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Introduction: The process of urbanization involves all aspects of society and
understanding the spatial differences in urban development is crucial to
promoting sustainable urban development. However, the existing studies still
lack a spatial heterogeneity analysis of the driving factors of urbanization at the
prefectural-level city scale and over a long period of time.

Methods: This study uses nighttime light data, with 285 prefecture-level cities in
China as the research objects. It employs spatial autocorrelation and the
geographically weighted regression (GWR) model to investigate the spatial
heterogeneity of the factors influencing urban development in China from
2000 to 2019.

Results: (1) The overall level of urbanization in China is on the rise. Spatially, it
exhibits a distribution pattern shifting from concentration to dispersion and from
a single center tomultiple centers. (2) The urbanization process in China exhibits a
significant spatial correlation. The hotspots are mainly concentrated in the
eastern part of China along the southern coast and the northern part of the
southern coast, while the coldspots are located in the southwestern,
northwestern, and northeastern regions. (3) The regression coefficients of the
influencing factors exhibit significant spatial imbalance. Economic development,
population size, public infrastructure, and economic openness all show a positive
correlationwith urbanization development as awhole; the industrial structure has
a negative impact on urbanization development inmost regions, and its inhibitory
effect is weakest in the cold spots.

Discussion: Capturing this heterogeneity is of vital importance for understanding
the diverse paths of urban development and formulating differentiated policies
for specific regions.
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1 Introduction

Earth has become a planet of cities (Wigginton et al., 2016).
According to the “2018 World Urbanization Prospects” released by
official sources, the proportion of the world’s population living in
urban areas is projected to increase from 55% to 68% by 2050 (Xu
et al., 2021). Over the past few decades, China has undergone rapid
urbanization. From 1978 to 2016, China’s urbanization rate increased
from less than 20%–57.35% (Liang and Yang, 2019). Furthermore,
from 1978 to 2019, the proportion of China’s urban population
increased from 17.9% to 60.6% (Yang et al., 2021). Rapid
urbanization has brought economic development opportunities as
well as challenges, drawing increasing attention from scholars.

While China has achieved remarkable success in urbanization, it
has also exhibited significant regional disparities (Chen et al., 2013;
Peng et al., 2020). According to data from Fan et al. (2014), from
1994 to 2011, the imbalance in urbanization processes in China’s
eastern, western, and central cities decreased by 35.26%, 29.04%, and
25.84%, respectively, but increased by 33.29% in northeastern cities.
From 2009 to 2018, the urban development in China’s seven major
city clusters exhibited a spatial pattern of “high in the east, low in the
west, and depression in the central region” (Chen et al., 2022).
Regional development imbalances may affect the spatial integration
and coordinated development of cities (Liu et al., 2020). Therefore,
accurately understanding the spatial differences in China’s urban
development is crucial for sustainable urban development and
policy-making (Yang et al., 2019; Zhang et al., 2020).

Many studies have explored the factors and driving mechanisms
that influence urban development. Research has shown that both
natural conditions and socioeconomic factors have certain impacts
on urban development (Colsaet et al., 2018; Zhang H. et al., 2022).
Some scholars have explored the correlation between natural factors
and urban development from aspects such as slope, altitude (Li et al.,
2013), geological conditions (He et al., 2019), and climate quality
(Zhao and Li, 2022). Other scholars have investigated the correlation
between socioeconomic factors and urban development from the
perspective of economic growth (Li et al., 2020), population
agglomeration (Zhang and Xie, 2019), urban transportation
(Wang D. D. et al., 2021) and public policy (Jia et al., 2020). In
addition, some studies have noted the spatial heterogeneity of factors
influencing urban development. For example, Li G. D. et al. (2018)
suggested that natural factors impose fewer restrictions on urban
development in eastern China than in the central and western
regions. Economic growth has a greater impact on urban
development in northeastern China (Xu et al., 2020).

Socioeconomic statistical data have been widely used to assess
the level and disparities of urban development in Chinese cities
(Yang et al., 2018). Zhang et al. (2019) utilized census data to
estimate urban shrinkage in China, whereas Wu and Rao (2016)
conducted an empirical analysis on the relationship between
urbanization and income inequality using statistical yearbook
data. However, owing to continuous changes in China’s
administrative boundaries, the accuracy of socioeconomic
statistical data is insufficient. Moreover, socioeconomic statistical
data cannot reflect spatial changes in urban development, making it
difficult to utilize these data to assess the spatial characteristics of
urban development in China. In terms of urban nighttime light
brightness, remote sensing imagery has been widely used to monitor

the spatiotemporal characteristics of evolving human activities
(Levin et al., 2020; Zhao et al., 2019). For example, it monitors
urban expansion (Jiang et al., 2021; Reba and Seto, 2020; Yi et al.,
2014), population estimation (Song et al., 2019; Zhuo et al., 2009),
and estimation factors such as GDP, energy consumption, and
carbon emissions (Lv et al., 2020; Shi et al., 2016; Zhu et al.,
2017). Compared with traditional socioeconomic data, nighttime
light data hold significant application value and potential, especially
in many underdeveloped countries where socioeconomic data are
often nonexistent or unavailable. Nighttime light data can be used to
monitor urbanization dynamics effectively (Small et al., 2011).
Furthermore, nighttime light data are not affected by
administrative boundary adjustments. Zhang and Su (2016) used
DMSP/OLS NTL data to analyze urban expansion in 30 major
Chinese cities from 1993 to 2012. Li H. M. et al. (2018) analyzed the
relationship between land area and nighttime light from 2000 to
2013 in 36 Chinese cities using DMSP/OLS NTL data. Zheng et al.
(2022) quantitatively evaluated urban expansion in the
Guangdong–Hong Kong–Macao Greater Bay Area from 2012 to
2018 using NPP/VIIRS NTL data. Li et al. (2021) analyzed the
spatiotemporal patterns of urbanization in the three most developed
city clusters in China from 2000 to 2018 using a synthesis of DMSP/
OLS NTL and NPP-VIIRS continuous nighttime light data. These
studies significantly enrich the application of nighttime light data in
the urban development process.

