a' frontiers ‘ Frontiers in Environmental Science

’ @ Check for updates

OPEN ACCESS

EDITED BY
Erhan Sener,
Suleyman Demirel University, Turkiye

REVIEWED BY
Mehmet Dikici,

Alanya Alaaddin Keykubat University, Turkiye
Vuwani Makuya,

Agricultural Research Council of South Africa
(ARC-SA), South Africa

*CORRESPONDENCE
Xi Chen,
chenxi@ms.xjb.ac.cn

RECEIVED 23 June 2025
ACCEPTED 31 July 2025
PUBLISHED 22 September 2025

CITATION

Umugwaneza A, Chen X, Liu T, Gasirabo A,
Umuhoza J, Dufatanye Umwali E, Nyesheja EM,
Uwamahoro S and Maniraho AP (2025)
Integrated drought index for enhanced multi-
factor assessment of cropland vulnerability in
East Africa.

Front. Environ. Sci. 13:1652046.

doi: 10.3389/fenvs.2025.1652046

COPYRIGHT

© 2025 Umugwaneza, Chen, Liu, Gasirabo,
Umuhoza, Dufatanye Umwali, Nyesheja,
Uwamahoro and Maniraho. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Environmental Science

TvpPE Original Research
PUBLISHED 22 September 2025
Dol 10.3389/fenvs.2025.1652046

Integrated drought index for
enhanced multi-factor
assessment of cropland
vulnerability in East Africa

Adeline Umugwaneza®?**, Xi Chen>2>%7* Tie Liu®#>%7,
Aboubakar Gasirabo®*#, Jeanine Umuhoza®?*4,

Edovia Dufatanye Umwali*?**, Enan Muhire Nyesheja**,
Solange Uwamahoro? and Albert Poponi Maniraho®?3#

IState Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese
Academy of Sciences, Urumaqi, China, *University of Chinese Academy of Sciences, Beijing, China,
SUniversity of Lay Adventists of Kigali (UNILAK), Kigali, Rwanda, “Joint Research Center for Natural
Resources and Environment in East Africa, Kigali, Rwanda, *Key Laboratory of Ecological Safety and
Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy
of Sciences, Urumgi, China, ®Zhejiang University of Technology, Hangzhou, Zhejiang, China, “Research
Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Beijing, China

East Africa (EA) is becoming more vulnerable to drought, a crisis amplified by
climate change, which affects regional livelihoods and food security dependent
on rain-fed agriculture. Drought dynamics are not completely understood by
current drought assessment methods, as they often neglect to integrate
meteorological, agricultural, and hydrological factors. This study addressed
this gap by developing the Integrated Drought Index (IDI) using an entropy
weighting method. The IDI combines five individual indices and incorporates
standardized yield residuals series (SYRS) to capture the multifaceted drought-
related impacts on cropland in East Africa from 2001 to 2020. The outcomes
revealed overall interannual variations in drought conditions in the study area,
with 2005 being particularly severe, affecting 87.3% of the total area. 16.8% and
29.2% experienced extreme and severe drought, respectively. Furthermore,
comparisons with standardized drought indices and EM-DAT drought ratios
validated the performance of the IDI, demonstrating its high effectiveness in
capturing various aspects of drought compared to single-factor indices. SYRS
analysis for wheat, dry beans, and maize showed significant yield losses in years of
severe drought. With notable yield losses in 2005 and 2008, when drought
conditions affected about 87% and 60% of the total area, respectively, maize
indicated the highest susceptibility to water stress. These findings highlight the
urgent need for adaptive strategies, including drought-tolerant crop varieties,
improved water management, and enhanced early warning systems. These are
essential to strengthen the resilience of EA to drought, ensuring food security and
sustainable livelihoods amidst an increasingly variable climate.
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1 Introduction

Drought is an increasingly concerning environmental challenge
with widespread consequences, both globally and regionally. In
recent decades, drought events have become more severe and
repeated globally, having a significant impact on agriculture,
water supplies, ecosystems, and communities (Carrao et al., 2016;
UNISDR, 2018). This is closely linked to the changing climate
patterns and anthropogenic factors, such as deforestation and
water overuse, which influence climate drought through altered
precipitation patterns, low water content in the soil, triggering an
agricultural drought, and hydrological drought through decreased
water availability in rivers and reservoirs. These extended periods of
below-average precipitation and high temperatures disrupt
hydrological cycles, lead to water scarcity, and threaten food
production, particularly in regions heavily reliant on rain-fed
agriculture (West et al., 2019; Kew et al.,, 2021).

The diverse climate of Africa and its dependence on agriculture
fed by rain as a means of economic growth makes the continent
vulnerable to droughts. The consequences of persistent droughts
have severely affected the lives of many people across the continent
(Atwoli et al., 2022; Khan and Gomes, 2022). In East Africa (EA),
drought poses an enduring challenge and threatens the
accomplishment of the sustainable development goals—SDGs,
notably SDG-15, SDG-2, and SDG-1—life on land, zero hunger,
and no poverty, respectively. The recurring droughts lead to
diminished agricultural productivity, water shortages, livestock
losses, and food deficits, exacerbating poverty and threatening the
livelihoods of numerous small-scale farmers who depend on rain-
fed farming (Haile et al., 2019; Ayugi et al., 2022). Amidst these
challenges faced by the region, there is a gap in a holistic and unified
strategy for dealing with and adjusting to drought. This kind of
approach is crucial to guarantee food security and enhance the
capacity to withstand adversity in the EA region.

