through transfer learning based
on YOLOv11, was compared with the baseline YOLO11n model
before transfer learning. Figure 8 illustrates this comparison, where
Figure 8A presents the detection results after transfer learning, and
Figure 8B shows the results before transfer learning.

The post-transfer model demonstrated significantly improved
recognition capabilities for categories such as garbage, floating
objects on the water surface, sand yards, buildings, and drainage
pipes. In contrast, the original YOLO11ln model was unable to
generate detection boxes for these categories, indicating that it failed
to recognize such environmental hazards. The baseline model
retained relatively high detection performance for general object
types such as people and boats. However, further analysis revealed
that while the original model performed well in identifying
individuals on riverbanks, it exhibited lower recognition accuracy
for individuals located in the water. To address this, future dataset
expansions should include additional annotated samples of people
working within water bodies, thereby improving the model’s ability
to detect such instances.

The results confirm that transfer learning significantly enhances
the model’s identify  diverse

environmental hazards. Furthermore,

capability  to water-related
because annotation of
specialized categories requires considerable domain knowledge, it
may be practical to reduce or omit annotations for common object
classes to minimize annotation workload.  Ultimately,
comprehensive target coverage may be achieved through model

fusion strategies.
3.3.3 Model comparison analysis

To evaluate the performance of the Water-YOLO11n model in a
broader context, its results were compared against several baseline
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FIGURE 4
Normalized confusion matrix for the Water-YOLO11n model.

models, including YOLOv8s, YOLOv10n, and YOLOvlln, both
prior to and after transfer learning. The comparison outcomes
are summarized in Table 2.

The Water-YOLO11n model achieved an F1-score of 0.72, with
a precision of 0.848 and a recall of 0.69. Its mAP@0.5 reached 74.4%,
while its mAP50-95 was recorded at 65.4%, indicating strong
performance across a range of confidence thresholds. These
metrics represent a substantial improvement over the original
YOLOI1n model before transfer learning, which achieved a
mAP@0.5 of only 0.7% and a precision of 0.013. The enhanced
model also demonstrated improved recall and F1-score, showing its
ability to identify more relevant targets while reducing the incidence
of false positives.

When compared with Water-YOLOv8s and Water-YOLOv10n,
the Water-YOLO11n model yielded the highest mAP@0.5, while
maintaining fewer parameters than Water-YOLOv8s. Although its
inference speed (frames per second, FPS = 5.3) was slightly lower,
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this trade-off is considered acceptable given the notable gain in
detection accuracy. Among all the evaluated models, Water-
YOLO11ln exhibited the most balanced performance across
precision, recall, and mAP, rendering it a suitable candidate for
practical deployment in river and lake water environmental
monitoring applications.

4 Discussion

Unlike the study by Shen (2022), which focuses on detecting the
“four pests” issues from a broad perspective using satellite imagery,
the present work emphasizes localized monitoring using drones or
ground-based cameras. The model developed in this study is
designed as a comprehensive tool for detecting a wide range of
aquatic environmental hazards across multiple application
scenarios. These include recognition of water discoloration to
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support pollution type classification, monitoring of floating objects
for assessing impacts on ecological indicators, and identification of
sewage discharge outlets and structural intrusions as part of river
management practices.

While the primary objective of this study was to develop a deep
learning-based model for automatic detection of environmental
hazards in river and lake ecosystems, the model also holds
potential for use in broader environmental assessment tasks. In
Europe, hydromorphological assessment of rivers and lakes is a
crucial requirement for implementing the objectives of the Water

Frontiers in Environmental Science

10

0.8 1.0

Framework Directive (European Commission, 2000). To address
this need, member states of the European Union have developed
methodologies for evaluating the hydromorphological status of
lakes (e.g., Kutyla et al., 2021; Carriere et al., 2024) and rivers (e.g.,
Kamp et al., 2007; Szoszkiewicz et al., 2020). However, current
approaches often depend on labor-intensive field surveys and
visual assessments to evaluate shoreline structure, identify
pollution sources, and track anthropogenic alterations. The
model proposed in this study could augment these manual
efforts by automatically detecting visible hazards such as

frontiersin.org


mailto:Image of FENVS_fenvs-2025-1657930_wc_f5|tif
mailto:Image of FENVS_fenvs-2025-1657930_wc_f6|tif
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1657930

Song et al.

10.3389/fenvs.2025.1657930

F1-Confidence Curve

—— waste

— leaves

—— deadfish

—— sewagepipe
—— sewage

—— algaepollution

0.0 + T T T

—— oilpolltion

—— foampollution

—— redpolltion

—— building

—— yellowpollution

—— battlefield

== all classes 0.72 at 0.796

0.0 0.2 0.4 0.6
Confidence

FIGURE 7
F1-confidence curve.

At AFiALA

’
88

battiefisld O.

FIGURE 8
Comparative detection results before and after transfer learning.

TABLE 2 Comparative performance of Water-YOLO11n and other YOLO series models.

