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China confronts challenges of inefficient cultivated land utilization and ecological
pressures amid rapid urbanization. Coordinated development of cultivated land
use eco-efficiency (CLUEE) and new-type urbanization (NTU) is essential for
high-quality growth. As a rapidly urbanizing major grain-producing province,
Henan is confronted with a serious imbalance in the development of CLUEE and
NTU.Existing research lacks comprehensive spatiotemporal analysis of their
coupling coordination relationship at fine scales, limiting precise policy
formulation. This study quantifies CLUEE and NTU dynamics in Henan using
integrated super-SBM and entropy-weighted models, elucidates coupling
coordination mechanisms, and proposes spatially differentiated governance
strategies. Key findings demonstrate that: (1) The CLUEE in Henan Province
rose significantly from 0.09 in 2002 to 0.47 in 2022. At the county scale,
there is a transition from point-like diffusion centered on Zhengzhou to
continuous expansion, and low-efficiency clusters persist in the western
mountainous areas. The overall NTU rose from 0.15 to 0.32, spatially, it
presents high-value corridors along the traffic axis and a gradient descent
zone centered on Zhengzhou. (2) Overall, the coupling coordination degree
has increased from 0.31 to 0.59. At the municipal scale, Hebi leads the province,
while Shangqiu is slightly out of balance. The high-value areas in counties are
spreading from single-core to T-shaped corridors. (3) The driving factors show
temporal and spatial heterogeneity: County-level disposable income dominates
globally, while local fiscal budgets and the degree of terrain roughness shape
regional interactions. The inhibitory effects on per capita cultivated land area and
fiscal revenue have intensified. Agricultural mechanization has shifted from
inhibition to promotion, highlighting the path differentiation between intensive
development in northeast region and ecological constraints in southwest region
of Henan Province. These findings reveal that the co-evolution of CLUEE and
NTU in Henan Province operates through a complex synergy of resources,
technology, and policy, characterized by spatially heterogeneous, non-linear
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interactions among multiple factors. This study underscores the significance of the
county-level research, which enables local governments to implement more
targeted policy regulation.
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1 Introduction

Cultivated land, as a strategic resource critical for maintaining
human survival and civilizational continuity, represents a dual
foundational pillar for both food security and ecological
sustainability within territorial spatial systems (Kuang et al.,
2020). Against the backdrop of persistent global population
growth and the evolution of dietary structure, escalating demands
for agricultural products necessitate enhanced requirements for both
quantitative preservation and productivity optimization of
cultivated land resources. Contemporary urbanization processes
have precipitated relentless spatial expansion of urban built-up
areas through boundary proliferation. This urban territorial
acquisition, achieved through the encroachment on peripheral
high-quality cultivated land, has exacerbated landscape
fragmentation and environmental contamination, thereby
diminishing agricultural productivity (Wang et al., 2024). Such
spatial transformations impose dual pressures of “quantitative
attrition and qualitative degradation” on finite cultivated land
reserves. Notably, World Cities Report 2022 projects that the
global urbanization will escalate from 56% in 2021 to 68% in
2050. Concurrently, the Global Report on Food Crises
2023 documents 258 million people experiencing acute food
insecurity. These intersecting challenges underscore the
imperative for spatial planners to reconcile ecological
conservation of cultivated land with sustainable urban growth
within the framework of global sustainable development agenda.

The conceptualization of cultivated land use eco-efficiency
(CLUEE) evolved from the “eco-efficiency” paradigm initially
articulated by Schaltegger and Sturm (1990), who established a
dynamic analytical matrix that evaluates the relationship between
economic value generation and environmental externalities
(Schaltegger and Sturm, 1990). Within urban-rural land use
systems, CLUEE quantifies the utilization effectiveness of
cultivated land through an optimization model that minimizes
environmental perturbations while maximizing agricultural
economic outputs and grain yields. This is achieved through
systematic reconfiguration of production factors encompassing
land, labor, and agrochemical inputs (Fan et al., 2024). The
paradigm emphasizes achieving synergetic optimization between
socioeconomic benefits and ecological preservation through
technological innovation and resource reallocation. Its theoretical
essence resides in maintaining equilibrium within the tripartite
interaction system of “resource allocation-economic productivity-
ecological integrity” (Zhang et al., 2024), presenting a crucial
analytical lens for sustainable land use. Methodologically,
scholars employ analytical tools including the DEA model
(Jingxin et al., 2022), the SBM model (Cecchini et al., 2018), the
super-efficiency SBM model (Cao et al., 2022), the stochastic
Frontiers production function (Zuo et al., 2013), and the

comprehensive evaluation model (Chen and Pei, 2025) to
calculate the CLUEE.

The conventional urbanization paradigm has historically
overlooked the fundamental principles of ecological efficiency,
predominantly prioritizing “spatial expansion” and “economic
increment” through extensive spatial proliferation models, while
neglecting the criticality of human-nature symbiosis in sustainable
development. Aligned with the national strategy for comprehensive
socioeconomic green transition, China’s new-type urbanization
(NTU) framework positions human-centered development as its
core, advocating coordinated advancement across demographic
distribution, economic activities, social structures, and ecological
systems (Zhang and Xing, 2023). Promoting the flow of factors
between urban and rural areas through spatial reconstruction,
industrial upgrading and institutional innovation is an important
practical path for SDG 11 (Sustainable Cities and Communities) and
SDG12 (Responsible Consumption and Production). NTU
assessments typically utilize multidimensional indicator systems
through comprehensive evaluation methodologies (Lin and Zhu,
2021; Chen et al., 2023a; Shao and Wang, 2023).

Academic research has gradually focused on interpreting the
interactive mechanism between the NTU and CLUEE. Koroso et al.
demonstrated through Ethiopian case studies that inefficient
utilization of reclaimed agricultural parcels within urban
peripheries exacerbates disordered metropolitan sprawl and
landscape fragmentation (Koroso et al., 2021). Xiao et al.
proposed prioritizing land use efficiency over urbanization
processes in ecologically fragile regions due to multifactorial
constraints (Xiao et al., 2022). Zhao et al. identified phased
transitions in cultivated land eco-efficiency under NTU,
characterized by “improvement -imbalance-optimization” cycles
(Zhao et al., 2018). Hou et al. revealed urbanization’s
multidimensional impacts on land use efficiency through input-
output configuration alterations, manifesting as aggregation effects,
constraint effects, driving forces, and feedback mechanisms with
temporal phase differentiation (Hou et al., 2019). Geographically,
existing research predominantly operates at provincial and
municipal administrative scales. Existing studies have analyzed
the cultivated land utilization efficiency of Henan Province from
1999 to 2008 at the provincial scale and found that while the
cultivated land utilization efficiency has increased year by year, it
has been significantly affected by regional economic development
(Zhou, 2011). Qiu et al. measured the efficiency of cultivated land
utilization at both the national and provincial scales and found that
the efficiency of cultivated land utilization across the country rose
slowly from 2009 to 2019. Among them, the average efficiency of
cultivated land utilization in 11 provinces ranked among the top in
production (Qiu et al., 2023). In the research on new urbanization,
Cheng et al. found from the study at the municipal scale that
industrial agglomeration had a significant promoting effect on
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the new urbanization of the Pearl River Delta urban agglomeration
from 2006 to 2018 (Cheng et al., 2023). Lin et al. discovered that new
urbanization has a significant energy-saving effect (Lin and Zhu,
2021). Feng et al. analyzed the coordination degree between CLUEE
and NTU at the municipal scale along the Yangtze River Economic
Belt (Feng et al., 2023b).

