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This study quantifies the nonlinear driving force of urban morphological factors
on canopy urban heat island intensity (CUHII) in Anhui Province, integrating
relocated meteorological station data, remote sensing imagery, and machine
learning frameworks. CUHII values exhibit a range of 0.06°C-1.12°C, with the
built-up largest patch index (LPIbt, importance score = 0.25) and built-up area
ratio (ARbt, 0.18) emerging as dominant drivers. Cropland coverage (ARc,
Pearson’s r = —0.59) demonstrates significant cooling effects on urban
thermal environments. The random forest (RF) model outperforms support
vector regression (SVR) model, achieving training/test R? values of 0.95/
0.76 and RMSE of 0.04/0.08°C. This superiority highlights its capability to
capture complex interactions between urban morphologies and local thermal
environment. The research framework is innovatively adapted to a flipped
classroom educational model: students not only replicate the machine
learning workflow using the same dataset but also design comparative
experiments to test how urban morphological indicators affect CUHI outputs,
thereby deepening their understanding of both physical mechanisms of CUHI
and the interpretability of machine learning modeling. This integration of cutting-
edge climate research with hands-on educational practice bridges the gap
between academic inquiry and practical skill development. The study provides
a replicable methodological framework for urban climate research and its
translation into educational applications.

KEYWORDS

urban morphologies, canopy urban heat island, random forest, educational application,
methodological framework

1 Introduction

Accelerated urbanization and population increases have driven continuous growth in
anthropogenic heat release, intensifying urban heat island (UHI) phenomena globally
(Grimm et al,, 2008; Wang et al., 2016). The UHI effect manifests as elevated temperatures
in urban zones relative to adjacent suburban and rural regions, predominantly attributed to
modified surface properties (e.g, reduced vegetation cover, impervious materials) and
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concentrated human activities (Kang et al., 2014; Yang et al,, 2017; Li
et al,, 2020). Within this framework, the canopy urban heat island
(CUHI) specifically quantifies air temperature differentials between
urban and rural environments, measured vertically from ground
surfaces to building rooftop levels (Li et al., 2024). These thermal
anomalies exert multifaceted impacts on societal systems, including but
not limited to: amplified energy demand for cooling, heightened risks of
heat-related morbidity, altered precipitation patterns contributing to
urban flooding, and degradation of air quality through pollutant
stagnation (Yang et al, 2022; Chen et al, 2022; Yang et al, 2023).
Consequently, comprehensive investigation of CUHI dynamics and
their governing factors remains essential for developing sustainable
urban planning frameworks and climate adaptation measures.

The spatial heterogeneity of urban areas and infrastructure is
recognized as a key driver of localized temperature variations
(Fenner et al,, 2017; Dang et al., 2022). Urban surfaces exhibit lower
albedo than rural regions, leading to increased solar radiation
absorption that intensifies heat island effects (Oke, 1982; Arnfield,
2003). Simultaneously, urban buildings alter surface roughness and
wind patterns, reducing heat dissipation efficiency (Fujibe, 2003; Zong
et al,, 2021). These thermal dynamics are fundamentally influenced by
urban surface composition, spatial arrangement, and distribution
patterns (Li et al, 2021). Remote sensing studies have advanced the
investigation of urban morphology-CUHI relationships. Shi et al.
(2015) analyzed land use types within station buffers to evaluate
surface air temperature (SAT) variations, while Li et al. (2015)
quantified relationships between land cover (LULC) and SAT
sequences using remote sensing data. However, existing studies
predominantly rely on conventional indicators like land surface
temperature and vegetation indices, inadequately addressing spatial
configuration effects in LULC analysis.

