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Ecohydrological models are critical for understanding coupled
hydrologic—biogeochemical processes in tile-drained watersheds and for
assessing management options. Despite recent advances in SWAT's
hydrological and biogeochemical processes, there has been limited evaluation
of both the original and new tile drainage and nitrogen (N) modules. We therefore
applied a comparative modeling approach in a typical Midwestern tile-drained
watershed, evaluating eight configurations that vary tile-drainage module
(original/new), tile parameter treatment (calibrated/default) and N module
(original/new) to assess performance for N-loss simulation. Using daily
streamflow and nitrate (NOs") load records from three monitoring sites, we
conducted calibration, validation, sensitivity analysis, and uncertainty
assessment. Each configuration effectively reproduced daily and monthly
dynamics, although high-flow and associated NOsz~ load peaks were
underestimated. We found that the new tile module generally improved
streamflow simulations, particularly under tile parameter calibration
conditions, while the new N module consistently enhanced NOsz~ load
simulations compared to the original module. Despite improvements in
streamflow and NOz~ loads with the new tile and N modules, the additional
processes in the new N module can magnify uncertainty in N-gas-flux estimates
when calibration observations are scarce. We recommend applying the new N
module in conjunction with additional measurements—such as soil moisture and
nitrous oxide (N,O) fluxes—to constrain better N gas flux estimates beyond outlet
NOz~ load data. If such observations are unavailable, careful calibration with
reasonable estimates may still help constrain soil N cycling and improve overall N
budget accuracy.
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1 Introduction

Tile drainage is a prevalent agricultural practice in the Midwest
USA, particularly in regions characterized by flat topography and
clayey soils that impede natural drainage (Skaggs et al, 1994;
Moriasi et al., 2012). This system, which involves the installation
of subsurface drainage pipes, aims to enhance soil aeration and crop
productivity by managing excess water levels (Skaggs et al., 1994;
Schilling and Helmers, 2008). However, while tile drainage
effectively alleviates waterlogging and improves agricultural
yields, it also poses significant environmental challenges (Baker
and Johnson, 1977; Logan et al., 1994). Tile drainage significantly
influences streamflow and nutrient transport by modifying
hydrological pathways and nutrient cycling processes (Li et al,
2010; Crossman et al, 2014). Compared to non-tiled systems,
tile-drained watersheds exhibit distinct distributions of water
balance components, including surface runoff, lateral flow,
shallow groundwater flow, and aquifer recharge (Schilling and
Helmers, 2008; May et al., 2023). Additionally, tile drainage
affects water quality by reducing surface runoff and erosion,
increasing soil aeration—which promotes mineralization but
limits denitrification—and enhancing nitrate (NO;") leaching
into surface waters (Ikenberry et al., 2017; Ford et al.,, 2018).

In the Midwest, where intensive agriculture and heavy fertilizer
use are common, the risk of NO;™ leaching is significantly elevated
(Dinnes et al., 2002). Research indicates that tile drainage systems
accelerate NO;™ transport from agricultural fields to surface waters,
raising water quality and public health concerns (Zucker and Brown,
1998). Beyond nitrogen (N) loss to freshwater systems, tile drainage
also influences N gas fluxes, including ammonia volatilization (NH;)
and fluxes of nitrous oxide (N,0), nitric oxide (NO), and dinitrogen
(N,), contributing to environmental concerns (Gu et al., 2013; Nash
et al,, 2015). The interactions between tile drainage, N cycling, and
hydrological processes are complex and influenced by factors such as
soil moisture, temperature, and fertilizer application timing and
rates (Burton et al.,, 2024). A comprehensive understanding of N loss
dynamics in tile-drained systems is essential for developing effective
management strategies that minimize environmental impacts while
maintaining agricultural productivity (Awale et al, 2015). Key
priorities include investigating the mechanisms driving NO;~
leaching and N gas fluxes, their environmental consequences, and
potential mitigation strategies (Hama-Aziz et al., 2017; Fabrizzi
et al., 2024).

Ecohydrological models play a key role in simulating watershed
hydrology, identifying and quantifying N-loss pathways, and
guiding the development of effective BMPs for tile-drained
systems (Moridi, 2019; Ghimire et al., 2020; Wang et al., 2021b;
Yousefi and Moridi, 2022). By integrating hydrologic, soil, and
they
hydrologic-biogeochemical interactions that govern N transport
(Groffman et al., 2009; Wang et al, 2021a; Chen et al., 2024).
The Soil and Water Assessment Tool (SWAT), a leading watershed-
scale ecohydrological model, is widely used to test management

nutrient-cycling  processes, capture  the  coupled

scenarios under varying conditions and to pinpoint strategies that
reduce N losses. (Arnold et al., 1998). By accurately simulating N
transport and transformation in agricultural systems, SWAT
provides valuable insights into the effects of land management
decisions on water quality and soil health (Nazari Mejdar et al,
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2023). The SWAT model’s representation of tile drainage systems
and nutrient cycling processes has undergone progressive
development over time. Initially, a simple tile drainage module
was introduced (Du et al., 2005; Du et al., 2006), followed by the
development of a more physically-based tile drainage module
(Moriasi et al., 2012; Moriasi et al., 2013b). Both modules have
been successfully applied in field- and watershed-scale studies,
enhancing SWAT’s capability to simulate subsurface drainage
dynamics. For N cycling, SWAT’s original soil N mineralization
algorithm integrates immobilization, making it a net mineralization
model (Seligman and Keulen, 1980). The model also incorporates
ammonia volatilization and nitrification (Reddy et al., 1979) and
accounts for NO;™ loss through denitrification (Neitsch et al., 2011).
Acknowledging the close interconnection between soil carbon (C)
and N cycling, recent advancements in the SWAT model have
enhanced its capability to simulate soil organic C dynamics and
N gas fluxes using the Century/DayCent model algorithms (Zhang
et al,, 2013; Yang et al,, 2017; Liang et al,, 2022; Liang et al., 2023;
Tijjani et al., 2023; Tijjani et al., 2024). These enhancements could
potentially increase SWAT’s effectiveness in evaluating the impacts
of tile drainage on N losses through various pathways, thereby
improving its applicability in managing agricultural watersheds and
conducting water quality studies.

Since model prediction uncertainty largely stems from input
data, model structure, and model parameters (Refsgaard et al., 2006;
Abbaspour K. et al., 2007; Abbaspour K. C. et al., 2007; Abbaspour,
2013), adding more biogeochemical processes can increase
uncertainty. While incorporating extensive field observations is
required to constrain parameters and reduce uncertainty (Herrera
etal,, 2022), large-scale data collection is often lacking. In such cases,
soft/estimated data provide a practical alternative for improving
model calibration (Arnold et al., 2015; Nelson et al., 2018). Despite
advances in simulating tile drainage and N cycling, comparative
evaluations of different SWAT versions remain scarce—particularly
regarding their representation of N cycling within tile-drained
systems. Comparative assessments of model versions and/or
configurations offer several key benefits: 1) Identifying model
different
improving model selection for specific research and management

strengths and weaknesses across configurations,
objectives and/or applications (Kujawa et al., 2020). 2) Improving
our understanding of model uncertainty, especially regarding how
different representations of processes affect the predictions of flow
pathways and N losses (Narsimlu et al, 2015). And 3) Refining
model calibration approaches by determining the types and
resolutions of data needed for accurate parameterization (Perrin
et al,, 2001). To date, no studies have simultaneously evaluated the
new and original SWAT tile drainage and N modules, and
comprehensive comparisons between the updated and original
versions remain largely absent. Therefore, the main objective of
this study, and a novel contribution, is a comparative modeling
evaluation of SWAT’s ability to simulate N losses in a typical
Midwestern tile-drained watershed using eight configurations
spanning tile drainage module (original/new), tile-parameter
treatment (calibrated/default), and N module (original/new).
Overall, we aimed to identify the key module structures and
processes that most significantly contribute to prediction
uncertainty, and to determine the additional observational and/or

soft data needed to improve model calibration and accuracy.
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FIGURE 1
Location of the South Fork of the lowa River Watershed (SFW) and the Kelley experimental site in lowa.
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FIGURE 2
The South Fork of the lowa River Watershed (SFW) maps of (a) DEM, (b) Land use (see Supplementary Table S1 for explanation), (c) Control areas of
monitoring stations (see Supplementary Table S3), and (d) HRUs setup with tile drainage distributed in subbasins.
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2 Materials and methods
2.1 Study area and data collection