The coupling relationship between CLUEE and NTU constitutes
a core nexus in urban-rural integration and ecological civilization
construction, forming a dynamic mutual feedback mechanism
through factor mobility, technological innovation, and policy
regulation. Their interactive dynamics exert a profound impact
on the optimal allocation of regional resources and high-quality
development. The driving effects of CLUEE on NTU are manifested
in three dimensions: firstly, efficient agricultural production releases
surplus rural labor, thereby providing human resource support for
population urbanization; secondly, enhanced agricultural economic
output supplies material foundations and market impetus for
urbanization, with increased farmers’ income driving
consumption upgrading to facilitate the optimization of urban
industrial structures; thirdly, improved ecological efficiency of
cultivated land mitigates environmental pressures in the process
of urbanization, laying a solid foundation for ecological
urbanization. Conversely, NTU feeds back to the improvement of
CLUEE through the agglomeration of technology, capital, and policy
guidance: urbanization promotes the transformation of agricultural
production towards intensification and ecologicalization, while
governments implement environmental regulations and ecological
compensation mechanisms to restrict extensive cultivated land use,
incentivize green production, and facilitate the exploration of multi-
functional values of cultivated land. Although urbanization may
temporarily squeeze the space of cultivated land—such as the loss of
high-quality arable land due to the expansion of construction
land—factor reorganization and policy intervention can optimize
the structure of cultivated land use, achieving a balance between
efficiency and protection, which provides theoretical support for
coordinating urbanization expansion and cultivated land protection
as well as promoting green transformation.

In summary, regarding CLUEE assessment, input-output
analysis has emerged as the predominant approach. However,
conventional Data Envelopment Analysis exhibits a significant
limitation: it fails to discriminate effectively between Decision-
Making Units exhibiting efficiency scores exceeding unity.
Consequently, the super-efficiency model has been widely
adopted in the extant literature. This study employs the Super-
SBMmodel incorporating undesirable outputs. This methodological
choice offers two key advantages: (1) it effectively distinguishes
performance differences among efficient DMUs. (2) It explicitly
integrates undesirable outputs into the efficiency calculation,
thereby providing a more environmentally sustainable
measurement of CLUEE. For NTU measurement, the
comprehensive assessment method has become the established
standard within the field due to its capacity to holistically capture
development characteristics. Accordingly, this study aligns with the
prevailing scholarly consensus and adopts this comprehensive
assessment framework for NTU measurement.

In addition, current scholarship remains insufficient in
elucidating the spatiotemporal evolutionary patterns and
multidimensional driving mechanisms underlying the

coordinated development between CLUEE and NTU at a more
refined county-level scale. As the grassroots units of national
governance, conducting county -scale research can not only
clarify the overall driving characteristics of key influencing
factors but also reveal their spatial heterogeneity effects. This can
support the proposal of more precise policy suggestions and help
local governments promote the coordinated development of CLUEE
and NTU more effectively. Moreover, there is a lack of research on
analyzing the mechanism of influence factors from a multi-scale
perspective and exploring the nonlinear interaction effects of multi-
dimensional driving factors, which is difficult to support the design
of differentiated policies.

As China’s paramount wheat production base and a megaregion
with over 100 million registered inhabitants, Henan province’s dual
identity as a strategic agricultural base and demographic megaregion
renders its CLUEE-NTU coupling coordination study both
paradigmatic and imperative. This study adopts Henan’s county-
level administrative units as analytical units, employing integrated
methodologies including the Super-SBM model and entropy-
weighted comprehensive evaluation model to quantify CLUEE
and NTU levels. Constructing a coupled and coordinated analysis
framework which can examine the driving effects of influencing
factors and spatial heterogeneity at both provincial and county-level
scales, and proposes targeted governance strategies. This
methodological approach establishes an empirical foundation for
synergistic advancement of CLUEE and NTU, ultimately supporting
regional high-quality development.

2 Materials and methods

2.1 Study area description

Henan Province is located in the eastern part of central
China (110°21′~116°39′ E, 31°23′~36°22′ N). Its administrative
framework comprises 158 administered county-level unit. The
terrain transitions from elevated western highlands to lower
eastern plains, with the Nanyang Basin occupying the
southwestern region and the Huang-Huai-Hai Plain
dominating the central-eastern areas (Figure 1).
Encompassing a total administrative area of 167,000 km2, this
province sustains a stable cultivated land reserve exceeding
7.33 million hectares. In 2023, the cultivated land area
accounted for 45.33% of the province’s total land area, and
the total grain output reached 66,245,000 tons, firmly ranking as
the second largest grain-producing province in the country. It is
an important force in ensuring national food security.
Concurrently, Henan’s county-level jurisdictions have
emerged as focal areas for advancing NTU. Since 2000, the
permanent urban resident population in Henan Province has
continued to increase. In 2023, the permanent resident
population was 98.15 million, and the urbanization rate
reached 58.08% (Dong et al., 2025).

However, compared with the national average, the inefficient
ecological utilization of cultivated land and the rapid urbanization
process have made the conflicts in Henan Province more prominent.
In 2022, the amount of chemical fertilizer applied per 1,000 ha of
cultivated land in Henan Province was 0.1,100 tons per 1,000 ha,
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which was 1.47 times the national average. The usage of pesticides
was 92,000 tons, accounting for 7.7% of the national total value. In
the same year, the urbanization rate in Henan Province was 57.07%,

significantly lower than the national average of 65.22%, and was
notably different from the urbanization rates of 74.4% in eastern
regions such as Jiangsu Province and 73.4% in Zhejiang Province.