Overall, in the existing studies, scholars have generally employed
methods such as kernel density analysis and spatial correlation
analysis to explore the temporal and spatial distribution
characteristics of urbanization development (Zhang L. G. et al.,
2022; Zheng et al., 2022). The discussion on the influencing factors
of urbanization development mostly employs global regression
models such as OLS models and GMM models, which do not
take into account spatial factors (Zhang H. et al., 2022; Shi et al.,
2020). With the development of geographical economics, some
scholars began to incorporate spatial factors into the research on
the influencing factors of urbanization and used spatial econometric
models such as SEM (Zhang and Wang, 2018), SLM (Sun et al.,
2023), and SDM (Zhang L. G. et al., 2022) for regression estimation.
Although previous studies have achieved considerable results, there
are still some shortcomings: First, current urbanization studies
suffer from fragmented scales: they focus mainly on provincial
units or urban agglomerations, which can only reflect the
temporal and spatial evolution characteristics of urbanization as a
whole, lacking nationwide representative samples. Second, in the
research on the spatial heterogeneity impact of different factors,
most studies adopt global parameter estimation methods for
regression analysis, failing to fully reflect the geographical spatial
differentiation characteristics of the impact of each factor on
urbanization development. Third, in terms of evolutionary
analysis, the focus of existing research has typically been on
comparing the intensity of the effects of various factors on
urbanization, with relatively insufficient dynamic evolutionary
analysis of the spatial heterogeneity impacts of different factors at
different stages.

Therefore, based on previous studies, this paper fills these gaps
by integrating 285 cities’ 20-year nighttime light data: (1) It
comprehensively captured the entire process of urbanization
dynamics during the key development period of China at the
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national scale. (2) Based on GWR spatial analysis, it was revealed
that the regression coefficients of the influencing factors exhibited
significant spatial non-equilibrium. (3) Empirical evidence shows
that China’s urbanization process has shifted from a single-core
clustering model to a multi-center network structure and has
discovered the multi-center transformation patterns that
challenge the traditional core-periphery model.

2 Study area and data

2.1 Study area

Since the 1980s, China has undergone rapid urbanization, yet
significant economic development disparities persist across regions
(Ma et al., 2017). To assess the potential of DMSP-OLS and NPP-
VIIRS nighttime light imagery in characterizing heterogeneity in
socioeconomic activities, we selected China’s prefecture-level cities
as our study area. Considering data availability, this study focuses on

285 prefecture-level cities in China. These cities were selected based
on the following criteria: (1) They had continuous, reliable and
concentrated nighttime light data coverage throughout the entire
study period; (2) The administrative boundaries remained relatively
stable during the study period to ensure the consistency of spatial
unit analysis. After excluding the samples with missing data, a total
of 285 valid samples were finally determined.

To analyze regional differences, we followed the approach of Fan
and Qi (2009) and divided the study area into eight regions: East
Coast (EC), Central Yellow River Delta (CYRD), Central Changjiang
River Delta (CCRD), Northeast (NE), Great Northwest (GNW),
North Coast (NC), South Coast (SC), and Great Southwest
(GSW) (Figure 1).

2.2 Data

This study includes three main types of data. The first type is
nighttime light data from the National Oceanic and Atmospheric

FIGURE 1
Distribution of the eight major regions in China.
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Administration (NOAA) of the United States. The currently
commonly used nighttime light data mainly include two types:
the Linear Scan Operational System (OLS) carried by the Defense
Meteorological Satellite Program (DMSP) satellites, and the
Visible Infrared Imaging Radiometer Suite (VIIRS) carried by
the Suomi National Polar-Orbiting Partnership (Suomi NPP)
satellites. Due to significant differences in sensor parameters,
spatial resolution, and other aspects, these two types of data
cannot be directly used for analysis (Xie et al., 2019). Therefore,
this study adopts the extended time series of annual nighttime light
data images corrected by Chen et al. (2021). The core processing
steps of this dataset are as follows: First, the DMSP-OLS nighttime
light data that has undergone oversaturation correction and time-
series correction is used as the input data; Second, the annual
synthetic data obtained by fusing the monthly synthetic data of
NPP-VIIRS is used as the validation set; next, a cross-sensor
correction scheme based on autoencoder is adopted. Finally, the
NPP-VIIRS data from 2013 to 2020 were appended to the “NPP-
VIIRS-Like” data from 2000 to 2012, thus forming a complete
long-term data set.

The second type of data is socioeconomic data, including per
capita gross domestic product (GDP), population density, the
proportion of urban built-up area, the share of secondary and
tertiary industries in GDP, foreign investment, and green space
coverage in built-up areas. These data are sourced from the “China
Statistical Yearbook” and the “China City Statistical Yearbook.”

The third type of data is GIS auxiliary data. The administrative
boundaries of China’s provinces, cities, and counties at a scale of 1:
4,000,000,000 are sourced from the National Geomatics Center of
China. Due to the lack of statistical data for Taiwan, Hong Kong, and
Macau, this study focuses only on mainland China.

3 Methods

3.1 Urbanization level measurement model

Nighttime light data are widely used to represent urban
development. Drawing on existing research and referencing the
approach of Li et al. (2021), the average nighttime light intensity
index is used as a proxy indicator for the urbanization level. The
specific calculation formula can be expressed as Equation 1:

NTL � ∑max

r�min

r*
nr
N

(1)

where r represents the radiance of a pixel, nr represents the number
of pixels with radiance r, and N represents the total number of pixels
in an image.

