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Road traffic pollution is one of the most important factors among other
environmental factors that influence the roadside vegetation. The present
research examines the impact of motorway flyovers and at-grade roads on air
pollution (PMyo, SOx, NOx, and air quality index (AQI)) and roadside vegetation in
Dehradun by considering the important biochemical parameters such as chlorophyll,
ascorbic acid, leaf pH, and the air pollution tolerance index (APTI). Five varieties of
plants were selected along the busiest highway in Dehradun, including Mangifera
indica (mango) and four varieties of bougainvillea in red, pink, gold, and white colors.
The monthly monitoring of PM,o, SO,, and NO, concentrations during the study
period showed significant seasonal variations at all three sites. Maximum PMyq (58 pg/
m?) and NO, (33 ug/m?) were observed at Site 2 (on-flyover) during December 2024,
while the highest air quality index (AQI) value at this site was 270. Regression analysis
showed that the AQI trends from winter to spring declined, and Site 2 experienced
the greatest monthly reduction (-13.25 units month-1; R? = 0.88). PM;q and NO,
were the most influential factors about AQI (r = 1.00 and r = 0.90), indicating that
these pollutants are a major component of urban pollution. Biochemical parameters
were used as markers to assess the responses to pollution in mango and
bougainvillea (red, white, pink, and gold varieties). Mango showed a higher
tolerance (APTI 8.09) than bougainvillea varieties, where the maximum stress was
caused (APTI up to 4.65) and also exhibited a marked reduction in the levels of
chlorophyll and ascorbic acid. Results show meteorological emission effects on
urban air quality, supporting plant-based biomonitoring programs.

KEYWORDS

Urban air pollution, AQI, APTI, plant-based biomonitoring, traffic stress, urban pollution
monitoring

Highlights

« Comparative analysis of road types: The study contrasts the impact of an elevated
motorway flyover and an at-grade road on roadside air pollution levels in an urban
setting in Dehradun, Uttarakhand.
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GRAPHICAL ABSTRACT

o Effect on urban vegetation: It is the first systematic
investigation of how elevated traffic emissions affect the
resistance and resilience of trees and ornamental plants,
including mango and four bougainvillea varieties.

o Air and plant monitoring: Monthly measurements from
October 2024 to March 2025 included PMio, SOx, NOx,
AQ], and plant biochemical markers (chlorophyll, ascorbic
acid, leaf pH, etc.) across three traffic zones—pre-flyover, on-
flyover, and post-flyover.

« Key findings: Site 2 (on-flyover) recorded the highest pollutant
concentrations and AQI values, especially in December 2024.
AQI showed a monthly declining trend, with PM+o and NOx
being the most influential pollutants.

Plant tolerance assessment: Mango (APTI 8.09) was more
pollution-tolerant than bougainvillea varieties (APTI up to
4.65).
bougainvillea, including reduced chlorophyll and ascorbic
highlighting  the
biomonitoring for urban air quality assessment.

Significant stress symptoms were observed in

acid levels, utility of plant-based

1 Introduction

The rapidly growing population has led to the expansion of
urban areas globally, consequently increasing pollution associated
with higher population density. Air pollution is one of the most
severe issues in the modern world. Urban air pollution has become a
critical and important issue in both developed and developing
countries, posing significant threats to human health, living
organisms, and the environment (Ehrnsperger and Klemm, 2022;
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Edo et al., 2024; Antenozio et al., 2024; Lopez-Aparicio et al., 2025;
Saxena, 2025; Singh et al.,, 2025). Globally, transportation is a major
contributor to air pollution, especially in urban areas. Many vehicles,
poor maintenance of roads, traffic congestion, aging or old vehicles,
poor fuel quality, inadequate inspection programs, etc., contribute to
the degradation of air quality along roadways (Wang D. et al., 2024;
Anigilaje et al., 2024; Esmaeilpour Moghadam et al., 2025).
Vegetation acts as a natural sink, absorbing a significant amount
of harmful air pollutants. Vehicular emissions constitute a primary
source of air pollution in urban areas, exerting a profound impact on
ambient air quality degradation. Vehicular exhaust releases a complex
mixture of harmful pollutants, including nitrogen oxides (NO,),
carbon monoxide (CO), particulate matter (PM), sulfur oxides
(SOy), volatile organic compounds (VOCs), and ground-level
ozone (Os). These pollutants pose severe risks to human health,
ecological integrity, and the sustainability of urban environments.
Accelerated urbanization and the proliferation of motorized transport
have exacerbated these challenges, with chronic exposure and
interacting environmental factors compounding their adverse
effects. Accurate source attribution of traffic-related air pollution
(TRAP) is critical for effective mitigation strategies aimed at
protecting both human populations and peri-urban vegetation
within metropolitan areas. Air pollution-related health effects can
be a result of traffic exposure (Jakubiak-Lasocka et al., 2014; Boogaard
etal., 2022; Tiwari et al., 2025). Urbanization, commercialization, and
the rapid growth of cities and increasing pressure on in-city vehicle
networks were the predominant sources accountable for elevated air
pollutants in densely populated areas globally (Chauhan and Joshi,
2008a; Chauhan and Pawar, 2010; Lolage, 2025; Lopez-Aparicio et al.,
2025; Mathew et al., 2025; Malik et al., 2025; Yan et al., 2025).
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Epidemiological studies show a correlation between the
environment and health parameters in different air pollution
scenarios. Specifically, studies have found associations between
exposure to air pollution in these locations and respiratory issues
like asthma, reduced lung capacity, and other lung diseases (Kim
et al, 2004; Hyrkéds-Palmu et al., 2025; Al-Sabbagh and Shreaz,
2025). Increasing urban air pollution also appears to be a new threat
to trees and crops (Dutta et al., 2025). Several Indian cities are
suffering from high air pollution due to a lack of appropriate
infrastructure, high levels of industrialization, ill-maintained
roads, poorly maintained vehicles, inappropriate use of less eco-
friendly fuels, and a lack of awareness among the general public
(Joshi and Chauhan, 2008).

