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Agricultural arsenic pollution poses increasing environmental and public health
challenges. Making evidence-based conservation strategy is key for effective
pollution control, but is challenged by data scarcity which is common in China. To
address the scarcity of monitoring data, we developed an integrated
methodology combining the Soil and Water Assessment Tool (SWAT) and the
Load Estimator (LOADEST) to assess long-term variations in the arsenic load
within the Zhangjiang River (ZR) watershed, China. Our findings suggest that
approximately 1% of the urbanized area may contribute to up to 75% of the
current stream arsenic load (a preliminary inference based on load differences
betweenGTDK and upstream sites), though this conclusion is constrained by data
limitations (e.g., stream flow parameters transferred from an adjacent watershed,
limited arsenic monitoring scope, and low NSE at GTDK). This area could be a
potential pollution hotspot, while diffuse arsenic pollution across thewatershed is
on the rise due to expanding agriculture, increased contaminated manure usage
and the shifting hydroclimatic condition. Results showed that recycling arsenic-
rich animal waste as manure could have the unintended consequence of building
up an arsenic storage pool in farmland soils, turning croplands into pollution
sources and increasing the risk of diffuse arsenic pollution, thus calling for
adjustment in current agricultural management strategy. The proposed
modeling method proves as a promising tool for investigating arsenic
pollution in data-sparse region, supporting the assessment and optimization
of agricultural management practices and policies for arsenic pollution control.
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1 Introduction

Arsenic pollution originates from diverse anthropogenic activities, such as agriculture,
mining operations, and industrial discharge, and it poses a significant environmental
challenge globally (Bidone et al., 2016; Cha et al., 2016; Lombard et al., 2021; Luo et al., 2010;
Mohammadi et al., 2019; Novak et al., 2010; Zhao et al., 2019). In China, arsenic pollution is
rising and threatening food security, public health, and aquatic ecosystems (Zhang et al.,
2024; Gupta et al., 2018). Agricultural cropland soils could be exposed to arsenic
contaminant, when arsenic-rich animal wastes are recycled as manure fertilizer, posing
risks to food safety and turning cropland soils into a potential sources of diffuse arsenic
pollution. Fujian Province, China, is an example of a looming arsenic pollution crisis. As a
byproduct of the booming animal farming industry in Fujian Province which has doubled
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its scale from 2020 to 2023, increasing amount of animal wastes are
produced each year and require proper disposal to prevent pollution
(Mangalgiri et al., 2015). Current conservation policy bans directly
discharging animal wastes into stream channels. Consequently, large
amount of arsenic-rich animal wastes is recycled as manure for
plantation, making soils a major storage pool of arsenic (Liu et al.,
2015). How such agricultural management practice at cropland field
would aggregate to impact water quality at watershed scale require
immediate investigation, so that current management strategy could
be optimized to control arsenic pollution.

Numerical modeling has been shown to be useful for assessing
arsenic pollution. Kim and Ko (Kim and Ko, 2023) developed a 2D
reactive transport model (MODFLOW+Geochemist’sWorkbench)
to assess the impact of mine wastewater on reservoirs, and Sathe and
Mahanta (Sathe and Mahanta, 2019) applied MODFLOW and
MT3DMS to map arsenic transport in groundwater and identify
pollution-free zones. Data-driven machine learning approaches,
such as boosted regression trees and logistic regression, have also
been employed to assess risks of arsenic pollution, considering key
factors such as precipitation, flow-path length, and geochemical
conditions (Ayotte et al., 2016; Lombard et al., 2021; Mohammadi
et al., 2022; Liu et al., 2020).

However, in Fujian province, most streams and rivers threatened
by arsenic pollution, particularly smaller ones, remain ungauged, with
only low-frequency water quality monitoring data available (monthly
or bi-monthly sampling schedule). This data scarcity has restricted the
application of conventional modeling approaches in Fujian. Initiating
new large-scale monitoring plans covering as many watersheds as
possible is costly, and even if implemented it may be too late to acquire
adequate data for use in analysis and ultimately enable effective
pollution control practices.