3.2 Spatial autocorrelation analysis

3.2.1 Global spatial autocorrelation
Global spatial autocorrelation is used to analyze whether a

variable is clustered in space and generally uses Moran′sI to
represent this. In this paper, the global spatial autocorrelation of
urbanization levels in 285 prefecture-level cities nationwide is

represented using the global Moran′sI. The expression for global
Moran′sI is as follows (Equation 2) (Moran, 1950):

Moran′sI � n∑n
i�1∑n

j�1wij xi − �x( ) xj − �x( )∑n
i�1 xi − �x( )∑n

i�1∑n
j�1wij

(2)

where n represents the total number of cities; xi and xj represent the
urbanization levels of cities i and j, respectively; �x represents the
average urbanization level of all cities; and wij represents the spatial
weight matrix. The value of Moran′sI ranges from −1 to 1. A value
greater than zero indicates a significant positive spatial autocorrelation
in urban development; the larger the value is, the stronger the spatial
correlation. A value less than zero indicates a significant negative
spatial autocorrelation in urban development; the smaller the value is,
the stronger the spatial dispersion. A value equal to zero indicates a
random spatial distribution of urban development. Additionally, the
significance of the Z value of the aforementionedMoran′sI is tested to
determine whether there is a spatial autocorrelation relationship. The
expression Z is as follows (Equation 3):

Z I( ) � I − E I( )[ ]/ ������
Var I( )√

(3)
where Z(I) represents the global Moran′sI significance level, E(I)
represents the expected value of Moran′sI, and Var(I) represents the
variance of Moran′sI.

3.2.2 Hotspot Analysis
Global spatial autocorrelation describes the overall spatial

clustering characteristics of urbanization levels but cannot be
used to determine the specific locations of clusters. Getis −OrdG*

i

can be used to identify whether there are high-value spatial clusters
(hot spots) or low-value spatial clusters (cold spots) locally. The
formula for Getis − OrdG*

i can be expressed as Equation 4 (Getis
and Ord, 2010):

Gi* �
∑n

j�1wi,jxj − �x∑n
j�1wi,j

S

��������������
n∑n

j�1w
2
i,j− ∑n

j�1wi,j( )2

n−1

√ (4)

where i represents the attribute value for the central feature, j
represents the attribute values for all features within the
neighborhood, xj represents the observed value of the j-th feature
within the neighborhood, wi,j is the spatial weight between feature i
and feature j, and n is the total number of features.

3.3 Geographically weighted regression

3.3.1 OLS
Before performing GWR regression, the influencing factors of

urban development are first selected step by step through OLS linear
regression. The calculation formula is as follows (Equation 5):

y � β0 +∑p
k�1

βkαk + ε (5)

where y is the dependent variable, β0 is the intercept constant term, k
is the number of independent variables, p is the total number of
independent variables, βk is the regression coefficient, αk is the k-th
independent variable, and ε is the random error term.
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3.3.2 GWR
The geographically weighted regression (GWR) model combines

spatial correlation with linear regression, improving upon traditional
models such as ordinary least squares (OLS). It has certain advantages
because it uses local parameter estimation, reflecting the
nonstationarity of regression model weights in space. This means
that relationships between variables can vary with geographical
location, making the regression model results more reasonable in
local areas. The structure of the model can be expressed as Equation 6:

yi � β0 ui, vi( ) +∑
k

βk ui, vi( )xik + εi (6)

where y represents the observed value, (ui, vi) represents the spatial
geographic coordinates of region i, β0(ui, vi) represents the intercept
coefficient at location i, βk(ui, vi) represents the k-th regression
coefficient of the independent variable xik, xik represents the value of
the k-th independent variable at point i, and ε is the random error term.

In the computation process, Gaussian functions are used to
determine weights, and the Akaike information criterion (AIC) is
used to determine the optimal bandwidth.

In the GWR model, the estimated regression parameter
βk(ui, vi) for study unit i changes with variations in the spatial
weight matrix W(ui, vi). W(ui, vi) is determined based on the
distance of other units from unit i, and the parameters β0(ui, vi)
are estimated using weighted least squares. The expression can be
formulated as follows (Equation 7):

βk ui, vi( ) � XTW ui, vi( )X( )−1XTW ui, vi( )y (7)

where βk(ui, vi) represents the estimated parameters of the model, X
represents the matrix of explanatory values of the independent
variables, y represents the dependent variable, XT represents the
transpose operation on matrix X, and W(ui, vi) represents the
spatial weight matrix of the model.

To estimate the parameters β(ui, vi) in the above equation, a
weight function W(ui, vi) needs to be selected. In this paper, the
Gaussian function method is chosen as the weight function, which is
expressed as follows (Equation 8):

Wij � exp − dij

b
( )2( ) (8)

where Wij represents the weight impact between points i and j and b
is the bandwidth parameter. A larger bandwidth b results in slower
attenuation of the weight impact with increasing distance dij,
whereas a smaller bandwidth b leads to faster attenuation of the
weight impact with increasing distance dij. The bandwidth b is a
decisive factor in the weight calculation scheme and needs to be
determined for the optimal accuracy of the model. This study selects
the Akaike information criterion (AIC) to determine the optimal
bandwidth. In general, AIC can be expressed as Equation 9:

AIC � 2k − 2 ln L( ) (9)
where k is the number of model parameters and L is the maximum
likelihood function. The assumption is that the model errors follow
an independent normal distribution.