Roadside plants and trees are exposed to various stress factors,
with traffic-related air pollution being one of the most significant
(Gaur and Singh, 2024; Mehmood et al., 2024). These pollutants are
SO, CO, NOx, VOCs, and PM;, all of which produce detrimental
effects on plant physiology, morphology, and biochemistry (Meo
et al., 2024; Olloquequi et al., 2024; Kumar et al., 2025). Trees that
are scattered within high and/or city traffic are among the most
significant natural bioindicators and phyto-stabilizing agents (Guidi
Nissim et al., 2023; Solomun et al.,, 2024). However, long-term
exposure to traffic-emission pollution depresses photosynthetic
rates, modifies stomatal conductance, and develops leaf necrosis,
chlorosis, and premature senescence. With increasing attention
being paid to climate change and environmental sustainability, it
is necessary to study the negative consequences of traffic pollution
on urban vegetation and species responses to avoid possible
problems when designing urban green infrastructure in the
future (Liu et al., 2022; Umer et al., 2023).

Air pollution effects are highly variable and depend on species-
specific and leaf anatomical characteristics, distance from emission
sources, and fluctuating weather and seasonal patterns (Gupta and
Yadav, 2025). It also helps to understand the physiological and
morphological responses of roadside trees that play an important
role in selecting species for afforestation in polluted sites (Singh,
2023; Malik et al., 2024; Popek et al,, 2024). In recent years, the
number of people has been steadily rising throughout the world.
Vegetation processes pollution by capturing and retaining
suspended particles on leaf surfaces (Corada et al., 2021; Muthu
et al, 2021; Vashist et al., 2024; Nyayapathi et al., 2025) and by
gaseous pollutants entering through stomatal uptake (Smith, 1990).
Furthermore, the complexity of the foliage and branches of the
canopy modifies the flow field patterns, which in a significant way
influence the transport, dispersion, and deposition of air pollutants.

Urbanization, industrialization, and increased vehicular traffic
exacerbated the problem of air pollution in cities, which is not only
harmful to human health but may also be harmful to plants
(Chauhan, 2010; Awasthi et al.,, 2017; Das et al., 2023; Dhankar
et al., 2024; Roy et al, 2024). As a result of open atmospheres
polluted by emissions of PM;,, SOx, NOx, etc. from vehicles,
roadside plants could be good bioindicators for the assessment of
air quality. These plants are important to urban ecology, which
provides ecological services such as carbon capture, the release of
oxygen, and hosting various life forms. This study aims to contribute
to the understanding of the impact of increased traffic-related
pollutants on roadside trees and plants; scant information has
been published on the effect of elevated roads on roadside plants.
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This is an attempt to provide insights into plant response/stress
adaptation pathways that are important for urban environmental
control. The intent is to evaluate the extent of the influence of road
infrastructure design in combination with other influencing factors
on the variation in pollutant concentrations in the vicinity of
a motorway.

2 Materials and methods
2.1 Site selection and description

The rising levels of air pollution and traffic in Dehradun make it
necessary to look at how they affect people’s health and how
roadside plants respond to them, as well as to develop specific
plans to reduce and control pollution (Malik et al., 2024; Mahmud
et al, 2025; Singh, 2025). Rapid expansion of urbanization has
disrupted the natural ecosystem, leading to multifaceted challenges
like environmental pollution and climate change. As a result,
policymakers and urban planners must look for ways to deal
with these problems (Pakhira et al., 2024; Wang A. et al., 2024).
Smart growth strategies should be seamlessly integrated with land
use planning and urban development, ensuring thoughtful
incorporation of green infrastructure such as parks, gardens, and
roadside vegetation across the city to counteract the adverse effects
of pollution. To evaluate the ecological impacts of air pollutants and
formulate a management strategy to mitigate these pollutants, it is
essential to investigate their effects on roadside vegetation. Green
infrastructure helps lower the levels of particulate pollution and
nitrogen dioxide by reducing traffic emissions. One of the key goals
is to investigate the influence of a motorway flyover and a ground-
level motorway on the distribution of ambient mixing ratios in the
vicinity. Three sampling locations were selected along Haridwar Road
(Dehradun, Uttarakhand, India) near the Mohkampur Flyover, a
high-traffic zone in Dehradun City, an identified corridor under acute
traffic conditions at all times of the day. These locations were selected
to study the impact of increasing air pollution due to vehicular
emissions on plant species (Figure 1). The locations of the three
sampling sites on flyover, pre-flyover, and post-flyover (at-grade) road
segments in Dehradun are shown in Figure 1. Dehradun’s
Mohkampur Flyover (30.277833°N, 78.073986°E; approximately
613 m elevation) is ideally located on Haridwar Road, linking
important urban transit hubs. The three locations with respect to
Dehradun and Uttarakhand are shown in Figure 1.

Site 1 (pre-flyover, urban flat road): The first sampling site was
located approximately 500 m before the entry point of the
Mohkampur Flyover, along the even-numbered stretch of
Haridwar Road leading toward Dehradun City. This area is
proximate to the densely urbanized business district where some
heavy traffic exists, most of it during rush hours. The site was
designed to target the near-road impact at ground level, which is
directly exposed to traffic pollution.

Site 2 (elevated railway) (flyover elevated section): The second
site was on the Mohkampur Flyover, a 10-m-high and nearly 1-km-
long elevated road. This overbridge has a high volume of heavy-duty
trucks, buses, and cars, inducing high levels of vehicular emissions.
This may also be a result of the vertical distribution of air pollutants
and their influence on plant species at high elevations, as a high site.
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FIGURE 1
Three sampling locations in Dehradun, Uttarakhand, India

Site 3 (post-flyover suburban straight stretch): The third site was
500 m away from Mohkampur Flyover, located on a flat stretch of
road before the Indian Institute of Petroleum (IIP) on Haridwar
Road, Dehradun. Although it is a building/industrial/residential
area, similar traffic levels are experienced at this site. The place is
distant from the overpass, although it is representative of the high
pollution concentrations experienced in other places. It established a
relative reference point for assessing the spatial variability of
airborne pollution and its potential impact on vegetation in a
mostly quasi-suburban transition zone. Next to the two other
sites, it provides a unique opportunity to study similarities and
differences in spatial distributions of vehicle-based pollution
exposure and the physiological and morphological responses of
the roadside plant species to the road gradient and traffic density.