Drought evaluation has been categorized into meteorological,
hydrological, and agricultural domains in earlier studies. While
assessing several drought-related factors, these categories offer an
extensive understanding of its implications (Hayes et al., 2011; Saha
et al., 2023). Several drought indices, including the reconnaissance
drought index—RD], standardized precipitation evapotranspiration
index—SPEI, and standardized precipitation index—SPI have been
used to characterize drought events and their severity (McKee et al.,
1993; Vicente-Serrano et al., 2010). While these indices have been
invaluable tools for assessing drought, they are not without their
shortcomings. These meteorological indices primarily consider
meteorological aspects, failing to capture the full hydrological
and agricultural dimensions of drought. Indices of hydrological
drought, such as the streamflow drought index—SDI, surface
supply  index—SWSI,
index—SRI, evaluate water availability (Shafer and Dezman,
1982; Shukla and Wood, 2008; Nalbantis and Tsakiris, 2009).
Indices of agricultural drought, like the soil moisture deficit

water standardized  runoff-discharge

index—SMDI, vegetation health index—VHI, or crop moisture
index—CMI, measure the impact of drought on crops (Palmer,
1968; Kogan, 1995; Narasimhan and Srinivasan, 2005). However,
these approaches neglect the interconnectedness of meteorological,
hydrological, and agricultural conditions that collectively affect crop
production and food security.
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While these individual dimensions offer important insights into
specific aspects of drought, they often fall short of providing a
comprehensive understanding of the overall drought scenario
(Dikici, 2020). Several studies have highlighted the significance of
such integrated approaches in drought assessment (Sepulcre-Canto
et al,, 2012; Balint et al,, 2013; Vyas et al., 2015). Studies like Balint
et al. (2013) and Shilenje et al. (2019) have proposed a combined
index of drought in the region but failed to consider hydrological
drought indices. Other previous studies have also shown similar
gaps. For instance, Gidey et al. (2018) focused on meteorological and
agricultural droughts in Ethiopia but did not include hydrological
aspects. Likewise, Masih et al. (2014) examined drought patterns in
sub-Saharan Africa but primarily emphasized meteorological
drought without integrating agricultural and hydrological
dimensions. Globally, studies like Hao and Singh (2015) and
Begueria et al. (2010) have developed multi-scalar drought
indices but often overlooked the comprehensive integration of all
three types of drought. These gaps in existing research highlight the
need for a more inclusive approach to drought assessment.

Drought management for extensive areas requires an integrated
index that can reflect all possible driving factors. In EA, assessing the
impact of drought on cropland using a specific index that integrates,
hydrological, meteorological and agricultural drought remains largely
unexplored. The absence of such an index limits the comprehension of
the full extent and impact of drought events, especially in regions like
EA where these factors are interconnected. This study bridges existing
gaps by proposing an Integrated Drought Index (IDI) that combines
three drought categories to provide a comprehensive assessment,
improving evaluation and monitoring. Specifically, the study built an
IDI and assessed its impact on crop yield in the region, offering
actionable insights to strengthen drought resilience and food security
in EA. Hence, an IDI approach serves as a reliable tool for early warning
systems and resource allocation.

2 Materials and methods
2.1 Description of the study area

In this study, East Africa (EA) comprising 14 countries
including Zimbabwe, Zambia, Uganda, Sudan South, Tanzania,
Somalia, Rwanda, Mozambique, Malawi, Eritrea, Kenya, Ethiopia,
Djibouti and Burundi, is situated between latitudes 10°N and 20°S
and longitudes 20°E and 50°E, covering an area of 7,374,936 km’
(Figure 1). A diverse range of elevations, characterizes the region
with the highest point being Mount Kilimanjaro in Tanzania,
reaching approximately 5,885 m above sea level. Conversely, it
features some of the lowest elevations on the continent, such as
the Danakil Depression in Ethiopia, an arid desert basin
approximately 125 m below sea level, known for its extreme heat
and harsh environmental conditions (Camberlin, 2018).

Situated along the equator, EA exhibits a varied climate with
average annual temperatures typically around 15 °C, descending
below freezing at higher altitudes. Lowland areas are characterized
by significantly higher temperatures, with average annual temperatures
often exceeding 30 “C and peak temperatures surpassing 40 “C. Rainfall
distribution is also variable, with regions like the Lake Victoria basin,
mountainous areas, and coastal islands receiving over 1,498.6 mm of
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FIGURE 1
Location of East Africa region.

annual rainfall, while other parts of the region typically receive an
average of 762 mm. Generally, EA has two major rainy seasons: October
to December—OND and March to May—MAM (Nicholson, 2017;
Ongoma and Chen, 2017). The OND season results from the tropical
rain belt moving south and is affected by atmospheric events like ENSO
(Ogwang et al., 2016; Roy and Troccoli, 2024). The MAM season, which
contributes significantly to the season of agriculture in EA, concurs with
the shift of the tropical rain belt towards the Northern Hemisphere
(Adhikari et al., 2015; Rigden et al., 2020).

In EA, smallholders provide up to 90% of the production in
agriculture, making agriculture an important sector to national
economies (Salami et al, 2010; Wiggins and Keats, 2013).
Cropland covers about 21.7% of the total area. This study
considered three major crops in the region: maize (corn), dry
beans, and wheat. Agricultural practices and land management
influence soil moisture, with irrigated areas generally maintaining
higher levels. Overall, EA’s soil moisture is highly influenced by
seasonal rainfall, topographical variations, and land use practices.
Hydrological conditions in EA are marked by vulnerability to both
seasonal variability and long-term changes, affecting water
Artificial
drainage systems, including canals and ditches, are used to

availability and exacerbating drought conditions.

manage water runoff, but their effectiveness varies (UNEP, 2006).

2.2 Datasets

The study utilized a comprehensive array of remote sensing and
climate datasets to investigate various environmental parameters
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over a two-decade period from 2001 to 2020 (Table 1). The primary
data NASA’s
spectroradiometer—MODIS  products, which provide critical

sources are moderate resolution imaging
vegetation indices, near-infrared (Umugwaneza et al, 2022) and
mid-infrared (MIR) data at 1 km monthly resolution (MOD13A3),
evapotranspiration estimates (AET) at 0.5 km 8-day intervals
(MOD16A2), and land surface temperature at 1 km 8-day
intervals (MODI11A2). Precipitation data is sourced from the
climate hazards group infrared precipitation with station
data—CHIRPS at 0.05° monthly resolution (https://www.chc.ucsb.
edu/data/chirps). Using gridded data, the standardized precipitation
evapotranspiration index—SPEI offers drought assessment at 0.5
monthly resolution (https://spei.csic.es/database.html).
TerraClimate  contributes the palmer drought severity
index—PDSI and runoff data at 0.04" monthly resolution (https://
climate.northwestknowledge.net/TERRACLIMATE/). Soil moisture
data were obtained from the ESA CCI (European Space Agency’s
Climate Change Initiative) at 0.25° monthly resolution. The spatial
resolution was set at 1 x 1 km, owing the varying spatial resolutions
of the gathered data. Lastly, the Food and Agriculture Organization’s
Statistical Database—FAOSTAT provide annual crop yield and

harvest area data (https://www.fao.org/faostat/en/#data/QCL).