FIGURE 1
Schematic diagram of the research area. Note: 1 Anyang, 2 Beiguan, 3 Huaxian, 4 Linzhou, 5 Longan, 6 Neihuang, 7 Tangyin, 8 Wenfeng, 9 Yindu,
10 Heshan, 11 Xunxian, 12 Qibin, 13 Qixian, 14 Shancheng, 15 Jiyuan, 16 Boai, 17 Jiefang, 18 Macun, 19 Mengzhou, 20 Qinyang, 21 Shanqu, 22 Wenxian,
23Wuzhi, 24 Xiuwu, 25 Zhongzhan, 26 Gulou, 27 Lankao, 28 Longting, 29Qixian, 30 Shunhe, 31 Tongxu, 32Weishi, 33 Xiangfu, 34 Yuwangtai, 35 Chanhe,
36 Jili, 37 Jianxi, 38 Laocheng, 39 Luanchuan, 40 Luolong, 41 Luoning, 42 Mengjin, 43 Ruyang, 44 Songxian, 45 Xigong, 46 Xinan, 47 Yanshi,
48 Yichuan, 49 Yiyang, 50 Linying, 51 Wuyang, 52 Yancheng, 53 Yuanhui, 54 Zhaoling, 55 Dengzhou, 56 Fangcheng, 57 Nanzhao, 58 Neixiang, 59 Sheqi,
60 Tanghe, 61 Tongbai, 62Wancheng, 63Wolong, 64 Xixia, 65 Xichuan, 66 Xinye, 67 Zhenping, 68 Baofeng, 69 Jiaxian, 70 Lushan, 71 Ruzhou, 72 Shilong,
73 Weidong, 74 Wugang, 75 Xinhua, 76 Yexian, 77 Zhanhe, 78 Fanxian, 79 Hualong, 80 Nanle, 81 Puyang, 82 Qingfeng, 83 Taiqian, 84 Hubin, 85 Lingbao,
86 Lushi, 87 Mianchi, 88 Xiazhou, 89 Yima, 90 Liangyuan, 91 Minquan, 92 Ningling, 93 Suixian, 94 Suiyang, 95 Xiayi, 96 Yongcheng, 97 Yucheng,
98 Zhecheng, 99 Fengqiu, 100 Fengquan, 101 Hongqi, 102 Huixian, 103 Huojia, 104 Muye, 105 Weibin, 106 Weihui, 107 Xinxiang, 108 Yanjin,
109 Yuanyang, 110 Changyuan, 111 Gushi, 112 Guangshan, 113 Huaibin, 114 Huangchuan, 115 Luoshan, 116 Pingqiao, 117 Shangcheng, 118 Shihe,
119 Xixian, 120 Xinxian, 121 Jianan, 122 Weidu, 123 Xiangcheng, 124 Yanling, 125 Yuzhou, 126 Changge, 127 Dengfeng, 128 Erqi, 129 Gongyi,
130 Guancheng, 131 Huiji, 132 Jinshui, 133 Shangjie, 134 Xinmi, 135 Xinzheng, 136 Xingyang, 137 Zhongmou, 138 Zhongyuan, 139 Chuanhui,
140 Dancheng, 141 Fugou, 142 Huaiyang, 143 Luyi, 144 Shangshui, 145 Shenqiu, 146 Taikang, 147 Xihua, 148 Xiangcheng, 149 Biyang, 150 Pingyu,
151 Queshan, 152 Runan, 153 Shangcai, 154 Suiping, 155 Xiping, 156 Xincai, 157 Yicheng, 158 Zhengyang.
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However, the growth rate was 1.01%, higher than the national average
growth rate of 0.77%. Spatially, the Zhengzhou metropolitan core
exhibits metropolitan primacy, while southeastern agricultural zones
confront dual challenges of fragmented cultivated landscapes and
agro-ecological degradation. Urban-rural factor mobility mechanisms
remain underdeveloped, with structural deficiencies such as rural
financial and human capital shortages persisting despite incremental
urban-to-rural resource flows driven by agricultural scaling.
Elucidating the spatiotemporal coupling mechanisms between
CLUEE and NTU constitutes a pivotal scientific inquiry for
optimizing human-land system coordination in major grain-
producing regions and advancing integrated urban-rural
sustainable development.

2.2 Research methods

2.2.1 Indicator selection and measurement
of CLUEE
2.2.1.1 Indicator selection

Based on the connotation of CLUEE and referring to existing
research, this study constructs a scientific, comprehensive and
operable evaluation index system from three dimensions of
“input–desirable output-undesirable output”. At the input
level, three types of resources, namely, land, labor and capital,
are selected, covering a total of six indicators: the sown area of
crops, the number of employees in the primary industry, the
converted pure amount of chemical fertilizer, the input amount
of pesticides, the input amount of agricultural films, and the total
power of agricultural machinery. The desirable outputs contain
three indicators: grain output, total agricultural output value,
and disposable income of rural residents. The undesirable
outputs are represented by two indicators: carbon emissions
and non-point source pollution. The specific indicators are
shown in Table 1.

The calculation formula for carbon emissions during the utilization
of cultivated land is E = ΣEi = Σ(Gi × δi), where Ei represents the
carbon emission of the i-th carbon source, Gi and δi are respectively the
amounts of each carbon source and their carbon emission coefficients.
The coefficients are respectively 0.8956 kg/kg for chemical fertilizer,
4.3941 kg/kg for pesticide, 5.18 kg/kg for agricultural film, 0.18 kg/kW
for agricultural machinery, 266.48 kg/hm2 for irrigation, and 312.60 kg/
km2 for ploughing (Zhu and Huo, 2022).

Non-point source pollution should be considered from three
aspects: chemical fertilizers, pesticides and agricultural films. The
calculation formula for the residues of chemical fertilizers,
pesticides and agricultural films is: Nitrogen loss of chemical
fertilizers = (nitrogen content of compound fertilizers + nitrogen
fertilizer application amount) × Nitrogen loss coefficient. The
loss of phosphorus from chemical fertilizers = (the phosphorus
content of compound fertilizers + the amount of phosphorus
fertilizer used) × phosphorus loss coefficient; Pesticide loss =
pesticide usage amount × pesticide loss coefficient; The residual
amount of agricultural film = the amount of agricultural used
film × the residual coefficient of agricultural film. The relevant
coefficients refer to the “Manual of Fertilizer Loss, Pesticide Loss
and Plastic Film Residue Coefficients of the First National
Pollution Census”. Based on the natural conditions of Henan

Province, the pollution coefficients of cultivated land are finally
determined as follows: fertilizer is 0.84%, pesticide is 0.0827%,
and agricultural film is 23.25% (Wang et al., 2023a).

2.2.1.2 Super-efficiency SBM model
The super-efficiency SBM model is an improvement of the

traditional DEA model. After Andersen et al. proposed the
concept of super-efficiency (Andersen and Petersen, 1993),
Tone integrated relaxation variables and unintended output
indicators to construct the super-efficiency SBM model (Tone,
2002). It corrects the radial deviation of the traditional DEA
through relaxation variables, incorporates undesirable outputs to
comprehensively evaluate the efficiency, breaks through the
limitation that the traditional model cannot distinguish the
efficiency value of the effective decision-making unit greater
than 1. This model is widely applied in fields such as
ecological efficiency, providing a more accurate multi-
dimensional analysis tool for the performance evaluation of
resources and the environment. The specific calculation
formula is as follows (Equation 1):

ρmin �
r1 + r2( ) ·∑m

i�1
�x
xik
( )

m ∑r1
s�1

yd
yd
sk

( ) +∑r2
q�1

yu
yu
qk

( )[ ] (1)

�x ≥ ∑n
j�1,≠ k

xijλj; yd ≤ ∑n
j�1,≠ k

ydsjλj; y
d ≥

∑n
j�1,≠ k

ydqjλj; �x ≥ xk; yd ≤ ydk ; y
u ≥ yuk ; λj ≥ 0, i � 1, 2,/,m; j

� 1, 2,/, n; s � 1, 2,/, r1; q � 1, 2,/, r2

In the formula: ρ represents the evaluation value of ULUEE; n
represents the number of county-level units; m, r1, r2 are
respectively the quantities of input, desirable output and
undesirable output; x, yd , yu are respectively the elements in the
corresponding input, desirable output and undesirable output
matrices; λ is the weight corresponding to the input or output.