2.2 Variables of plant selection and
biomonitoring

Biomonitoring was performed in all selected sites, using four
varieties of a plant grown in pots and one tree species, to determine
the potential influence of the increase in road vehicular emissions on
the vegetation along the sides of the road. The selected species were
based on their availability and abundance in the study area and their
use as bioindicators of air pollution stress. Different physiological
and biochemical parameters of air pollutants stress, viz., pH of leaf,
ascorbic acid, relative water content (RWC), chlorophyll a and b,
carotenoids, and APTI, have been determined and analyzed. Mango
tree (Mangifera indica), as an indigenous and well-distributed tree
species in that area, is included in the research. The ornamental
species grown in pots was bougainvillea (Bougainvillea spectabilis).
Four bougainvillea plants (red, pink, gold, and white) were selected
for investigation as these were universally obtainable across all sites.
These plants were cultivated in the same size pots (3 x 3 feet) with an
equal volume of soil to standardize the growth conditions. The use of
potted plants decreased confounding by external variation, and
comparison among the various pollution exposure zones was
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better controlled. The road corridor considered is one of the major
transportation corridors, connecting Dehradun to Haridwar and
Rishikesh, with thousands of vehicles per day (a combination of
commercial, private, and heavy vehicles). Leaves were sampled from
both sides of the road at all the sites and from mango trees growing
near the flyover or on the flyover. This sampling scheme enabled the
directional exposure and the vertical dispersion of pollutants to be
compared. The study area provides a suitable setting for examining
the effects of air pollution from traffic on the condition and resilience/
tolerance of plants and trees.

2.3 Air pollution monitoring

Respirable dusts (PM,,) and gaseous parameters such as SO,
and NO, were monitored using a respirable dust sampler (APM 460)
and a gaseous assembly (APM 410), respectively, in the
determination of the air quality. All selected sites were monitored
for 6 months. The sampler was operated in parallel for the same 24 h
at all three sites, once a month as per the National Ambient Air
Quality Standards (NAAQS).

2.4 PM;o measurement

The gravimetric dust sampler (APM 460) is frequently used to
determine the levels of PM;, in ambient air. This technique involves
measuring particles in the air on a filter before and after sampling by
weight. The APM 460 is designed for size-selective sampling. A
cyclone separator draws in ambient air to collect >10 pm particles,
and the remaining particles (PM,,) are collected on a pre-weighed
glass fiber filter. The airflow rate is usually set as 1 m*/min to meet
the particle separation and deposition precision. The APM 460 is a
size-selective sampling device. In a cyclone separator, particles larger
than PM;, are removed (>10 um); the remaining PM; is collected
on pre-weighed glass fiber filters. An air flow (usually 1 m?*/min)
keeps particle removal and deposition in balance.
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Gravimetric analysis:

o Pre-weighing: The filter is conditioned in an environmentally
controlled room (T =20°-25 °C, RH = 40-50%), and its weight
is determined with a high-precision balance.

 Sampling: The sampler operates for a predetermined duration
(24 h), collecting PM;, on the filter.

o Post-weight: The filter is reconditioned and weighed
after sampling.

o Calculations: The PM,, concentration is calculated as follows:

(W - Wi)

PMy =
'™ Air Volume Sampled

where W is the final weight, W; is the initial weight, and the air
volume is calculated using the flow rate of the sampler and the
sampling time. This approach allows a valid and reliable estimation
of the ambient air PM;, pollution.

2.5 Gaseous pollutant monitoring

The most commonly employed manual method is the
modified West-Gaeke method (IS 5182 Part 2), whereby a
stable
absorbing SO, in potassium tetra chloromercurate (TCM).

dichlorosulfito mercurate complex is formed by
Under acidic conditions, the complex, pararosaniline, and
formaldehyde react to produce a purple product. The SO, in
the ambient air is measured spectrophotometrically and is a
measure of the depth of the color that the dye assumes at
560 nm. This provides a of the

concentration. This method may be used for 24-h sampling

reliable indication
and has good sensitivity over the 25-1,050 ug/m’ range. The
measurements of SO, invasive automatic monitors, such as UV-
fluorescence analyzers, can provide a continuous SO, real-time
measurement. These may measure the fluorescence in the
absorption of UV light by SO, molecules, with the intensity of
fluorescence being directly proportional to the SO,
concentration.

These analyzers are used in continuous ambient air quality
monitoring stations (CAAQMS) because their precision and
efficiency for NO, in manual mode are specified by modified
Jacob & Hochheiser (IS 5182 part 6). Such measures are, for
instance, diazotization with sulfanilamide after the NO, has been
absorbed into a solution of sodium hydroxide and sodium arsenite.
This reagent is N-(1-naphthyl)-ethylene diamine di-hydrochloride
(NEDA), which gives a pink azo dye. Absorbance at 540 nm is read
on a spectrophotometer and is valid for 24-h sampling in the range
of mass concentrations 30-500 pg/m’. Chemiluminescence
analyzers are typically used for automatic monitoring. These are
based on the reaction of NO with ozone (O3) to create excited NO,
that emits light (chemiluminescence). Because NO, must be
converted to NO in the atmosphere for this reaction to take
place, the analyzer usually includes some type of converter to
NO, (NO + NO,). The
chemiluminescence gas monitors with their high sensitivity have
been broadly applied based on standards of the United States
Environmental Protection Agency (US EPA) and the Central
Pollution Control Board (CPCB), India.

allow  measurement  of
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2.6 Assessment of air quality index (AQI)

The AQI provided by the US EPA is a valuable tool; many
programs around the world use it to monitor air quality. The AQI is
a single scale that shows how polluted the air is and how it can affect
human health. The AQI turns complicated levels of air pollution
into a simple number, category, and color, which makes it easy for
people to understand and take steps to protect themselves. A higher
AQI rating means that the air quality is worse and that health is
more of a concern. The AQI for each study site was calculated as the
average of SPM, NOy, and SO, levels (Chelani et al., 2002). AQI has
been calculated using the equation below.

1| SOx N NOx N PM10 . PM?2.5 o
4 |SSOx SNOx SPM10 SPM?2.5

AQI = 100

In this case, SO is for sulfur dioxide (SO,), SSOy is sulfur dioxide,
NOy is nitrogen dioxide (NO,), and SNOy is the corresponding
Central Pollution Control Board (CPCB) standard value for
nitrogen dioxide. PM;, and PM,.s are terms used to describe
particulate matter that has aerodynamic diameters smaller than
2.5 pm and 10 um, respectively. Here, “standard value” refers to
the CPCB-recommended allowable concentration for each pollutant.

2.7 Traffic-related data collection

Traffic counts and surveys were carried out at all three locations
along the Mohkampur Flyover corridor in order to assess vehicle
emissions and their impact on roadside foliage. Visual traffic in flow
was recorded via a mobile recording system (high-resolution
smartphone camera on a tripod) during selected observation
hours. This approach minimized disturbance of real road surfaces
and enabled true post-field analysis.