To address these challenges and to make the most of the limited
monitoring data, we propose a new modeling framework that
integrates the Soil and Water Assessment Tool (SWAT) and the
LOADEST model. This new framework takes advantage of SWAT’s
physically-based structure to enable stream flow modeling in
ungauged watersheds by parameter transferring, which has been
shown viable in past studies (Cheng et al., 2016; Meng et al., 2020;
Roth et al., 2016). In addition, LOADEST employs the sparse water
quality monitoring data to provide a reliable prediction of the stream
pollutant load (Du et al., 2019; Petach et al., 2021; Shrestha et al.,
2020; Shu et al., 2024).We apply this framework to Zhangjiang River
(ZR) watershed, an ungauged watershed in southern Fujian that is
subjected to the increasing threat from agricultural arsenic pollution.
Our objectives are to: 1) test the viability of this new modeling
framework in delivering acceptable results quantifying arsenic
pollution in a data-scarce region, and 2) analyze potential
sources, related factors, and the ongoing trend of arsenic
pollution in the ZR watershed to support evidence-based
conservation management decision-making.

2 Materials and methods

2.1 Method schematics

The schematics of the proposed modeling framework are shown
in Figure 1. To acquire stream flow data for ungauged sites at ZR, this

framework first takes advantage of SWAT model’s parameter
transferability as a physically-based model. SWAT parameter
transferring is a well-developed modeling technique, which has
shown satisfactory results in past applications (Andrianaki et al.,
2019; Cheng et al., 2016; Yen et al., 2015). The land phase of
hydrologic cycle in SWAT is based on the water balance Equation 1:

ΔSW � R − Qsurf − E −Wseep − Qgw (1)

Where Δ SW is the change in soil water content on a given day; R
is the amount of precipitation on a given day; Qsurf is the amount of
surface runoff on a given day; E is the amount of evapotranspiration
on a given day; Wseep is the amount of percolation and bypass flow
on a given day; Qgw is the amount of return flow on a given day. Key
parameter values and descriptions of key parameters in SWAT will
be discussed in Section 3.1.

SWAT was first calibrated and validated at an adjacent
watershed, and the obtained parameters were transferred to the
SWAT model established for the ZR watershed following the
distance approximation principle. The obtained SWAT modeled
stream flow for ZR, together with sparse water quality observation
data, were then used as inputs for LOADEST model, which was
developed by the U.S. Geological Survey (USGS) for estimating
constituent loads in rivers based on continuous flow data and low-
frequency water quality data.

LOADEST automatically selects one of the nine predefined
regression model for a given calculation task based on set
performance metrics. Two of those selected equations being
adopted in this study are described below (Equations 2, 3):

Ln Load( ) � a0 + a1 · LnQ + a2 · LnQ2 + a3 · Sin 2 · pi · dtime( )
+ a4 · Cos 2 · pi · dtime( ) + a5 · dtime + a6 · dtime2

(2)
Ln Load( ) � a0 + a1 · LnQ + a2 · dtime2 (3)

Where Load is stream arsenic load; Q is stream discharge; dtime
is time interval (1 day); a0, a1, a2, a3, a4, a5 and a6 are regression
coefficients.

The performance of LOADEST was evaluated based on R2 and
the Nash-Sutcliffe efficiency (NSE) coefficient (Equations 4 and 5),

R2 � ∑n
i�1 Li − L( ) Mi −M( )

∑n
i�1 Li − L( )∑n

i�1 Mi −M( )[ ]
2

(4)

NSE � 1 − ∑ Mi − Li( )2
∑ Mi− ‾M( )2 (5)

where Li represents the ith simulated data; Mi represents the ith
measured data; ‾L represents the mean of the simulated data; ‾M
represents the mean of the measured data; i represents the length of
the simulated sequence; and n represents the number of samples.

Modeling results with R2 and NSE greater than 0.7 will be
considered satisfactory. Subsequent analyses will be conducted
using modeling results that meet these performance criteria.

