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Land use and land cover (LULC) in the Dolphin Coast of South Africa have
undergone substantial transformation due to rapid urbanization and growing
environmental pressures. Understanding these spatiotemporal dynamics is
crucial for managing development in sensitive coastal ecosystems. This study
utilized high-resolution RapidEye and PlanetScope imagery, classified through
the Random Forest algorithm within the Google Earth Engine (GEE) platform, to
map five LULC categories: built-up, bareland, forest, vegetation, and water. The
analysis achieved overall classification accuracies ranging from 88% to 95%,
confirming strong agreement between predicted and reference data. A
structured change analysis was further applied to quantify land transitions by
examining components of quantity, exchange, and shift. The results revealed
dominant conversions from vegetation to built-up (9.0 km2), bareland to built-up
(3.6 km2), and vegetation to forest (5.6 km2). Built-up areas consistently expanded
over time, while vegetation showed both gains and notable losses, reflecting
intense development pressures on green spaces. The study highlights clear
trajectories of landscape transformation and underscores the importance of
spatially explicit change metrics for monitoring dynamic coastal environments.
These findings provide valuable insights for policymakers and urban planners to
design sustainable land-use frameworks, control unplanned urban expansion,
and protect ecologically sensitive zones along the Dolphin Coast.
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1 Introduction

In recent decades, substantial alterations to the Earth’s land surface cover have occurred
at an alarming rate due to human activities (Di Marco et al., 2019; Minaei et al., 2018). To
effectively quantify and monitor these changes, Land Use and Land Cover (LULC) change
analysis has become a key component in modern approaches to managing and monitoring
natural resources (Basheer et al., 2024; González-González et al., 2022; Ngondo et al., 2021).
Typically, land use encompasses how people and communities utilize land, involving
economic activities (Regasa et al., 2021; Mariye et al., 2022), while land cover refers to the
physical characteristics of the Earth’s surface (Feng et al., 2023). LULC changes are so
pervasive that, when aggregated globally, they meaningfully affect key aspects of Earth
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system functioning (Titeux et al., 2016; Dhruw et al., 2023). They
directly impact biotic diversity worldwide and are the primary
source of habitat destruction and land degradation (Agidew and
Singh, 2017; Sharma et al., 2018), and contribute to local and
regional climate, as well as to global climate warming (Mantyka-
Pringle et al., 2015). Such changes are driven by urban development,
agricultural expansion, and deforestation (Arowolo and Deng, 2018;
Gaur and Singh, 2023). Urbanization, a substantial driver of LULC,
reduces vegetation coverage and converts agricultural areas into
built-up areas (Dadashpoor et al., 2019; Jamei et al., 2019).

Over the years, geospatial applications have become widely
accepted and increasingly influential in land use monitoring,
offering important opportunities to enhance the assessment of
LULC changes by analyzing the spatial distribution,
characteristics, extent, rate of change, and future prediction
(Rogan and Chen, 2004; Sabr et al., 2016). Particularly, the
combination of Geographical Information Systems (GIS) and
remote sensing technologies offers valuable tools for spatial
analysis of land use changes (Guida-Johnson and Zuleta, 2013;
Wiatkowska et al., 2021), including LULC classification and
change detection (Chughtai et al., 2021). Historically, medium-
resolution satellite products such as Landsat and Sentinel have
been used extensively to monitor LULC changes in South Africa
(Biggs and Scholes, 2002; Gillson et al., 2012; Musetsho et al., 2021;
Dzurume et al., 2022). However, their accuracy in urban
environments remains uncertain (Lefulebe et al., 2022; Radeloff
et al., 2024), due to their inability to effectively distinguish between
different land cover classes, such as residential and industrial areas
(Voltersen et al., 2014), for very fine details. In contrast, small
satellites (SmallSats) use commercial off-the-shelf (COTS)
technologies that, thanks to advances in electronics
miniaturization, are now smaller, lighter, more affordable, and
easier to access (Basheer et al., 2024).