2.2.2 Index system and measurement method
of NTU

China’s “National New-Type Urbanization Plan
(2014–2020)” has established a new-type urbanization strategy
with humanistic care and green development as the core
concepts, aiming to foster a five-in-one development
framework encompassing population, land, economy, society,
and ecological construction, and to guide urban development
toward higher quality, efficiency, equity, and sustainability (Yuan
et al., 2025). Anchored in the essence of NTU, this study develops
an index system across five dimensions: population urbanization,
spatial urbanization, economic urbanization, social urbanization,
and ecological urbanization. Drawing on prior studies and
aligning with Henan province’s circumstances, 12 specific
indicators within the five NTU dimensions were ultimately
chosen (Table 2): Population urbanization emphasizes the core
level of population concentration in towns and cities as well as
the quality of employment structure transformation during the

Frontiers in Environmental Science frontiersin.org05

Liu 10.3389/fenvs.2025.1633927

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1633927


urbanization process (Wang and Fang, 2025). Therefore, choose
the urbanization rate of the resident population and the
proportion of employment in secondary and tertiary industries
as indicator. Spatial urbanization takes into account the absolute
scale of urban expansion and the relative proportion of
urbanization space, as well as the assessment of land use
intensification (Feng et al., 2022). Therefore, the indicators
selected include the built-up area, its proportion, and urban
population density. Economic urbanization should reflect the
level of regional economic development and the endogenous
driving force of economic urbanization (Liu et al., 2025).
Therefore, per capita GDP and per capita retail sales of
consumer goods are taken as research indicators. Social
urbanization focuses on the accessibility of public services,
including the allocation of medical and educational resources
as well as the wellbeing of the people (Wang et al., 2017).
Therefore choose the number of health institution beds and
full-time teachers per 10,000 people as well as urban residents’
per capita disposable income as a measure. Ecological
urbanization mainly takes into account the quality of the
atmospheric environment and the degree of intensive
development of land resources, reflecting the demand for
sustainable development (Kraemer and Kabisch, 2021).
PM2.5 concentration and the area of construction land
consumed per unit of GDP are chosen as the
measurement criteria.

This study employs the entropy weight method, which
dynamically allocates weight coefficients by quantifying each
indicator’s information entropy contribution. This approach
effectively mitigates evaluation result biases induced by human
subjectivity (Li and Li, 2025). The computational procedure
adheres to the following protocol (Li and Li, 2025):

1. Data standardization

For positive indicator (Equation 2):

Yij � Xij-min Xi( )
max Xi( )-min Xi( ) (2)

For negative indicator (Equation 3):

Yij � min Xi( )-Xi

max Xi( )-min Xi( ) (3)

2. Calculate the information entropy of each index (Equations
4, 5)

Pij � Yij∑n
i�1Yij

, i � 1, 2,/, n; j � 1, 2,/,m; (4)

Ej � −ln n( )-1∑n
i�1
Pij ln Pij (5)

3. Determine the weights of each indicator (Equation 6)

wi � 1-Ej

k-∑Ej
(6)

4. Finally, based on the calculated weight values, a comprehensive
evaluation is conducted for each index (Equations 7, 8).

Sri � ∑m
j�1
wi · xij (7)

U � ∑n
i�1
Sri · λ (8)

In the formula: Xij and Yij respectively denote the j-th index of
the i-th county-level unit before and after the data standardization.
Ej denotes the information entropy of the j-th index; wi is the weight
of the index for the i-th county unit; Sri represents the NTU level of
the r-th type element of the i-th county unit; λ indicates the weights
of the five element classes. This study considers the five element
classes to be equally significant, so λ = 0.2; U stands for the
NTU level.

TABLE 1 The indicator system for evaluating CLUEE.

Element layer Indicator layer Specific indictors References

Input Land input The sown area of crops Liu et al. (2020), Wang et al. (2025)

Labor input The number of employees in the primary industry Coluccia et al. (2020), Deng and Gibson (2020)

Capital input The converted pure amount of chemical fertilizers West and Marland (2002), Yang et al. (2021)

The input amount of pesticides Zou et al. (2020), Yang et al. (2021)

The input amount of agricultural films Tian et al. (2014), Zhu et al. (2024b)

The total power of agricultural machinery Tang et al. (2021), Hu et al. (2024)

Desirable output Grain output Grain output Tang et al. (2021), Ke et al. (2023)

Economic output Total agricultural output value Li et al. (2018), Feng et al. (2023a)

Income output Disposable income of rural residents Ma et al. (2019)

Undesirable output Carbon emissions Carbon emissions Gao et al. (2024), Jiao et al. (2024)

Non-point source pollution Fertilizer, pesticide, agricultural film residue Tim and Jolly (1994), Huang et al. (2024)
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2.2.3 Coupling coordination degree model
The coupling coordination degree model can measure the

interaction relationship between the CLUEE and NTU. The
formula of the coupling coordination degree model is as follows
(Equations 9-11) (Xu et al., 2025):

C � 2 ×












U1U2

U1 + U2( )2
√

(9)

T � αU1 + βU2 (10)
D � 






C × T
√

(11)

In the formula: U1 and U2 denote the CLUEE and NTU
respectively; α and β are the respective weight coefficients of the
two systems, and α + β � 1. As this study posits that both systems
are equally significant, so α � β � 1/2; T represents the composite
evaluation metric of the two systems, while D signifies the coupling
coordination degree.

2.2.4 Spatial autocorrelation model
The Global Moran’s I can reflect the spatial aggregation

characteristics of the overall coupling coordination degree of
Henan Province. The calculation formula is as follows (Equation
12) (Zhu et al., 2024a):

I � n
S0

×
∑n

i�1∑n
j�1Wij yi-�y( ) yj-�y( )∑n

i�1 yi-�y( )2 (12)

In the formula: S0 � ∑n
i�1∑n

j�1Wij, n is the total number of
county-level units, yi and yj respectively represent the attribute
values of the i-th spatial unit and the j-th spatial unit, �y is the mean of
the attribute values of all spatial units, and Wij is the spatial weight
value; The range of the Moran index is [−1, 1], where Moran’s
I > 0 indicates a positive spatial correlation, and Moran’s

I = 0 indicates no spatial correlation. If Moran’s I < 0, it shows a
negative correlation.