2.2 Study area

The study area of this research is the main tributary of ZR
watershed, which has a drainage area of 813 km2. The ZR
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watershed experiences a subtropical monsoon climate with a multi-
year average temperature of 19 °C–21 °C and average annual
precipitation of 1,500–1,600 mm. Figure 2 shows the land use
types in this area, which include developed urban area (2.2%),
cropland and orchards (36.3%), and forestland (60.5%). Arsenic in

ZR is derived from a mixed source of agricultural activity, animal
farming, and industrial discharge. Notably, following the trend of
Fujian province, the ZR watershed has also witnessed rapid growth in
its animal farming sector, with an approximate 23% average annual
increase in poultry numbers since 2016, reaching 1.59 million in year

FIGURE 1
Schematics of arsenic load estimation using SWAT and LOADEST.
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2023. During the same period, pig numbers have also undergone
steady growth at about 8% year-over-year. Discharging animal
farming waste directly to streams is prohibited and the waste is
widely recycled as manure fertilizer which leads to arsenic
pollutant being introduced to cropland soils. Aside from
agricultural arsenic pollution, industrial activities in Yunxiao
County, including mineral processing, metal fabrication, and
chemical manufacturing, may be another critical source of
arsenic pollution.

The ZR is currently ungauged for stream flow data. A local
chronicle has recorded an average historical stream flow of 32.1 m3/s
for the ZR (Yunxiao CLC Committee, 1999), and this is the only
available information about flow condition. Water quality samples
were regularly collected along the main river channel, following a
monthly or bi-monthly schedule, at three sampling sites (indicated
as GTDK, YGLQ, and YXHQ in Figure 2), each corresponding to
100%, 98.5% and 56% of watershed drainage area. It is of note that
the urban town area of Yunxiao county is located between GTDK
and YGLQ. Arsenic concentration was measured using atomic
fluorescence spectrometry method following Chinese National
Environmental Protection Standard (HJ 694–2014).

In addition, the Jiulong River west branch (JRW) is a main
tributary of the Jiulong River in Fujian Province, and the JRW

watershed is located next to ZR watershed. The similarities in
topography, plant types, soil types and climatic conditions
between the two adjacent watersheds warranted the sharing of
SWAT model parameters, based on attribute similarity and the
distance approximation principles of parameter transfer (Table 1).
The stream flow of the JRW is monitored at Zhengdian hydrological
station, which is marked in Figure 2.

The basic data used for analysis included annual records of
fertilizer usage, types and numbers of livestock and poultry, the area
of cropland and orchards, and population, and they were obtained
from the Yunxiao County Statistical Yearbook. Additionally, the
input data required for the SWAT model included meteorological,
land use, soil, hydrological, and Digital Elevation Model (DEM)
data. The sources of these data are listed in Table 2.

3 Result

3.1 SWAT parameterization and validation

Daily flow data obtained from Zhengdian hydrological station
for 2010–2014 and 2015–2022 were used to calibrate and validate
the SWAT model, respectively, for the JRW watershed. The time

FIGURE 2
Location of study area and land use types. Note: type of land use: “AGRL” = agricultural; “BARR” = barren; “FRST” = forest; “ORCD” = orchard;
“PAST” = pasture; “URBN” = urban; “URLD” = urban low density; “WATR” = water.
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series of measured vs. simulated daily flows for the JLWR watershed
are shown in Figure 3.

TheR2 values for JRW stream flowmodeling during calibration and
validation period were 0.77 and 0.76, respectively, and theNSE values of
the modeling result during the calibration and validation period were
0.77 and 0.77, respectively. Overall, the stream flow modeling results
were considered reasonable. The calibrated SWATmodel parameters of
JRW watershed were then transferred to the ZR watershed for stream
flow modeling (model parameters are shown in Table 3). The SWAT
established for the ZRwatershed with transferred parameters yielded an
average stream flow of 29.6 m3/s for the study period 2016–2023, which
was close to recorded average stream flow of 32.1 m3/s by the local
chronicle (Yunxiao CLC Committee, 1999). This modeled stream flow
was used as the LOADEST input.