The Towa’s South Fork of the Iowa River Watershed (SFW;
Figure 1) encompasses an area of 775 km?, including the tributaries
of South Fork (containing Tipton Creek) and Beaver Creek
(Figure 2¢; Supplementary Table S3). It serves as a representative
example of the Des Moines Lobe, the primary landform region in
north-central Iowa. The terrain is relatively young, having developed
approximately 10,000 years after the last glacial retreat, resulting in
natural stream incision and alluvial valley formation primarily in the
lower sections of the watershed (Figure 2a). The region’s soils are
highly productive, dominated by the Clarion-Nicollet-Webster soil
association, which consists of a sequence of well-drained Typic
Hapludolls, somewhat poorly drained Aquic Hapludolls, and poorly
drained Typic Haplaquolls (Tomer et al, 2008b). The average
annual precipitation in the SFW during the study period
(2001-2018) was 894 mm, with approximately 62% falling during
the growing season. The daily temperature can drop to as low
as —13 °C in January and rise to as high as 29 “C in July (Bailey et al,,
2022). Currently, corn and soybean rotations cover approximately
85% of the land area (Figure 2b), and animal feeding operations,
primarily for swine, are prevalent, particularly in the Tipton Creek
catchment (Tomer et al., 2008a).

Cropping rotations were determined using annual classified
satellite data made available by the USDA National Agricultural
Statistics Service (NASS). Ten years of NASS crop-cover data
(2000-2009) were overlaid to identify dominant crop rotations
occurring on crop lands in the watershed (Supplementary Table
S1). Crop lands were identified using digitized agricultural field
boundaries within the watershed obtained from local Farm Service
Agency (USDA-FSA) offices. Non-crop land was dominantly hay
and wetland forest, which were typically located in riparian valleys.
Roadways, farmsteads, and towns were classified as residential land.
The management schedules for corn and soybean are presented in
Supplementary Table S2, based on the information provided by
Tomer et al. (2008a).

Artificial drainage was installed to allow agricultural production,
beginning more than 100 years ago. Although the location of
individual drains in fields has not been mapped, previous studies
have estimated that up to 80% of the watershed may be artificially
drained (Green et al., 2006). Approximately 35% of the watershed’s
soils are classified as well-drained, but most are present on steeper
slopes that are not farmed or are surrounded by poorly drained soils.
The drainage districts tend to coincide with the watershed subbasins
where poorly drained soils are common. This estimated value
includes all of the soils that are not well drained and a few that
are well drained but are surrounded by poorly drained soil.

Three stream gauging stations were utilized to provide long-
and NO;  load
(Supplementary Table S3). These stations monitor the three
major tributaries: South Fork (USGS#05451210, near New
Providence), Tipton Creek, and Beaver Creek (Figure 2c).

term observations of daily streamflow

Detailed methodologies for streamflow monitoring and water
(2008b). Nitrate
concentrations in our dataset were estimated using linear

sampling can be found in Tomer et al

interpolation between samples collected at least weekly. Sampling
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included weekly point samples taken in the thalweg and automated
composite samples collected during runoff events using a peristaltic
pump. A computerized data logger controlled the composite
sampler, triggering flow-paced sampling based on the site’s rating
curve, with one composite sample analyzed per event. The weekly
and event-based sample results were integrated into a time-series
management system, which applied linear interpolation to generate
a 10-min resolution concentration record. This high-resolution time
series was then used to calculate daily mean concentrations, which
daily NO;~ load
(i.e., concentration x daily total stream flow).

served as the Dbasis for estimates

2.2 The development of tile drainage and N
cycling processes for SWAT

The SWAT model is the most widely used watershed-scale
ecohydrological model globally for evaluating water quantity and
quality affected by land use and management practices. It can
simulate tile drainage systems using both a simplified tile module
and a more physically based module. While the SWAT model has
been employed for tile drainage simulations, its application to NO;~
loss through tile systems has rarely been reported. The model’s
original soil N mineralization processes were based on the PAPRAN
1980), which
immobilization, making it a net mineralization algorithm. It

model (Seligman and Keulen, incorporates
considers fresh organic N and two humic N pools (active and
stable). Mineralized N is directly added to the NO;~ pool, while
ammonium (NH,*) is introduced into the soil system through
fertilization, which can then be lost via ammonia volatilization
and nitrification, using methods developed by Reddy et al.
(1979). The original SWAT model also calculates NO;™ loss
through denitrification, incorporating a threshold for nutrient
cycling water factors necessary for denitrification to occur
(Neitsch et al, 2011). To ascertain the amount of NO;~
transported with water, the concentration of NO;™ in the mobile
water is first calculated, which is then multiplied by the volume of
water moving through the tile drainage pathway to determine the
mass of NO;~ lost from the soil layer containing the tile.

Recognizing the close interconnection between soil C and N
cycling processes, recent advancements in the SWAT model
enhance its ability to simulate soil organic C dynamics and N gas
fluxes (Zhang et al., 2013; Yang et al., 2017; Liang et al., 2022; Liang
et al, 2023; Tijjani et al, 2023; Tijjani et al, 2024). These
improvements make it more applicable for studies on water
quality, soil health, and BMPs assessment. Below, we briefly
outline these advancements and highlight how the updated
model differs from the original version.

2.2.1 The new soil N module

The core algorithms for C and N cycling processes from the
Century model (Parton et al., 1994; Izaurralde et al., 2006) have been
modified and integrated into the SWAT model to enable a more
comprehensive simulation of soil C and N dynamics within the soil
profile (Figure 3) (Zhang et al., 2013). Furthermore, DayCent-based
N,O production and fluxes (Del Grosso et al., 2000; Parton et al.,
2001) have also been incorporated into the SWAT model (Figure 3)
(Yang et al., 2017). Thus, this enhanced SWAT model simulates N
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FIGURE 3

Schematic diagram for Century/DayCent-based soil organic C/N decomposition/mineralization/immobilization and N gas flux algorithms

integrated in SWAT.

cycling processes within an agroecosystem by incorporating key
steps like N fixation, mineralization, nitrification, denitrification,
plant uptake, and leaching, allowing it to track the movement of N
through different soil pools and between the atmosphere, vegetation,
and soil, with a particular focus on the daily dynamics of these
processes. Comprehensive details on soil C and N cycling processes
and validation of the enhanced SWAT model are available in related
studies (Parton et al., 1994; Izaurralde et al., 2006; Zhang et al., 2013;
Liang et al., 2022; Liang et al., 2023; Tijjani et al., 2023; Luo et al,,
2024; Tijjani et al., 2024).