2.3 Methods

2.3.1 Outline of the steps of the research
This study developed an Integrated Drought Index (IDI) to
assess drought impacts on crop yields in East Africa through four
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TABLE 1 Datasets.

Variable/Parameter Resolution Spatial and temporal frequency Data period
MOD13A3 ® Vegetation Indices 1 km monthly 2001-2020
® MIR and NIR
MOD16A2 Evapotranspiration 0.5 km 8 days
MOD11A2 Land Surface Temperature 1 km 8 days
CHIRPS Precipitation 0.05" monthly 2001-2020
SPEI Standardized Precipitation Evapotranspiration Index 0.5° monthly 2001-2020
TerraClimate ® PDSI 0.04° monthly 2001-2020
® Runoff
ESA CCI Soil Moisture 0.25° monthly 2001-2020
FAOSTAT Yearly crop yield and harvest areas annual 2001-2020
TABLE 2 Range of the single drought indices (Alley, 1985; Kogan, 1995; Zhang and Jia, 2013).
Level of severity PCI, VCI, TCI, SMCI values PDSI values

Extreme drought <0.1 < -4.0
Severe drought 0.1-0.2 —4.0 to -3.0
Moderate drought 0.2-0.3 -3.0 to 2.0
Light drought 0.3-0.4 -2.0 to -1.0

No drought >0.4 > -1.0

key stages. First, multiple drought indices (meteorological, agricultural,
and hydrological) were analyzed and classified into drought severity
(Tables 2, 3), then integrated into the IDI using entropy weighting, with
spatial processing and analysis conducted in ArcGIS Pro. Five indices
contributed to IDI formulation, while four standardized indices and
historical EM-DAT records validated the results. Second, IDI dynamics
were evaluated over 20 years using linear regression slope analysis.
Third, crop yield data were standardized (SYRS) to isolate climate-
driven variability. Finally, Pearson correlation analysis quantified
relationships between yield anomalies and drought severity.

2.3.2 Meteorological drought
a) PCI—Precipitation Condition index

According to Du et al. (2013), PCI offers details regarding the
meteorological drought. Therefore, PCI was calculated to account
precipitation deficiency using CHIRPS precipitation data (Equation 1).

PR - PR,,,

PCl= —— 1
PRmx_PRmn ()

Where PR (precipitation), PRmn, and PRmx stand for
minimum and maximum values of precipitation, respectively.

b) SPEI—Standardized Precipitation Evapotranspiration Index
By quantifying temperature, potential evapotranspiration, and
precipitation, the SPEI index is used to indicate the level of the

drought. SPEI has been widely employed for investigating vegetation
reactions to drought, offering credible information for drought
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study (Byakatonda et al, 2018). Global drought monitoring can
benefit from the long-term, reliable data provided by SPEI base
v2.8 of the global SPEI database. The potential evapotranspiration
estimated by FAO-56 Penman-Monteith is more accurate than the
projected results of the Thornthwaite PET estimation (Vicente-
Serrano et al., 2013).

¢) PDSI—Palmer Drought Severity Index

The PDSI is a widely used metric to estimate the duration of
drought condition, reflecting the balance among moisture supply
and demand. To analyze drought conditions, this study utilized the
PDSI values derived from the Terra Climate dataset, which provides
high-resolution, monthly climate data. The Terra Climate dataset
integrates global weather station observations, topographic data, and
satellite-derived  information to  deliver consistent and
comprehensive climate variables (Abatzoglou et al., 2018).

This study employed the SPEI data at different period scales (12-
and 3-month), and PDSI from 2001 to 2020 to evaluate IDI

performance.

2.3.3 Agricultural drought

a. VCI—Vegetation condition index

For monitoring agricultural drought, like assessing changes in
vegetation within time and space as well as the beginning and
severity of drought, the VCI is a reliable index (Kogan, 1995;
2001). Considering the concept that plants receive insufficient
water during droughts, Kogan (1995) developed the VCI, which
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was standardized using the normalized difference vegetation
index—NDVI, the maximum and minimum values Equation 2.
While monthly or seasonal VCI analysis would provide more
granular drought monitoring, all analyses in this study were
conducted on an annual basis to align with the temporal resolution
of available crop yield data. Despite this limitation, the VCI remains
valuable as it effectively distinguishes meteorologically-induced
vegetation stress from other factors, providing crucial insights into
drought impacts on agriculture at the annual scale (Kogan, 1995;
Quiring and Ganesh, 2010; Dikici, 2022).
NDVI - NDVI,,

1= 2
ve NDVI,,. - NDVI,., @

Where NDVI,,,, and NDVI,,,, represent the NDVI, minimum
and maximum values.

b. TCI—Temperature Condition Index

Developed by Kogan (1995), TCI is a critical component while
agricultural drought is being assessed, providing a comprehensive
evaluation of temperature stress on vegetation. The TCI quantifies
the deviation of current temperature conditions from long-term average
temperatures, highlighting periods of extreme temperature that can
adversely affect crop health and yield. The TCI is a standard LST (land
surface temperature) that uses minimum and maximum LST values
Equation 3:

LST o — LST
TCI = - max =27
¢ LST vax — LST i ®

¢. SMCI—Soil Moisture Condition Index

The SMCI is an essential metric used to assess agricultural
drought by quantifying soil moisture levels. This methodology
outlines the processes and techniques used to calculate the SMCI,
providing an inclusive understanding of soil moisture changes
and their impacts for crop health. By standardizing these
the SMCI offers a reliable and consistent
indicator of soil moisture conditions, enabling accurate

measurements,

monitoring and early warning of agricultural droughts. This
calculation (Equation 4) follows the method used by Kogan
et al. (2003).
SM -SM
SMCI = —— " 4)
Sme - San
Where SM, SM,,,, and SM,,x represent soil moisture, minimum
and maximum values, respectively.