Remote sensing, defined as the acquisition of Earth surface data
without direct contact (Elachi and Van Zyl, 2021), has been a vital
tool for LULC monitoring, offering comprehensive, cost-effective,
and time-efficient datasets that support urban observation,
planning, and monitoring (Verde et al., 2018; Saputra and Lee,
2019). Numerous studies have demonstrated the effectiveness of
remote sensing in numerous applications, for instance, Edosa and
Nagasa (2024) used Landsat imagery with maximum likelihood
classification algorithm to analyze LULC changes in Naqamte City,
western Ethiopia, achieving overall accuracies between 86% and
97%. Their findings indicated a substantial rate of change, such as
forest cover, which decreased by 14.5%, while bareland, built-up
land, and agricultural areas increased by 6.83%, 4.33%, and 3.21%,
respectively. Similarly, Mogonong et al. (2024) applied Landsat
imagery and Random Forests classification algorithm to assess
land cover changes and agricultural trends over 38 years,
achieving accuracies above 80%. The study revealed declines in
agricultural land from 1984 to 2022 across rural regions of South
Africa, such as Umhlabuyalingana, Joe Morolong, and Mangaung,
underscoring the value of remote sensing in capturing LULC
dynamics. The increasing accessibility of remotely sensed data
from Earth-observing satellites, along with advancements in
spatial, temporal, and spectral resolution, offers valuable
opportunities for researchers to adopt comprehensive methods
for LULC analysis (Basheer et al., 2024; Swain et al., 2024).

In recent decades, LULC mapping has increasingly relied on the
integration of remotely sensed imagery with statistical and machine
learning algorithms to detect and analyze spatial and temporal
landscape dynamics (Li et al., 2020; Talukdar et al., 2020).
Supervised classification techniques such as Support Vector
Machine (SVM), Random Forests (RF), Decision Tree (DT),
K-Nearest Neighbour (KNN), Multilayer Perceptron (MLP),
Naïve Bayes (NB), and Maximum Likelihood Classifier (MLC)
have been widely applied in LULC studies (Akhtar et al., 2021;
Gaur and Singh, 2023; Mashala et al., 2023). Numerous comparative
assessments have demonstrated the varying classification
performance of these algorithms (Li et al., 2024), with a growing
body of evidence highlighting the superior accuracy of ensemble and
kernel-based approaches such as RF and SVM over traditional
classifiers. In particular, Random Forests has emerged as one of
the most robust and reliable classifiers for LULC classification (Ul
Din and Mak, 2021; Bayas et al., 2022), owing to its ability to handle
high-dimensional datasets, mitigate overfitting, and accommodate
non-linear relationships among spectral variables (Talukdar et al.,
2020; Regasa et al., 2021; Mashala et al., 2023). For example, Lefulebe
et al. (2022) utilized PlanetScope imagery and machine learning
algorithms, namely, the KNN, RF, NB, and SVM, to classify LULC
changes in Cape Town from 2016 to 2021. The study found KNN to
be the most accurate, with 96.5% accuracy, followed by RF (94.8%),
NB (93.7%), and SVM (92.3%). Another study by Gokool et al.
(2024) demonstrated the effectiveness of Google Earth Engine
(GEE)’s advanced geospatial cloud computing for processing
high-resolution multispectral Unmanned Aerial Vehicle (UAV)
imagery to map LULC within smallholder farms. The study
identified the RF classifier as the best-performing algorithm,
achieving an overall accuracy of 86%, surpassing Classification
and Regression Tree (CART) (81%), SVM (83%), and Gradient
Tree Boost (GTB) (85%). The findings confirm that selecting the
right combination of LULC classifiers improves the accuracy of
high-resolution imagery classification (Basheer et al., 2024).

In South Africa, much of LULC changes are particularly
threatening, with coastal regions being heavily impacted by
urbanization, climate change, and biodiversity loss (Mead et al.,
2013). The rapid and alarming expansion of urban areas has
increased pressure on natural ecosystems (Palmer et al., 2011).
This pressure is exacerbated by the increasing proximity of urban
development initiatives in regions with high species richness and
endemism (Potgieter et al., 2020). For example, the KwaZulu-Natal
coastline, vital for tourism and conservation, faces issues such as
climate change, flooding, and urban expansion (Mthiyane et al.,
2022), which hinders natural regeneration (Smith et al., 2013; Law,
2023). Uneven settlement distribution in coastal regions like the
Dolphin Coast further led to resource exploitation and land-based
pollution (Nxumalo et al., 2025). For instance, Todes (2014)
highlighted the weighty impact of residents relocating from
northern eThekwini to Ballito, which catalyzed substantial
housing demand in the area. This movement, fueled by rapid
economic growth in northern Durban, particularly in Umhlanga
and around the King Shaka International Airport, marked a pivotal
shift during the mid-2000s boom, positioning Ballito as a key
destination within the high-income coastal region and
intensifying migration trends (Ramsarup, 2022). However,
research on land use changes in this region is limited,
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highlighting the need to assess the extent and pace of these LULC
changes along the coastline.