Previous study predominantly employ linear regression to
model urban morphology-thermal environment relationships (Shi
etal., 2021), yet this approach faces inherent limitations. Wang et al.
(2019) demonstrated through obstacle-SAT correlation analyses
that urban morphological influences on temperature sequences
exhibit
fundamental

nonlinear  characteristics. ~ Such  findings reveal

constraints of linear statistical methods in
quantifying CUHI mechanisms. Recent advances in machine
learning provide alternative frameworks for these complex
interactions (Chen and Guestrin, 2016; Psistaki et al., 2025;
Zhang et al,, 2025). As an efficient supervised learning approach,
Support Vector Regression (SVR) has been widely applied in various
fields. SVR enhances data fitting capability while preserving model
complexity by introducing the concept of support vectors (Zhu et al.,
2024). Random Forest (RF), a decision tree-based ensemble method
(Mutale et al, 2024), effectively captures nonlinear dynamics
through recursive partitioning and feature importance evaluation.

Notably, the advancement of machine learning in urban climate
research has two aspects of significance: it not only deepens scientific
understanding of phenomena like CUHI, but also provides
important opportunities for improving environmental education.
As these models play an increasingly important role in solving real-
world urban thermal challenges, educational systems need to help
students develop not only theoretical knowledge of algorithms, but
also practical ability to apply them in specific fields. However,
despite these advancements in urban climate modeling, data

science education is often disconnected from such real-world
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applications. Existing curricula tend to focus more on generic
algorithm training (e.g., linear regression, basic classification)
than on domain-specific problem-solving, which makes it
difficult for students to connect theoretical knowledge with
skills
challenges. Another factor that widens this gap is the lack of

practical when dealing with urban environmental
educational materials based on cutting-edge research: although
more and more studies show that machine learning is useful in
urban thermal environment modeling (Ming et al., 2024; Shi et al.,
2015; Zhong et al., 2025), these research results are rarely adapted
into teaching modules. As a result, students are often not familiar
with the entire workflow, from data curation to model interpretation
(e.g., variable importance assessment), which affects their ability to
link academic research with real-world urban planning needs.

In summary, although progress in CUHI research, three critical
gaps remain: 1) Existing studies insufficiently address the driving
force of urban morphologies on CUHI, often relying on linear
models that fail to capture complex interactions; 2) The
integration of machine learning techniques in urban climate
research lacks enough exploration of parameter interpretability,
limiting insights into the physical mechanisms driving CUHI; 3)
Educational curricula rarely incorporate real-world applications of
machine learning in urban thermal environment studies, creating a
skill
development for addressing urban climate challenges. Anhui

disconnect between academic research and practical
Province, located in the western Yangtze River Delta (YRD), has
experienced significant meteorological station relocations due to
urbanization. This strategic geographic context enables systematic
investigation of urban morphology impacts on CUHI dynamics. The
study targets relocated stations in Anhui, integrating remote sensing
with machine learning models to quantify CUHII responses to
morphological parameters. By achieving these objectives, this
study seeks to advance both scientific understanding of CUHI
dynamics and educational

practices for training future

researchers and practitioners in urban climate adaptation.

2 Data and methodology
2.1 Study area

Anhui Province is located in eastern China (114°54’-119°37'E,
29°41'-34°38'N), lying in the transition zone between the Yangtze
River Delta and the Huaihe River Basin, with an area of
approximately 140,100 square kilometers. Its terrain shows
significant spatial variation: the southern part is dominated by
mountainous areas, while the northern part is mainly composed
of plains and hills. Major water systems in the province include the
Yangtze River and the Huaihe River. Climatically, Anhui has a
subtropical to warm-temperate monsoon climate, with an annual
average temperature ranging from 14°C to 17°C and annual
precipitation of 800-1800 mm.In terms of social economy, the
population of Anhui Province was approximately 61.27 million
in 2023, with an urbanization rate of 59.4%. As an important
part of the western Yangtze River Delta, the province is
experiencing rapid urban expansion. This geographical and
socioeconomic background makes Anhui an ideal place for
studying the driving effect of urban morphology on CUHI.
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FIGURE 1

Spatial distribution of selected meteorological stations in Anhui Province.

2.2 Data

The surface air temperature (SAT) data utilized in this study is
provided by the National Meteorological Information Center under
the China Meteorological Administration. This dataset includes
homogenized monthly and daily mean SAT, as well as maximum
and minimum SAT records from 2419 national meteorological
stations across China.