If we let n denote the number of observations and sum square of
residue (SSR) denote the sum of squares of residuals, then AIC can
be expressed as Equation 10:

AIC � 2k + n ln SSR/n( ) (10)

Increasing the number of free parameters improves the
goodness of fit. AIC encourages good data fitting while
attempting to avoid overfitting. Therefore, the preferred model
should have the lowest AIC value.

3.3.3 Variable Selection
Guided by the urbanization theory, we selected the key indicators

that represent the core dimensions driving urban development: the
economic development level (usually measured by per capita GDP) is
an important driving force that promotes the transfer of population
from the agricultural sector to the non-agricultural sector, thereby
driving urbanization (Xu et al., 2020). The urban economics theory
emphasizes that the scale economy and agglomeration effect brought
about by population concentration are the key factors for urban
development. Meanwhile, population density is a crucial indicator
for measuring the level of urbanization and its spatial efficiency (Jin
et al., 2024). In this study, it is used to represent the population size.
Land indicators: Moderate land expansion will accelerate the
urbanization process, which is represented by the proportion of
built-up area (Zhang et al., 2020). The industrial structure is the
core influencing factor of urbanization, determining the spatial
form, functional positioning and development quality of cities,
which is measured by the proportion of the secondary and tertiary
industries in GDP (Wang et al., 2019). Economic openness plays a
significant and positive role in promoting urbanization development,
as measured by foreign direct investment (FDI) (Chen and Paudel,
2021). Public infrastructure, measured by the green coverage rate of the
built-up area, is not only a core indicator for evaluating the quality of
urban environment, but also a key element in driving the
transformation of urbanization from “quantity expansion” to
“quality improvement” (Zhai et al., 2024). The specific description
of the variables is shown in Table 1.

4 Results

4.1 Spatial distribution of urbanization levels

Taking into account the characteristics and policy background
of China’s urbanization process, this paper selects representative
years from 2000 to 2019 (2000, 2005, 2010, 2015 and 2019) for
analysis. The reason for choosing this time period is as follows: (1) It

TABLE 1 Description of explanatory variables.

Factor Explanatory variables

Economic development Per capita GDP

Population size Population density

Land indicators
Industrial structure

Proportion of urban construction area

Proportion of secondary industry in GDP

Proportion of tertiary industry in GDP

Economic openness Foreign investment

Public infrastructure Green coverage rate in Urban Areas
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covers the crucial period of rapid urbanization and profound social
and economic transformation in China; (2) The 20-year time span is
sufficient to reveal the long-term spatial evolution trends and
heterogeneity of the urban development pattern. The key
representative years during this period (2000, 2005, 2010, 2015,
2019) were selected based on a 5-year interval and their alignment
with the national planning cycle (5-year plans) and socio-economic
turning points, in order to examine the different stages and turning
points of urbanization. In addition, the data is up to 2019 because
2019 was the last full year before the COVID-19 pandemic, avoiding
abnormal interference.

It can be observed that the urbanization process in China from
2000 to 2019 exhibited significant spatial differentiation
characteristics (Figure 2). Spatially, urbanization levels gradually

increased from west to east, and overall levels continued to increase
over time. In 2000, urbanization levels in China were generally low,
with high values observed only in two cities, Shanghai and
Dongguan. Subsequently, starting from Shanghai and spreading
outward, urbanization expanded to the eastern coastal, northern
coastal, and southern coastal regions, including provinces such as
Jiangsu, Fujian, Zhejiang, Guangdong, and Shandong. Low values
were concentrated in the northeast, central and upper Yangtze River
regions and northwest China, including provinces such as Gansu,
Ningxia, InnerMongolia, and Heilongjiang. The urban development
levels identified in this study are consistent with existing research (Li
et al., 2021; Ma et al., 2012). In terms of quantity, the proportion of
cities with urban development levels greater than 2 increased from
2.46% to 20%, whereas those in the range of 0.2–2 increased from
17.89% to 59.30%. The proportion of cities with urban development
levels less than 0.2 decreased from 79.65% to 20.70%. These changes
indicate an overall upward trend in urban development in China,
but the disparity between cities gradually widened. This may be
related to national policies and geographic factors. For instance,
coastal regions generally have greater advantages over inland regions
in terms of transportation, population, and economic environment.

4.2 Spatial autocorrelation analysis results

4.2.1 Global spatial autocorrelation
To accurately estimate the spatial distribution of urbanization

levels in China, the global Moran′sI index for urban development
levels from 2000 to 2019 was calculated using Equation 2.

Table 2 lists the global Moran′s I index values and validation
results for 285 prefecture-level cities in China from 2000 to 2019.
The table shows that all the global Moran′sI index values are positive
and significant at the 1% level. Additionally, the results indicate that
the spatial distribution of urban development levels in China shows
significant positive spatial autocorrelation, with clear clustering
characteristics. Finally, starting in 2000, spatial autocorrelation
has shown an increasing trend, indicating enhanced spatial
correlation of urban development levels.

4.2.2 Local spatial autocorrelation
To analyze the overall spatial differentiation pattern of urban

development levels in China, further exploration of the evolution
characteristics of its local spatial clustering patterns was conducted.
Using the etis −OrdG*

i statistic in ArcGIS for spatial visualization,

FIGURE 2
Spatial differentiation of urbanization development levels in
China from 2000 to 2019.

TABLE 2 Global Moran’s index results for 285 Chinese cities (2000–2020).

Year Moran’s I z-value p-value

2000 0.073*** 11.482 0.000

2005 0.083*** 12.236 0.000

2010 0.103*** 14.272 0.000

2015 0.129*** 17.619 0.000

2019 0.141*** 19.028 0.000

2020 0.147*** 19.784 0.000

Notes: *p < 0.1, **p < 0.05, ***p < 0.01.
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the spatial evolution of hotspots and cold spots at various urban
development levels in China was revealed, as shown in Figure 3.