Many studies evaluating land cover change have fallen short in
accurately measuring change over time. Typically, they report only
the category sizes at different time points and quantify the change
between intervals. This approach often assumes that maps with
overall accuracy above 85%, or a high Kappa statistic, are
satisfactory, despite substantial criticism of these metrics’
limitations (Pontius and Millones, 2011; Quan et al., 2020). In
response to these shortcomings, Pontius and Lippitt (2006)
introduced a method that quantifies the size of map errors in
relation to observed changes between two time points. This
method assesses whether the apparent differences are greater
than what can be attributed to error alone (Pontius and Millones,
2011; Xie et al., 2020; Pontius Jr, 2022). Building on this framework,
the current study adopts the approach by decomposing change into
three key components: quantity, exchange, and shift (Pontius and
Santacruz, 2014; Pontius Jr, 2022). Thereby, this study investigates
the spatio-temporal dynamics of LULC in the Dolphin Coast region
of KwaZulu-Natal between 2009 and 2024 using four time points of
fine-resolution imagery classified with Random Forests algorithm.
In addition, the study evaluates the net changes and accuracy of the
classified maps.

2 Materials and methods

2.1 Study area

The Dolphin Coast coastal region extends approximately 45 km2

and is about 40 km north of Durban (Figure 1). It falls within the
KwaDukuza Local Municipality within the iLembe District
Municipality, with geographical coordinates between 29° 28′6″S
and 31° 5′38″E. The region is renowned for its diverse ecological
features and unique geomorphological features, including estuaries
such as the Mdloti River estuary, which are vital to the local
ecosystem (Garden and Garland, 2005; Tagliarolo and Scharler,
2018). The area is characterized by predominantly subtropical
vegetation, encompassing lush coastal and dune forests, as well as
a variety of palm species. It is celebrated for its scenic beauty and
prominent coastal destinations like Ballito, Zimbali, and Umhlanga
Rocks. This extensive coastal biodiversity contributes substantial
aesthetic and economic value (Law, 2023).

The area is also part of the uThukela Marine Protected Area and
has experienced considerable LULC changes in recent years, mainly
due to increasing development activities (Palmer et al., 2011),
including the expansion of residential housing, commercial
infrastructure, and tourism facilities, as well as the development

FIGURE 1
Location of the dolphin coast, South Africa.

Frontiers in Environmental Science frontiersin.org03

Nxumalo et al. 10.3389/fenvs.2025.1639760

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1639760


of road networks and coastal recreation areas (Todes, 2014). In this
context, a study that maps the most important LULC changes
is desirable.

2.2 Remote sensing data

In this study, we used satellite products from RapidEye and
PlanetScope at four time points: 2009, 2014, 2019, and 2024,
which we obtained free of charge from Planet Lab Inc. (San
Francisco, CA, USA), portal (https://www.planet.com, accessed
in July 2024) under a research and educational license. These
cloud-free datasets were pre-processed in analysis-ready format
(geometrically, radiometrically, and atmospherically corrected)
(Şahin and Kaplan, 2023), at Level 3A and 3B surface
reflectance, and subsequently orthorectified (Marta, 2018;
Gašparović et al., 2018). Geometric correction ensured
accurate spatial alignment by referencing a consistent
coordinate system. Radiometric correction normalized
variations in sensor response and illumination conditions to
ensure consistency in surface reflectance values across all image
dates. Atmospheric correction was performed using the
provider’s standardized surface reflectance processing
pipeline at Level 3A and 3B, which compensates for
atmospheric scattering and absorption effects to produce true
surface reflectance imagery. RapidEye has a constellation of five
Earth observation satellites, operational since 2008, that capture
fine-resolution multispectral imagery with an orthorectified
pixel size of 5 m across five spectral bands (Blue, Green, Red,
Red-edge, and Near-infrared). PlanetScope is equipped with
four bands (Blue, Green, Red, and Near-infrared) that have been
imaging the Earth with a resolution of 3 m since 2013 (Yoon and
Choi, 2018). PlanetScope has, so far, the highest number of
satellites in orbit, with over 200 Dove satellites, making it one of
the few commercial satellite products with combined finer
spatial and temporal characteristics (Hermle et al., 2021;
Lefulebe et al., 2022; Basheer et al., 2024). Both these satellite
products provide a valuable data source for a wide range of
applications, including urban planning and land cover change
analysis (Gašparović et al., 2018; Tamiminia et al., 2020).

We selected the most informative spectral bands, red, green,
blue, and near-infrared (NIR), to effectively distinguish forest
regeneration and reduce the computational costs during model

training. Bands which are sensitive to moisture content in
vegetation and soil, are particularly valuable for land cover
identification (Chuvieco et al., 2002; Wang et al., 2008). These
bands are recognized for their ability to capture critical
information about vegetation health, moisture content, and land
cover changes (Rukhovich et al., 2022). The characteristics of these
datasets are summarized in Table 1. Subsequently, the images were
mosaicked and clipped according to the boundaries of
the study area.