Over the past several decades, China’s land cover has undergone
significant transformations amid economic development. The
annual China Land Cover Dataset (CLCD) is a dynamic land use
dataset released by Wuhan University. As developed by Yang and
Huang (2021), this dataset was constructed with a 30-m spatial
resolution using 335,709 Landsat images via Google Earth Engine.
The most recent version of the dataset includes land cover
information for China spanning from 1985 to 2021, with an
overall land classification accuracy of 80%.

The population (POP) and gross domestic product (GDP) data
used in this study, were obtained from the “China Statistical
Yearbook” published annually by the National Bureau of
Statistics. These data provide detailed information on the
population distribution and economic development level over the
years, which helps to analyze the relationship between POP and
GDP factors and CUHIL

2.3 Methodology

2.3.1 Meteorological stations selecting and CUHII
calculation

Relocated stations were selected using historical records,
environmental assessments, and satellite imagery under four
criteria: 1) Environmental degradation (urbanization) necessitated
2) Altitude difference <50 m
distance <20 km; 3) Geographic similarity in terrain/climate; 4)
Instrument consistency. Forty-two stations meeting these standards

relocation; and relocation

Frontiers in Environmental Science

(Figure 1) were spatially balanced across Anhui’s four sub-regions,
with 5 km-radius buffer zones established.

The CUHII is defined as the temperature difference between
urban areas and reference meteorological stations (Ren et al., 2007;
Shi et al,, 2015). However, rapid urbanization has made it difficult to
locate unaffected rural reference stations near cities (Wen et al.,
2019). Relocated meteorological stations, often situated in
representative environments like open farmland or other
vegetated areas, provide accurate regional climatic baselines
(Yang et al, 2013) and serve as ideal rural reference sites.
to China’s
Standards, national stations must undergo at least 1 year of
Thus,
synchronized observation data from these sites offer high-quality
samples for CUHII research. The calculation method for CUHII of
each station after relocation is given in Equation 1.

CUHII =Ty — Tar (1)

According Surface Meteorological Observation

parallel observations before and after relocation.

In the above formula, Ty, is the average air temperature value
(°C) of station before relocation; T,, is the average air temperature
value (°C) of station after relocation that can represent the
background climate. Notably, during the period of rapid
urbanization, meteorological stations were significantly affected
by urbanization, resulting in frequent relocations. However, as
the pace of urbanization slows down and the protection of
station detection environments is strengthened, the number of
relocations has gradually decreased. Therefore, the method of
using relocated station data to explore the driving effect of urban
morphology on CUHI will have certain limitations in the future.

2.3.2 Urban morphologies datasets constructing
In this study, four land use types—built-up areas, water bodies,
cropland, and vegetation—were extracted from the CLCD dataset to
characterize land use patterns around meteorological stations. Land
use parameters included the built-up area ratio (ARbt), water body
area ratio (ARw), cropland area ratio (ARc), and vegetation area
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ratio (ARv). Landscape parameters mainly comprised the largest
patch index (LPI) and average fractal dimension (FRA) for each land
use type (Li et al., 2011; Ren et al., 2015). LPI reflects the dominant
land use in the study area; higher values indicate a more significant
role of that type in the overall landscape (Wu, 2000). As an index for
characterizing patch configurations, FRA shows that a higher fractal
dimension means more complex patch shapes and more fragmented
distributions (Wu, 2000). These landscape metrics were calculated
using Fragstats software.

Location parameters included the distances (DIS) between
stations and centroids of various land uses, as well as distances
from stations to urban centers (Liu et al., 2014). In ArcGIS, different
land uses within station buffer zones were extracted, and their
centroids were derived using the Calculate Geometry tool. This
study also incorporated social indicators such as POP and GDP of
the cities where stations were located. These social indicators serve
as surrogates for measuring regional socioeconomic characteristics,
which may influence the thermal environment around stations (Ren
et al., 2015; Wen et al., 2019).