Traffic count schedule: Traffic data were collected for three
specific periods, defined to reflect different time phases for daily
human and vehicle activity:

Morning office hours: 8:00 am-10:00 am
Afternoon (off-peak): 12:00 pm-2:00 pm
Evening office hours: 5:00 pm-7:00 pm

These time slots were strategically selected to capture both peak
(rush hour) and off-peak traffic periods, reflecting expected
variations in vehicle emissions driven by daily commuting patterns.

Data processing and analysis: Video recordings from each site
were manually reviewed to count the number of vehicles passing per
minute. These one-minute counts were aggregated to calculate hourly
traffic volumes. Vehicles were then categorized into three classes:

« Light motor vehicles (e.g., two- and three-wheelers and cars)
o Medium motor vehicles (e.g., auto-rickshaws, vans, mini-

buses, and small goods carriers)
(e.g., buses, trucks, and

o Heavy-duty  vehicles

construction vehicles)
This classification helped in assessing the traffic composition

and its potential contribution to air pollution across different time
intervals. Each vehicle category was analyzed separately to assess the
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impact of different vehicle fleets on the overall emission level. The
average vehicle number per minute calculated for each time
interval, and the 3 days following up were also averaged. Both
working days and weekends were involved to alleviate the
deviation caused by the traffic discrepancy. A mobile camera
was used to record traffic flow. The frequency of cars per hour
was calculated using the video recording from the pen study. The
volume of traffic per hour was measured as the number of vehicles
per minute (Kadiyali, 1999).

2.8 Meteorological data

The influence of meteorological conditions contributes much
to the diffusion of air pollutants in the surrounding area and also
to the presence of air pollutants in the air. The meteorological data
on temperature, pressure, wind speed, and humidity were
obtained through Time and Date (2025) and World Weather
Online (2025).

2.9 Photosynthetic pigments

2.9.1 Pigment concentrations

The Hiscox and Israelstam (1979) method is a common and
effective way to determine the amount of photosynthetic pigments,
like chlorophylls, in plant leaf tissue. This method is a non-
maceration assay, which means that the leaves do not need to be
ground or homogenized. This helps maintain the integrity of the
pigments and saves time. The procedure consists of immersing a
measured sample of fresh leaf tissue into a solvent, commonly
dimethyl sulfoxide (DMSO). The vials with the leaf tissue and
DMSO are then heated in an oven at approximately 65 °C for
approximately 30 min. This step helps to extract the pigments by
breaking down cell membranes without damaging them. After the
extraction is done and the vials have cooled, a spectrophotometer is
used to look at the liquid extract. To determine the amount of
chlorophyll in the solution, the optical density (OD) is measured at
certain wavelengths (e.g., 663 nm, 645 nm, and 480 nm) using
known equations. The total chlorophyll (Chlorophyll a, b) was
calculated using the formula:

Chlorophylla (mg/g fresh weight):

_ (127 X A663) - (269 X A645) xV
- 1000 x W

Chlorophyllb (mg/g fresh weight):

Chla

(22.9 x Agys) — (4.68 X Agsz) X V
1000 x W
Total Chlorophyll (mg/g fresh weight)

Chlb =

~(20.2 x Agys) + (8.02 X Age3) X V
B 1000 x W

Where

V = final volume of extract (mL)
W = fresh weight of leaf sample (g)
A663 = absorbance at 663 nm
A645 = absorbance at 645 nm
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These values are then adjusted based on the volume of extract,
fresh weight of tissue, and final volume to get results in mg/g
fresh weight.

2.9.2 Carotenoids

Leaf samples were collected from the study sites and
homogenized in a chilled pestle-mortar. The extract was
centrifuged at 13,000 rpm for 20 min at 4 °C, and the clear
supernatant was used for absorbance measurements at 450 nm
and 510 nm. The carotenoid concentration was calculated using
the equation of Duxbury and Yentsch (1956):

Carotenoids = 0.304 (ODysp) — 0.0596 (ODs,)

2.9.3 Ascorbic acid

The estimation of vitamin C was carried out following the
method outlined by Sadasivam and Manickam (1996). For
ascorbic acid determination, 1 g of fresh leaves was homogenized
in 25 mL of 4% oxalic acid. The extract was then oxidized by adding
3 to 5 drops of bromine water, converting ascorbic acid to
dehydroascorbic acid (DHA). The resulting DHA was reacted
with dinitrophenylhydrazine (DNPH) to form an osazone
complex. This complex was dissolved in 7 mL of 80% sulfuric
acid, and the absorbance was measured at 540 nm using a
spectrophotometer to quantify ascorbic acid content.

100ml
wt.of sample

0.5mg V2

100
Vi 1sml 8

Ascorbicacid content =

2.9.4 Leaf pH

Leaf pH was measured after homogenization of a mass of
approximately 4 g of fresh leaf tissue with 40 mL of deionized
water, followed by centrifuging for 3 min at 2,500 rpm. The extract
pH was determined by a pH meter.

2.9.5 Relative water content (RWC)

The weight of the leaves was measured with a balance to obtain
fresh weight. The overnight watered leaf samples were also blotted
dry and weighed for turgid weight. Leaves were subsequently oven-
dried overnight at 70 °C, and the dry weight was determined. RWC
was determined using the equation of a twelve-digit calculator to the
standard by Weatherley (1965).

FW -D.
RWC—{ W Wi

_ M P 100
(TW-DW} "

where FW is fresh weight, DW is dry weight, and TW is
turgid weight.

2.9.6 APTI determination
The air pollution tolerance index (APTI) was computed
following the formula adopted by Singh and Rao (1991).

AA(TCh+pH)+RWC
10

APTI =

where AA = ascorbic acid content (mg/g), TCh = total
chlorophyll (mg/g), pH = pH of leaf extract, and RWC = relative
water content of leaf (%). Relative water content (RWC) is crucial for
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FIGURE 2

Average monthly variation of different metrological parameters from October 2024 to March 2025.

assessing a plant’s pollution tolerance (et al., 2025). It shows how
well leaves retain water, helping maintain health and function under
stress, thus supporting higher APTI and overall resilience (Joshi
et al., 2009).