2.3 LULC classes in the dolphin coast

Given the heterogeneity of land cover types and land use patterns
in the study area, it was essential to classify the landscape based on its
physical characteristics and functional use (Kgaphola et al., 2023). To
ensure consistency and comparability with national datasets, the
South African National Land Cover Classification System
(Department of Rural Development and Land Reform) was
adopted for this study. Specifically, Level 1 land cover categories
were employed to delineate and map five key LULC categories: water,
built-up areas, forests, vegetation, and bareland (Table 2).

2.4 Training and testing data processing

All training samples were collected in GEE and Google Earth Pro
using RapidEye and PlanetScope satellite images. A minimum of
50 training samples were utilized for LULC classification for each
class. According to Lillesand et al. (2015) it is generally
recommended that each LULC class should possess at least
50 training examples. Then, the spectral properties of LULC
classes were randomly divided into two datasets, a training
dataset (80%) and a validation dataset (20%) (Lefulebe et al.,
2022). To reduce spatial autocorrelation and ensure representative
sampling across all LULC classes, a stratified random sampling
design was implemented. This approach ensured that each class
was proportionally and spatially represented across the landscape.
Training points were digitized through visual interpretation of high-
resolution imagery and validated using historical images in Google
Earth. Furthermore, care was taken to ensure that training and
validation points were drawn from spatially distinct locations to
avoid overlap and sampling bias.

TABLE 1 Characteristics of satellite products used in the study.

Band RapidEye PlanetScope

Spectral range (nm) Resolution (m) Spectral range (nm) Resolution (m)

Blue 440–510 5 465–515 3

Green 520–590 5 547–585 3

Red 630–685 5 650–680 3

Red Edge 690–730 5

Near-Infrared 760–850 5 845–885 3
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2.5 LULC classification algorithm

Recent advancements in artificial intelligence (AI), particularly
machine learning (ML) algorithms have revolutionized the
understanding and modelling of LULC changes. The use of
satellite datasets have become indispensable for mapping LULC
changes through advanced classification techniques (Atef et al.,
2024). Among these, supervised classification methods stand out,
leveraging ML algorithms such as SVM, Artificial Neural Networks
(ANN) (Adam et al., 2023) and RF (Mashala et al., 2023; Parracciani
et al., 2024), among others. In this study, we adopted a pixel-based
approach to classify satellite images using a supervised RF algorithm
in GEE. The Random Forests (RF) algorithm, introduced by
Breiman (2001), is a widely adopted ensemble machine learning
technique recognized for its robustness, computational efficiency,
and ability to handle high-dimensional and complex datasets. As a
non-parametric model based on decision trees, RF constructs
multiple independent classification trees through a process
known as bootstrap aggregating or bagging, where random
subsets of the training data are drawn with replacement. Each
tree independently votes on the classification outcome, and the
final class assignment is determined by majority voting (Belgiu and
Drăguţ, 2016; Boateng et al., 2020).

The algorithm is particularly well-suited for land use and land
cover (LULC) classification tasks using remote sensing data due to
its ability to model non-linear relationships, manage large numbers
of input variables, and minimize the risk of overfitting (Belgiu and
Drăguţ, 2016; Talukdar et al., 2020; Bayas et al., 2022). Unlike
traditional classifiers, RF does not require assumptions about the
distribution or independence of input variables and is resilient to
outliers and noise within the data (Couronné et al., 2018; Basheer
et al., 2024). Thus, in this study, RF was selected due to its consistent
performance in comparative classification studies and its proven
reliability in handling high-resolution satellite imagery (Breiman,
2001; Liu et al., 2020). For example, Gokool et al. (2024) utilized RF
within GEE to classify UAV-derived imagery over smallholder farms
and found that RF outperformed Support Vector Machines (SVM),
Classification and Regression Trees (CART), and Gradient Boosted
Trees (GTB), achieving the highest overall accuracy (86%). Similar
conclusions were drawn in recent studies applying RF for LULC
mapping in South Africa (Lefulebe et al., 2022; Bhungeni et al., 2024;
Basheer et al., 2024).