3.2 Arsenic load estimation

LOADEST was applied to arsenic concentration data collected at
the three sites along main channel of ZR (GTDK, YGLQ and

YXHQ) for the study period 2016–2023, and an overall
reasonable model performance of the modelled daily arsenic load
was reported, with NSE values of 0.21, 0.86, and 0.73, and R2 values
of 0.58, 0.77, and 0.81, respectively, for the three mentioned sites
(Table 4). The GTDK site is located at the downstream part of ZR
close to watershed outlet, and it is subjected to the impact of urban
runoff and industrial discharge from the urbanized part of Yunxiao
county (Figure 2), while the rest of watershed represented by YGLQ
and YXHQ is predominantly impacted by agricultural diffuse
arsenic sources. This may have adversely affected the
performance of LOADEST at GTDK.

The time series of long-term daily arsenic load calculated by
LOADEST is plotted in Figure 4. For comparison, the reference
arsenic load—derived from observed concentrations multiplied by
SWAT-modeled streamflow (labeled ‘Estimated Load’)—is also
plotted in Figure 4. Figure 5 summarizes the estimated load for
the entire simulation period for the three studied sites in box plots.
FromYXHQ to YGLQ, the total drainage area increased by 76%, and
correspondingly the average stream arsenic load during the whole
study period also increased by 43%, from 156 kg/yr to 223 kg/yr

TABLE 1 Comparing watershed attributes of JRW watershed and ZR watershed.

Attribute JRW watershed ZR watershed

Climate Subtropical monsoon climate Subtropical monsoon climate

Main soil types Lateric red soil Lateric red soil

Annual rainfall deptha 1,515 mm 1,696 mm

Average temperaturea 23.2 °C 23.7 °C

Average elevation 460 m 268 m

Average slope 18.7° 16.3°

Land cover percentage (Forest/Agriculture/Urban) 66.1%/26.4%/5.3% 60.5%/36.3%/2.2%

aData is based on records of weather stations in the two watersheds for the study period 2016 - 2023.

TABLE 2 Data required for model construction.

Data types Parameter description Data sources

DEM data Elevation, slope, with accuracy of 12.5 m ALOS PALSAR (https://search.asf.alaska.
edu/)

Land use data — Local natural resources agency

Soil data Accuracy of 1,000 m Harmonized world soil database (HWSD)

Meteorological data Yunxiao county meteorological stations report six parameters:
daily average precipitation, daily maximum temperature, daily
minimum temperature, daily average wind speed, daily average

relative humidity and daily average solar radiation

Local meteorological station

Hydrological data Zhengdian hydrological station (daily flow data) Local hydrographic bureau

Water quality data (arsenic concentration) Monitoring section downstream of Chedong village (once every
2 months)

Local ecological and environmental bureau

Demographic data — Yunxiao county statistical yearbook

Type and number of livestock and poultry breeding species — Yunxiao county statistical yearbook

Fertilizer usage amount — Yunxiao county statistical yearbook

Area of cropland and orchards — Yunxiao county statistical yearbook
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(Table 5). This proportional increase between the drainage area and
pollutant load demonstrates the typical characteristic of diffuse
source pollution, implying that agricultural activities are likely
the dominant contributor to arsenic pollution in this part
of watershed.

The arsenic concentration from water samples collected at
GTDK was significantly higher (mean = 9.3*10−4 mg/L) than that
collected at YGLQ (mean = 3.1*10−4 mg/L, Dunn’s post-hoc test p =

3.0*10−7) and YXHQ (mean = 2.7*10−4 mg/L, Dunn’s post-hoc test
p = 4.1*10−8) (Table 5). The modeled multi-year average stream flow
values at GTDK YGLQ, and YXHQ were 29.6 m3/s, 29.4 m3/s, and
21.2 m3/s, respectively. By multiplying the average concentration
with the average stream flow, the average annual arsenic load for
GTDK, YGLQ and YXHQ was estimated as 868 kg/yr, 287 kg/yr,
and 181 kg/yr respectively (Table 5). Arsenic load generated within
the drainage area of each site was estimated to be 581 kg/yr, 106 kg/yr

FIGURE 3
Comparison of measured and simulated daily flow for JLWR at Zhengdian monitoring site, for the model calibration period (2010–2014) (top) and
validation period (2015–20122) (bottom).