2.3.3 Machine learning modeling

This research explored the physical mechanisms driving the
formation of the CUHI and applied various statistical models to
analyze the responsive relationship between CUHII and urban
morphological parameters. As an effective supervised learning
approach, Support Vector Regression (SVR) is widely applied in
various fields. By introducing the concept of support vectors, SVR
enhances the data fitting capability while maintaining model
complexity (Huang et al., 2025).

Derived from decision trees, the Random Forest (RF) model is a
widely adopted and flexible machine learning technique (Hastie
et al, 2009) with remarkable performance. Compared to
conventional linear regression, RF leverages its non-parametric
nature to effectively capture complex nonlinear relationships
between predictors and response variables (Rafael et al., 2025).
This model also demonstrates capability for variable importance
identification (Zeng et al., 2020), enabling the decomposition of
multi-factor contribution mechanisms. In this study, the RF model
was trained and tested using 10-fold cross-validation (CV), with
predictive performance evaluated via the coefficient of
determination (R*). Model optimization focused on two core
parameters: the number of decision trees and theproportion of
candidate variables sampled at node splitting. Variable
importance was quantified through Mean Decrease in Accuracy
(MDA) and Mean Decrease in Impurity (MDI), where higher values
indicate greater contributions of input variables. Using CUHII as the
dependent variable, this research integrated multidimensional
variables—including land use parameters, landscape pattern
metrics, geometric characteristics, and socioeconomic factors—to
construct SVR and RF models separately. By comparing the
importance scores and statistical significance of input parameters
across both models, the impact of urban spatial morphology on
CUHII was quantified. This approach identifies dominant drivers of
CUHII and their contribution hierarchy, providing mechanistic

insights for heat island mitigation in urban planning.
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3 Results

3.1 Characteristics of CUHI and urban
morphologies

SAT measurements at relocated stations exhibited consistent
decreases compared to pre-relocation baselines. These station-pair
observational discrepancies during synchronous monitoring periods
directly quantify CUHII in corresponding urban areas. Figure 2
delineates the spatial distribution of CUHII across Anhui Province,
with recorded values spanning 0.06°C-1.12°C. Through natural
breaks classification (Wen et al, 2019), seven distinct station
groups were identified based on CUHII magnitude. The highest-
intensity cluster (0.97°C-1.12°C) consists of five stations, dominated
by Mengcheng Station in northern Anhui where pre-relocation
built-up coverage reached 61.08%. Three regionally representative
stations - Huainan (north Anhui), Hefei (central Anhui), and
Dongzhi (south Anhui) - all exhibited CUHII exceeding 1°C,
each surrounded by over 40% built-up areas prior to relocation.
Conversely, the lowest-intensity group (0.06°C-0.21°C) contains
four stations, including Fengtai Station in northern Anhui with
only 15.2% pre-relocation built-up coverage. The remaining three
stations in this category maintained built-up ratios below 20%,
illustrating the direct correlation between urbanization levels and
thermal environment alterations. This stratification systematically
reveals how varying degrees of urban encroachment differentially
influence  microclimate  conditions  at  meteorological
observation sites.

In addition, this paper conducted a statistical analysis of the
distribution characteristics of urban morphological parameters
before station relocation. Taking built-up areas as an example,
the key findings are as follows: for ARbt, the average coverage
across all stations stood at 31.08%, with values ranging from 9.3%
to 68.8%. The probability density showed a trend of first increasing
and then decreasing as the built-up area expanded, approximating
a left-skewed normal distribution, with the density peak occurring
in the interval of 25%-30% built-up coverage; the average value of
LPIbt was 24.37, with a maximum of 66.96 and a minimum of 2.49;
the highest probability density was observed in the range of 20-25;
fractal analysis results indicated that FRAbt had an average of 1.09,
with 1.02-1.13, and the
1.08-1.1 corresponded to the highest probability density; in

values spanning interval of
terms of distance metrics, DISbt had an average of 0.76 km,
ranging from 0.22 km to 1.75 km, with the density peak
appearing in the interval of 0.71-0.82 km. These distribution
patterns rigorously confirm that the station environments
before relocation had already been significantly affected by
urbanization. Specifically, the configuration of built-up land
cover directly contributes to urban thermal bias in surface air
temperature (SAT) records through altered energy balance
mechanisms. The concentration of parameters within specific
value ranges—especially the fact that ARbt exceeded 25% at
most stations—further validates the existence of a critical
threshold, beyond which wurban encroachment begins to
significantly distort microclimate observations.
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Patterns of CUHI of relocation station samples in Anhui province.