In this study, the RF classifier was implemented within the GEE
environment using the smileRandomForest function. Two key model
parameters were tuned to enhance performance: the number of
decision trees (ntree) was set to 25, and the number of variables
considered for each split (mtry) was defined as the square root of the
total number of explanatory features. Each node was configured to
have a minimum of two leaf samples. The input features included
five spectral bands from the RapidEye and PlanetScope sensors,
namely,: visible (blue, green, and red), near-infrared (NIR), and red-
edge bands. These features were selected for their sensitivity to
vegetation structure, moisture content, and surface reflectance
properties, which are essential for differentiating LULC classes
(Shandu and Atif, 2023). By leveraging the ensemble structure of
RF and its capability to generalize well across heterogeneous
landscapes, the classification approach enabled a robust and
spatially consistent mapping of five major land cover classes.

2.6 Change component

To better interpret the patterns of LULC transitions, this study
applied the intensity analysis framework introduced by Pontius Jr
(2022). In this method, intensity analysis distinguishes between size
and intensity. Size is an area in the context of landscapes. Intensity is
a ratio, where the numerator is the size of the change and the
denominator is the size of the extent where the change could have
possibly occurred. Intensity analysis explains a change’s size as a
product of two factors: the size of the spatial extent and the intensity
of the change. A category’s net change is its gain minus its loss. If a
category loses in some places while it gains in other places, then its
net change is less than its gross change, because a category’s gross
change is its gain plus its loss (Quan et al., 2020; Bilintoh et al., 2024).
This method examines the extent and nature of change between
LULC categories by decomposing the differences into three distinct
components: quantity, exchange, and shift for each time interval:
2009–2014, 2014–2019, and 2019–2024. The Supplementary
Material give equations and mathematical symbols that the
equations use for those concepts for each category j and the
extent during each time interval t, denoted as dtj, qtj, etj, stj, Dt,
Qt, Et, and St. Where the first component, quantity, measures the net
change in the area of each LULC category, irrespective of the spatial
location of transitions. The second component, exchange, captures
the symmetric, mutual transitions between pairs of categories, such
as when forest becomes vegetation and vegetation becomes forest,
revealing bidirectional dynamics often concealed by net area
statistics. Lastly, the shift component quantifies the asymmetric
reallocation of change that remains after accounting for quantity
and exchange (Pontius and Millones, 2011; Xie et al., 2020; Pontius,
2022). All the equations in the Supplementary Material were
adopted from Xie et al. (2020).

2.7 Classification accuracy assessment

Accuracy assessment is essential for any LULC map derived
from remote sensing data (Islami et al., 2022). We generated a
confusion matrix that merged the classified LULC map with
reference information. Various measures such as the producer

TABLE 2 Descriptions of the LULC classes utilized in the study.

Categories Description

Water Natural and artificial waterbodies, including rivers, tributaries,
dams, and lakes

Built-up Residential, commercial, industrial, and related structures

Forest Natural, planted, woodland forests varying from sparse to
dense, dominated by trees over 5 m tall

Vegetation Grass and shrublands, open areas, golf courses, and sports
fields

Bareland Open, bare areas, including cleared lands, eroded lands,
degraded sites, and mining
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accuracy, user accuracy, and the overall accuracy (OA) (Faqe
Ibrahim et al., 2023; Basheer et al., 2024). OA was calculated
from Equation 1 below.

Overall accuracy � Number of correctly classified pixels
Total pixels in test sample sites

(1)

The overall accuracy represents the sum of correctly labelled
pixels for all the classes in the input image as per the provided test
sample sites and is mathematically expressed as a fraction of the
number of correctly classified pixels and the total number of test
sample sites (Kang et al., 2021). The validation 20% dataset was used
to derive confusion matrices from which producer’s accuracy, user’s
accuracy, and overall accuracy were computed. However, we
acknowledge that the sample was not proportional to the actual
distribution of class sizes in the landscape (i.e., population
distribution). While stratified random sampling improves
representation of minority classes, it may introduce bias into
summary accuracy metrics if not corrected. In this study, we did
not apply a bias correction or convert the sample confusion matrix
into an estimated population confusion matrix. As such, the
summary metrics presented may slightly over- or under-estimate
true population-level accuracy. This limitation is consistent with the
caution advised by Pontius Jr (2022), who emphasizes the
importance of transparency when reporting unadjusted accuracy
results from stratified samples.

To provide a more diagnostic evaluation, we further applied
quantity disagreement and allocation disagreement, as introduced
by Pontius and Millones (2011). Quantity disagreement reflects the
difference in the amount of each class between the classified and
reference maps, while allocation disagreement captures differences
in spatial location of those classes. These two measures help
overcome conceptual flaws in traditional summary metrics like
the Kappa coefficient, which we intentionally excluded (Pontius
and Millones, 2011; Foody, 2020). Instead, we advocate interpreting
the confusion matrix in terms of individual class accuracies, total
agreement, and the explicit breakdown of quantity and allocation
disagreement (Pontius, 2022).