TABLE 3 SWAT model parameter calibration results.

Parameters Definition Value determinationmethod Calibrated value

SOL_AWC Soil available water content R 1

SOL_K Soil saturated hydraulic conductivity R 1

CN2 Runoff curve number R −0.2

ESCO Soil evaporation compensation factor V 0.95

EPCO Plant evaporation compensation factor V 0.95

SURLAG Surface runoff lag coefficient V 0.8

GW_DELAY Groundwater delay time V 69

ALPHA_BF Baseflow alpha factor V 0.4

GWQMIN Threshold depth of water in the shallow aquifer required for return flow to occur V 100

GW_REVAP Groundwater re-evaporation coefficient R 1

REVAPMN Threshold depth of water in the shallow aquifer for “revap” to occur R 1

RCHRG_DP Deep aquifer percolation coefficient V 0
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and 181 kg/yr for GTDK, YGLQ and YXHQ respectively, in which the
urbanized drainage area of GTDK contributed to 67% of total arsenic
load (868 kg/yr) in ZR watershed.

LOADEST yielded similar results, where the average annual
arsenic load was determined as 889 kg/yr, 223 kg/yr, and 156 kg/yr
for GTDK, YGLQ and YXHQ respectively (Table 5). These three
sites each has 666 kg/yr, 67 kg/yr and 156 kg/yr arsenic load
generated within their drainage area, with drainage area of
GTDK contributing to 75% of the total arsenic load (889) in the
ZR watershed. It is of note that the urbanized area around GTDK
only accounted for about 1.5% of that of the total watershed area,

which implies that urban and local industrial activities have a strong
influence on water quality.

The low NSE (0.21) and R2 (0.58) at GTDK may be attributed to
two key factors: (1) High variability of point sources (industrial
discharge and urban runoff) in the Yunxiao County urban
area—monthly monitoring failed to capture short-term peak
arsenic concentrations from accidental emissions; (2)
Hydrological disturbance: The GTDK site is located at the
confluence of a small urban tributary, leading to sudden changes
in stream flow (coefficient of variation = 0.35) that deviate from the
SWAT-simulated steady flow. These factors caused deviations in

TABLE 4 Summary of arsenic load estimated by LOADEST.

Site LOADEST regression equation for each site NSE R2 P-value

YXHQ Ln (Load) = a0 + a1 ·LnQ + a2 ·LnQ2 + a3 ·Sin(2·pi·dtime) + a4 ·Cos(2·pi·dtime) + a5 ·dtime + a6 ·dtime2 0.73 0.81 <0.01

YGLQ Ln (Load) = a0 + a1 ·LnQ + a2 ·LnQ2 + a3 ·Sin(2·pi·dtime) + a4 ·Cos(2·pi·dtime) + a5 ·dtime + a6 ·dtime2 0.86 0.77 <0.01

GTDK Ln (Load) = a0 + a1 LnQ + a2 ·dtime 0.21 0.58 0.03

FIGURE 4
Modeled daily stream arsenic load in the ZR at threemonitoring sites for the study period 2016–2023. Note: “As load (LOADEST) is As load calculated
by LOADEST”; “Stream flow” is stream flow estimated by SWAT; “Estimated load” is As load estimated by filedmonitored As concentration and stream flow
estimated by SWAT.
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arsenic load estimation (average absolute error = 18%), but the trend
of high arsenic load at GTDK (consistently 3x higher than YGLQ)
remains reliable.