3 Results

Figure 2 depicts the monthly variations of temperature, pressure,
humidity, and wind speed from November 2024 to March 2025 at
the study site. Air pressure was stable this month, fluctuating in a
narrow range of atmospheric pressures between 1,015.2 and
1,012.8 hPA, peaking in December 2024, and slightly falling
toward March 2025. Average relative humidity fluctuated little,
with 84.2% (November 2024) and 87.5% (January 2025) at the
lower and upper ends of the spectrum. A continuous reduction in
average monthly temperature was observed from 16.8 °C in
November 2024, dropping to a low value of 12.3 °C in January
2025 and then, to a small extent, rising to 14.1 °C by March 2025.
Wind speed remained persistently low throughout the months from
1.2 km/h in January 2025 to 1.9 km/h in March 2025. December,
February, and January were the three coldest months.

Figure 3 shows air pollution levels recorded at three locations in
Dehradun City of Uttarakhand during the period October 2024 to
March 2025. The monthly average concentrations of PM,,, SO,, and
NO, and the corresponding AQI values were computed and
categorized according to CPCB air quality criteria. The monthly
profiles of PM;, SO, NO,, and AQI were derived from
measurements recorded during October 2024 to March
2025 from three monitoring sites. PM;o, NOy, and AQI all had a
clear increase in November from October through November 2024.
It remained at a relatively high level through December 2024, which
was the peak winter month, with a subsequent decline such that they
were at their lowest levels during February and March 2025. PM;,
ranged between 42 and 58 pg/m’, and the maximum PM;, (58 ug/
m’) was observed in Site-2 in December 2024. NO, ranged from
22 to 33 pg/m’ (Site 2 reported peak values of 33 ug/m’ in December
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2024). SO, concentrations were, on average, low (16-25 pg/m’) and
showed little variation among months and sites. The month of
December 2024 was characterized by the highest AQI levels,
approximately in the range of 210 (Site 3) to 270 (Site 2), which
is poor. The highest concentrations of pollutants in the frequent
concentration patterns were observed at Site 2, which might be
attributed to the higher traffic flow there in terms of vehicles
discharging high pollutants and waste gas accumulation at this
site. The seasonal differences in the pollutants, presumably due
to the winter atmospheric inversion, low wind speed, and high
vehicular-generated pollutants, resulted in the build-up of pollutants
during the colder season. The time trend of AQI closely reflected
those of PM;, and NO, and indicated their dominant contribution
to the deterioration of air quality. The geographical and seasonal
gradients highlight the effect of increased wintertime traffic
emissions and suggest local differences in the pollution load,
possibly associated with traffic density, topography, and
meteorology.

The low temperature, high humidity, and low wind speed in
winter (December-January) may have been favorable for the
accumulation of pollutants. The small temperature and wind
speed increases in March 2025 were accompanied by better
atmospheric dispersion conditions (Awasthi et al, 2023). These
are important for understanding the seasonality of pollutant levels
and AQI variation at the monitoring sites and strongly suggest the
influence of atmospheric stability on urban air quality.

The trend of AQI at three monitoring locations in Dehradun
from October 2024 to March 2025 is shown based on linear
regression analysis in Figure 4. The AQI temporal trend was
calculated through linear regression models fitted in the three
monitoring sites, considering the month number as an
independent variable and AQI as a dependent variable. Based on
the value of the slope, the AQI values of the four sites decreased over
the 6 months, and the air quality gradually improved from winter to
early spring. The greatest deterioration at Site 2 (based on the value
of the slope) suggests a tendency toward a better temporal pattern
that may correlate with a decrease in the number of cars, in favorable
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FIGURE 4
Trend of AQI at three sites during the study period.

dispersion conditions after winter. Though Site 2 had the highest
pollution load throughout, AQI declined by 15%-20% at all three
sites from peak winter values (December 2024) to those of March
2025. These data suggest the seasonal effect on pollution dilution
and the importance of long-term measurements for monitoring
dynamic air quality variation in traffic-affected urban areas.
Figure 5 shows the correlation matrix computed based on
month-by-station data on the values of PM,y, SO,, NO,, and
AQIL The PM;, and AQI showed excellent positive correlation
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(r = 1.00), indicating that the PM;q is one of the important
factors behind the deterioration of air in the study region. A high
correlation of NO, with PM,, and AQI (r = 0.90) was observed,
which indicates the large impact on fluctuations of AQI. Moderate
correlation was found between PM,, and SOy (r = 0.64) and SO, and
NOy (r = 0.62), indicating that these markers had partial co-
occurrence, but a slightly weaker relationship existed. It is also
observed that SO, has less correlation with AQI (r = 0.64), which
suggests that it has less impact on the variability of AQI than PM,,
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and NOy. These correlation coefficients were significant (p < 0.05).
The significant relationship between PM;,, NO,, and AQI shows
that automobile and particulate sources should be considered and
taken into specific management to reduce particulate and vehicular
sources and allow for effective control of the air pollution in traffic-
influenced urban areas.

A correlation matrix of the air pollutants (PM;,, SOy, and NO,)
and meteorological factors (temperature, wind speed, humidity, and
pressure) is presented in Figure 6. The correlation heatmap
highlights the interdependencies among meteorological variables,
air pollutants, and AQIL. A very strong positive correlation (p < 0.01)
was observed between PM,, SO, NO,, and AQI, suggesting that
these pollutants are the dominant contributors to air quality
deterioration in the study region, which is indicative of their
common vehicular and industrial sources of emission. The wind
speed showed a high and significant negative relationship with all
the pollutants (PM;: r = —0.84, SO4: r = —0.81, NOy: r = -0.82; p <
0.05), which means that high wind speed supports pollutant
dispersion (Chakraborty et al., 2019). However, the correlation
between these values and temperature suggested that the
pollutant trend is opposite to that of temperature. The significant
correlations (p < 0.01) observed emphasize the complexity of the
synchronized relationship between meteorological parameters and
the effect on pollutant transport, accumulation, and removal at
urban roadsides.

Temperature showed a negative association with pollutants but a
significant inverse relation with atmospheric pressure (r = —0.93, p <
0.05), reflecting the dynamics of local weather systems. Significant
inverse relationships between wind speed and air pollutants (e.g.,
PM;, and wind speed, —0.85) suggest that higher wind speeds are
linked to lower pollutant concentrations, most likely as a result of
dispersion. Humidity displayed a weak positive correlation with
AQ]I, implying limited influence compared to other meteorological
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parameters. Overall, the analysis confirms that stagnant atmospheric
conditions with low wind speed exacerbate pollutant concentrations,
thereby increasing AQI, whereas increased dispersion through
higher wind speeds significantly improves air quality. These
results are essential for comprehending the intricate relationship
between air quality and meteorological variables. These results
highlight the complicated relationships between air pollutant
concentrations and atmospheric conditions, as well as how
meteorology affects patterns of air quality.