3 Results

Here we report an analysis of LULC change at the Dolphin Coast
between 2009 and 2024 based on the PlanetScope and RapidEye
satellite products. We first provide a detailed analysis of LULC
distribution and changes from categories, intervals, and then
accuracy assessment.

3.1 LULC areal distribution

Figure 2 illustrates the spatial distribution of five land cover
categories across the four time points, while Figure 3 presents the
corresponding gain and loss maps. Although the overall spatial
patterns appear visually consistent across the years, substantial
underlying changes were detected. The most prominent trends
include a consistent increase in built-up areas, expanding from
2009 to 2014, and a marked rise in forest cover over the same
period. In contrast, vegetation experienced a sharp decline,

suggesting widespread land conversion to urban or forest uses.
Some of the temporal alternations, such as a category gaining in
one interval and then declining in the next, may be attributed to map
classification errors.

The areal extent and distribution of the individual LULC
categories in the Dolphin Coast from 2009 to 2024 are further
shown in Table 3, a point to which discussions in the following
sections will inevitably refer as necessary. As seen from Table 3, the
LULC classes in the study area consist mainly of vegetation (55.71%
on average), followed by forests (20.38%), built-up areas (15.65%),
then barren land (7.82%) and, to a lesser extent, waterbodies
(0.45%). While the area is currently dominated by classes of
natural origin, the anthropogenic influence is rapidly increasing,
which is a cause for concern in this ecologically sensitive coastal area.

For emphasis, the 45 km2 area was dominated by a widespread
vegetation class that occupied two-thirds (63.15%) of the area, but
declined over time to almost one-third in 2024 (37.16%) (Table 3).
This is followed by barren land, the proportion of which was 17.08%
in 2009, mostly distributed in the southern, central and northern
parts, however, it fluctuated over time to 7.88% in 2024, mainly in
the south and north. Built-up area is varyingly distributed in the
central-south to the north and over the coast, increasing from
11.01% in 2009 to 22.30% in 2024. Similarly, forests grew from
and 8.31% in 2009 to 32.21% in 2024. To a lesser extent, the area at
the southern tip represents less than 1% of the waterbodies, which
remained relatively unchanged during the study period.

The results in Figures 4, 5 show that vegetation was the largest
source of increases in built-up area (9.0 km2), forest (5.6 km2) and
bareland (2.1 km2), while 14.1 km2 remained unchanged. Bareland
was the second source of change, with 3.6 km2 lost to built-up area
and 1.6 km2 to vegetation, with 0.6 km2 remaining unchanged.

3.2 Change analysis

Figures 6a,c,e display the components of temporal difference:
quantity, exchange, and shift, for each land cover category across the
three intervals (2009–2014, 2014–2019, and 2019–2024), expressed
as a percentage of the Dolphin Coast area. Vegetation consistently
contributed the largest share of change across all intervals, followed
by built-up and forest categories. Built-up areas exhibited net gains
during each interval, while vegetation shifted from net gain
(2009–2014) to net loss (2014–2024). Forest showed a pattern of
persistent net gain, while bareland alternated between net
loss and gain.

Exchange emerged as the largest component for several
categories, particularly vegetation and bareland, suggesting
dynamic spatial turnover and potential classification
inconsistencies. For built-up, however, the relationship between
exchange and quantity components varied by interval. In
2009–2014 (Figures 6a,b), exchange slightly exceeded quantity,
but during 2014–2019 and 2019–2024 (Figures 6c–f), quantity
intensity either matched or surpassed exchange, indicating that
net directional growth of built-up land became more dominant
than simultaneous turnover in later years.

Figures 7a,c,e illustrate the absolute sizes of category-level gains,
persistence, and losses, while Figure 7b,d,f show the gain and loss
intensities relative to each category’s size. Vegetation consistently
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exhibited both the highest losses and gains, reflecting high internal
variability. During 2009–2014, vegetation had an active loss (above
the blue line), while gain remained dormant. Built-up showed
moderate-to-high gain intensities throughout, with active gains
during 2014–2019 and 2019–2024, consistent with urban
expansion. Bareland exhibited increasing gain intensity in the
final interval, suggesting emergent land degradation or exposure.

The vertical reference lines in both figures clarify the intensity
context. In Figure 6, the blue line indicates overall quantity intensity,
while the red line shows the combined quantity + exchange
intensity. In Figure 7, the dashed line indicates the overall annual
difference intensity across Dolphin Coast, allowing identification of
active vs. dormant change.