From 2000 to 2020, the clustering trend of hotspot areas in terms
of urban development levels in China decreased from southeast to
northwest, and their influence expanded over time. Spatially,
hotspot areas were mainly concentrated in the southern part of
the eastern coastal region and the northern part of the southern
coastal region of China. In 2000 and 2005, hotspot areas were
primarily distributed in Zhejiang, Fujian, and Guangdong. From
2005 to 2020, they gradually spread northwestward, further
expanding to some cities in Shanghai, Jiangsu, Jiangxi, and
Anhui. However, as the economies of the eastern coastal,
southern coastal, and central Yangtze River regions became

saturated, the spread of hotspot areas in terms of urban
development levels slowed. Notably, the spread of the influence
range of cold spot areas was slower, and the areas with significant
cold spots at the 1% level were distributed mainly in the
southwestern and northwestern regions of China, involving some
cities in Yunnan, Sichuan, and Ningxia. This is consistent with the
conclusions of Li et al. (2019). Additionally, in 2015 and 2019, cold
spot areas also appeared in the northeastern regions of Heilongjiang
and Jilin.

4.3 Spatial heterogeneity of factors
influencing urbanization levels

4.3.1 OLS regression of influencing factors
This paper establishes an OLS regression model, taking

urbanization development as the dependent variable, and examines
the influencing mechanism of urbanization development by using
seven indicators from six dimensions (economic development,
population size, land indicators, industrial structure, economic
openness, and public infrastructure) as independent variables.
However, not all variables have a significant impact on
urbanization. Therefore, in this paper, we first selected five key and
significant variables through stepwise regression analysis, namely, per
capita GDP, population density, the proportion of the secondary
industry in GDP, foreign investment, and the green coverage rate
in urban areas. Furthermore, through the variance inflation factor test,
it was found that there was no multicollinearity problem in the model.

First, OLS regression was used to test the impact of various
explanatory variables on urban development in 2000, 2005, 2010,
2015, and 2019. The results are shown in Table 3. From 2000 to
2019, per capita GDP and population density were significantly
positively correlated with urban development levels, passing the 1%
level significance test except for the per capita GDP in 2005, which
was significant at the 5% level. These findings indicate that the
economic level and population scale are the main driving factors of
urban development. Additionally, in 2000, 2010, and 2019, the
proportion of secondary industry in GDP was significantly
negatively correlated with urban development levels, suggesting
that industrial structure adjustments are beneficial for improving
urbanization levels. In 2000, 2005, and 2010, the green coverage rate
of built-up areas was significant at the 1% level, with a negative
correlation in 2000 and a positive correlation in 2005 and 2010. This
indicates that the continuous improvement in public infrastructure
is conducive to urban development. Foreign investment was
significantly positively correlated with urban development,
indicating that the degree of openness to foreign investment is
also an influence.

4.3.2 Analysis of spatial heterogeneity of
influencing factors based on the GWR model
4.3.2.1 Analysis of the GWR model regression results

The GWR model has significant advantages in spatial difference
analysis (Table 4). The adjusted R2 values of the GWR model in
different years are always higher than those of the OLS model,
whereas the AICc values are always lower than those of the OLS
model. Since a higher adjusted R2 value indicates a stronger
explanatory power of the model and a lower AICc value

FIGURE 3
Hot spots and cold spots of urbanization development levels in
China from 2000 to 2019.
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indicates a better fit of the model, the GWR model is more suitable
than the OLS model. As shown in Table 4, from the average
regression coefficients of various indicators in the GWR model,
per capita GDP and population density have a closer correlation
with urban development, followed by foreign investment and then
green coverage rate. The proportion of secondary industry in GDP is
negatively correlated with urban development.

4.3.2.2 Analysis of the spatial heterogeneity of
influencing factors

This paper uses the ArcGIS natural breakpoint method to
conduct spatial visualization of the GWR regression coefficients
of each significant factor, and further explores the spatial
differentiation of their impact on urbanization. This method
independently determines the classification threshold based on
the inherent distribution of the annual data, and is a commonly
used criterion for revealing spatio-temporal heterogeneity (Yang
et al., 2022). This method can better reveal the inherent spatial
clustering and heterogeneity in the coefficient distribution of each
year, thereby enabling a more accurate representation of the local
spatial relationships that may evolve over time (Zhang et al., 2020;
Yan et al., 2021). For the influencing factors that have statistically
significant spatial relationships, we presented the visualizations
of local regression coefficients in the corresponding years
(Figures 4–8).

4.3.2.2.1 Impact of economic development on spatial
heterogeneity. From 2000 to 2019, the regression coefficients
of per capitaGDP show an increasing trend from north to south and
a decreasing trend from east to west (Figure 4). The impact of
economic development on urbanization levels varies. In 2000, cities
with significant influence were mainly concentrated in the southern
coastal and central Yangtze River regions of China, including
provinces such as Guangdong, Guangxi, Jiangxi, and Fujian.
From 2005 to 2019, high values were mainly concentrated in the
southern coastal areas, with their influence gradually expanding to
the eastern coastal regions over time. This region’s distribution was
generally consistent with the hotspot distribution during the same
period, indicating that economic development had a positive impact
on urban development. During this period, low values were
distributed mainly in the central Yellow River and northeastern
regions, including provinces such as Inner Mongolia, Gansu, and
Heilongjiang. This may be due to China’s reform and opening-up, in
which coastal areas have become hot spots for national economic
growth, with an influx of foreign capital and people boosting rapid
urbanization. In contrast, the western and northeastern regions,
which are less economically developed, experienced some degree of
population loss, resulting in relatively slow urban development.