3.2 Nonlinear modulation of CUHII based on
machine learning

This study quantified relationships between CUHII and urban
of
meteorological stations. The heatmap (Figure 3) visualization

morphology  through  correlation  analysis relocated
employs color gradients (blue: negative, red: positive) and
intensity scaling to represent correlation strength, with asterisks
denoting statistical significance. LPIbt showed the strongest positive
correlation (r = 0.68, p < 0.001), while ARc demonstrated maximal
negative correlation (r = -0.59, p < 0.001). These patterns confirm
urbanization-induced thermal impacts: expanding impervious
surfaces reduce land thermal capacity and amplify anthropogenic
heat, whereas agricultural lands enhance evapotranspiration cooling
(Zengetal., 2010; Zhao et al., 2018). Moderate correlations emerged
for ARbt, LPIc, and POP, all p < 0.01. Contrary to previous findings
(Knight et al., 2010), DISu showed non-significant correlation (r =
0.09), potentially reflecting regional sampling limitations - a
methodological constraint to be addressed through expanded
Yangtze River Delta research.

The predictive performance of two distinct modeling
approaches—SVR and RF—was evaluated for CHUII estimation.
SVR showed training performance (R* = 0.91, RMSE = 0.05°C;
Figure 4a) and maintained test phase constraints (R* = 0.67, RMSE =
0.09°C). The RF model outperformed both approaches, achieving
exceptional training accuracy (R* = 0.95, RMSE = 0.04°C; Figure 4b)
while maintaining robust test generalization (R*> = 0.76, RMSE =
0.08°C). Comparative metrics highlight RF’s superior capability in
capturing nonlinear relationships. Training phase analysis showed
46% higher R* than linear models and 4% improvement over SVR.
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Test phase performance demonstrated 124% R* enhancement versus
linear approaches and 13% superiority over SVR. The 50% RMSE
reduction in RF’s test predictions compared to linear models further
confirms its precision. Mechanistically, RF’s ensemble decision tree
architecture effectively integrates multiple urban parameters
through recursive partitioning. This methodological advantage
positions RF as the optimal tool for urban climate modeling,
particularly in complex urbanization scenarios requiring high
spatial resolution predictions. Future implementations will
integrate temporal urban growth data to enhance model
generalizability across evolving metropolitan regions.

This study employed the RF model to evaluate the relative
importance of urban morphological parameters in predicting
CHUII (Figure 5). The analysis revealed distinct hierarchical
contributions across four parameter categories. For land use
parameters, ARbt emerged as the second most influential factor
(importance = 0.18), consistent with prior findings that urban-rural
surface contrast alters net radiation partitioning into sensible versus
latent heat fluxes (Miao et al., 2012). ARc (importance = 0.15), ARw
(0.11), and ARv (0.09) followed in descending order. Landscape
parameters demonstrated greater dominance, with LPIbt (0.25)
ranking first overall - a 39% higher importance than ARbt. This
reflects how contiguous urban patches reduce surface heterogeneity,
impeding energy-matter exchanges between adjacent land covers
(Estoque et al,, 2017). LPIc (0.17) showed comparable influence to
ARbt, with urban vegetation’s cooling capacity attributed to
synergistic evapotranspiration and shading effects (Givoni, 1994;
Shashua-Bar and Hoffman, 2000). Location parameters exhibited
moderate impacts, with distance to DISbt (0.09) surpassing POP

(0.08) in predictive importance. Comparative analysis established
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FIGURE 3

The Spearman correlation analysis of CUHII and various parameters.