In comparison to the original N module in SWAT (Neitsch et al.,
2011), the new N module is significantly more complex, featuring
additional parameters that simulate N,O fluxes resulting from both
nitrification and denitrification processes (Figure 3; Table 1). The
new N module also simulates the production of NO and N, as
byproducts of the nitrification and denitrification reaction sequence
(Figure 3). Detailed information on N gas fluxes simulation refers to
Yang et al. (2017).

2.2.2 Tile drainage modules

In SWAT, tile drainage can be calculated using two modules
(Guo etal., 2018). The original tile drainage algorithm calculates tile
flow as a function of water table depth, tile depth, and the time
required to drain the soil to field capacity, assuming that the tile
systems have equidistant tile spacing and size (Table 1) (Arnold
etal, 1999; Du etal., 2005; Green et al., 2006). The new tile drainage
algorithm computes tile flow using Hooghoudt’s steady state and
Kirkham (van Schilfgaarde et al., 1957) tile drain equations that are a
function of water table depth, tile drain depth, size, and spacing
(Table 1), which are also used in the widely used DRAINMOD
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model (Skaggs et al., 2012). Previous studies incorporated and tested
these equations within SWAT (Moriasi D. et al., 2007; Moriasi et al.,
2012). These two methods were integrated with the “tip-bucket” soil
water movement algorithm to simulate soil water balance for the
drainage-based soil systems. Both methods for calculating tile
drainage have been thoroughly tested against field and watershed
scale drainage observations (Green et al., 2006; Moriasi et al., 2013b).
Few studies have successfully simulated NO;~ losses through tile
drainage using the SWAT model (Schilling and Wolter, 2009;
Moriasi et al., 2013a; Moriasi et al., 2013b; Gassman et al., 2014;
Ikenberry et al., 2017).

2.3 Model setup, calibration, sensitivity and
uncertainty analysis

Using a 10 m grid Digital Elevation Model (DEM), the SFW was
divided into 115 subbasins, which were further segmented into
385 hydrologic response units (HRUs) based on the SSURGO
database, a field-level land use map, and two slope categories
(0%-2% >2%). schedules
corn-soybean rotations were derived from the

and Typical management for
referenced
2008a) and

University

cropland management dataset (Tomer et al,

supplemented with estimates from JIowa State
Extension and Outreach. For instance, before the corn year, 75%
of the total annual manure application was applied in the fall, while
the remaining 25% was applied in the spring of the corn year
(Supplementary Table S2). The model utilized NLDAS2 weather
data for its inputs (Xia et al., 2012; Qi et al., 2019¢). The presence of

subsurface drains was assumed for all areas with hydric soils, with
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TABLE 1 Model parameters considered in model calibration.

Model Parameter Default/Used Explanation
Hydrologic processes ICN.bsn 1° Daily curve number calculation method
CNCOEF.bsn 1 Plant ET curve number coefficient
CN2.mgt varied/varied Initial SCS CN II value
SURLAG.hru 2 Surface runoff lag time in the HRU [days]
ESCO.hru 0.95 Soil evaporation compensation factor
EPCO.hru 1 Plant uptake compensation factor
GWQMN.gw 1,000 Threshold depth of water for return flow to occur [mm]
GW_REVAP.gw 0.02 Groundwater “revap” coefficient
REVAPMN.gw 750 Threshold depth of water for “revap” to occur [mm]
ALPHA_BF.gw 0.048 Baseflow alpha factor [days]
GW_DELAY.gw 31 Groundwater delay [days]
Original tile module GDRAIN.mgt 96 Drain tile lag time [hours]
TDRAIN.mgt 24 Time to drain soil to field capacity [hours]
DDRAIN.mgt 1,000 Depth to the sub-surface drain [mm]
DEP_IMP.hru 2,500 Depth to impervious layer [mm]
ITDRN.bsn 0 Tile drainage equations flag
IWTDN.bsn 0* Water table depth algorithms flag
New tile module LATKSATFE.bsn 14 Multiplication factor to determine lateral ksat
PC_BSN.bsn 0 Pump capacity [mm h]
DRAIN_CO.bsn 35 Drainage coefficient [mm d]
SDRAIN.bsn 12,000 Distance between two drain or tile tubes [mm]
RE_BSN.bsn 20 Effective radius of drains [mm]
DDRAIN.mgt 1,000 Depth to the sub-surface drain [mm]
DEP_IMP.hru 2,500 Depth to impervious layer [mm]
ITDRN.bsn 1* Tile drainage equations flag
IWTDN.bsn 1* Water table depth algorithms flag
ISMAX.bsn 1* Max depressional storage code
Original N module RSDCO_PL.plant 0.05 Residue decomposition coefficient
SDNCO.bsn 1.1 Denitrification threshold water content
CDN.bsn 1.4 Denitrification exponential rate coefficient
CMN.bsn 0.0003 Rate factor for humus mineralization of active organic N
N_UPDIS.bsn 0.2 Nitrogen percolation coefficient
NPERCO.bsn 20 Nitrogen uptake distribution parameter
New N module CMFf1° 1 Multiplication factor for CMF for the first soil layer
CMFf2" 1 Multiplication factor for CMF for other soil layers
FHSf 1 Multiplication factor for FHS
MaxRate® 0.15 Max fraction of ammonia nitrified during nitrification
wips_adj* 1.0 Adjustment on inflection point for water-filled pore space effect on denitrification curve
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TABLE 1 (Continued) Model parameters considered in model calibration.

Parameter Default/Used

10.3389/fenvs.2025.1651136

Explanation

NPERCO.bsn 0.2

N_UPDIS.bsn 20

Nitrogen percolation coefficient

Nitrogen uptake distribution parameter

“Parameters for setup different modules and not changed during calibration.
"Newly introduced parameters (see Supplementary Material).
“Parameters described in Yang et al. (2017).
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FIGURE 4

N balance

Flowchart of the study design, including SWAT setup; calibration and validation; sensitivity and uncertainty analyses; and the eight modeling
configurations. The yellow circles represent the scenario numbers (Tables 2-5).

adjacent land also included due to the practice of draining a field if
any of its interior area has poorly drained soils (Bailey et al., 2022).
Therefore, an HRU was designated as a drain if it is covered by
hydric soil (Figure 2d). The Penman-Monteith method was
employed to estimate potential evapotranspiration, while the
variable storage routing method was used for in-stream routing.
Annual average wet and dry N deposition input was derived from
the Clean Air Status and Trends Network (CASTNET).

The observed daily streamflow and NO;~ load were evenly
divided into calibration and validation periods (Supplementary
Table S3). Before the calibration period, we used a 1-year (2000)
warm-up period to initialize the model. Selected parameters for
model calibration are shown in Table 1. We considered previous
studies in the same watershed when selecting hydrologic, tile
drainage, and soil N cycling parameters (Green et al, 2006;
Moriasi et al, 2012; Moriasi et al, 2013b; Yang et al, 2017;
Bailey et al., 2022). We employed a multi-station procedure to
calibrate the streamflow and NO;~ loads. The first step was to
calibrate the streamflow of three stations, which is the key for the
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following water quality calibration. Following discharge calibration,
the NO;5™ load of three stations was calibrated (Figure 4).