4.3.2.2.2 Impact of population size on spatial heterogeneity. From
2000 to 2019, the regression coefficients of population density show a

TABLE 3 Ols model calculation results.

Year Variables Coefficient AICc Adjusted R-squared

2000 Per capita GDP 0.000069*** 474.439391 0.682995

Population density 0.000370***

Proportion of secondary industry in GDP −0.011455***

Foreign investment 0.000004***

Green coverage rate in Urban Areas −0.010886***

2005 Per capita GDP 0.000019** 836.714347 0.521422

Population density 0.000769***

Foreign investment 0.000006**

Green coverage rate in Urban Areas 0.038410***

2010 Per capita GDP 0.000018*** 623.098846 0.649934

Population density 0.001263***

Proportion of secondary industry in GDP −0.012023**

Foreign investment 0.000002***

Green coverage rate in Urban Areas 0.016162***

2015 Per capita GDP 0.000024*** 921.880235 0.638182

Population density 0.002727***

Foreign investment 0.000002***

2019 Per capita GDP 0.000035*** 989.089423 0.729100

Population density 0.004007***

Proportion of secondary industry in GDP −0.040312***

Notes: *p < 0.1, **p < 0.05, ***p < 0.01.
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significant trend at the 1% significance level, generally increasing from
north to south and decreasing from east to west (Figure 5). From 2000 to
2010, high-value areas were distributed mainly in the eastern coastal,
northern coastal, and northeastern coastal regions, including Zhejiang,
Shanghai, Jiangsu, Shandong, Liaoning, Jilin, and Heilongjiang. From
2010 to 2019, high-value areas gradually shifted southeastward, mainly
concentrated in the southern coastal and eastern coastal regions,
including Guangdong, Fujian, and Zhejiang. This may be due to the
economic development of coastal areas, where an increase in population
size has led to greater demand for housing, employment, and
transportation, thereby promoting rapid urbanization.

4.3.2.2.3 Impact of industrial structure on spatial
heterogeneity. In 2000, 2010, and 2019, the regression
coefficients of the proportion of secondary industry in GDP
showed significant spatial differences, decreasing from north to
south and increasing from east to west. In 2000, areas with
greater negative impacts were mainly concentrated in the eastern
coastal region and gradually spread to the southern coastal regions,
including provinces such as Shanghai, Zhejiang, Fujian, and
Guangdong (Figure 6). This was exactly the opposite of the
urban development hotspots during this period. This might be
closely related to the extensive industrialization model adopted

TABLE 4 Calculation results of GWR model.

Year Variables Min 0.25
Quantile

Median 0.75
Quantile

Max Mean

2000 Per capita GDP −0.000003 0.000053 0.000072 0.00008 0.000085 0.000064

Population density −0.000431 0.00019 0.000377 0.000487 0.000752 0.000344

Proportion of secondary industry in GDP −0.021831 −0.010451 −0.006433 −0.004296 0.005225 −0.007384

Foreign investment −0.000014 0.000003 0.000003 0.000004 0.000013 0.000003

Green coverage rate in Urban Areas −0.024593 −0.01304 −0.00896 −0.006288 0.028647 −0.010151

AICc 401.106541

R2Adjusted 0.761111

2005 Per capita GDP −0.000005 0.000012 0.000014 0.000023 0.000048 0.000019

Population density −0.000214 0.000457 0.00077 0.000933 0.002671 0.000705

Foreign investment −0.000018 0.000006 0.000006 0.000007 0.000016 0.000007

Green coverage rate in Urban Areas −0.005457 0.01113 0.028381 0.045018 0.056891 0.027379

AICc 689.43737

R2Adjusted 0.718131

2010 Per capita GDP 0.000004 0.000013 0.000017 0.000025 0.000039 0.000019

Population density 0.00036 0.000892 0.001165 0.001292 0.003554 0.001106

Proportion of secondary industry in GDP −0.022767 −0.017272 −0.013947 −0.009998 0.008426 −0.01319

Foreign investment −0.000001 0.000001 0.000002 0.000002 0.000003 0.000002

Green coverage rate in Urban Areas −0.026526 0.00883 0.015217 0.01743 0.018773 0.012058

AICc 513.511017

R2Adjusted 0.767219

2015 Per capita GDP 0.000005 0.000015 0.000022 0.00003 0.000043 0.000023

Population density 0.001022 0.002041 0.002352 0.002841 0.003975 0.002386

Foreign investment −0.000001 0.000002 0.000002 0.000002 0.000004 0.000002

AICc 809.775722

R2Adjusted 0.75698

2019 Per capita GDP 0.000009 0.000031 0.000036 0.00004 0.000042 0.000034

Population density 0.002273 0.003053 0.003475 0.004224 0.005393 0.003608

Proportion of secondary industry in GDP −0.039671 −0.031188 −0.028826 −0.023745 −0.001902 −0.026668

AICc 925.361418

R2Adjusted 0.785129
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during this stage. In the early days, the coastal areas relied on energy-
intensive and labor-intensive industries, which led to overloading of
environmental carrying capacity and a decline in urban
development efficiency (Zou and Ma, 2021). This contradiction
also highlights the cost of the “pollute first, then clean up”
development path. It was not until the process of industrial
upgrading accelerated that the negative effects gradually
diminished (Liu et al., 2021). By 2019, the areas with significant
negative impacts were mainly concentrated in the northern part of
the eastern coastal region and the southern coastal region, including
provinces such as Shandong, Jiangsu, and Liaoning, with the
number of affected cities decreasing. This may be due to the
economically developed eastern and southern coastal regions

being quick in adjusting and upgrading their industrial
structures, thereby achieving significant results and gradually
reducing the inhibitory effect on urban development.