land use and landscape parameters collectively account for 82% of
model explanatory power, versus 17% from location/social factors.
The critical parameter hierarchy was identified as: LPIbt > ARbt >
LPIc > ARc > DISbt > POP. While these findings elucidate two-
dimensional urban morphology effects, the study acknowledges a
methodological gap in three-dimensional parameter integration.
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Previous research demonstrates building height variability coulud
the (Chun
Guldmann, 2014), while tree canopy vertical structure contributes

explains street-level temperature variance and
the cooling through multi-layer shading (Zheng et al., 2019; Guo
et al,, 2023). Future investigations will incorporate LIDAR-derived

3D metrics (e.g., sky view factor, frontal area index) through

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1647596

Shi et al.

(a) SVR model
5
| — Error=0
Error=30%
~ 1.2
e
e 1 o
.g. 0.9 o
g [+
. 1 (e}
= é) o
£ 0.6 - 0§ % € 5
E=] % ®o 0
2 T o
& 03 o
’ o R?,;,=0.91 RMSE,,;,=0.05
12 R%,.=0.67 RMSE,.=0.09
0 . i~ R
0 0.3 06 09 1.2 15
Observed value (°C)

FIGURE 4

Predicted value (°C)

10.3389/fenvs.2025.1647596

(b) RF model
S
4 © Train data
1.2 o Test data
0.9 % oo
o (o] o
Q,
064 Qoo °
4 26990 ©
o &
039 &2 R?,,,=0.95 RMSE,,,;=0.04
4o
0 R2,,=0.76 RMSE,,=0.08
T T T T T T T T T
0 0.3 0.6 0.9 1.2 1.5
Observed value (°C)

The comparison between predicted CUHII values and observed CUHII values by conducting different models (a,b).

GDP =3
POP {03
DISu
DISv
DISw
DISc 1
DISbt
FRAV A
FRAw -
FRAVv A
FRADt
LPIv
LPIw
LPIc 1
LPIbt ]
ARv
ARw T3
ARe{————™3@
ARbt ) [[] Land use parameters
¥ T T T ¥ T T T T T ¥ T T T v T ¥ T T
0 0.05 01 015 0.2 025 03 035 04 045 05
Feature importance

Variable

[[] Social parameters
[] Location parameters

[] Landscape parameters

FIGURE 5
The importance rank of urban morphological variables for the RF

model predicting the CHUII.

multisensor remote sensing fusion, enabling comprehensive
characterization of urban form-thermal environment interactions
across spatial scales.

3.3 Educational application of
research findings

The following section describes how the research methods and
findings were adapted for a university course on Applied Data
Science, demonstrating the practical utility of urban climate
research in education.

The flipped classroom model restructures traditional pedagogy
by reversing the sequence of knowledge transfer (pre-class self-
study) and knowledge internalization (in-class interactions).
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Pioneered by Bergmann and Sams (2012), this approach shifts
instructional focus to student-centered collaborative activities,
where teachers facilitate discussions and problem-solving rather
than deliver lectures. Key mechanisms include: 1) Pre-class
knowledge acquisition through digital resources; 2) Classroom
time dedicated to applying concepts through peer interactions
and teacher guidance. This dual-phase design enhances student
autonomy while socio-emotional connections
through structured teacher-student dialogues. Empirical studies

strengthening

across disciplines confirm its effectiveness in fostering deeper
cognitive engagement and meeting learners’ psychological needs
(Schultz et al., 2014). This course achieves precise breakthroughs
through a three-tier system reconstruction and optimizes the
teaching process by leveraging the flipped classroom model:
students engage in self-directed learning of basic theories of
spatiotemporal data analysis before class, focus on technical
practice and collaborative inquiry during class, and extend to
industry application projects after class. The specific architecture
is as follows (Figure 6).