The Sequential Uncertainty Fitting algorithm version 2 (SUFI-2)
method in SWAT-CUP (Abbaspour K. et al.,, 2007) was used to
conduct calibration for daily flow rate and NO;™ loads. It was also
used to conduct parameter sensitivity and uncertainty analysis.
Model performance was assessed according to percent bias
(Pbias; Equation 1), coefficient of determination (R* Equation 2),
and Kling-Gupta efficiencies (KGE; Equation 3) (Knoben et al,
2019), given as:

. _ Z,IZI (Px - Ot)
Pbias = 100 x 72?:,1@ (1)
2
fl71 Oi—oav : Pz‘ - Puv
R2 — Zl— ( ; g) ( g) ; = (2)
[Z?:l (Oi*Oqu) ’ Z?:I(Pi - Pu"@) ]
KGE =1-1(r—17+ (a1 + (8- 1)’ (3)
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where O; and P; are the observed and modeled data, O,y and Py,
their averages, r the linear correlation between observed and
modeled data, « the flow variability error, and f bias term.
Model performance criteria were established based on the
guidelines provided by Moriasi DN. et al. (2007), operating
under the assumption that the evaluation criteria for Nash-
Sutcliffe Efficiency (NSE) are also applicable to R’ and KGE. KGE
provides a more comprehensive assessment of model performance
by evaluating not only the correlation between observed and
simulated values but also accounting for the variability and bias
in the simulations. Unlike NSE, which can be overly sensitive to
outliers and can yield misleading results if the mean observed value
is low, KGE incorporates multiple aspects of model performance.
This makes KGE a more robust metric, particularly in complex
hydrological systems where various factors can influence model
outputs. The KGE was used as the objective function for calibrating
daily streamflow and NO;~ load, incorporating data from three
monitoring stations with equal weighting in the function.
Parameter sensitivities were determined using the following
multiple regression equation, based on results running the SUFI-
2 procedure of SWAT-CUP multiple times, given as (Equation 4):

g:a+Zﬂi-b,- (4)

where g is the objective function value, o and f3; are regression
coefficients, b; is the calibration parameter, and m is the number of
parameters considered. KGE was used as the objective function
value. The Student’s t-test was used to quantify the statistical
significance of each parameter, with a p-value <0.05 indicating a
parameter as sensitive in the present study. The global sensitivity
analysis approach estimates the change in the objective function
resulting from changes in each parameter while all other parameters
are changing (Abbaspour K. et al., 2007), and as a result, it does not
provide an absolute measure of the sensitivity but rather the relative
sensitivity.

Prediction uncertainty was estimated through the SUFI-2
2007). In SUFI-2, the
uncertainties in model structure, parameters, and input data

procedure (Abbaspour K. et al,

are not separately estimated but are attributed as total model
uncertainty to the parameters (Abbaspour K. et al., 2007). The
Latin hypercube sampling method is used in SUFI-2 for vast
parameter value combinations, and resultant model simulations
are used to calculate the percentage of measured data bracketed
by the 95 Percent Prediction Uncertainty (often referred to as
95PPU), which is measured by the p-factor. The range of the
p-factor varies from 0.0 to 1.0, with values close to 1.0 (all
bracketed by the
indicating very

observations prediction uncertainty)

strong model performance and small
prediction uncertainty. The r-factor is the average thickness of
the 95PPU bands divided by the standard deviation of the
The
1.0 indicates acceptable prediction uncertainty estimation
(Abbaspour K. et al., 2007; Abbaspour, 2013). In general, a

trade-off between p-factor and r-factor exists for model

observed data. r-factor varying between 0 and

uncertainty evaluation. A larger p-factor can be achieved at
the expense of a larger r-factor, and vice versa. A model with
a balance between the two factors can provide acceptable
prediction uncertainty (Qi et al., 2019b).
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2.4 Comparison of model configurations

We considered eight model configurations, which included:
original and new tile drainage modules x calibration and non-
calibration of tile drainage modules x original N module and new N
module. Figure 4 illustrates the design of the eight model
configurations and the step-wise calibration procedure. Here, we
aimed to evaluate model performance under scenarios with
calibrated and non-calibrated tile drainage parameters (Table 1),
reflecting practical conditions where tile parameters may or may not
be accurately known (Green et al, 2006; Moriasi et al, 2012;
Schilling et al., 2019). For each of the eight model configurations,
we independently calibrated the same set of parameters (Table 1).
We then analyzed the eight simulations for water and soil N balance
at the watershed scale and discussed the results as compared with
previous studies. We calculated the average, standard deviation
(SD), and coefficient of variation (CV) for water and N balance
components across eight modeling simulations. The CV is a useful
statistic that measures the relative variability of model outputs by
comparing the standard deviation to the mean. The CV can help
identify which processes exhibit greater variability across different
model configurations (Butts et al,, 2004). By assessing the CV of
different outputs, we can prioritize areas that may need further
model  structure and

investigation ~or refinement in

parameterization.

3 Results and discussions
3.1 Model performance evaluation

The performance evaluation metrics for daily streamflow and
NO;" load across the eight model configurations at the three outlets
are summarized in Tables 2 and 3. The best-fit parameters for the
eight model configurations are presented in Supplementary Tables
S4 and S5. For daily streamflow simulations, R* values ranged from
0.40 to 0.68, and KGE values from 0.46 to 0.80 during the calibration
period, with Pbias between —7.7% and 19.6% across all eight model
configurations and three stations. During the validation period, R’
values ranged from 0.49 to 0.68, KGE values from 0.51 to 0.77, and
Pbias ranged between —27.2% and —11.4%. Overall, the model
satisfactorily predicted daily streamflow across all configurations,
though it generally underestimated streamflow during the validation
period. For daily NO;3~ load simulations, during the calibration
period, R? and KGE values ranged from 0.33 to 0.57 and 0.39 to 0.60,
respectively, with Pbias between —52.7% and -14.3%. During
validation, the performance decreased, with R® values from
0.21 to 0.48, KGE values from 0.05 to 0.58, and Pbias values
ranging between —45.4% and —7.6% across all configurations and
stations (Table 3). All models consistently tended to underestimate
daily NO;™ loads. Nevertheless, the new N module typically
delivered superior performance over the original N module in
predicting daily NO;~ loads, regardless of tile module
configuration (Table 3).

We also evaluated daily and monthly simulations of streamflow
and NO;™ load for the combined calibration and validation periods
(Supplementary Tables S6 and S7). Overall, daily streamflow showed

R’ 0f 0.52-0.68, KGE of 0.63-0.79, and Pbias of —15% to —2%, while
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TABLE 2 Model performance evaluation for daily streamflow at three monitoring stations.

Model configuration Calibration Validation
BC350 SF450 SF450
Cali. Tile N Mod Pbias R?> KGE Pbias KGE Pbias
1 Ori Yes Ori 13.2 058 | 069 | -36 057 | 076 158 041 = 048 | -235 051 057 | -173 058 | 070 | -156 058 | 0.68
72 New 145 058 069 | -18 057 075 182 040 046 | 215 050 057 | -147 057 | 071 | -141 057 = 068
73 No Ori 9.0 058 | 067 | -7.7 068 | 079 78 051 | 066 @ -27.2 050 051 | -209 068 | 070 | -17.6 067 = 075
4 New 10.4 057 | 067  -60 067 | 079 94 050 = 065 @ -255 049 052 | -189 068 | 072 | -164 066 = 075
5 New | Yes Ori 14.9 062 | 074 | -18 065 | 079 168 052 | 048 | -205 052 062 | -138 065 | 076 | -13.8 067 = 0.69
6 New 16.0 061 072 | -0.1 064 079 191 051 046  -189 052 063 | -117 065 077 | -125 066  0.69
77 No Ori 15.0 060 | 072 | -15 064 | 080 177 049 = 050 | -202 050 060 | -136 065 | 076 | -13.6 066 = 072
8 New 16.4 060 | 071 02 063 | 079 196 049 = 049 | -187 050 060 | 114 064 | 077 | -124 064 072

Pbias values (%) indicate the model bias, with negative values representing underestimation and positive values representing overestimation.
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TABLE 3 Model performance evaluation for daily NOs~ load at three monitoring stations.