Models Fl-score P R mAP50 mAP50-95 Parameters FPS
YOLOSs — 0.00667 0.0740 0.00439 0.00241 11,156,544 115
YOLOV10n — 0.01300 0.0532 0.00777 0.00453 2,762,608 6.8
YOLO11n — 0.01300 0.0532 0.00777 0.00453 2,762,608 57
Water-YOLOS8s 0.72 0.85100 0.6990 0.73900 0.68100 11,130,228 10.9
Water-YOLOV10n 0.69 0.79400 0.6840 0.72900 0.65700 2,699,876 6.2
Water-YOLO11n 0.72 0.84800 0.6900 0.74300 0.65400 2,584,492 53

floating debris, algal blooms, and unauthorized shoreline
modifications using imagery captured by UAVs, mobile phones,
or surveillance cameras. This integration would reduce field
workload, enable more frequent assessments, and provide
continuous visual documentation.
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Beyond deep learning, several image-based analytical methods,
as summarized in the review by Manfreda et al. (2024), may be
integrated with the proposed model to enhance its utility in
ecosystem monitoring. For instance, Large-scale Particle Image
Velocimetry (LSPIV) can be applied to estimate surface flow
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velocities for discharge estimation; Spectral Angle Mappers (SAMs)
are effective for detecting and classifying macroplastics in both RGB
and multispectral images; and structure-from-motion/multi-view
stereo  (SfM-MVS) photogrammetry techniques are used to
morphology,
hydromorphological parameters such as bankline positions,

reconstruct  river enabling derivation of key
sandbar migration, and shallow water depth measurements.

The model also offers potential applications in environmental
remediation and public engagement initiatives. For example, it can
be used to monitor changes in surface-level pollution over time or
integrated into citizen science platforms aimed at encouraging public
participation in water quality surveillance. A mobile or web-based
interface could be developed to allow volunteers, students, or local
environmental groups to submit images or short video clips of water
bodies captured via smartphones or drones. The model would then
automatically analyze the media to detect features such as debris, algal
accumulation, or shoreline alterations, providing immediate analytical
feedback. This approach, drawing inspiration from initiatives like
CrowdWater and Plastic Pirates, can expand the spatial and
temporal reach of environmental monitoring while also fostering
public environmental literacy and promoting a shared commitment
to the protection of freshwater ecosystems.

Considering potential applications within China, the proposed
model could be integrated into the national water quality assessment
framework by aligning with existing infrastructure such as the National
Surface Water Quality Monitoring Network and the River and Lake
Chief System. For instance, it could enhance routine on-site inspections
by assisting in the detection of illegal sewage outlets, enable real-time
identification of macroplastics in urban rivers, such as those in the
Yangtze and Pearl River basins, and function as an early warning tool
for algal blooms in major reservoirs, including key drinking water
sources like the Danjiangkou Reservoir and Taihu Lake. These
applications are consistent with the objectives of the Yangtze River
Protection Law and the National Ecological Civilization Strategy and
may significantly reinforce compliance monitoring and promote
broader community participation in the protection of aquatic
ecosystems.

Despite the model's overall favorable performance, certain
limitations remain, particularly in detecting specific categories such
as floating fish and leaves. A contributing factor is likely the limited
number of training samples for these categories, which constrains the
model’s ability to generalize. To address this, future research should
focus on expanding the dataset with more varied and representative
samples, incorporating feature enhancement techniques during
preprocessing, and exploring the use of attention mechanisms to
emphasize subtle distinguishing features. The visual complexity of
these categories, including overlapping outlines, partial submergence,
and low contrast with the background, also presents a challenge. These
characteristics complicate the model’s ability to distinguish between
individual instances and grouped formations. Further development of
datasets and recognition methods that support both individual-level
and group-level detection will be necessary.

In addition to dataset-related factors, environmental conditions,
such as lighting, weather variability, and seasonal changes, can
impact detection accuracy. For example, glare on the water
surface, low illumination during dawn or dusk, and seasonal
shifts in leaf coloration may interfere with object visibility and
lead to false positives or missed detections. To improve
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performance under such conditions, future work should consider
data augmentation strategies that simulate diverse environmental
scenarios. Another promising direction is the use of multimodal
fusion, which involves integrating visual data with auxiliary
information such as time stamps, weather data, or Global
Positioning System (GPS) coordinates. Such enhancements could
improve the model’s robustness and adaptability across a wider
range of real-world application environments.

5 Conclusion

To address the demand for rapid and accurate identification of
environmental hazards in river and lake systems, this study constructed
the WATER-DET dataset, comprising over 1,500 annotated images
spanning 12 categories of water-related hazards. This dataset serves as a
specialized benchmark resource for research in aquatic hazard
detection. Based on the YOLOvIl architecture and leveraging
transfer learning through the YOLOI1ln model, a detection model
named Water-YOLO11n was developed. The model achieve a high level
of accuracy in identifying true hazards when the model is highly
confident.- at a confidence score of 1.0, the overall precision of all
classes reaches 0.99, At an intersection-over-union threshold of 0.5, the
average recall across all categories reached 74.4%, indicating strong
detection sensitivity. The model’s F1-score of 0.72 reflects a well-
balanced trade-off between precision and recall, demonstrating its
robust overall performance.

The model showed high accuracy in comparative evaluations,
confirming its potential as a reliable tool for the detection of water
environmental hazards. As such, it offers valuable technical support
for water resource management and protection efforts.

In the future, the model can be exported in widely supported
formats and deployed across various operational contexts. It is
suitable for implementation on servers, edge computing
platforms, or mobile devices, enabling both real-time and offline
monitoring according to specific application requirements. Ongoing
collection of user feedback and field imagery will support further
expansion of the dataset, facilitating continuous refinement of the
model. These improvements are expected to enhance the model’s
detection capability by broadening its classification scope and
improving identification accuracy and reliability in practical

environmental monitoring scenarios.
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