Overall, the analysis confirms that the dominant drivers of
change varied by class and period. Importantly, exchange did not
consistently exceed quantity for built-up, highlighting the need for
precise interpretation and avoiding overgeneralization.

3.3 Mapping accuracy assessment

The accuracy assessment of LULC classification was
conducted for four time points: 2009, 2014, 2019, and 2024,

using standard metrics including overall accuracy (OA),
producer accuracy (PA), and user accuracy (UA). These
metrics were derived from confusion matrices based on
reference validation samples. Table 4 summarizes the
classification performance across the five land categories.

The highest overall accuracy was achieved in 2024 at 94.8%,
followed by 2014 (93.2%), 2019 (91.0%), and the lowest in 2009
(88.3%). These results reflect an improvement in classification
performance, particularly due to the transition from RapidEye
(5 m resolution) used in 2009 and 2014, to PlanetScope (3 m
resolution) imagery used in 2019 and 2024. This trend aligns
with recent LULC studies (Lefulebe et al., 2022; Gokool et al.,
2024; Basheer et al., 2024), which report improved performance
of PlanetScope imagery in capturing finer land cover details,
especially in heterogeneous landscapes.

Producer accuracy was generally high across all years, with water
and bareland occasionally showing lower UA values, particularly in
2009 (UA for water: 64%, and bareland: 77%), possibly due to
spectral confusion with adjacent land covers or seasonal variation in
surface appearance. Built-up and vegetation classes achieved
consistently high PA and UA across all years, reflecting their
distinct spectral signatures and the robustness of the Random
Forest classifier.

FIGURE 2
Maps of land categories in the Dolphin Coast from 2009, 2014, 2019 and 2024.
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To further evaluate classification quality, Quantity
Disagreement (QD) and Allocation Disagreement (AD) were
computed. These metrics help distinguish between errors due to
incorrect quantities of classes (QD) and incorrect spatial allocation

(AD). The 2024 classification showed in Table 5, the lowest
disagreement values (QD: 0.0316; AD: 0.0204), confirming both
quantitative and spatial consistency in class assignment. In contrast,
the 2009 map had the highest QD (0.0789), suggesting a greater

FIGURE 3
Maps of losses and gains in the Dolphin Coast.

TABLE 3 Area of each land category in the Dolphin Coast at four time points (km2 and %) over time.

LULC classes 2009 2014 2019 2024 Average (%)

Area (km2) (%) Area (km2) (%) Area (km2) (%) Area (km2) (%)

Water 0.2 0.45 0.1 0.23 0.3 0.68 0.2 0.45 0.45

Built-up 4.9 11.01 5.7 12.84 7.3 16.44 9.9 22.30 15.65

Forest 3.7 8.31 7.0 15.77 11.2 25.23 14.3 32.21 20.38

Vegetation 28.1 63.15 29.4 66.22 25 56.31 16.5 37.16 55.71

Bareland 7.6 17.08 2.2 4.95 0.6 1.35 3.5 7.88 7.82

Total 45 100 45 100 45 100 45 100 100
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FIGURE 4
Spatial and quantitative representation of LULC conversion from 2009 to 2024.

FIGURE 5
LULC conversion between 2009 and 2024 in the Dolphin Coast.
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mismatch in class proportions, which may relate to coarser spatial
resolution and seasonal spectral variability.

Overall, the classification accuracy results demonstrate
improved map reliability over time, with the best performance
observed in 2024. The consistent improvements across all metrics
reflect the use of high-resolution imagery combined with machine
learning classifiers in generating reliable LULC, maps.

4 Discussion

This study investigated land use and land cover dynamics in the
Dolphin Coast in South Africa over a 15-year period using high-
resolution PlanetScope and RapidEye imagery based on Random
Forests classification. The classified maps achieved satisfactory per-
year agreement with reference data, with overall accuracies ranging
from 88% (2009) to 95% (2024). Improvements in classification
performance over time could be attributed to the higher spatial
resolution of PlanetScope imagery and the effectiveness of RF in
heterogeneous landscapes. The spatial and temporal LULC patterns
revealed consistent expansion in built-up areas, increasing from

11.01% in 2009 to 22.30% in 2024. This trend was accompanied by a
crucial reduction in vegetation cover, which declined by nearly half
from 63.15% to 37.16% over the same period. Forest cover increased
from 8.31% to 32.21%, a trend that may be influenced by
improvements in the conservation status of the coastal forests in
this area (Kambaj et al., 2018). Bareland decreased initially but
experienced a slight resurgence in the final interval (2019–2024),
while waterbodies remained stable throughout the study period,
occupying less than 1% of the total area.