4.3.2.2.4 Impact of economic openness on spatial
heterogeneity. From 2000 to 2015, the regression coefficients
of foreign investment were significant at the 1% level, except in 2005,
when they were significant at the 5% level. The distribution of high-
value areas changed significantly over time. From 2000 to 2005,
regions with strong positive impacts shifted from the northeastern
region to the southwestern region, and these regions were
concentrated mainly in Yunnan and Guangxi. From 2010 to

FIGURE 4
Spatial distribution of regression coefficients for per capita GDP.

FIGURE 5
Spatial distribution of regression coefficients for
population density.
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2015, the high-value areas shifted from the middle reaches of the
Yellow River, the middle reaches of the Yangtze River, and the
eastern coastal region to the southern coastal region, mainly

concentrated in Guangdong Province (Figure 7). Foreign
investment can indirectly promote the level of urbanization,
especially in coastal areas that are at the forefront of economic

FIGURE 6
Spatial distribution of the regression coefficients for industrial structure.
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reform. Foreign investment brings capital and technology to the
region, helping to upgrade the industrial structure and attract labor
employment, thereby promoting urban development.

4.3.2.2.5 Impact of public infrastructure on spatial
heterogeneity. In 2000, the regression coefficient of green
space coverage in built-up areas was negatively correlated with

FIGURE 7
Spatial distribution of the regression coefficients for foreign investment.
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urbanization levels at the 1% significance level, showing a decreasing
trend from north to south (Figure 8). The regions with significant
impacts were mainly concentrated in the northeast and northwest

regions, including Heilongjiang, Jilin, and Gansu. The possible reason
is that Northeast is an old industrial base, and the reform of state-
owned enterprises has led to population outflow, resulting in a large

FIGURE 8
Spatial distribution of regression coefficients for green coverage rate in developed areas.
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amount of industrial land being abandoned and naturally
regenerating vegetation, especially in resource-based cities such as
Hegang and Fuxin, the situation is particularly severe (Han et al.,
2024). Furthermore, urban shrinkage has a negative impact on the
livability of cities, which further reduces community appeal,
accelerates population and social capital loss, and creates a vicious
cycle of “shrinkage-decline-population loss” (Jiang and Sun, 2024).
This “passive greening” phenomenon is fundamentally different from
the active greening efforts in the current ecological civilization
construction. Such areas need to achieve sustainable development
through industrial regeneration rather than merely ecological
restoration. In 2005 and 2010, the regression coefficients of green
space coverage in built-up areas showed an increasing trend from
north to south and were positively correlated with urbanization levels
at the 1% significance level. Regions with positive impacts weremainly
concentrated in the southern and eastern coastal areas and gradually
spread to the middle reaches of the Yangtze River, including
Guangdong, Fujian, Zhejiang, Jiangsu, Anhui, and Jiangxi. This
may be because the continuous improvement in public
infrastructure in these developed coastal areas improved the
ecological environment, thereby attracting more capital and
population inflows and effectively promoting urban development.

5 Discussion

5.1 Temporal and spatial patterns of urban
development

This study, which is based on DMSP-OLS and NPP-VIRRS data,
provides dynamic information on the spatial and temporal evolution of
urban development in China from 2000 to 2019. Previous studies on the
urbanization process have focused only on dynamics before 2012 (Fu
et al., 2017; Gao et al., 2015) or concentrated on typical urban
agglomerations (Li et al., 2021; Zou et al., 2017). This study
complements these previous findings. Research has indicated that
China’s urbanization level has rapidly developed but has also exhibited
significant temporal and spatial characteristics (Figures 2, 3; Table 1).
From a temporal perspective, the level of urbanization in China increased
continuously from 2000 to 2019. Notably, a significant acceleration in the
urbanization process began in 2010 and has been mainly concentrated in
the northern, eastern, and southern coastal areas (Figure 2). Spatially,
China’s urban development is uneven and highly spatially correlated.
Specifically, urban development trends from concentrated to dispersed
and from single-center to multicenter patterns. This finding is consistent
with the conclusions of Lan et al. (2019) and Peng et al. (2020).Moreover,
the urbanization process in the northeastern region has been relatively
slow. According to Yang et al. (2021), the most severe urban shrinkage
occurred in the northeastern region from 2008 to 2013 and was
characterized by declining employment, population outflow, and
building vacancies, all of which severely restricted urban development.
This study confirms those findings.

5.2 Factors influencing urban development

Per capita GDP, population density, the proportion of secondary
industry in GDP, foreign investment, and green space coverage in

built-up areas are the main indicators affecting urban development.
Among these factors, per capita GDP and population density have
consistently impacted urban development, although their influence
has weakened. This may be because, in the early 21st century, coastal
areas attracted substantial capital and population inflows at the
forefront of China’s economic reform, prompting rapid
urbanization. In contrast, the economic development level in the
western and central regions was relatively low, leading to significant
population outflow and slower urbanization (Zhang et al., 2018).
However, as urbanization has reached a certain stage, China’s
economy has shifted from “high-speed” to “high-quality”
development, focusing more on the ecological environment and
regional coordination (Chen et al., 2022), thereby reducing the
impact of economic development and population size on
urbanization.

The industrial structure significantly influences urban
development. Urbanization is a complex process involving
population, land, and economic activities (Fan et al., 2014; Song
and He, 2022; Xie et al., 2007). Previous studies have shown that the
development of secondary industry plays a positive role in urban
expansion (Li et al., 2019; Xu et al., 2020). However, the GWR
regression analysis reveals that secondary industry negatively
impacts urban development in most cities (Figure 6). We
hypothesize that the rapid development of secondary industry
also leads to problems such as industrial structure imbalances
and pollution, which inhibits urbanization. As shown in Figure 6,
secondary industry has a less negative impact in the northeastern
and northwestern regions, especially in the northeastern region.
Perhaps it is because the decline of resource-based industries in this
region has led to a reduction in industrial scale, and the population
outflow has caused the expansion of built-up areas to stagnate,
thereby weakening the intensity of the impact of structural changes
(Wang R. L. et al., 2021). Moreover, after the implementation of the
“Northeast Revitalization” policy, the structural adjustment through
the elimination of backward production capacity may have also
alleviated the inhibitory effect of the industrial structure on
urbanization (Zhang et al., 2024).