2.3.4 Hydrological drought
a) SRI—Standardized Runoff Index

Shukla and Wood (2008) developed the SRI to evaluate
hydrological drought taking into account stream flow data. It
implicates adapting an appropriate distribution to stream data of
a specific location. The obtained standardized Gaussian distribution
with mean zero and unit variance is then converted to obtain the SRI
by estimating the PDF (probability density function) and GDF
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(gamma distribution function). In this study, the GDF is
deployed to analysis SRI, the GDF is defined as follow:

1

Frw e ®

g(x)=

Where T is an ordinary GDF, a and p are the shape and scale
factors respectively. The cdf (cumulative distribution function) of
GDF can be evaluated by:

G = [ gt ©

Where f(x) is the fitted distribution’s probability density
function, and is the observed runoff data.

SRI = &' (F(x)) (7)

Where ®7! is the standard normal cumulative distribution
function’s inverse and F (x) is the GDF value from the previous step.

b) WBDI—Water Budget-Based Drought Index

Sur et al. (2020) recommended the WBDI, which was developed
by employing the water balance perspective and input parameters
including evapotranspiration and precipitation. The primary driver
for the water balance evaporation is temperature changes, which
influence the condition of water (Oki and Kanae, 2006; Kim et al.,
2021). To validate the IDI in this study, the WBDI was therefore used as
a reference index. According to the water budget equation below, the
WBDI is expressed as the variation between evaporation and
precipitation as surface runoff and sub-surface runoff (Equation 8):

PR-AE=dS+R (8)

Where R is the potential runoff (mm), dS is soil moisture change
(mm), AE is actual evaporation (mm), PR is the precipitation (mm)
and z denotes the standardization. As runoff potential in the region,
this result is expressed with the following index (Equation 9):

WBDI = z(PR - AE) 9)

By defining a hydrological drought through projected runoft, the
WBDI, derived using the water balance method, employs a short-
term predictive approach, compared to monitoring the drought
conditions and current precipitation through evaporation.

¢) NDWI—Normalized Difference Water Index

The NDWTI is a remote sensing index commonly used to assess
water content in vegetation and soil. While NDWI is not typically
used directly for drought evaluation, integrating NDWI into
drought evaluation can be a valuable component of a broader
analysis and improve the understanding of drought dynamics
(Jiang et al, 2013). Therefore, for IDI validation purpose, the
NDWI was used as a reference index. The green and near-
infrared bands are subtracted, and the resulting value is divided
by the sum of the two bands to determine the NDWI (Ji et al., 2009).
The NDWT estimation approach is expressed in Equation 10.

NDWI = Green — NIR

= - 1
Green+ NIR (10)
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TABLE 3 Drought condition categories based on SPEI,

10.3389/fenvs.2025.1652046

SRI and WBDI (Shukla and Wood, 2008; Sur et al., 2020).

Drought condition SPEI, SRI, WBDI value NDWI values
Extreme drought < -20 < -0.6
Severe drought -2to -15 -0.6 to —0.4
Moderate drought -1.5to -1.0 —-0.4 to —0.2
Light drought -1.0 to -0.5 -0.2t0 0
Near normal -0.5 to 0.5 0to 0.2
Wet condition >0.5 >0.2

2.3.5 SYRS—Standardized yield residual series

For the study area, the agricultural data for the period
2001-2020 consist of two categories of information: production (hg/
ha) and area. The effectiveness of combined indices is often assessed
considering crop yield. Using agricultural data on dry beans, wheat, and
maize in the EA, this study assessed the relationship between IDI and
crop yield. The agriculture sector has experienced an increase in crop
production due to technological improvements such as cropping,
management strategies, irrigation infrastructure, mechanization, high
crop vyield varieties, and cropping. Standardized yield residual series
(SYRS) is a powerful tool for isolating the effects of drought on crop
yields by removing long-term trends associated with agricultural
improvements. Therefore, data of crop yields cannot be therefore
used to determine a direct relationship between drought and yield.
Consequently, yield data were de-trended using the linear regression
approach in order to eliminate the linear/technological trend prior to
the drought analysis (Potopova et al., 2016; Hussain et al., 2018). This
approach is especially valuable in data-scarce environments, where
traditional yield assessments may fail to capture the true extent of
drought-induced losses. Overall, SYRS enhance the accuracy of drought
impact assessments, supporting evidence-based interventions to
strengthen agricultural resilience in drought-prone regions. The
SYRS was computed using the formula below (Equation 11):

Syrs = i"H# 11)
o
Where cy; is the residual of the de-trended crop yield, o
corresponds to the standard deviation, and p indicates the
average of residuals of the yield after de-trending. The yield
categories based on the SYRS values are given in (Table 4).

2.3.6 Developing the integrated drought index (IDI)

This study combined the five drought indices from 2001 to 2020.
These indices represent the agricultural drought (TCI, SMCI, and VCI),
the meteorological drought (PCI), and the hydrological drought (SRI).
Entropy weight method was employed as a method to develop the
integrated drought index. To ensure consistency within the drought
category, all drought index values were normalized to a scale of 0-1. In
information theory, entropy is commonly employed to quantify the
disorganized degree of information (Topcu, 2022). The entropy weight
is employed to account for variations in the index across several
schemes. The variation between the indices in different scenarios is
greater and the information presented for the ultimate decision is more
valuable when the entropy weight is higher. Conversely, there is less of a
variance in the index within schemes. To provide accurate relative
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TABLE 4 The categories for crop yield based on the SYRS value.