During the knowledge input phase, students establish a
spatiotemporal analysis framework through self-directed learning.
They methodically study meteorological time series decomposition
and spatial autocorrelation analysis using micro-lecture videos,
perform sliding average filtering on temperature data in Jupyter
Notebook, and generate daily urban heat island intensity curves.
Teachers pre-release a library of typical urban heat island cases,
requiring students to calculate heat island effects during heatwaves
and conduct spatial overlay analysis of building density to form
initial insights into spatiotemporal correlations. The knowledge

internalization phase focuses on three core classroom
components. First, students engage in case comparison
discussions and group debates on the applicability of

interpolation algorithms in complex urban areas. Second, they
develop spatiotemporal density clustering algorithms, perform
kernel density calculations on meteorological station data using
Python, and optimize sliding time window parameters. Third,
students collaborate to build 3D feature engineering modules
(building height, sky visibility) and tune thermal environment
feature matrices. For example, in feature engineering, they
integrate street view images to extract aspect ratio indicators and
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TABLE 1 Teaching practice outcomes.

Metric Pre-reform Post-reform p-Value
Spatial Interpolation Mastery 58% 93% <0.01
Spatiotemporal Autocorrelation Accuracy 47% 85% <0.01
Machine Learning Modeling Error 72% 37% <0.01

construct multidimensional driver matrices with remote sensing
ecological indices. During knowledge transfer, extended projects
involve integrating multi-source data to construct random forest
models for heat island prediction and ventilation corridor
optimization. The final comprehensive solution includes a
spatiotemporal data dashboard, Python API prediction model,
and parameter sensitivity planning report, covering the full
technical chain from data governance to planning decisions.

This study obtained ethical exemption from Tongling University
Ethics Committee for analyzing anonymized classroom interaction
data. Students were informed through institutional platforms about
pedagogical data usage, with rights to voluntary participation and
withdrawal preserved. All procedures complied with institutional
guidelines and national regulations. Implemented in Spring 2023,
the flipped classroom model enhanced students’ spatiotemporal
skills
internalization, post-class application” framework. A comparative
study between 2022 (60-student experimental class: 32M/28F) and
2021 (58-student control class) cohorts showed significant
improvements: experimental class mean score 93.7 vs. 74.8, with

analysis through a “pre-class construction, in-class

an 18.9-point difference confirmed by t-test (p < 0.001). Mastery of
spatial interpolation rose from 58% to 93%, spatiotemporal
autocorrelation accuracy from 47% to 85%, and machine learning
modeling errors dropped from 72% to 37%—all metrics showing
statistical significance (p < 0.001) (Table 1). Course enrollment
increased, with higher proportions of high-scoring students. The
research-teaching integration established an undergraduate practice
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mechanism: over 90% of students reported deepened machine
learning modeling understanding, 80% noted improved research
and writing skills. Fifteen undergraduates participated in urban
thermal environment projects over three semesters, a 100%
increase from pre-reform levels. This practice demonstrates that
pedagogy,
enhances  learning

integrating  real-world cases, innovative and

comprehensive  evaluations  effectively
motivation, strengthens the understanding of CUHII physics
mechanisms, and prepares students for academic and

professional careers.

4 Discussion

This study quantified the driving effect of urban morphology on
canopy urban heat island intensity (CUHII) in Anhui Province
using machine learning methods and explored the application of the
research results in teaching. Despite achieving certain findings, there
are still the following limitations:

This study focuses on Anhui Province. Although it can reflect
the impact of urbanization in the western Yangtze River Delta on
heat islands, the singularity of the research area may limit the
generalizability of the conclusions. The urbanization model of
Anhui Province (e.g., dominated by the expansion of small and
medium-sized cities) differs from that of the high-density urban
agglomerations on the eastern coast, resulting in possible differences
in the driving mechanisms of urban morphological indicators (such
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as building density and landscape fragmentation) on heat islands
compared with regions like Shanghai and Zhejiang. In addition, this
study mainly uses two-dimensional indicators such as urban land
use and landscape patterns to characterize urban morphology,
without considering the complex driving effect of urban three-
dimensional morphology on CUHI (Shi et al., 2015; Davis et al,,
2016; Tysa et al.,, 2019).