Model configuration Calibration Validation
BC350 SF450 SF450
Cali. Tile N Mod Pbias R?> KGE Pbias KGE Pbias
1 Ori Yes Ori -25.8 033 | 045 | -196 052 | 047  -439 052 | 047  -341 035 042 | -348 041 | 048 | -165 041 | 005
72 New ~19.4 038 = 054 | 205 054 059 449 057 = 047  -302 042 051 | -357 043 050 | -145 044 023
73 No Ori -176 035 | 050 | -14.7 051 | 051  -459 048 = 045 | -37.1 028 040 | —40.2 021 | 032 | -103 045 | 013
4 New ~143 038 | 055 | -152 056 | 060 | -455 055 @ 046 | -312 034 048 | -337 029 | 042 | -76 048 = 019
5 New | Yes Ori -283 034 | 045 | -27.8 048 | 049  -527 047 = 039 | -388 039 045 | -454 033 | 036 | -245 042 016
6 New -16.6 040 054 | -222 053 059 468 053 044 | 251 047 058 | 343 041 048 | -152 047 021
77 No Ori -26.3 034 | 044 | -238 048 | 047 | -49.4 047 = 041 | -355 039 046 | -39.9 038 | 045 | -215 042 011
8 New -19.6 040 | 055 | -219 052 | 058 476 054 @ 043 | -280 045 = 056 | -32.1 042 | 052 | -156 046 = 022

Pbias values (%) indicate the model bias, with negative values representing underestimation and positive values representing overestimation.
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TABLE 4 Annual average water budgets (in mm H;O) in the south fork of the iowa river watershed (SFW) for the eight model configurations over 2001-2018.

Cali. Tile ET SurQ LatQ GwQ DrainQ Recharge Yield

1 Ori Yes Ori. N 894 1,137 602 46 4 61 186 66 301
2 New N 894 1,137 595 44 4 63 194 67 308
3 No Ori. N 894 1,137 613 106 14 48 119 51 288
4 New N 894 1,137 607 103 14 49 125 53 294
5 New Yes Ori. N 894 1,137 591 110 3 52 142 55 311
6 New N 894 1,137 587 108 3 53 147 57 315
7 No Ori. N 894 1,137 591 96 3 55 156 58 312
8 New N 894 1,137 586 94 3 56 160 59 316

AVE 894 1,137 597 88 6 55 154 58 306

SD 0 0 9 26 5 5 25 5 9

cv 0 0 0.02 029 0.73 0.09 0.16 0.09 0.03
Green 2006 (1995-2004) 768 1,191 569 38 7 11 136 192
Bailey 2022 (2002-2012) 889 601 145 2 7 142 123 316

Abbreviations: PCP, precipitation; SurQ, surface runoff; LatQ, lateral flow; GwQ, groundwater flow; DrainQ; tile drainage; Recharge indicates soil water percolation to aquifer.

daily NO;™ load had R’ of 0.32-0.47, KGE of 0.18-0.57, and Pbias
of —30% to —12% across all configurations and stations. Monthly
simulations generally yielded better model performance compared
to daily simulations across all configurations and stations. For
monthly streamflow, R’ and KGE values exceeded 0.69 and 0.79,
respectively, with Pbias values ranging between —15% and —2%.
Monthly NO;™ load had R’ values ranging from 0.37 to 0.59, KGE
values from 0.32 to 0.63, and Pbias from —30% to —14%. According
to the performance criteria recommended by Moriasi DN. et al.
(2007) for monthly simulations (assumed applicable for R* and
KGE), the majority of simulations achieved satisfactory results.

Overall, the new tile module improved daily and monthly
streamflow simulations over the original, especially under the tile
parameter calibration condition (Supplementary Tables S6 and S7).
In addition, we did not observe a clear improvement in model
performance when calibrating additional tile parameters for either
the original or the new tile modules. In fact, in many cases, the
original tile model without calibrated parameters provided better
simulations of daily streamflow. This may be caused by the fact that
adding more tile parameters to the hydrological parameter set
increases model complexity, making it more difficult for auto-
calibration to consistently capture the global optimum of the
objective function (KGE in our case). It is recommended to
maintain a balance between the number of parameters included
and computational cost when using semi-distributed hydrological
models such as SWAT (including more parameters does not
necessarily lead to better results), and observed parameters
should be utilized whenever possible.

Previous studies using SWAT to simulate daily streamflow
highlighted persistent challenges in accurately capturing peak-
2019b; Kumar et al, 2024).
Underestimation of streamflow during high-flow conditions
directly contributes to the underestimation of NO;~ loads (Qi
et al, 2019a). Another critical reason for underestimating NO5~

flow events (Qi et al,

Frontiers in Environmental Science

loads could be SWAT’s simplified representation of NO3~ transport
through tile drainage systems. Unlike the explicit numerical
approach used by models such as DRAINMOD, which solves the
advective-dispersive-reactive equation (Helwig et al., 2002), SWAT’s
simplified coupling of soil water flow with NO;™ leaching may
require further refinement. Additionally, the model performance
at the TC325 station for NO;~ loads was consistently lower
compared to the other two stations. This discrepancy is likely
related to the significant presence of animal feeding operations,
particularly swine production, within the Tipton Creek area (Tomer
et al., 2008a; Tomer et al., 2008b). Due to insufficient information,
the temporal and spatial patterns of manure application were not
model’s  fertilization

adequately  represented in  the

operations (Figure 2).

3.2 Model sensitivity and uncertainty analysis

We selected the most sensitive parameters affecting daily
streamflow and NO;~ load at the watershed outlets based on
findings from previous studies for model calibration (Green
et al., 2006; Moriasi et al., 2012; Moriasi et al., 2013a; Moriasi
etal, 2013b). These parameters were then used for further sensitivity
analysis, as summarized in Table 1. Sensitivity was assessed using
p-values from Student’s t-tests, with the results presented in
Supplementary Tables S8 and S9.

For daily streamflow, the most sensitive parameters in the
original tile module without tile parameter calibration were
primarily related to surface runoff and soil moisture (such as
SURLAG, ESCO, EPCO, and CN2; see Table 1 for explanation;
Supplementary Table S8). Although groundwater parameters
were included in the calibration process, they did not show
significant  sensitivity to  daily streamflow under this
configuration. However, when tile parameters were calibrated, the
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TABLE 5 Annual nitrogen budgets (kg N ha™) for the entire

Cali. N
Tile

FerMN

FerON Atm

Rsd

Fix

NetMin

Uptake

Dnit

Vol

south fork of the iowa river watershed (SFW) under eight

N,O

N2

Drain

SurQ

LatQ

Leach

GwQ ONloss

YldN

model configurations (2001-2018); values in brackets represent nitrification gas fluxes.