Yield category SYRS values

High yield increment >1.5
Moderate yield increment 1.5-1.0
Low yield increment 1.0-0.5
Normal 0.5--0.5
Low yield loss -0.5--1.0
Moderate yield loss -1.0--1.5
High yield loss <-15

weights based on the variability of each individual, the entropy weight
was established (Waseem et al, 2015). Entropy is a method for
weighting indices. After standardizing the matrix generated from the
indices, each index’s entropy is determined using the equation below
Equation 12.

Y fijxInfi

H.=-
n,

j (12)

Wherein:
Tij

Zeri-j

Where, 7; ; is the index matrix value. Lastly, the equation below

fij=- (13)

(Equations 13, 14) is used to determine each indicator’s weight.

1-H;
j
W) = — (14)
! on-YLH;

The determined value "w’ is a degree of the useful data of each
indicator; the higher the value, the more valuable the information
acquired from that index. The IDI was proposed using the entropy
weighting method, and its equation is as follows (Equation 15):

IDI = Wpc] *PCI + WSMCI *SMCI + WTCI * TCI + WVCI X-VCI
+ WSRI * SRI
(15)
Where Wpgr, Wyrr, Wivswr, and Wyppy are the weights
assigned for SPEI, VHI, NVSWI, and WBDI, respectively. IDI
drought severity was classified as follow: Extreme drought (0-0.2),

Severe drought (0.2-0.3), Moderate drought (0.3-0.4), Light drought
(0.4-0.5) and no drought (>0.5).
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2.3.7 Linear regression analysis

In this study, IDI dynamics were examined using the slope
analysis approach (Jiang et al., 2017). If the slope is greater than
zero, the trend that is changing increases; if the slope is less than zero,
the trend decreases; and a slope of zero indicates no change trend. The
following Equation 16 was employed.

”Z?:lXjYJ' - z:‘;lXjZ:‘l:le

Slope =
Y X? = (z?:lx)z

(16)

Where X; and Y; are the sets of data values, n is the total
number of years covered.

2.3.8 Evaluate the impact of drought on crop yield

The impact of drought on crop yields was assessed by evaluating
the correlation between IDI and SYRS. A quantitative technique that
indicates the degree of relationship among variables is known as a
correlation analysis (Mitchell and Miller, 2008). The Pearson
correlation coefficient is often employed in geographic studies to
assess the accuracy and correlations between different indices. The
Pearson’s correlation was computed using the RStudio software to
investigate the IDI association with other indices for validation as
well to assess the impact of drought to crop yield. The formula is as
follows Equation 17:

- i (Xi = My) (Y; - My)
’ \/thl (Xi - MX)ZZ?:l (Y - MY)Z

r (17)

Where n is the total number of sample sequences. X; and Y;
represent the individual data points, Mx and My are the average
values of X and Y respectively. The closer [r| is to 1, the stronger the
correlation (Sriram, 2006).

2.3.9 Validation of the integrated drought
index (IDI)

Since there are no accurate ground-truth observations of the
severity and extent of droughts, validating drought indices is a
constant challenge. In this study, standardized drought indices for
different drought types were validated against the IDI using Pearson
correlation analysis (described in Section 2.3.6), which quantified their
statistical relationships across the study region. Moreover, the EM-DAT
drought periods (Table 5) were taken as a reference as well as previous
scientific reports on drought assessment in the region. The EM-DAT
(https://public.emdat.be/data) database is gathered from several sources,
including press agencies, insurance companies, on-governmental
organizations, UN agencies, and research institutes (Bayissa, 2018).

3 Results

3.1 Spatial patterns of drought severity
across East Africa (2001-2020)

The analysis of the integrated drought index (IDI) from 2001 to
2020 in East Africa (EA) provides a detailed understanding of drought
conditions over this period (Figure 2), with pronounced variability
across the region. To quantify the spatial extent of drought, the
percentage of affected area was calculated by dividing the number of
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pixels classified under drought intensity level by the total valid pixels in
the study area and multiplying by 100. With 87.3% of the study area-
experiencing drought condition, 2005 stands out as an exceptionally
severe year. The distribution of drought intensity was as follows: 16.8%
of the region experienced extreme drought, 29.2% severe drought,
25.5% moderate drought, and 15.7% light drought. Only 12.7% of
the area was classified as having no drought, highlighting the
widespread impact of drought conditions during this year.

Other notable drought years include 2009, 2016 and 2017 were
observed to experience drought condition compared to the other
study periods. In contrast, 2020 exhibited less overall drought,
except for the southern region, where Mozambique experienced
extreme to moderate drought conditions. The 2019, IDI results show
a mixed scenario, with the central region of EA experiencing
moderate drought while the southwestern region faced extreme
drought conditions. This spatial differentiation underscores the
heterogeneous nature of drought impacts within the region. In
2014 was another critical year, particularly for Kenya, which
suffered from extreme drought conditions. Neighboring countries
during the same year experienced severe to moderate drought.
Conversely, 2007 was a relatively favorable year, with about
66.6% of the total area not experiencing drought conditions. This
implies that nearly half of the area had adequate moisture levels,
contrasting sharply with the more severe drought years.

3.2 Evaluating IDI performance

To evaluate how the IDI performs in monitoring drought events
in the study area, standardized drought indices were compared to
the IDI, namely, the SPEL PDSI, and WBDI indices, using Pearson
correlation. By using a combination of SPEI, PDSI, and WBDI, the
evaluation covers different dimensions of drought (meteorological,
agricultural, and hydrological). This multi-dimensional approach
ensures that the IDI is robust and effective across various drought
impacts and conditions. The highest correlation was observed
between IDI and NDWT as well as IDI and PDSI, covering the
major area (Figure 3). The correlation values between IDI and the
above-mentioned indices intense between 0.6 and 1. A high
correlation between the IDI and NDWTI suggests that the IDI
effectively captures the influence of drought on surface water
bodies. Since NDWI is directly related to water content in
vegetation and soil, a strong correlation would validate that the
IDI accurately reflects water stress conditions (Amalo et al., 2018;
Shashikant et al,, 2021). Moreover, the SPEI was used at three
different time scale, namely, 12- and 3-month. A high correlation
was observed between IDI and SPEI-3 (Figure 3a). The northeastern
part of South Sudan, Tanzania and the southwestern part of the
study area, the correlation value ranged between 0.3 and 1.
Furthermore, the variety of areas exhibiting strong consistency
and significant correlation declined with increasing time scale.
The coefficients of correlation between IDI and 12-month index
predominantly fell within the range of 0-0.3. The strong positive
correlation between IDI and WBDI was noticed in the north part of
the study area, some parts in Somalia, Kenya, and in the southern
part of Mozambique. The correlation between WBDI and IDI allows
for an assessment of the IDI’s performance, which incorporates
numerous parts of the hydrological cycle, ensuring a comprehensive
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TABLE 5 Drought events recorded in the emergency events database (2001-2020).