The spatial aggregation phenomenon in the local area is further
analyzed by using clustering and outlier analysis (Anselin Local
Moran’s I), and the formula is as follows (Equation 13):

Ii � xi-�x
S2i

∑n

j�1,j ≠ i
Wi,j xi-�x( )2 (13)

In the formula: S2i �
∑n

j�1,j ≠ i
(xi-�x)2

n-1 ; xi represents the coupling
coordination degree of the i-th element, �x is the average value of the
coupling coordination degree, Wi,j is the spatial weight of i and j
element, and n is the total number of county-level units.

2.2.5 Regional differences
The Theil index is a classic tool formeasuring income distribution

differences and has also been extended and applied in the field of
regional unbalanced development research. Its core value lies in
analyzing the overall differences into two dimensions, intra-group
differences and inter-group differences, providing key methodological
support for analyzing the regional unbalanced development
mechanism. The formula is as follows (Equations 14, 15):

T � ∑k
t�1

St
�S · ln St

�S( )
k

(14)

T � Tw + Tb � ∑k
t�1

kp
k
· Sp�S · Tp( ) +∑k

t�1

kp
k
· Sp�S · ln Sp

�S
( ) (15)

In the formula: T represents the Theil index of the difference in
coupling coordination degree, t represents the county, k represents the
total number of county units, St represents the coupling coordination
degree of the t-th county, and �S represents the average value of the
regional coupling coordination degree. In the Thiel index
decomposition model, Tw and Tb respectively represent the
differences within and between regions, kp represents the number

TABLE 2 The indicator system for evaluating NTU.

Element layer Indicator layer Unit Attribute Weight References

Population
urbanization

The urbanization rate of the resident population 1 + 0.1406 Chen et al. (2023b), Wang and Fang (2025)

The proportion of employment in secondary
and tertiary industries

1 + 0.0594 Fan et al. (2020), Chen et al. (2023b)

Spatial urbanization The built-up area m2 + 0.0518 Zhao and Wang (2022), Cheng et al. (2023)

The built-up area’s proportion 1 + 0.0583 Wang et al. (2019), Feng et al. (2022)

Urban population density 10,000 people/m2 + 0.0899 Lin and Zhu (2021), Wang and Fang (2025)

Economic
urbanization

Per capita GDP Yuan + 0.0893 Yu et al. (2023), Liu et al. (2025)

Per capita retail sales of consumer goods 10,000 Yuan/people + 0.1107 Ding et al. (2015), Liu et al. (2025)

Social urbanization The number of health institution beds beds/10,000 people + 0.1040 Hu et al., 2021; Yu (2021)

Full-time teachers per 10,000 people people/
10,000 people

+ 0.0356 Wang et al. (2017), Qiu et al. (2022)

Urban residents’ per capita disposable income Yuan + 0.0604 Daw et al. (2016), Hu et al. (2021)

Ecological
urbanization

PM2.5 concentration Mg/m3 - 0.0428 Kraemer and Kabisch (2021), Meng et al.
(2024)

The area of construction land consumed per
unit of GDP

m/Yuan + 0.1572 Chen et al. (2022), Wang et al. (2022)
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of counties in the p region,Tp is the overall Theil index of the p region,
and Sp is the mean of the coupling coordination degree of p county.

2.2.6 Driving mechanism analysis
The coupling coordination degree between CLUEE and NTU is

influenced by multidimensional factors. This study selects nine
indicators from three categories: natural geographical conditions,
agricultural production conditions, and socioeconomic
development levels. The selection of indicators across three
categories is grounded in their theoretical relevance to
influencing the CLUEE-NTU coupling coordination. Natural
geographical conditions are measured by altitude, terrain
undulation and per capita cultivated land area, mainly taking
into account the factors that affect land use suitability,
agricultural accessibility and resource endowment pressure.
Agricultural production conditions include the power of
agricultural machinery per unit area, multiple cropping index,
and fiscal expenditure on agriculture, forestry and water
conservancy. Among them, the multiple cropping index affects
the yield per mu of grain and is an important agricultural
production factor for the output efficiency of cultivated land. The
power of agricultural machinery and the fiscal expenditure on
agriculture, forestry and water conservancy are important
components of agricultural production conditions, reflecting key
operational capabilities and institutional support mechanisms.
Socioeconomic development levels, measured by county-level per
capita disposable income, nighttime light index, and local general
public budget revenue, capture regional economic vitality, spatial
development intensity, and fiscal governance capacity, collectively
shaping the broader developmental context for land-use efficiency.
The specific indicators are shown in Table 3.

The geographic detector model, a statistical tool based on
spatial heterogeneity decomposition, systematically reveals
spatial differentiation patterns and driving mechanisms
through four modules: factor detection, interaction detection,
risk zone identification, and ecological process analysis. This
study applies factor detection to assess the regional-scale
influence intensity of determinants on coupling coordination,
and interaction detection to examine combined effects between
paired factors. The analytical framework follows these formal
expressions (Equation 16):

q � Nσ2-∑j
i�1Nhσ2

h

Nσ2
(16)

In the formula: h = 1, . . ., j represents the stratified number of
each influencing factor; N is the total sample size; Nh is the sample
size of h-th layer; σ2 is the variance of the total sample, and σ2

h is the
variance of the samples in the h-th layer; The value range of the
factor explanatory power q is [0,1], and the larger its value, the
stronger the explanatory power.

In this study, the geographically weighted regression model
(GWR) was employed to establish local regression equations at
each point within the study area, and the intensity and direction of
the influencing factors at the local scale were analyzed. The formula
is as follows (Equation 17):

yi � β0 ui, vi( ) +∑p
k�1

βk ui, vi( ) · xik + εi (17)

In the formula: yi is the value of the dependent variable at sampling
point i; β0 is the intercept, (ui, vi) is the constant term of the sampling
point; βk(ui, vi) is the coefficient of the k-th independent variable of
the sampling point, and xik is the k-th independent variable of the
sampling point i; εi is the random error term.

2.3 Data sources

The statistical data of this study mainly come from the Henan
Statistical Yearbook (2002–2022), and are supplemented with
relevant data from the statistical yearbooks of each city
(2002–2022) and the government bulletins of each city in Henan
Province. The missing values are estimated and supplemented by
methods such as interpolation. The GIS data is the annual land cover
data of China with a resolution of 30m from 1985 to 2023 (Yang and
Huang, 2021), processed by ArcMap10.8. Elevation data were
selected from the Center for Resources and Environmental
Sciences and Data Center, Chinese Academy of Sciences (https://
www.resdc.cn/). Relief data from China relief degrees km grid data
set (https://geodoi.ac.cn/WebCn/doi.aspx?Id=887) (Zhen et al.,
2018), Night lights index data from China lights at night long
time series data set (2000–2020), and the data for 2022 is
missing. In this study, the data from 2020 is used as an
approximate substitute (Chen et al., 2021b) (https://www.geodoi.
ac.cn/doi.aspx?DOI=10.3974/geodb.2022.06.01.V1). PM2.5 data to
choose the high resolution quality PM2.5 data set (2000–2023) (Wei
and Li, 2023) (https://data.tpdc.ac.cn/zh-hans/data/6168e75d-93ab-
4e4a-b7ff-33152e49d0bf). Based on the above data, this study
determined to conduct the analysis at an interval of 4 years from
2002 to 2022. It was finally determined to conduct the research based
on the data of the 6 years 2002, 2006, 2010, 2014, 2018 and 2022.