4 Discussion

4.1 Factors affecting diffuse
arsenic pollution

Although a significant part of the in-stream arsenic load is
derived from point sources in the urban part of the ZR watershed,
diffuse arsenic pollution from the vast rural area is still important
because expanding agriculture is becoming a major source of diffuse
arsenic pollution which is on the rising trend. For an in-depth
analysis, the annual estimated arsenic loads at YGLQ were
compared to selected potential factors to investigate the cause of
the rising trend in diffuse arsenic pollution. The factors investigated
included annual fertilizer usage (FE), crop land area (CA), live pig
count (PG), live poultry count (PL), population (PP), and annual

rainfall depth (RF). It’s worthy pointing out that PG and PL were
included not merely as indicators of livestock production but
because of their direct link to cropland arsenic contamination.
Local policies promote the use of animal manure as replacement
for chemical fertilizers regardless of actual receiving capacity of
cropland soil, leading to the accumulation of arsenic (widely used as
feed additive) in agricultural soils. Considering that current
regulations do not require arsenic removal in animal waste
handling for manure production, it’s reasonable to assume that
the amount of arsenic pollutant returning to soil with manure
subjected is proportional to the number of animals raised in the
studied area. Thus, PG and PL also serve as indicators to the usage of
arsenic-rich manure, and will be referred to as the manure factor.
The interaction terms between selected individual anthropogenic
factors and rainfall depth were also investigated, and these included
fertilizer usage and rainfall depth (FE × RF), crop area and rainfall
depth (CA × RF), live pig count and rainfall depth (PG × RF), live
poultry count and rainfall depth (PL × RF) and population and
rainfall depth (PP × RF). Using FE × RF as an example, these
interaction terms were computed by normalizing each variable by its

FIGURE 5
Comparison between arsenic loads at three studied sites using 8-year daily data.

TABLE 5 Average arsenic concentration and estimated load at three monitoring sites for the whole study period 2016–2023.

Sites Drainage
area (km2)

Average
stream flow

(m3/s)

Observed average as
concentration (mg/L)

Dunn’s post-hoc
test p value
(GTDK as
conc. vs.)

Annual as load
(average)
(kg/yr)a

Annual as load
(LOADEST)

(kg/yr)

YXHQ 455 21.2 2.7a10−4 4.1a10−8 181 (181)b 156 (156)

YGLQ 801 29.4 3.1a10−4 3.0a10−7 287 (106) 223 (67)

GTDK 813 29.6 9.3a10−4 1.0 868 (581) 889 (666)

aAnnual As load (average) is estimated by multiplying average stream flow by observed average As concentration.
bData in parenthesis are As load generated within corresponding drainage area of each site, estimated by subtracting upstream input As load from total As load at a given site.

Frontiers in Environmental Science frontiersin.org08

Huang et al. 10.3389/fenvs.2025.1645220

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1645220


mean and then calculating their product. Data from YGLQ were
selected, because the GTDK site is subjected to the influence of
urban and industrial point sources, which resulted in a poor
LOADEST model performance.

The drainage area of the YGLQ accounts for over 98% of ZR
watershed and is located upstream of the heavily developed urban
area, making it a good research target for investigating the diffuse-
source arsenic pollution that impacts most of the ZR watershed. The
results are presented in Table 6 and Figure 6.

The results showed that stream arsenic load is strongly
correlated to cropland area (CA) and manure factors (PG and
PL), with a Pearson correlation (R2) of 0.79, 0.55, and 0.57,
respectively, and a p-value less than 0.05. However, RF exhibits
only a weak correlation (R2 = 0.14) with the arsenic load at YGLQ.
These findings suggest that agricultural activity is the primary driver
of arsenic pollution in this region, with climatic factors such as
rainfall playing a secondary role. It is of note that the low R2 of
fertilizer usage (FE) (R2 = 0.26) does not contradict with above
statement, because of increasing usage of manure as chemical
fertilizer replacement.

Compared to the individual manure factor (PG and PL), the
rainfall interaction terms, PG × RF and PL × RF, displayed an
increased correlation with stream arsenic load, with R2 values of
0.66 and 0.87 for PG × RF and PL × RF, respectively. These
increased correlation results, which are also shown in Figure 6
indicates that the interaction between increasing usage of arsenic-
rich manure and changing climatic conditions could be major
driving factors behind the rising trend of diffuse arsenic pollution
in the rural part of ZR watershed. Current environmental policy
emphasizes the control of nutrient pollution originated from local
animal farming industry, thus encouraging manure soil
application. But as the animal farming industry expands much
faster than crop land area, the fast building-up of excessive
pollutants including arsenic in agricultural soils is becoming an
environmental threat. These results highlight the critical need for
more sustainable soil management plan to optimize current
manure application strategy.