Country Start year End year Country Start year End year
Burundi 2003 2004 Djibouti 2001 2001
2005 2006 2005 2006
2008 2009 2007 2007
2009 2010 2008 2009
2011 2011 2010 2011
Eritrea 2008 2008 Rwanda 2003 2007
Uganda 2002 2002 Tanzania 2003 2004
2005 2006 2004 2004
2008 2009 2006 2006
2011 2011 2011 2012
Kenya 2004 2004 Mozambique 2001 2001
2005 2006 2002 2002
2008 2009 2003 2003
2011 2011 2005 2006
2011 2012 2007 2007
2014 2015 2008 2009
2016 2018 2010 2010
2019 2019 2016 2017
2020 2022 2020 2020
South Sudan 2009 2010 Zambia 2005 2005
2016 2016 2019 2020
Malawi 2002 2002 Zimbabwe 2001 2003
2005 2006 2007 2009
2007 2007 2010 2013
2012 2013 2013 2017
2015 2017 2017 2020
Ethiopia 2003 2004 Somalia 2004 2004
2005 2006 2005 2005
2008 2009 2008 2009
2009 2010 2010 2011
2011 2012 2012 2012
2012 2012 2014 2017
2015 2017 2015 2017
2019 2019

methodology for drought monitoring (Sur et al, 2020; Kim
et al.,, 2021).

Furthermore, the EM-DAT drought events are used as a
reference for evaluating the IDI, considering their reporting
of prolonged drought events. According to the EM-DAT
report (Table 5), 10 out of 14 countries in the study area
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were impacted by drought events in 2005, validating the
performance of the IDI (Figure 2). EM-DAT reported the
drought conditions in countries like Kenya and Mozambique
for 13 and 12 years, respectively, during the study period, which
confirms the accuracy

assessments purpose.

of using IDI for drought
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FIGURE 2
The spatial distribution of the IDI from 2001 to 2020.

3.3 The variability of SYRS

Based on the standardized yield residuals (SYRS), where values >
0.5 indicate yield increments and values < -0.5 signify yield losses,
the study investigated the number of years with low yields
(SYRS < -0.5) for three crop types: maize, dry beans, and wheat.
The findings (Figure 4) indicate that dry beans and wheat
experienced seven low-yielding years during the study period,
while maize had five such years. Notably, 2005 and 2019 were
particularly challenging for dry beans, as they experienced the most
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significant yield losses (SYRS < —1.5) during these years. Conversely,
moderate yield increments for dry beans (1.0 < SYRS <1.5) were
observed in 2015, 2009, 2014, and 2001. For maize, the most
significant yield decreases occurred in 2005 and 2008, correlating
with severe drought conditions. During these years, approximately
87% and 60% of the study area, respectively, were affected by
drought, as indicated in the relevant Figure 2. This suggests a
strong relationship between drought occurrences and maize yield
losses. On the other hand, the year 2001 was notable for the highest
yield increment (SYRS >1.5).
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Wheat, similar to dry beans, faced seven low-yielding years, the
yield data also showed variability influenced by drought conditions.
The uppermost yield losses were observed in 2009 and 2008, with a
notable moderate yield loss in 2011. These years were marked by
adverse conditions that negatively affected wheat production.
Moderate yield increments for wheat were recorded in 2001,
2002, and 2015.

Figure 5 provides an analysis of SYRS for agricultural
production of dry beans, maize, and wheat across EA
between 2001 and 2020.
production, Burundi showed significant variability, with a
notable improvement in 2018 (SYRS 3.46) contrasting
sharply with underperformance in 2011 (-1.34). Ethiopia’s

countries In terms of wheat

performance fluctuated, showing positive residuals in 2015
(2.08) among a mix of positive and negative deviations.
Mozambique experienced a substantial positive anomaly in
2010
subsequent years. Rwanda’s wheat yields fluctuated over time,

(3.52) but generally showed negative residuals in

with recent years indicating improvement. Regarding maize
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production, Burundi showed strong positive residuals recently,
notably in 2018 (1.89). Tanzania had high positive deviations in
the early 2000s (2.86 in 2001, 1.77 in 2002) but more moderate
fluctuations in later years. Rwanda experienced a series of
positive residuals from 2009 to 2013, peaking in 2010 (1.94).
South Sudan had a notable positive spike in 2007-2008 but
generally showed negative residuals in subsequent years.
Ethiopia’s maize yields fluctuated considerably, with strong
positive deviations in 2006 (1.77) and in 2018-2019 (1.68 and
1.44 respectively).

For dry bean production, Djibouti had an extreme positive
residual in 2011 (3.28), indicating a significantly better-than-
expected yield. Ethiopia showed strong positive residuals in
recent years (1.51 in 2018, 1.35 in 2019, and 1.28 in 2020),
suggesting improving yields. Kenya demonstrated high variability,
with a strong positive residual in 2017 (2.36) contrasting sharply
with a severe negative residual in 2020 (—0.61). Rwanda
demonstrated a period of positive residuals from 2008 to
2013 but ended with a significant negative residual in 2020
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FIGURE 4
The SYRS's temporal variability for dry beans, maize, and wheat during the 2001-2020.
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FIGURE 5
Temporal variability of the SYRS for dry beans, maize, and wheat during the 2001-2020 for each country in the study area: (a) Burundi, (b) Djibouti,

(c) Eritrea, (d) Ethiopia, (e) Kenya, (f) Malawi, (g) Mozambique, (h) Rwanda, (i) Somalia, (j) South Sudan, (k) Tanzania, (1) Uganda, (m) Zambia and
(n) Zimbabwe.
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Spatial distribution of annual change trends in drought based on IDI from 2001 to 2020 (a) annual change trends in IDI. Red indicates drought
increase, while blue shows drought decrease; (b) significance (p-value) of the change trends in IDI.