AMN ATN

2 New N 90 55 21 102 52 146 191 24 3 10 6(2) 10 25 1 1 8 02 1 142 1 12
0.8)
3 No ori. N 90 55 21 92 70 141 164 29 1 - - - 2 3 2 3 02 18 142 21 9
4 New N 920 55 21 128 43 181 278 13 1 6 (1) 5 6 23 3 2 8 0.2 1 150 —41 3
@7)
5 | New  Yes ori. N 90 55 21 99 61 161 237 33 1 - - - 27 2 1 10 04 20 138 -39 -6
6 New N 90 55 21 119 2 178 220 27 2 12 7 1 23 3 1 3 03 1 142 2 -4
09 | (@5
7 No ori. N 90 55 21 %6 61 159 233 33 1 - — — 30 2 1 10 04 16 137 —40 -3
8 New N 90 55 21 113 44 160 210 19 2 9 (0.9) 6 8 24 3 1 8 0.3 1 140 2 9
(24)
Ave 90 55 21 103 56 154 218 26 2 9 6 9 25 2 1 9 03 9 140 -19 7
SD - — — 15 13 2 31 7 0 2 1 2 2 1 1 1 01 8 5 27 13
CV — — — 0.1 0.2 0.1 0.1 0.3 0.3 0.2 0.1 0.2 0.1 0.3 0.6 0.1 0.3 0.9 0.0 -14 1.8
Li 2008 (2002-2005) 132 — - - 127 120 329 9 — - - - 45 — — — - — — -3 —
Gillette 2018 (2002-2009) 117 — - — 98 17 267 17 — 7 — — 48 — — — — — — -2 —

Abbreviations: FerMN, mineral N fertilization; FerON, organic N fertilization; Atm, atmospheric deposition; Rsd, residue organic N; Fix, organic N fixation by legume; NetMin, net mineralization; Uptake, plant uptake; Dnit, denitrification; Vol, volatilization; N,O and
NO, N,O and NO, fluxes from both nitrification and denitrification; N,, N, flux from denitrification; Drain, NO;™ loss via drainage; SurQ, NO;™ loss via surface runoff; LatQ; NO; ™ loss via lateral flow; Leach; NO5™ leaching to aquifer; GwQ, NO5~ contribution to stream by
groundwater flow; ONloss, organic N loss via surface runoff; YIdN, N removed in yield; AMN (soil mineral N change) = fertilized mineral N + atmospheric deposition N + net mineralization N-uptake N-denitrification (when using the ori. N module) - (N,O + N,+NO;
when using the new N module) - volatilization N-drainage N-surface runoff N-lateral flow N-leaching N; AON (total soil N change) = fertilized mineral N + fertilized organic N + atmospheric deposition N + organic fixation N-denitrification (when using the ori. N
module) - (N,O + N,+NO; when using the new N module) - volatilization N-drainage N-surface runoff N-lateral flow N-leaching N-organic N loss-crop yield N.
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most sensitive parameters shifted to include both groundwater (such
as GWQMN, GW_REVAP, and REVAPMN) and tile drainage (such
as DEP_IMP and GDRAIN) parameters (Tables 1; Supplementary
Table S8). A similar pattern was observed in the new tile drainage
module, suggesting that calibrating tile parameters increases the
sensitivity of groundwater parameters to streamflow simulation.
Despite these shifts in sensitivity, the overall model performance did
not improve when tile parameters were calibrated compared to
configurations without tile calibration (Table 2). This could be due
to the relatively low contribution of groundwater discharge to
streamflow compared to surface runoff and drainage flow in the
SFW (Supplementary Table S12).

Regarding the daily NO;™ load, the parameters found to be most
sensitive for the original N module were primarily associated with
denitrification processes (CDN) and mineralization processes
(CMN) (Tables 13 Table S9).
parameters controlling organic matter decomposition rates and
the initial fraction of fresh humus (FHS)—notably CMFm2 and
fFHS (Table 1; Supplementary Table S9)—showed high sensitivity
for the new N module. Additionally, the parameter governing
denitrification processes (i.e., wfps_adj) was also very sensitive
(Table 3). Upon examination of the denitrification-related

Supplementary In contrast,

parameters (Supplementary Tables S4 and S5), we found that low
values of wfps_adj were associated with increased denitrification
rates for the new N module (A detailed discussion of this parameter
is provided in the Supplementary Material).

Supplementary Tables S10 and S11 present the p-factor and
r-factor values for the estimated 95PPU bands of daily streamflow
and NO;~ fluxes across the eight model configurations. The p-factor
values showed that the 95PPU bands captured 27%-52% of observed
daily streamflow and only 14%-34% of observed NO;~ loads. The
r-factor ranged from 0.32 to 0.59 for observed daily streamflow and
from 0.26 to 0.60 for observed NO;~ loads. Overall, the low p-factor
values indicated a high level of uncertainty in the predictions of both
daily streamflow and NO;™ load across three monitoring stations.
This overall decrease in p-factor from streamflow to NO;3~ load
suggested that modeling uncertainty was greater for NO;™ load than
for streamflow simulation. This result was expected, as streamflow
simulation was primarily influenced by hydrological processes,
whereas NO;~ simulation depended on both hydrological and
biogeochemical processes. The added complexity of N cycling
introduced greater challenges, contributing to the lower p-factor
values observed for NO;™ predictions compared to streamflow.

3.3 Water balance assessment across model
configurations

Table 4 shows the annual water budget for the eight model
configurations in the SFW. Average, SD, and CV were also
calculated for the water budget across eight model configurations.
The average annual precipitation in the watershed from 2001 to
2018 was 894 mm, while the average annual potential
evapotranspiration ~ (PET) 1,137 Actual
evapotranspiration (ET) ranged from 586 to 613 mm, with an

was mm.

average of 597 mm, which represents about 67% of the average

annual precipitation (Supplementary Table S12). The total water
yield (= surface runoff + lateral flow + groundwater flow + drainage
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flow) accounted for approximately 34% of the average annual
precipitation (Supplementary Table S12). Surface runoff varied
between 44 and 110 mm, averaging 88 mm, which constitutes
about 31% of the total water yield. Baseflow ranged from 48 to
63 mm, with an average of 55 mm, making up about 18% of the total
water yield (Supplementary Table S12). Drainage flow ranged from
119 to 194 mm, averaging 154 mm, which accounts for
approximately 50% of the total water yield (Supplementary Table
512). Lateral flow ranged from 3 to 14 mm, averaging 6 mm, making
up about only 2% of the total water yield (Supplementary Table S12).

Lateral flow showed the highest coefficient of variation (CV =
0.7), although its magnitude was an order of magnitude lower than
that of surface runoff and drainage flow. We also observed
significantly greater variation between calibration and non-
calibration model configurations for the original tile module
compared to the new tile module for both surface runoff and
drainage flow. When calibrated, the original tile module
generated considerably less surface runoff and more drainage
flow than in the non-calibrated condition, whereas the new tile
drainage module showed similar results regardless of calibration.
Interestingly, the non-calibrated original tile module produced
results more comparable to the new tile module under both
calibration and non-calibration conditions. These results suggest
that obtaining consistent and reliable results necessitates more
detailed information about actual field conditions, as relying
solely on parameter calibration without accurate tile data may
lead to a skewed water budget for tile drainage systems.

Table 4 also shows the comparison between previous studies and
this study on water budget, and Supplementary Table S12 shows
important hydrological component ratios at the SFW. It should be
noted that the study area of Bailey et al. (2022), which used SF450 as
the outlet, was smaller than the area considered in this study
(Figure 2). This study had close annual precipitation of 894 mm
to Bailey et al. (2022)(889 mm) both of which were higher than that
of Green et al. (2006) (768 mm) due to different study periods.
Accordingly, the ET values were also close between this study and
that of Bailey et al. (2022) (601 mm) and greater than that of Green
et al. (2006) (569 mm). Total water yield—comprising surface
runoff, lateral flow, groundwater flow, and tile drainage
flow—accounted for 32%-35% of annual precipitation. This
figure surpassed the 25% reported by Green et al. (2006) but fell
short of the 36% noted by Bailey et al. (2022). Surface runoff
represented 5%-12% of annual precipitation, higher than the 5%
documented by Green et al. (2006) but lower than the 16% observed
by Bailey et al. (2022). A similar trend was seen in the contribution of
surface runoff to total water yield, with our study accounting for
14%-37%, most of which were greater than the 20% cited by Green
et al. (2006) and less than the 46% reported by Bailey et al. (2022).