5.3 Limitations

This study enriches urbanization research by using nighttime
light data to analyze urban development in China. However, there
are several limitations. First, although previous studies have shown
that nighttime light data are highly correlated with human economic
activities, nighttime lights are just one indicator of human economic
activities, and the absence of light does not imply the absence of
economic activity. Moreover, changes in nighttime light brightness
can be influenced by various light sources, such as streetlights,
vehicle lights, and spotlights, potentially causing deviations in
human activity estimates. Second, although the influence of
policy factors on urban development was recognized, due to the
consistency and feasibility of policy quantification at the prefecture-
level city level, this study was unable to incorporate exogenous policy
variables into the core model. This might have led to the omission of
some important explanatory factors. Future research could attempt
to utilize text analysis, quasi-natural experiments, or a combination
of case studies to explore in greater depth the specific impact
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mechanisms of the policies. Third, the GWR analysis in this paper
focuses on the key policy nodes of urbanization that occurred over a
period of 20 years. This discrete approach, although consistent with
China’s 5-year planning cycle, essentially limits the detection of
inter-annual variations in influencing factors. A model that is
spatially continuous but temporally discrete may mask the short-
term dynamic changes between observation periods. Future studies
utilizing high-frequency nocturnal light data (for instance, the
monthly composite data from VIIRS) can implement
geographical and time-weighted regression (GTWR) to
simultaneously capture the spatio-temporal non-stationarity.

6 Conclusion

Based on nighttime light data, this paper employs exploratory
spatial data analysis to investigate the spatial differentiation
characteristics of urban development in 285 prefecture-level cities
in China from 2000 to 2019. It also uses the GWR model to explain
the impact of socioeconomic factors on the heterogeneity of urban
development in China. The results indicate that from 2000 to 2019,
the overall level of urbanization in China showed an increasing
trend, with a spatial distribution pattern shifting from concentrated
to dispersed and from single-center to multicenter. Moreover,
China’s urban development has exhibited strong spatial
autocorrelation. Hotspots are concentrated mainly in the eastern
coastal regions and the southern coastal regions, whereas cold spots
are concentrated in the southwestern, northwestern, and
northeastern regions. Additionally, China’s urbanization process
is influenced by economic development, population size,
industrial structure, degree of openness to the outside world, and
public infrastructure. Different influencing factors have both
positive and negative correlation effects on urban development,
indicating significant spatial heterogeneity. Specifically, economic
development and population size positively promote most cities.
The industrial structure has a negative impact on the urbanization
process in most regions. Its inhibitory effect is weakest in cold areas.
Public infrastructure and economic openness have a greater
promoting effect on coastal areas. These research findings are
crucial for promoting regional coordinated development and
sustainable urbanization. Based on the above conclusions, this
paper puts forward corresponding policy implications:

(1) Implement precise targeted interventions in underdeveloped
areas to break through the bottleneck of development
momentum. In response to the weak driving factors in the
“cold spots” of urbanization in regions such as the southwest,
northwest and northeast, regional coordination policies need to
adopt differentiated and precise measures. The southwestern/
northwestern regions should leverage their ecological resource
endowments to prioritize the development of clean energy,
cultural tourism and other distinctive industries. At the same
time, they should strengthen transportation and digital
infrastructure to break through geographical isolation and
improve public services to stabilize the population. The
northeastern region should focus on the transformation of
traditional industrial cities, and activate new driving forces
through innovation incubators, improvement of business

environment, and special policies for the return of
specialized talents. By identifying the region-specific
weaknesses and implementing targeted compensation, we
can avoid the “one-size-fits-all” policies from exacerbating
development gaps and cultivate sustainable internal
driving forces.

(2) Promote the improvement and efficiency enhancement of key
areas, facilitate their external expansion, and balance
efficiency and fairness. The “hotspot” areas such as the
eastern coastal regions have already achieved a highly
coordinated agglomeration effect. Policies should be
implemented in a two-way manner, namely, strengthening
high-end development and promoting radiation-driven
effects. On one hand, support for industrial upgrading,
technological innovation and green transformation is
carried out to maximize the efficiency of urban growth; on
the other hand, through institutional innovation and
infrastructure interconnection, guide the industrial chain
links to shift gradually to the surrounding areas. This
measure not only can unleash the potential of
agglomeration economy, but also can alleviate the
“Malthusian effect” through active spillover, embodying the
strategic connotation of “leading the less developed areas to
prosperity”, and achieving a dynamic balance between
efficiency and fairness.

(3) Establish a multi-center networked collaborative system to
promote complementary functions of various elements.
Given the spatial heterogeneity of the “multi-centered”
trend and driving factors of urbanization, a cross-regional
linkage network needs to be established to activate the
collaborative efficiency. The key lies in breaking down
administrative barriers and establishing a coordination
platform for urban agglomerations/economic belts, to
promote the free flow of talents, technologies and capital
in accordance with market rules. Based on the regional
driving characteristics revealed by GWR analysis,
differentiated functional nodes are strategically positioned
within the national industrial chain. Through
complementary functions and network collaboration, cold
regions can be integrated into a broader value chain, while hot
regions can expand their hinterland support, thus forming a
new development pattern of “diversified coexistence and
overall coordination”.
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