The traffic pollution data for three locations during different
time durations are shown in Table 1. The site-wise data have been
classified based on traffic density (light, medium, heavy) in three
sessions, for PRE (8:00 to 10:00 am), ON (12:00 pm to 2:00 pm), and
POST (5:00 to 7:00 pm) times at the pre-flyover, on-flyover, and
post-flyover sites. Morning office hours: During the morning, the
traffic pollutants are moderately high in all the sites, with Site 1 (pre-
flyover) having the highest pollutants in the light and medium
categories. Site 3 (post-flyover) has a lower level of light and medium
traffic pollution but a higher level of heavy traffic pollution than
Site 2 (on-flyover). Midday (off-peak) pollution levels are reduced at
all sites, especially for the light traffic. Light traffic is the least at
Site 3, while medium and heavy traffic pollution is fairly constant
across all sites. During evening office hours, traffic pollution levels
increase again in the evening office hours (as in the morning office
hours), with Site 1 (pre-flyover) reporting the highest level of light
traffic and Site 3 reporting high levels of medium and
heavy pollution.

The seasonal variation in the biochemical and physiological
characteristics of the plants (mango and red, white, pink, and gold
bougainvillea) at Site 1 (pre-flyover) is given in Tables 2, 3 from
November 2024 to March 2025. The amount of total chlorophyll in
mango decreased from 3.97 £ 0.77 mg/L (November) to a minimum
value of 3.17 + 0.84 mg/L (February) and increased again to 3.44 +
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FIGURE 6
Correlation matrix between air quality and meteorological parameters. (* <0.05; ** <0.01; *** <0.001).

TABLE 1 Average traffic count during study period (November 2024 to March 2025) (vehicles/min) at each sampling site during peak and off-peak hours.

Time interval Site 1 (pre-flyover, Dehradun side)  Site 2 (on flyover) Site 3 (post-flyover, IIP side)
Morning office hours (8:00-10:00 pm) Light* 45.3 Light: 42.6 Light: 45.1
Medium®: 24.2 Medium: 23.8 Medium: 25.0
Heavy®: 14.7 Heavy: 14.5 Heavy: 14.8
Midday (off-peak) (12:00-2:00 pm) Light: 19.7 Light: 11.2 Light: 8.4
Medium: 12.6 Medium: 12.3 Medium: 13.0
Heavy: 10.9 Heavy: 10.7 Heavy: 11.0
Evening office hours (5:00-7:00 pm) Light: 47.2 Light: 42.1 Light: 45.6
Medium: 24.8 Medium: 23.5 Medium: 24.7
Heavy: 13.0 Heavy: 12.9 Heavy: 13.1

“Light motor vehicles: two-wheelers and cars.
"Medium transport: auto-rickshaws, vans.
“Heavy: trucks, buses: Values are averaged values for 60 min on three consecutive days, including weekdays and weekends.

0.92 mg/L (March). A decreasing trend was registered in  decreased in all the species and mango (2.63 + 0.43 mg/L to 2.42 +
bougainvillea plants as white (1.79 + 0.32 mg/L) dropped to a  0.54 mg/L) of Nov between Feb and Mar, with values (2.56 +
low of 1.36 + 0.32 mg/L (all mL/L). The ascorbic acid content  0.57 mg/L) being significantly lower. In mango, RWC decreased
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TABLE 2 Site-1 (pre-flyover, Dehradun side).

Parameters/Months Total chlorophyll content (m Ascorbic acid content (mg Relative water content (%)
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TABLE 3 Site-1 (pre-flyover, Dehradun side).

Parameters/Months Carotenoid content (m
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TABLE 4 S-2, Site 2 (on flyover).

Parameters/Months Total chlorophyll content (mg/L) Ascorbic acid content (m Relative water content (%)
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TABLE 5 S-2, Site 2 (on flyover).
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from 53.13% + 4.33% in Nov to 49.97% * 5.11% in Feb, indicating
mild water stress at peak winter. The carotenoids also exhibited a
similar trend. Mango saw a decrease from 3.08 + 0.65 mg/L to 2.82 +
0.68 mg/L (February), but an increase in March raised the value to
298 + 0.57 mg/L. Similarly, pH showed a downward trend,
especially in mango (6.61 + 0.32 to 6.18 + 0.27) as a sign of
pollutant-borne stress. In mango, the APTI decreased from
8.09 + 0.35 (November) to 7.26 + 0.34 in Feb, indicating heavy
susceptibility in winter, with a slight improvement (7.67 + 0.32) in
Mar. These patterns are consistent with higher pollution loading and
less favorable meteorological conditions (low temperature and wind
speed) during winter.

Tables 4, 5 illustrate trends of the chemical constituents of the
physiologic marker in the mango (Mangifera indica) and
bougainvillea (pink, white, and gold var.) at Site 2 (On the
Flyover), over 5 months between November 2024 and March
2025. The total chlorophyll content in mango decreases from
3.17 + 0.47 mg/L in February to 2.57 + 0.45 mg/L in March. In
the case of bougainvillea, the variation in chlorophyll concentration
in flowers was not significantly affected by days of stress, even
though all varieties showed a decrease in chlorophyll concentration,
where the pink variety had lower values (1.06 + 0.23 mg/L in
February). The greatest reduction of ascorbic acid was detected
in the bougainvillea locally known as pink (1.05 + 0.26 mg/L in
February), implying that the antioxidant level decreased under
The RWC
genotypes; the highest values (42.87% + 3.22%) were recorded in
mango (in November), and the lowest (38.92% + 3.54%) in the gold
bougainvillea (in February). Carotenoid levels in all species

pollution. showed a small difference between

decreased or remained steady; mango presented the highest
values in the extreme stress (2.49 + 0.42 mg/L in November).
Carotenoid levels are the main adaptation indicator. The
pH remained relatively constant within a small range. The APTI
value of the gold bougainvillea was much higher (7.31 £ 0.39) during
December, which indicates that the bougainvillea is adapted to the
traffic-generated air pollutants in the vicinity of the flyover.
Collectively, these data indicate that traffic pollution per se exerts
stress on plant physiology, with bougainvillea being more sensitive
than mango.