3 Results

3.1 The spatiotemporal evolution of CLUEE
and NTU

3.1.1 Analysis of CLUEE
From 2002 to 2022, there was a significant increase in CLUEE

across Henan province, rising from 0.09 in 2002 to 0.47 in 2022,
which corresponds to an average annual growth rate of 95.06%
(Figure 2a). Among them, the northern and southern parts of Henan
Province remained consistently above the provincial average, while
the rest of the regions fluctuated. The eastern part of Henan
Province was significantly lower than the average.

In terms of the changes in CLUEE across different cities within
the province1, most cities in Henan province demonstrated a

1 In 1986, Jiyuan County was briefly under the jurisdiction of Jiaozuo City. It

was not until 2005 that it was officially established as a county-level city

directly under the provincial government. In view of its historical

connection with Jiaozuo City, this study still incorporates the data of

Jiyuan City into the statistical framework of Jiaozuo City for overall

calculation.
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consistent annual upward trend in CLUEE (Figure 2b). Among
them, the peak CLUEE in Jiaozuo City, Puyang City, and Xuchang
City was recorded in 2010, while Zhoukou City reached its highest
CLUEE in 2006. Among the 17 cities surveyed in this study, Hebi
City exhibited the highest CLUEE, surpassing 0.95 in 2022.
Regarding the growth rate, Hebi City ranked first with an
average annual growth rate of 98.49%. This achievement can be
attributed to the synergistic effects of institutional innovation and
technological empowerment. However, Puyang City had a relatively
low average annual growth rate of only 90.34%, which might be due
to the prominent conflict between ecological protection and
agricultural land utilization. This city is extensively covered by
wetlands and grasslands, with wetlands accounting for
approximately 20% of the province’s total wetland area, and the
delineation of ecological red lines has constrained the space for
intensification, thereby indirectly impacting the improvement of

CLUEE. Ecological Conservation Redlines structurally constrain
cultivated land eco-efficiency within designated areas. Stringent
restrictions on chemical inputs and high-water-consumption
irrigation undermine intensive production, potentially reducing
short-term yield per unit area. Concurrently, incorporating
cropland into ECRs for ecological restoration fragments
remaining farmland, impeding large-scale mechanization,
diminishing economies of scale, and raising management costs.
These mechanisms hinder maximizing agricultural output per
resource-environmental unit a core eco-efficiency objective
representing a deliberate trade-off for higher-order ecosystem
services and long-term regional ecological sustainability.

The distribution characteristics of CLUEE at the county scale are
hierarchically displayed (Figure 3). The spatial pattern of CLUEE in
Henan province from 2002 to 2022 shows significant differentiation
and dynamic evolution. In 2022, the high-value areas were mainly

TABLE 3 Selection of influencing factors.

Element layer Indicator layer References

Natural geographical conditions Elevation Xie et al. (2019), Song et al. (2023)

Terrain ruggedness Zhang et al. (2022), Wang et al. (2023a)

Per capita cultivated land area Wang et al. (2015), Li et al. (2023)

Agricultural production conditions Agricultural machinery power per unit area Yin et al. (2022), Fan et al. (2024)

Multiple cropping index Feng et al. (2023a), Wang et al. (2023b)

Fiscal expenditure on agriculture, forestry, and water conservancy Ke et al. (2022), Vigani et al. (2024)

Socioeconomic development levels County-level per capita disposable income Shi et al. (2020), Chen et al. (2021a)

Nighttime light index Shi et al. (2019), Li et al. (2022)

Local general public budget revenue Ding et al. (2014), Zhang et al. (2024)

FIGURE 2
The temporal evolution of CULEE at provincial and municipal scales. (a) The temporal evolution of CLUEE of Henan; (b) The temporal evolution of
CLUEE in cities of Henan
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concentrated in the central plains of Henan Province, the Yellow
River Basin in northern Henan, and Xin County, Guangshan
County and Puyang County in southern Henan.

From the perspective of temporal changes, from 2002 to 2014,
the high-efficiency area expanded from a point-like distribution to
the surrounding areas of Zhengzhou and the Huanghuai Plain, while
the scope of the low-efficiency area gradually narrowed but the
spatial lock-in effect was significant. After 2014, with the
strengthening of ecological protection policies and technological
progress, the trend of contigualization of high-efficiency zones has
intensified, and the high-efficiency zones in the central Henan Plain
and the Huanghuai Plain have shown a trend of interconnection.
Some counties in Xinyang, southern Henan Province, have achieved
a significant increase in CLUEE from 0.3 to over 1 through the
transformation of characteristic ecological agriculture. However, the
mountainous areas in western Henan have seen limited
improvement due to natural conditions and remain low-value
depressions. Overall, the spatial differentiation of CLUEE
presents a “core-periphery” structure, and the regio0nal balance
is gradually improving driven by policies and technologies.
However, the differences in natural endowments remain the key
bottleneck restricting the transformation of low-value areas. This
stems from natural endowment disparities fundamentally
constraining energy and material transformation in cultivated
land use, which dictates regional photosynthetic productivity and
resource-environmental carrying capacity. These inherent

limitations cap ecologically achievable efficiency ceilings, forcing
regions toward unequal output under equal inputs or elevated
ecological trade-offs for production stability—ultimately
restricting cross-regional efficiency gains.

3.1.2 Analysis of NTU
During the research period, the NTU level of the entire Henan

Province continued to rise, from 0.15 in 2002 to 0.32 in 2022,
with an average annual growth rate of 91.00% (Figure 4). All
regions showed an increasing trend consistent with the provincial
average. Among them, except for northern Henan, the rest of the
regions were all higher than the provincial average. This growth
trajectory can be segmented into three distinct phases based on
varying growth rates. Between 2002 and 2006, the NTU level grew
slowly, with an average annual growth rate of 22.51%. During this
initial phase, the urbanization policy framework and
infrastructure support systems were still in their nascent
stages of development. The capacity to absorb the rural labor
force into urban areas was relatively limited. In conjunction with
the low efficiency of resource allocation under conventional
development paradigms, these factors resulted in insufficient
momentum to elevate the NTU level. From 2006 to 2018, the
NTU level entered a phase of accelerated growth, achieving an
average annual growth rate of 71.27%. This substantial increase
can be attributed to robust policy initiatives promoting the
coordinated development of industrialization, urbanization,

FIGURE 3
Spatiotemporal evolution of CULEE at county scale.
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and agricultural modernization. These efforts led to a rapid
expansion of the urban economy, generating a significant
number of non-agricultural employment opportunities and
facilitating the swift transfer of rural labor to urban centers.
Between 2018 and 2022, the growth of the NTU level decelerated,
with an average annual growth rate of 28.63%. As urbanization
progressed and the economic base expanded, the marginal
growth effect diminished. Additionally, intensifying resource
and environmental constraints, the growing conflict between
ecological preservation and urban sprawl, and the heightened
demand for intensive land use collectively constrained the
traditional extensive development model.