Transition mapping showed that vegetation was the primary
source of gains in built-up, forest, and bareland areas, indicating its
role as a transitional class under land development pressure. Spatial
analysis of gains and losses (Figures 4, 5) confirmed widespread
conversions, especially in peri-urban and coastal zones. The
dominance of the exchange component in intensity analysis
suggests substantial bi-directional changes, possibly reflecting
land reallocation or classification noise. Notably, built-up areas
exhibited net gains across all three intervals, reinforcing a
unidirectional trend of urban expansion. In contrast, vegetation
experienced both gains and losses, with net losses during the latter
two intervals (2014–2024), suggesting land system instability.

FIGURE 6
Size (a,c,e) and intensity (b,d,f) of differences during three-time intervals in the Dolphin Coast. L denotes net loss and G denotes net gain.
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Disagreement metrics further supported the quality of
classification, with Quantity Disagreement (QD) and Allocation
Disagreement (AD) lowest in 2024 (QD: 0.0316; AD: 0.0204).
The highest disagreement occurred in 2009, aligning with lower

accuracy and the coarser RapidEye imagery. These results affirm
that using fine-resolution imagery in later years improved class
allocation and detection of smaller features, consistent with other
regional studies (e.g., Lefulebe et al., 2022; Basheer et al., 2024).

FIGURE 7
Category level losses and gains for size (a,c,e) and intensities (b,d,f). The dashed line indicates the annual difference in overall percentage of the
Dolphin Coast.

TABLE 4 LULC classification accuracies for the Dolphin Coast in 2009, 2014, 2019 and 2024.

Year Classes OA

Water Forest Built-up Vegetation Bareland

2009 UA (%) 64 93 100 100 77 88

PA (%) 90 100 67 96 96

2014 UA (%) 100 100 96 94 80 93

PA (%) 100 96 87 100 93

2019 UA 92 100 96 91 71 91

PA (%) 100 96 87 100 91

2024 UA (%) 100 100 92 100 89 95

PA (%) 97 100 89 100 94

Frontiers in Environmental Science frontiersin.org11

Nxumalo et al. 10.3389/fenvs.2025.1639760

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1639760


While Random Forests showed reliable classification across all
time points, the presence of high exchange components in intensity
analysis, particularly between vegetation and forest, may signal
confusion between spectrally similar classes. Future studies may
benefit from incorporating temporal or ancillary variables (e.g.,
NDVI trajectories or elevation data) to reduce misclassification.
We recommend that future studies adopt the approach proposed by
Zhang et al. (2025), incorporating methods like DynamicPATCH to
capture spatially explicit and gross land cover changes often missed
by traditional net change metrics. This method enables detailed
tracking of patch-level dynamics, such as splitting, merging, and
expanding, thereby improving the understanding of complex
landscape transitions.

4.1 Implications for land change monitoring
and future planning

Although the current analysis did notmodel policy, population, or
ecological outcomes directly, the observed LULC patterns, particularly
vegetation loss and rapid urban expansion, highlight areas of potential
planning concern. These findings suggest the value of integrating
routine LULC monitoring into regional planning frameworks. The
spatially explicit nature of the observed changes may inform zoning
updates or land use conflict resolution. Additional research linking
socio-economic data with LULC transitions could strengthen the basis
for sustainable development and resilience planning in fast-changing
coastal landscapes like the Dolphin Coast.

5 Conclusion

This study assessed land cover changes in the Dolphin Coast
area of almost 45 km2 in South Africa, from 2009 to 2024, using
multi-date PlanetScope and RapidEye satellite images based on a
Random Forests classifier. The analysis revealed notable land
transformation, including a two-fold increase in built-up area
(11.01%–22.30%) and forest areas (8.31%–32.21%) with a
corresponding reduction in vegetation cover (63.15%–37.16%).
Bareland fluctuated while waterbodies remained relatively stable
(~0.45%) over the study period. Overall classification accuracies
varied from 88% to 95%, with the highest accuracy value achieved in
2024 using PlanetScope imagery. The use of transition matrices,
intensity analysis, and disagreement metrics provided deeper insight
into the spatial and temporal characteristics of land change
processes. The dominance of exchange and persistent gains in
built-up and forest categories underscores the dynamic nature of
the coastal landscape. By integrating fine-resolution satellite data

and robust classification techniques, this study contributes a
spatially detailed assessment of LULC transitions over a 15-year
period. Given these findings, it is important to highlight the
potential of PlanetScope and RapidEye satellite products for
capturing the spatial and temporal characteristics of land
changes, and also to establish a baseline for future LULC
monitoring in the Dolphin Coast.
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