The data presented in Tables 6, 7 for Site 3 (post-flyover, IIP
Side) depict the effects of the traffic pollution on mango and
bougainvillea (white, pink, and gold) over 5 months (November
2024 to March 2025). The total chlorophyll in mango showed a
declining trend with a storage period, from 4.12 + 0.46 mg/L in
November to 3.34 + 0.47 mg/L in February, with a slight increase in
March (3.57 + 0.51 mg/L). In the case of bougainvillea, the
chlorophyll content also decreased for all varieties, with pink
showing the largest decrease (1.38 + 0.14 mg/L in February). The
ascorbic acid decrease was significant in all species (higher
magnitude in pink bougainvillea (1.30, ESD+0.15 mg/L), which
might reflect the drop in the efficiency of the plant against
pollution stress. The decrease in RWC was observed in all plants,
+ 3.17% in
November) and gold bougainvillea having the lowest RWC
(50.07% + 3.45% in February). Carotenoid content was also
reduced in all plants except mango, which showed the highest

with mango having the highest values (55.67%

values (36.23 + 0.17 mg/L in Nov), probably as a stress response.
The pH was nearly constant with slight variation, and the APTI was
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found to be high (in the month of December for the gold
bougainvillea, 9.49 + 0.30) in the flyover, indicating a strong
pollution adaptive capability of the plant species. These results
indicate the overall physiological stress of plants exposed to
traffic, and that bougainvillea and mango are more sensitive than
the others. Despite such stress, however, some species, such as gold
bougainvillea, show some level of adaptation mechanisms and
responses as evident in the plant APTL

4 Discussion

The present work adds further evidence of the effect of road
altitude on the modification of the physiological and biochemical
responses of urban vegetation to traffic-related air pollution. We
have shown that varying concentrations of pollutants characteristic
of particular road types can affect the morphological and
biochemical traits of plants and trees. The results of this study
show fuel consumption is much higher on hilly than on flat terrain,
reaching a peak of 4.3 L/100 t-km at moderate gradients. More
throttle pressure on uphill roads means more gas to overcome
gravity. Road grade is required in energy models and eco-routing
to properly predict fuel consumption (Wang et al., 2025). The results
of the tests verify that fuel consumption is much greater during
acceleration on level or uphill grades than during downhill driving
(Wang et al,, 2015). On a flat stretch, 8.55 mL/km of fuel was
required, and it decreased to 590 mL at the downhill (-8.51%
gradient run) with a difference of —31.4%. That reduction comes
courtesy of gravity’s hand when descending; thus, less engine load is
needed to gain speed. In addition, emissions of exhaust gases (CO,
CO,, HC, NOy) decreased considerably over the descent. Therefore,
the fuel consumption is greater on uphill lanes and flat roads than on
downhill lanes (Hanzl et al., 2022). This finding is clear evidence of
significantly larger average fuel consumption for the uphill roads
than for the flat roads. On a 4% gradient, fuel usage is
1.87-1.96 times that of the flat road for different speeds. ¢ On
gradients up to +6% %, fuel consumption is 2.23-2.41 times higher
than on level ground. The loss in energy use is not fully offset on the
downhill segments of the grades driven; fuel consumed on the uphill
segments of the roads is larger than fuel saved on the downhill
segments of the road. Consequently, fuel consumption rises
exponentially with altitude compared with the flat area, especially
for higher slopes and speeds (Jiang et al., 2025).

The level of urbanization in the peri-urban area of Dehradun
experienced a marked increase from 1.4% in 2003 to 8.9% in 2023
(8%), with expansion in the southern and the south-eastern part of
the city. The urban expansion of Dehradun has contributed to LST's
(land surface temperature (LST) increases and surface heat islands
(SHIs) (Dhankar et al., 2024). Enhanced vertical distribution of fine
and coarse particles has been reported over mega-urban regions of
India. Traffic pollution damages trees through the direct
accumulation of particulates on leaves, one of the principal
pathways, in addition to gaseous pollutants. The physical
blocking leads light
photosynthesis, which consequently causes low chlorophyll

to a deprivation of absorbed for
content and gives rise to lower rates of photosynthesis (Ahmed
et al., 2025). The primary contributor of ambient PM is vehicle

exhaust directly entering the ambient environment (Jin et al., 2024).
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Various types of vehicles, ranging from heavy-duty trucks and buses
to passenger cars and motorcycles, emit different amounts and
compositions of pollutants (Gupta, 2020). Light-duty motor
vehicles, like friendly patrol cars and motorcycles, emit less PM
than rigid-weight diesel autos and buses (Ajayi et al., 2024; O'Neill
et al, 20245 Joerger and Pryor, 2018). Heavy vehicles add to the
resuspension of road dust, leading to the deterioration of air quality
as well (Alshetty & SM, 2022; Gulia et al.,, 2019).

The traffic flow results in the vehicle-induced turbulence (VIT),
and, in turn, the air velocity and the pollutant dispersion in street
canyons are significantly affected by VIT (Thaker and Gokhale, 2016;
Zhao etal,, 2021; Zheng and Yang, 2021; Zuo et al.,, 2022). Notably, the
exclusion of VIT might lead to substantial overestimates of ambient
air pollution levels (Zhao et al,, 2021). The pattern of vehicles on lanes,
vehicle types, and speed of vehicles generates different VIT, which has
a huge influence on controlling the spread of vehicular emission (Cai
etal., 2020; Gallagher, 2016; Shi et al., 2020). By comparing pollutant
levels at the MF (mid-flyover) and G-Level MV (ground-level motor
vehicle), the current study can address the influence on local air
quality of a road’s elevation.