4.2 Future research

Assessing arsenic pollution at watershed scale has been a
challenging task due to difficulties in acquiring relevant data.
Especially the lack of hydrological data hinders in-depth analysis
being made based on only sparse arsenic monitoring data.
Parameter-transfer SWAT coupled with LOADEST has the
potential to expand investigation on arsenic pollution to more
watersheds. But due to LOADEST being a model primarily
focusing on diffuse pollution. This method may not give accurate
assessment in scenarios where point sources (like factories) being the
predominant arsenic contributor. Furthermore, the accuracy of the
estimation depends on how reliable SWAT can accurately predict
stream flow with transferred parameters, especially for watersheds
where no hydrological measurements are available in their vicinity.
More studies testing watersheds of varying characteristics are
needed to further polish the procedure in this method, as well as
to better understand uncertainties and limitations of this approach.

This approach could also be improved in terms of its
functionality. While this study focusing on analyzing changes in
stream arsenic load, it’s possible to expand the investigation to the
on-land part of watershed. SWAT being a distributed model means
there are opportunities to modified the model to capture more
details about on-land arsenic sources. For example, biogeochemical
process hotspots can have disproportional impact on diffuse
pollution at fine spatial scales (field scale), and their spatial
distribution can be captured by modeling approaches, to support
making spatially-optimized management strategies. Wen et al.
(2024) demonstrated the potential of SWAT in mapping
biogeochemical hotspots of diffuse nutrient pollution. SWAT
Modifications properly considering the migration behavior of
arsenic could allow us to pinpoint croplands prone to arsenic
export for prioritized conservation practices. This would help to
make well-informed and more precise management decisions in the
future for controlling pollution caused by the fast-expanding
agriculture sector.

4.3 Concluding remarks

To sum up, in this study, a methodological framework based
on SWAT and LOADEST was developed to analyze the long-term
variation in arsenic load within the ZR watershed, where stream
flow and continuous monitoring data are not accessible for
conducting conventional pollution load analyses. This study
found that ZR watershed is threatened by both diffuse and
point arsenic sources. The urbanized part of the watershed
close to the outlet (≈1% of total area) may contribute up to
75% of the arsenic load to ZR (calculated as the difference
between GTDK’s load and upstream YGLQ/YXHQ’s loads,
Table 5), suggesting it could be a potential arsenic pollution
hotspot. However, this inference is limited by the use of
transferred stream flow parameters (from JRW) and relatively
low LOADEST performance at GTDK (NSE = 0.21), requiring
further verification with on-site flowmonitoring data. On the other
hand, the vast rural part of watershed is threatened by increasing
diffuse arsenic pollution, which is mainly caused by the fast-
expanding agriculture sector. Correlation analysis revealed that

TABLE 6 Pearson correlation analysis for diffuse pollution factor and
arsenic load at YGLQ.

Factors R2 P-value

Fertilizer usage (FE) 0.26 0.19

Cropland area (CA) 0.79 0.00

Live pig count (PG) 0.55 0.03

Live poultry count (PL) 0.57 0.03

Population (PP) 0.09 0.46

Rainfall (RF) 0.14 0.35

FE * RF 0.03 0.70

CA * RF 0.35 0.12

PG * RF 0.66 0.01

PL * RF 0.87 0.00

PP * RF 0.14 0.35
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diffuse arsenic pollution in ZR watershed is closely linked to
cropland area and manure usage, particularly their interaction
with rainfall. These results show that current agricultural
management practices that promotes the recycling of arsenic-
rich animal wastes as fertilizer, disregarding the receiving
capacity of local cropland soils, could have led to unintended
negative impact, increasing the risk of diffuse arsenic pollution.
This study provides a practical framework to analyze the cause of
arsenic pollution with limited existing data resources, so that

evidence-based policymaking and target-oriented management
practices could be extended to more areas where monitoring
data is lacking.
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licenses/restrictions: The research data is provided by local

FIGURE 6
Comparison between annual stream arsenic load and potential related factors.
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