Total subsurface flow, which includes lateral flow, groundwater
flow, and tile drainage flow, accounted for 20%-29% of annual
precipitation in this study, most of which were higher than the 20%
reported by Green et al. (2006) and the 19% noted by Bailey et al.
(2022). The increase was primarily due to the groundwater discharge
simulated in this study, which constituted 17%-20% of total water
yield, significantly higher than the 6% from Green et al. (2006) and
2% from Bailey et al. (2022). In contrast, the lateral flow represented
only 1%-5% of total water yield, most of which was less than the 4%
from Green et al. (2006) and 7% from Bailey et al. (2022). This made
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lateral flow the smallest contributor to total water yields in both this
study and Green et al. (2006), whereas Bailey et al. (2022) identified
groundwater flow as the least contributor. Our drainage flow
accounted for 13%-22% of annual precipitation, which was close
to the 16% reported by Bailey et al. (2022) and 18% estimated by
Green et al. (2006). Moreover, drainage flow made up 41%-63% of
total water yield, most of which exceeded the 45% from Bailey et al.
(2022) but fell short of the 71% reported by Green et al. (2006). The
fraction of drainage flow in total water yield aligns with the range of
46%-54% reported by Schilling et al. (2019) in their analytical and
SWAT modeling of a similar drained watershed (Boon River
watershed) in the Des Moines Lobe of north-central Iowa.

Opverall, our results using both tile modules to analyze the water
budget in the SFW were mostly consistent with the findings of the
SWAT modeling study by Green et al. (2006) and the SWAT +
MODFLOW modeling study by Bailey et al. (2022). Additionally,
our findings aligned with the fieldwork conducted by Tomer et al.
(2008b), demonstrating the robustness of the two tile modules in
simulating hydrological processes within tile-drained agricultural
ecosystems.

3.4 Nitrogen balance assessment across
model configurations

Table 5 presents the average annual N budget for the entire SFW
across eight model configurations for the period 2001-2018.
Average, SD, and CV were also calculated for the N budget. The
average annual N fertilization amounted to 90 kg N ha™' in mineral
form and 55 kg N ha™" in organic form (Supplementary Table S2).
Average annual atmospheric deposition of N was about
21 kg N ha'. Biological N fixation ranged from 42 to
79 kg N ha™', averaging 56 kg N ha™'. Residue-derived organic N
inputs to the soil ranged from 79 to 128 kg N ha™', averaging
103 kg N ha™'. Net mineralization of organic matter produced
106-181 kg N ha™', averaging 154 kg N ha™'. Plant uptake
ranged from 164 to 278 kg N ha™', averaging 218 kg N ha™.
Denitrification loss ranged from 13 to 33 kg N ha™', averaging
26 kg N ha™', while volatilization (NHj3) ranged from 1 to
3 kg N ha™', averaging 2 kg N ha™'. The NO;™ loss via drainage
flow ranged from 22 to 30 kg N ha™', averaging 25 kg N ha™!, and
leaching NO; ™ ranged from 8 to 10 kg N ha™', averaging 9 kg N ha™.
The NO;~ loss via surface runoff, lateral flow, and groundwater
averaged 2, 1, and 0.3 kg N ha™" across eight model configurations
(Table 5). Organic N losses via surface runoff ranged from 1 to
20 kg N ha " with a high CV 0f 0.9. Organic N removed through crop
harvest ranged from 131 to 150 kg N ha™". N,O fluxes ranged from
6 to 12 kg N ha™', NO fluxes from 5 to 7 kg N ha™', and N, fluxes
from 6 to 11 kg N ha™'. In addition, we calculated changes in mineral
N and total N in the soil profile, which ranged from —-60 to
21 kg N ha' (with a high |[CV] 1.4)
from —6-37 kg N ha™' (with a high CV of 1.8), respectively.

Since no prior studies on N balance have been conducted in the

and

SEW, we compared our results with those from research performed
at the nearby Kelley experimental site (Figure 1) (Li et al.,, 2008;
Gillette et al., 2018). Two ecosystem modeling efforts have been
undertaken at the Kelley site over different periods to assess the
effects of cover crops on NO;™ loss through tile drainage and N,O
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fluxes. For our analysis, we chose results from the control scenario
that did not include cover crops, as the majority of agricultural land
in the SFW does not utilize cover crops. Table 5 presents a
comparison between the previous studies at the Kelley site and
our findings regarding N budgets, and Supplementary Table S13 also
lists key component ratios. It is noted that we assumed identical
atmospheric deposition for both sites, and the two previous studies
did not report all balance components.

At the SFW, the annual N uptake comprised 65%-97% of the
total mineral N input, which includes mineral fertilization,
atmospheric deposition, and net mineralization. Denitrification
accounted for approximately 7%-13% of the total input, while
N,O contributed about 2%-4%. Drainage losses were 8%-12% of
total input. Compared to the Kelley site, the SFW had higher N
fertilization, resulting in higher net mineralization than at the Kelley
site. Nitrogen fixation at the SFW site was lower, likely due to higher
overall nitrogen application rates compared to the Kelley site.
Another possible reason for the underestimation of N fixation
could be inadequate calibration of crop growth processes.
Additional observations of crop yield and/or biomass would help
improve the simulation of crop growth-induced N dynamics. The N
uptake to total mineral N input ratio in the SFW was less than the
1.1 reported by Gillette et al. (2018) and the 1.21 from Li et al. (2008)
at the Kelley site, indicating less N use efficiency in the SFW.
Additionally, denitrification was higher in the SFW—particularly
when using the original N module—compared with the Kelley site,
with denitrification ratios over total input at 0.07-0.13 for this study
compared to 0.07 for Gillette et al. (2018) and 0.03 for Li et al. (2008).
Simulated total N,O fluxes were also greater in the SFW than in the
Kelley site, although the N,O to input ratio was similar (0.02-0.04).
In contrast, NO;~ loss via drainage flow was lower in the SFW than
at the Kelley site, with a drainage N loss to input ratio of 0.08-0.12,
which is less than the ratios of 0.17 from Li et al. (2008) and
0.19 from Gillette et al. (2018).

Simulated denitrification in the new N module was consistently
lower than in the original module across all tile configurations
(13-27 vs 29-33, respectively). As a result, the original module
estimated denitrification rates that exceeded simulated drainage
NO;~ losses, while the new module produced estimates below
those losses (Table 5). Although denitrification rates could not be
validated in SFW due to a lack of observations, the results from the
new N module aligned more closely with those from the Kelley site,
suggesting improved denitrification simulation. In addition,
denitrification simulated by the new N module was more
sensitive to soil moisture than in the original module, as reflected
in the differences among tile drainage modules and their calibration
approaches. For example, the new N module showed substantial
discrepancies in denitrification between calibrated and non-
calibrated configurations (24 vs 13 kg N ha™' with the original
tile module; 27 vs 19 kg N ha™' with the new tile module), whereas
the original N module produced more consistent results (29 and
33 kg N ha™' with the new and original tile modules, respectively).