From the perspective of municipal regions, the NTU of all
cities in the province have shown a consistent upward trend.
Among the six time points analyzed in this study, Zhumadian
City exhibits the lowest NTU. This is primarily due to the high
proportion of traditional agriculture in the local economy and the
lack of substantial support from competitive industries and
specialized economic sectors. Consequently, its average annual
NTU level is only 0.16. In contrast, Zhengzhou City displays the
highest NTU level, reaching a peak of 0.45 in 2022 and
maintaining an average annual level of 0.34. However, the
average annual growth rate of the NTU level in Zhengzhou
City is 91.95%. Sanmenxia City, on the other hand, has the
lowest average annual growth rate of the NTU level at 89.86%.
Sanmenxia’s chronically low urbanization growth stems from
structural constraints: severe mountainous terrain, depleted
resource industries, population decline.

The NTU level in Henan province exhibits marked spatial
differentiation. In 2022, high-value clusters were primarily located
in the Zhengzhou-centeredmetropolitan region and the central plains
of Henan, covering cities like Zhengzhou, Luoyang, and Xuchang.
Leveraging the economic influence of the provincial capital,
transportation hub advantages, and industrial agglomeration

effects, these areas constitute contiguous high-value core zones.
Low-value clusters were mainly found in counties along the Funiu
Mountains in westernHenan and the TaihangMountains in northern
Henan, such as Anyang County and Neihuang County. Most of
these areas’ urbanization levels remained at a “relatively low” tier.
Hindered by topography, weak industrial foundations, and
population outflow, their urbanization was inadequate, showing
a peripheral characteristic.

From 2002 to 2022, the high-value areas of urbanization in
Henan province presented an evolution trend of “core
strengthening-peripheral diffusion” (Figure 5). In 2002, the high-
value areas were only sporadically distributed in the main urban
areas of Zhengzhou and Luoyang. By 2010, under the promotion of
the Zhengzhou-Kaifeng integration policy, the peripheral areas such
as Kaifeng and Xinzheng gradually integrated into high-value
clusters. After 2014, the implementation of the Central Plains
Urban Agglomeration planning has prompted the high-value
areas to expand in a gradient manner along the Beijing-
Guangzhou and Longhai transportation axes towards Xuchang,
Jiaozuo and other directions. The low-value areas have
undergone a process of “scale reduction-local leap”. The vast
majority of counties have achieved a leap from the “lowest level”
to the “lower level” driven by agricultural industrialization and labor
economy, but the spatial lock-in effect is still significant. The overall
manifestation is the dynamic evolution characteristics of “multi-pole
synergy and gradient equilibrium”.

3.2 Coupling coordination characteristics of
CLUEE and NTU

3.2.1 Overall characteristics
From a provincial perspective, from 2002 to 2022, the average

annual coupling degree between CLUEE and NTU has continuously

FIGURE 4
The temporal evolution of NTU at provincial andmunicipal scales. (a) The temporal evolution of NTU of Henan. (b) The temporal evolution of NTU in
cities of Henan.
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increased from 0.31 to 0.59 (Figure 6). All regions tend to be
coordinated, among which the coordination status of southern
Henan is better than that of other regions, and the coupling
coordination degree of regional divisions is higher than the
overall coordination degree of the entire province. According to
the growth rate, it is divided into three stages. The rapid growth
period from 2002 to 2010, with an average annual growth rate of
74.28%. During this stage, NTU was in its infancy. The demand for
cultivated land resources was mainly incremental expansion, and the
disturbance to the cultivated land ecosystem was relatively small.
The two formed a preliminary coordination in resource allocation
and space utilization, promoting a rapid increase in the coupling
degree. During the growth stagnation period from 2010 to 2014, the
average annual growth rate was 20.95%. With the acceleration of
NTU, the contradiction between urban space expansion and
cultivated land protection became prominent. The rapid
advancement of urbanization led to a reduction in the quantity
and quality of cultivated land, and the improvement of CLUEE was
hindered due to the increased resource pressure. During the period
of rapid growth from 2014 to 2022, the average annual growth rate
was 76.33%. Thanks to the transformation of development concepts
and policy optimization, NTU has shifted towards connotative
development, paying more attention to quality improvement and
ecological protection. The two have formed a virtuous interaction in
resource conservation, ecological protection and functional
complementarity. The coordination mechanism has been

continuously improved, promoting a significant increase in the
coupling degree and achieving the coordinated development of
CLUEE and NTU at a higher level.

The coupling coordination degree of each city in Henan
Province shows significant differences, and the differentiation
between core cities and peripheral areas is obvious. From 2002 to
2022, the coupling coordination degree of Hebi City was at the
highest level in the province, with an average annual level of 0.57. As
a national ecological garden city in 2017, Hebi adheres to the
concept of “ecological priority and integration of industry and
city”, and the degree of mutual influence between the NTU level
and cultivated land utilization is significantly higher than that of
other cities. As the polar core of regional development, Zhengzhou
City has a coupling and coordination degree at the second. The
interaction efficiency and balance of its economic, social and
environmental systems are significantly better than those of other
cities, demonstrating the synergy effect of high-intensity resource
integration and policy-driven. Cities with a relatively strong
industrial foundation such as Luoyang and Jiaozuo follow. The
degree of coordination remains within the transitional range from
discoordination to coordination, supported by the optimization of
industrial structure and technological innovation. Four cities,
namely, Shangqiu City, Zhoukou City, Nanyang City and
Zhumadian City, are within the range of mild discoordination.
The lowest is Shangqiu City, with an average annual coupling
coordination degree of only 0.32.

FIGURE 5
Spatiotemporal evolution of NTU at county scale. (a) 2002. (b) 2006. (c) 2010. (d) 2014. (e) 2018. (f) 2022.
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The spatial distribution of the coupling coordination degree in
Henan province was analyzed at the county scale (Figure 7). In
2022, the coupling coordination degree of CLUEE and NTU in
Henan province exhibited marked spatial imbalance. High-quality
coordinated and above-level agglomeration areas (0.8–1.0) were
primarily clustered in the Zhengzhou Metropolitan Area and the
core region of the central Henan Plain, encompassing cities such as
Zhengzhou, Xuchang, and Jiaozuo. These regions demonstrated
exceptional levels of cultivated land intensive utilization and
urbanization coordinated development, as evidenced by the
adoption of eco-friendly agricultural technologies, efficient
urban-rural factor flows, and the policy-guided optimization of
composite systems. In contrast, areas with near-disharmony and
below (0–0.3) were predominantly located in the Funiu Mountain
region of western Henan, the Dabie Mountain hinterland of
southern Henan, and the eastern Henan Yellow River
Floodplain fringe. Owing to fragmented terrain, ecological
vulnerability, and lagging urbanization, these areas contended
with extensive cultivated land utilization and urban-rural
system disconnect, resulting in prolonged low-lying coupling
coordination degrees.