(=2.01). Burundi had a significant drop in yield in 2005 but showed
an increase in 2007. Tanzania started the period with strong positive
residuals but showed more moderate fluctuations in later years.

3.4 Drought dynamics from 2001 to 2020

The analysis of drought dynamics from 2001 to 2020
(Figure 6), based on the linear regression approach, reveals
significant interannual variations using IDI across EA. The
IDI values fluctuated between —-0.03 and 0.029, indicating
variability in drought severity and frequency over the two-
decade period. A notable finding is that drought conditions
intensified in 56.4% of the study area. The regions most
affected by this increase include South Sudan, Ethiopia,
Somalia, Kenya, and Tanzania. This trend underscores a
to in

these countries.

Conversely, 43.6% of the study area saw a decline in drought

growing vulnerability drought
conditions, with the most significant improvements observed in
the southern part of Somalia, central Uganda, Malawi, and
Mozambique. South Sudan and Tanzania, in particular,
in drought

compared to other countries in the study area. This increase

experienced a marked increase conditions
highlights the urgent need for targeted interventions in these
regions to address the escalating drought risk. Generally, the
drought dynamics from 2001 to 2020 demonstrate a complex and
uneven pattern of drought impacts across EA. While some
regions have seen improvements, others continue to face

significant challenges.
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3.5 Drought impact on crop production

When evaluating the IDI, the crop yield is employed as an
independent variable. In this study, correlation coefficient analysis
was used to investigate the effect of drought on crop production.
Based on the selected crop types, it was clear that the drought had a
direct impact on the crop yield in the study area. During the study
period, the association between SYRS of maize and IDI was stronger
than for dry beans and wheat, indicating that drought has a greater
impact on maize yield (Figure 7b). The correlation between wheat
and IDI showed a negative correlation rather than a positive one;
about 54.6% of the total area felt a negative correlation. For this
period of 20 years, it was noticed that wheat was affected by drought
in countries like Kenya, a large part of Zambia, Malawi, the southern
part of Mozambique, and Tanzania. Drought has mostly affected
maize and dry bean yields in Eritrea, Ethiopia, Kenya, Tanzania,
Rwanda, Malawi, Zambia, and Zimbabwe compared to other
countries. This implies that variations in agricultural productivity
in the study area might be reflected in variations in the IDI.

4 Discussion

The spatial distribution analysis of the IDI for EA from 2001 to
2020 reveals critical insights into drought dynamics in the region.
The use of an entropy weighting method to combine five individual
indices has proven effective in capturing the multifaceted nature of
drought conditions (Wang et al, 2023). This comprehensive
approach ensures that the IDI reflects various dimensions of
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drought, including meteorological, agricultural, and hydrological
aspects, providing a robust tool for monitoring and managing
drought impacts (Mishra and Singh, 2010; Hao and Singh, 2015).
The results indicate that 2005 was a particularly severe drought year,
with 87.3% of the study area experiencing drought conditions. This
outcome is in line with earlier studies that have highlighted 2005 as
one of the driest years in recent history for EA, severely affecting
agriculture and water resources (Williams and Funk, 2011;
Nicholson, 2014; Shukla et al, 2014). The years 2009 and
2016 exhibited widespread drought conditions, though with
distinct spatial patterns—2009 primarily affected the northeastern
regions (e.g., Somalia, Ethiopia) (Funk et al, 2015), while in
2016 drought conditions were concentrated in the central and
southern zones (e.g., Tanzania, Mozambique) (Nicholson, 2017).
Notably, 2017 showed intensified drought in Kenya and South
Sudan, aligning with reported crop failures in these regions
(AghaKouchak 2020). 2007
2020 represented relatively mild drought years, with over 60% of

et al, In contrast, and
the study area experiencing near-normal. The high percentage of
areas affected by extreme and severe drought conditions suggests
significant stress on water resources, agriculture, and livelihoods.
These findings align with previous studies that have reported
recurrent and severe droughts in EA, often made worsened by
climate variability and change (Funk et al., 2008; Dai, 2011; Lyon
and DeWitt, 2012; Omondi et al., 2014).

The validation of IDI against these standardized indices

confirms its utility as a holistic drought-monitoring tool. By
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integrating meteorological, agricultural, and hydrological drought
dimensions, IDI provides a more complete picture of drought
impacts compared to single-component indices. Recent reviews,
such as those by Zougmoré et al. (2021) and Salack et al. (2022), have
urged the usage of integrated indices to strengthen the resilience of
farming systems to drought in EA. In this study, other standardized
drought indices such as the SPEIL, PDSI, and WBDI were used to
validate the performance of IDI. This underlines the robustness and
multidimensional nature of the IDI. The correlation analysis
revealed that IDI has a high correlation with these standardized
indices, particularly with SPEI and PDSI, indicating its effectiveness
in capturing various dimensions of drought conditions. The strong
positive correlation between IDI and SPEI, especially at shorter time
scales, demonstrates the suitability of the IDI to reflect short-term
meteorological drought conditions. This finding aligns with recent
studies that emphasize the significance of considering several
temporal periods to broadly understand drought dynamics. For
instance, Bhukya et al. (2023) emphasized the critical role of short-
term indices in capturing the immediate impacts of meteorological
droughts on agriculture.