Most N gas fluxes originated from denitrification and were near
the upper range of literature-reported values, particularly for NO
and N,O (Bouwman et al., 2002; Hoben et al., 2011; Castellano et al.,
2012; Butterbach-Bahl et al., 2013; Castellano et al., 2019; Ma et al.,
2022). And most of the N,O results were also greater than that
reported in Gillette et al. (2018). Although the new N module
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improved denitrification simulation, an accurate representation of N
gas fluxes still requires additional field measurements. In particular,
the NO: N,O: N, ratios are strongly influenced by soil moisture
dynamics (Potter et al., 1996; Parton et al., 2001), emphasizing the
importance of complementary observations (e.g., soil moisture and
routinely measured N,O fluxes) to better constrain model
parameters and improve watershed-scale N budget assessments.
For instance, the DayCent model represents the topsoil with finer
vertical resolution (typically 2 cm for the first layer and 3 cm for the
second) compared to SWAT, which uses a fixed 1 cm first layer and
approximately 20 cm for the second. This coarser layering in SWAT
necessitates careful calibration against observed soil moisture, which
strongly influences N gas fluxes.

Furthermore, we found that the new N module simulated
substantially lower organic N losses via surface runoff compared
to the original N module (1 vs 10-20 kg N ha™'), regardless of the tile
module configuration (Table 5). This result indicates that, according
to the new N module, residue and soil organic matter in the surface
layer decomposed more rapidly than simulated by the original N
module. One potential solution to the underestimation of organic N
loss via surface runoff is to incorporate a passive humus pool, which
is currently not represented for the surface soil layer (Zhang et al.,
2013). Additionally, the large variability in soil mineral N and total
soil N changes across the eight model configurations underscores
the substantial uncertainty in soil N cycling processes. The general
positive changes in soil N (Table 5) suggest that the system may have
been accumulating N, potentially contributing to legacy N. Since the
current SWAT model cannot simulate legacy N storage and release,
this limitation may partly explain the underestimation of NO; ™ loads
at the outlets. It is worth noting that the SFW produced an excessive
NO;™ load, with an average NO;~ yield of ~38 kg N ha™' yr' at
station SF450 for 2001-2018 (See the comparison with USGS
estimations in Supplementary Figure S2), whereas multiyear
average NO;~ yields in Iowa typically range from 15 to
30 kg N ha™ yr' (Jones et al., 2018a; Jones et al., 2018b).

In contrast to the large variations in simulated denitrification
and associated N gas fluxes, we found that drainage NO;~ losses
were much more consistent across different model configurations.
In addition, all models tended to simulate relatively low
volatilization. Although few studies have reported volatilization
results using SWAT, our findings highlight the need to improve
its representation in the model (Lian et al., 2021). Compared to the
original N module, the new N module was more sensitive to
environmental changes. This requires careful monitoring of
changes in organic C and N, as well as decomposition and
mineralization rates. The original N module has the advantage of
providing relatively stable and reasonable N cycling simulations
without needing to account for C processes in detail. In contrast, the
new N module necessitates careful calibration of initial humus pool
partitioning, as it relies on these pools for accurate simulations (see
sensitivity analysis).

3.5 Limitation and future research

While the simulation results for streamflow were robust, the
accuracy of NO;™ load simulations was comparatively lower. It is
widely recognized that SWAT and other hydrological models
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generally perform better in simulating hydrological processes
than in nutrient cycling. In this study, one contributing factor to
the reduced performance in simulating NO;~ was the insufficient
representation of NO;5™ leaching processes, especially as affected by
tile drainage. Improving this aspect may necessitate further
development of a more physically-based model to enhance future
outcomes. In addition, the interaction of tile drainage with
streamflow is more intricate than what the current model

configuration can capture. Features such as potholes or

depressions that receive inflow can be considered in the
but the added
hydrological pathways may reduce overall model performance

modeling, complexity of these landscape
and complicate the calibration process (Du et al, 2005; Beeson
et al, 2011; Beeson et al, 2014). Another reason for the
underestimation of NO;~ load is the lack of accurate input data,
such as the quantity and timing of mineral fertilizer and manure
applications, as well as detailed crop management practices, all of
which strongly influence soil N dynamics (Ren et al., 2022; Niroula
et al.,, 2023).

This study illustrates a common challenge encountered in the
application of the SWAT model, where only discharge and water
quality data are available from limited subbasin outlets. The
calibration of soil water and nutrient parameters using water
quantity and quality data with the original soil N module is
widely used within the SWAT community. However, when more
complex hydrological and biogeochemical processes, such as tile
drainage and N gas fluxes, are incorporated into the model, relying
solely on outlet water data to calibrate soil process parameters can
lead to significant uncertainty in predictions (Arnold et al., 2015).
The new N module adopts the Century/DayCent model approach to
simulate N gas fluxes, including N,0O, NO, and N,, originating from
nitrification and denitrification (Figure 3). To effectively use the
more complex model and reduce prediction uncertainty, additional
observations—such as soil moisture and the commonly measured
N,O flux—is needed (Del Grosso et al., 2020). Although SWAT
employs a simplified “tipping-bucket” soil water module, it can
provide reasonable estimates of soil water dynamics when calibrated
with soil moisture data (Qi et al., 2018). In addition, except for
requiring additional field observations, it is important to simulate
nutrient dynamics within a watershed—not just loads at the
outlet—using soft data (Arnold et al, 2015). Proper process
representation supported by soft data can significantly improve
model calibration and validation. Soft data sources may include
peer-reviewed literature, technical reports, theses, and field surveys.

4 Conclusion

This study used a comparative modeling framework to evaluate
SWAT’s ability to simulate watershed-scale tile drainage and N
losses (NO;~ leaching and N-gas fluxes) in a representative
Midwestern tile-drained watershed. Eight configurations were
tested by pairing original vs. new tile-drainage modules,
calibrated vs. default tile parameters, and original vs. new N
modules. Daily streamflow and NO;~ loads from three
2001-2018; 2001-2010)

supported calibration, validation, sensitivity, and uncertainty

monitoring  stations  (two: one:

analyses, and watershed-scale water and N balances were
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compared with prior work, including the nearby Kelley
experimental site.

Model evaluation indicated that all eight model configurations
effectively simulated daily and monthly streamflow and NO;™ loads,
though they tended to underestimate peak streamflow and NO5~
loads. The watershed-scale water balance terms mostly fell within
the range reported in previous studies. We found that the new tile
module generally enhanced daily streamflow predictions compared
to the original module, particularly under the conditions of
calibrated tile parameters. For both the new and original tile
modules, further calibration of additional tile parameters did not
lead to noticeable improvements in daily streamflow. Meanwhile,
the new N module consistently outperformed the original N module
in simulating daily and monthly NO;™ loads, regardless of the tile
module configuration used. Parameter sensitivity and uncertainty
analyses revealed high uncertainty, particularly for NO;™ load
predictions at all three monitoring stations due to the complexity
of N cycling processes. Specifically, we found that denitrification and
associated N gas fluxes (inducing N,O, NO, and N,) varied across
configurations, reflecting fundamental differences between the
original and new N modules. The N budget also deviated from
values reported at the Kelley site, indicating that relying solely on
outlet NO;~ load data is insufficient to capture key soil N
cycling processes.

The new tile module is preferable for streamflow simulation, and
the new N module strengthens NO;™ load predictions; however, the
expanded process representation for N gases amplifies uncertainty
when calibration data are sparse. To reduce uncertainty in
denitrification and N-gas estimates, multi-constraint calibration is
recommended—pair NO;~ loads with supplemental
observations (e.g., soil moisture and N,O fluxes) and/or soft data.

outlet

The comparative approach proved effective for identifying process
controls and data gaps, guiding targeted monitoring to improve
SWAT performance in tile-drained watersheds. In sum, the
comparative evaluation clarifies where SWAT performs robustly
(streamflow, NOs3~ loads) and where additional observations are
essential (N-gas fluxes), providing actionable direction for future
model development, calibration strategies, and data collection in
tile-drained systems.
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