The findings of this study demonstrate the significant influence of
urban air pollution on the composition of photosynthetic pigments in
trees, which directly influences the physiological characteristics and
productivity of trees. The reduction in the total chlorophyll and total
carotenoid content in the trees of the less polluted areas supported the
hypothesis that air pollution, mainly coming from vehicular sources,
attacks the photosynthetic apparatus by disturbing the direct and
indirect pathways. Earlier studies have demonstrated that the major
urban atmospheric pollutants SO,, Oz, and NO, inhibit chlorophyll
biosynthesis and increase pigment degradation (Chauhan and Joshi,
2008b; Agbaire and Esiefarienrhe, 2009). SO, is absorbed via the
stomata, where it is converted to sulfite and bisulfite ions, which
inhibit the enzymatic reactions involved in the synthesis of
chlorophyll and replace magnesium in chlorophyll, and in this
way, the pigment is decomposed. Similarly, there is production of
reactive nitrogen species (RNS) that are capable of inducing oxidative
damage to chlorophyll and its binding proteins after NOy exposure
(Upadhyay et al., 2025). Ozone is a potent oxidant that induces lipid
of the
pigment-protein complexes that adversely affect pigment stability
(Fowler et al, 2009). Additionally, PM, namely PM,s particles,
adheres to leaves where it behaves as a physical filter for light

peroxidation chloroplast contents and  disrupts

penetration and gas exchange (Ossola and Farmer, 2024; Lee et al,
2024). Sustained PM deposition can also cause stomatal clogging,
mechanical damage to the cuticle with a subsequent increase in the
stress on the mesophyll tissues, and accumulation/exacerbation of
pigment degradation.

The decrease in carotenoids found in this study is significant
because carotenoids have two functions in photosynthesis. They are
used in light-harvesting and in the protection of chlorophyll from
photooxidations by quenching reactive oxygen species (ROS). The
diminution of carotenoids in plants might lead to a reduced ability to
protect the plant from light and render it more sensitive to oxidative
stress responses against pollutants (de Oliveira et al., 2025; Shanaida
et al,, 2025). The parallel decrease of the chlorophyll a/b ratio in
polluted areas could be indicative of destruction of the photosystem
IT antenna complexes as well as the photosynthetic reaction centers,
leading to a reduction of the harvesting and processing of energy.
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Our findings agree with previous studies that reported species-
specific responses to pigment reduction under air pollution stress.
The amount, nature, and type of damage that may occur are
dependent on the texture and composition of the leaf, the
density and size of the stomata, the thickness of the leaves, and
the inherent ability of the leaf to produce antioxidants (Mishra
etal, 2025). Plants with macrophyllous leaves (and glassy cuticles)
with a large content of cuticle waxes may also be more resistant
than mesophyllous and puberulent leaves. Due to the high
high-traffic
photosynthetic pigments were good and sensitive indicators of

reduction in pigment contents in all sites,
atmospheric pollution stress. Therefore, estimation of chlorophyll
and carotenoids can be used as a non-invasive indicative method
for environmental surveillance and pollution-tolerant species
selection for urban afforestation.

Overall, this study highlights the degradation of photosynthetic
pigments due to the long-term impact of urban air pollutants with
implications for tree health, ecosystem services, and urban greening
measures. Future research should concentrate on long-term
physiological acclimation, recovery potentials, and interspecies
differences to inform the selection of tolerant vegetation for
urban greening schemes. Visible leaf curling, tip-burning, and
discolorations are symptoms of toxic damage seen on foliage of
plants and trees at the morphological level when air pollutants are
present (Mehmood, 2024). PM also adheres to the plant leaves, and
it is a physical barrier for gas exchange and decreases

photosynthesis.

4.1 Limitation

The present study, while providing an understanding of the
impact of elevated road traffic pollution on roadside vegetation in
Dehradun, has some methodological constraints. First, the data
collection was confined to a specific time frame, which may not
the
concentrations and plant responses. Because vehicular emissions

effectively represent seasonal variability in pollutant
and meteorological conditions fluctuate significantly across seasons,
the results might not capture the complete temporal dynamics of air
plant interactions. Furthermore, the study was geographically
limited thereby the

generalizability of the findings to other locations with different

to one urban highway, limiting
land-use patterns, traffic densities, and vegetation structures. The
selection of only five plant varieties, though relevant, does not
encompass the diversity of urban flora that could exhibit varying
levels of sensitivity or tolerance to traffic-induced air pollution.
Another limitation lies in the scope of environmental and
biological parameters measured. While the study focused on key
pollutants (PM;o, SOy, and NO,) and important biochemical
markers (chlorophyll, ascorbic acid, leaf pH, and APTI), other
significant traffic-related pollutants such as ozone, carbon
monoxide, volatile organic compounds, and black carbon were
not considered. Similarly, plant responses were evaluated
primarily at the biochemical level, without incorporating other
physiological, anatomical, or molecular indicators that could
provide a more comprehensive understanding of stress
mechanisms. The study also did not account for modifying

factors such as roadside dust deposition, soil conditions, or water
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availability, which may influence plant health and pollutant uptake.
Lastly, a detailed characterization of traffic composition, fuel type,
and emission load was not undertaken, which could have
strengthened the linkage between source emissions and observed
plant responses.

5 Conclusion

This study provides the first comparative analysis of the impacts
of motorway flyovers and at-grade roads on air quality and roadside
vegetation in Dehradun, India. The findings reveal that elevated
roads, especially flyovers, intensify air pollution levels, particularly
PM;, and NO,, and exert greater physiological stress on nearby
vegetation. Site 2 (on-flyover) was identified as the most pollution-
stressed area, with all studied plant species exhibiting significant
reductions in chlorophyll, ascorbic acid, leaf pH, and APTT values.
In contrast, Site 3 (post-flyover zone) showed notable recovery in
both air quality and plant health indicators, suggesting a relatively
cleaner microenvironment.

Urban vegetation plays a critical role in mitigating vehicular
emissions by influencing air turbulence, altering dispersion patterns,
and increasing dry deposition of pollutants. Among the species
studied, Mangifera indica demonstrated the highest tolerance to air
pollution (APTI 8.09), while bougainvillea varieties, particularly
gold, exhibited moderate resilience and species-specific sensitivity.
These results indicate that Mangifera indica and bougainvillea
“Gold” are effective bio-monitors and can serve as suitable green
buffers in urban areas facing high pollution loads. Overall, the study
underscores the importance of integrating pollution-tolerant plant
species in urban planning and highlights the potential of vegetation-
based biomonitoring for sustainable air quality management in
rapidly urbanizing cities like Dehradun. Future work should not
be limited to diagnostic studies but should also explore practical
interventions, such as the selection and promotion of high-APTI
species for roadside plantations, optimization of green buffer
of their
microclimate regulation and carbon sequestration. By bridging

designs, and evaluation co-benefits for urban
scientific assessments with applied solutions, future studies can
significantly contribute to urban sustainability planning and
strengthen the role of vegetation as a natural shield against rising

vehicular pollution.
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