Although the random forest model performs better than support
vector regression in nonlinear fitting, the “black box” nature of
machine learning models limits the physical interpretation of
driving mechanisms (Reichstein et al, 2019). For example, it
cannot quantify the interaction intensity between the proportion
of built-up areas and farmland coverage. The variable importance
analysis only relies on mean decrease accuracy (MDA) and mean
decrease impurity (MDI), without combining tools such as partial
dependence plots to reveal the marginal effects of parameters on
heat island intensity, which may mask the threshold effects of key
indicators (Gu et al., 2024; Wang et al., 2024; Liu and Shi, 2025).
Moreover, the model does not consider temporal dynamics and is
only based on static urban morphology data, failing to capture the
interannual variation patterns of heat islands during the
urbanization process.

In addition, the flipped classroom model has improved students’
technical application ability, but the educational application is
limited to a single course with a small sample size, and the
evaluation indicators mainly focus on skill mastery, lacking long-
term tracking of students’ scientific research thinking (such as
problem raising and scheme design). In addition, the teaching
cases mainly wuse two-dimensional urban morphological
parameters (such as the proportion of built-up areas and largest
patch index), lacking three-dimensional morphological indicators
(such as building height, floor area ratio, and sky view factor).
Existing studies have confirmed that the vertical structure of
buildings has a significant impact on surface radiation and air
movement (Shao et al., 2023; Zhang et al, 2023; Ding et al,
2024), which may lead to cognitive biases regarding the
generalizability of the model.

Future research will be improved from three aspects: First,
expand to the entire Yangtze River Delta, compare and analyze
the differences in heat island driving mechanisms among Anhui,
Jiangsu, Zhejiang, and Shanghai, and incorporate the impact
mechanisms of urban three-dimensional morphology such as
building height, street aspect ratio, and sky view factor on heat
islands. Second, adopt more diverse machine learning models such
as gradient boosting trees and graph neural networks, enhance
interpretability by combining SHAP values and partial
dependence plots, quantify parameter effects, integrate annual
urban expansion data to simulate the dynamic changes of heat
islands, and predict risks under different scenarios. Third, improve
educational applications, build a heat island teaching database
covering multiple climate zones, extend the tracking period to
evaluate students’ abilities, establish inter-school cooperation to
promote the “research-teaching” integration model, and develop
an online experimental platform to allow students to simulate heat
island changes by adjusting urban morphological parameters,
enhancing their intuitive understanding of driving mechanisms.

In summary, this study provides quantitative methods and
educational practice cases for the impact of urban morphology
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on heat island intensity, but needs further improvement in
regional representativeness, data integrity, model interpretability,
and educational promotion to more accurately serve urban climate
research and talent cultivation.

5 Conclusion

This study investigates canopy urban heat island (CUHI)
dynamics in Anhui Province using relocated meteorological
stations, remote sensing data, and machine learning. By
analyzing 42 pairs of relocated stations, we quantify CUHI
(CUHII)
morphology. CUHII values at the stations range from 0.06°C
to 1.12°C, reflecting temperature differences between urban and

intensity and its relationship with urban

rural environments. The largest patch index of built-up land
(LPIbt, importance = 0.25) and built-up area ratio (ARbt, 0.18)
emerge as key drivers of thermal anomalies. This indicates that
land
significantly influence local temperature patterns. In contrast,

the spatial contiguity and proportion of built-up
cropland coverage (ARc, r = —0.59) shows notable cooling effects,
likely due to evapotranspiration and vegetation shading. A
random forest (RF) model outperforms linear regression and
support vector regression, with training and test R*> values of
0.95 and 0.76, respectively, and root mean square errors (RMSE)
of 0.04°C and 0.08°C. The RF model’s superiority stems from its
ability to capture nonlinear relationships between urban
morphology and CUHII through ensemble learning. It
effectively integrates multiple variables, such as landscape
indices and distance metrics, to provide robust predictions of
thermal anomalies in urban environments. The research
framework is adapted into a flipped classroom model,
where students apply the same dataset and modeling
workflows to enhance their mastery of spatial analysis and
nonlinear modeling techniques. This integration demonstrates
the utility of real-world climate data in data science education,

bridging academic research with practical skill development.
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