The high correlation between IDI and PDSI further validates the
capability of IDI to capture long-term agricultural and hydrological
drought conditions. PDSI is widely used for its sensitivity to soil
moisture conditions, which directly affect agricultural productivity.
The alignment of IDI with PDSI emphasized that IDI effectively
incorporates the influence of drought on soil moisture and,
consequently, on agriculture. Recent studies, such as those by
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Gebrechorkos et al. (2019), have underscored the necessity of indices
like PDSI in understanding long-term drought impacts on
agricultural yields in EA. Moreover, the positive correlation
between IDI and WBDI highlights the potential of IDI to
account for hydrological drought. WBDI, which considers the
balance between water demand and supply, is crucial for
understanding the availability of water resources for various uses.
The strong correlation with WBDI indicates that IDI successfully
aspects of drought,
comprehensive tool for drought monitoring and assessment.
Studies by Lottering et al. (2021) and Ndiritu (2021) have shown
that comprehensive indices that include hydrological components

integrated hydrological making it a

are essential for effective drought management in EA, where water
scarcity is a critical issue.

The analysis of standardized yield residuals (SYRS) provides
critical insights into the influence of drought on crop yields in EA
over the study period. The investigation into low-yielding years for
maize, dry beans, and wheat reveals significant insights into the
susceptibility of these crops to drought conditions. The severe yield
losses for dry beans in 2005 and 2019 align with previous studies that
have identified 2005 as one of the driest years in EA, significantly
affecting agricultural productivity (Nicholson, 2014; Shukla et al.,
2014). The substantial yield losses for maize in 2005 and
2008 with
approximately 87% and 60% of the study area, respectively,

correlate severe drought conditions affecting
underscoring the vulnerability of maize to water stress (Lobell
et al,, 2011; Cairns et al, 2013). These results are in line with
findings by Funk et al. (2008), which highlighted the severe impacts
of drought on maize yields in EA during extreme drought years. The
high correlation between drought occurrences and maize yield losses
underscores the critical relationship between drought and
agricultural productivity in EA. This relationship has been well
reported in previous research, which has emphasized the adverse
effects of drought on crop yields and the need for resilient
agricultural practices (Rockstrom et al., 2010; Lipper et al., 2014).
The findings emphasize the importance of implementing adaptive
management strategies, such as improved drought-tolerant crop
varieties and water management (Funk et al, 2008; Thornton
et al., 2014).

The drought dynamics in EA from 2001 to 2020, using the IDI
and a linear regression approach, reveals significant interannual
variations in drought conditions over the two-decade period. The
finding that drought conditions intensified in 56.4% of the study
area, particularly in regions such as South Sudan, Ethiopia, Somalia,
Kenya, and Tanzania, is consistent with previous studies that have
documented increasing frequency and intensity of drought in EA as
a result of climate change and variability (Williams and Funk, 2011;
Lyon and DeWitt, 2012). These regions have been identified as
highly vulnerable to drought, with significant impacts on
agriculture, water resources, and livelihoods. For instance, Funk
et al. (2008) highlighted the severe effects of drought on southern
and eastern Africa food security, exacerbated by warming sea surface
temperatures in the Indian Ocean.

The outcomes of this study regarding the impact of drought on
crop yields in EA are consistent with earlier research that has
highlighted the susceptibility of agriculture to climate variability
and drought in the region. Studies by Lobell et al. (2011) and Cairns
et al. (2013) have shown that maize, in particular, is highly
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susceptible to drought, with significant yield losses recorded
during drought periods. The higher correlation coefficients
between maize yield and the IDI compared to dry beans and
wheat further support the notion that maize is more affected by
water stress, which coincides with the outcomes of these earlier
studies. Similarly, the negative correlation between wheat yield and
IDI in certain areas, as observed in this study, is consistent with the
complex relationship between wheat production and drought
(Sivakumar et al, 2005; Trnka et al, 2011). The negative
correlation observed in some regions highlights the need for a
nuanced understanding of the effect of drought on diverse crops
and the various factors that contribute to yield variability. The
widespread impact of drought on maize and dry bean yields in
countries such as Eritrea, Ethiopia, Kenya, Tanzania, Rwanda,
Malawi, Zambia, and Zimbabwe, as identified in this study, is in
line with the findings of Funk et al. (2008) and Shiferaw et al. (2014).
These studies have documented the severe effects of drought on food
security and livelihoods in these countries, emphasizing the
importance of adaptive management approaches to mitigate the
effect of drought on crop production.

5 Conclusion

The comprehensive analysis of drought conditions in East Africa
(EA) from 2001 to 2020 using the integrated drought index (IDI) has
provided critical insights into drought dynamics in the region. The
IDI developed using an entropy weighting method captures the
multifaceted nature of drought, incorporating meteorological,
agricultural, and hydrological aspects. The analysis demonstrates
that drought conditions have intensified notably in many parts of
the region, particularly affecting rainfed agricultural systems where
crops like maize show heightened vulnerability to water stress. South
Sudan and Tanzania emerged as particularly vulnerable regions. The
strong correlations of the IDI with established drought indices and
its ability to reflect crop vyield fluctuations demonstrate its
effectiveness as a drought-monitoring tool. The impact on
agriculture was evident, with maize yields showing the highest
sensitivity to drought conditions. Maize, dry beans and wheat
have all experienced substantial yield losses during severe
drought years, with maize showing the highest susceptibility to
water stress. The findings highlight how drought effects cascade
through ecosystems, with vegetation stress and soil moisture deficits
translating directly into measurable crop yield reductions.
Importantly, the research underscores that drought impacts are
not uniform across the region, with some areas experiencing
worsening conditions while others show relative resilience. To
summarize, this study offers an extensive understanding of
drought phenomena in EA, highlighting its increasing severity
and widespread impact on agriculture. The findings highlight the
urgency for adaptive strategies to enhance the region’s resilience to
drought, ensuring food security and sustainable livelihoods despite a
changing climate. Future research should integrate climate change
projections with drought assessments—using downscaled models to
capture regional variability while refining seasonal-scale drought-
crop relationships—and incorporating socio-economic factors to
climate-smart for  this

develop
vulnerable region.

agricultural  strategies
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