From 2002 to 2022, the spatial pattern of the coupling
coordination degree revealed evolution characteristics of “core
polarization-axis extension-local transition”. Between 2002 and
2010, the high-value area was largely confined to a single core in
Zhengzhou, while the low-value area encompassed over 60% of the
province’s counties. After 2010, the implementation of the Central
Plains Economic Zone strategy facilitated the expansion of high-
value areas along the Beijing-Guangzhou and Longhai development
axes towards secondary central cities like Xuchang and Luoyang,
forming a “T-shaped” highly coordinated corridor. Since 2018,
peripheral cities in northern Henan, such as Hebi, and in
southern Henan, such as Xinyang, have seen their coordination

levels rise from low to medium through the construction of ecological
agricultural demonstration zones and industry-city integration pilot
projects. However, in the western Henan mountainous areas and
some traditional agricultural regions, low-value lock-in effects
remained pronounced due to path dependence and ecological
constraints, with the regional differentiation pattern persisting.
Overall, the coordination degree evolution displayed strong spatial
coupling with NTU policy orientation, transportation network
expansion, and ecological red line control.

3.2.2 Regional differences
Table 4 presents the Theil index of the coupling coordination

degree of CLUEE and NTU in Henan province. Overall, both the
overall difference and the intra-group difference in the province
show a downward trend, indicating further coordination
between cultivated land utilization and urbanization.
Although from 2002 to 2006, the overall difference increased
from 0.055 to a peak of 0.060, and the intra-group difference
rose from 0.031 to a peak of 0.040, both continued to decline
afterward until 2022, with the overall difference dropping to
0.026 and the intra-group difference to 0.017, both decreasing
by approximately 50%.

There are significant spatial differences in the intra-group
differences of the coupling coordination degree of CLUEE and
NTU across cities in Henan Province. In Luoyang City, the
contribution rate of differences rose from 11.17% in 2002 to
18.89% in 2022, making it a typical area with increasing internal
differences within the province. The main issue arises from the
coordination dilemma between industrial transformation and
ecological protection. In 2006, Zhoukou City’s differential
contribution rate suddenly jumped to 16.03%, but later
gradually fell back to 2.67%, reflecting adaptive policy
adjustments after a short-term shock. In contrast, Zhengzhou

FIGURE 6
The temporal evolution of coupling coordination degree level at provincial and municipal scales. (a) The temporal evolution of coupling
coordination degree level of Henan. (b) The temporal evolution of coupling coordination degree level in cities of Henan.
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City’s differential contribution rate dropped from 6.24% to 3.94%, and
that of medium and small-sized cities such as Hebi and Luohe
remained below 5% for a long time. This indicates that the
enhanced synergy effect of core cities and the intensive
development of specialized industries have effectively alleviated
internal imbalances. Shangqiu City had the lowest intra-group
difference, remaining stable below 0.0004, with a contribution of
less than 3%. As a transportation hub located at the junction of Henan,
Shandong, Jiangsu, and Anhui provinces, the coupling of cultivated
land utilization and urbanization in each county and district of
Shangqiu City is highly consistent, and regional development is
relatively balanced. Although overall differences have narrowed,
contradictions still exist between development path dependence
and ecological economy in some local areas, causing significant
fluctuations in the contribution rate of the coupling degree.

3.2.3 Spatial autocorrelations
The Moran’s I index of the coupling coordination degree of

CLUEE and NTU in Henan province was calculated using ArcGIS
10.6. The results were all greater than 0, indicating a clustering
pattern. Additionally, they were significant at the 1% significance
level, indicating that the coupling coordination degree of the two
shows a significant positive spatial correlation (Table 5). From
2002 to 2014, the spatial agglomeration degree of the two
continued to increase. Since then, with the decrease of Moran’s I,
it indicates that the spatial agglomeration degree has decreased.

From the county-level scale, the coupling and coordination degree
of CLUEE and NTU in Henan Province based on Anselin Local
Moran’s I was analyzed. Its spatial agglomeration pattern shows the
phased characteristics of “core polarization - peripheral heterogeneity”
(Figure 8). In 2002, high-high agglomeration zones were scattered in
Zhengzhou’s main urban area and some regions north of the Yellow
River, while low-low agglomeration areas were concentrated in eastern
Henan’s vast plain area, reflecting the early-stage effects of provincial
capital polarization and ecological constraints. By 2018, the high-high
agglomeration zone expanded along the Beijing-Guangzhou and
Longhai axes to secondary cities like Xuchang and Jiaozuo, forming
an “inverted L-shaped” high-value corridor. Although the low-low
agglomeration area’s scope shrank, it remained locked in eastern
Henan’s plain region and also expanded in southwestern Henan. In
2022, high-high agglomeration areas started contracting towards the
ZhengzhouMetropolitan Area, and the low-low agglomeration areas in
southwestern and eastern Henan also showed a shrinking trend.

3.3 Multi-scale influence mechanism of
CLUEE and NTU

3.3.1 Global scale analysis
Geographical detectors were used to analyze nine influencing

factors of CLUEE and NTU, with a focus on single-factor and
interaction detection results.

FIGURE 7
Spatiotemporal evolution of coupling coordination degree at county scale. (a) 2002. (b) 2006. (c) 2010. (d) 2014. (e) 2018. (f) 2022.
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TABLE 4 The Theil index of coupling coordination degree of CLUEE and NTU in Henan.

Year Area 2002 2006 2010 2014 2018 2022

Overall difference Henan Province 0.0546 0.0596 0.0533 0.0374 0.0292 0.0260

Difference within group Henan Province 0.0315 0.0392 0.0257 0.0217 0.0190 0.0168

Anyang 0.0036 0.0031 0.002 0.0024 0.002 0.0015

(11.47%) (8.03%) (7.92%) (11.25%) (10.64%) (8.67%)

Hebi 0.0011 0.0012 0.0006 0.0008 0.0006 0.0002

(3.44%) (3.14%) (2.36%) (3.82%) (3.04%) (0.95%)

Jiaozuo 0.0013 0.0011 0.0006 0.0007 0.0002 0.0004

(4.20%) (2.86%) (2.35%) (3.37%) (1.27%) (2.24%)

Kaifeng 0.0046 0.0037 0.0027 0.0023 0.0023 0.0019

(14.57%) (9.49%) (10.43%) (10.48%) (12.32%) (11.14%)

Luoyang 0.0035 0.0054 0.0037 0.0038 0.0029 0.0032

(11.17%) (13.69%) (14.23%) (17.65%) (15.06%) (18.89%)

Luohe 0.0005 0.0004 0.0006 0.0002 0.0002 0.0002

(1.49%) (0.90%) (2.22%) (1.02%) (1.15%) (1.42%)

Nanyang 0.0009 0.0007 0.0035 0.0007 0.0007 0.0015

(2.94%) (1.80%) (13.59%) (3.38%) (3.85%) (9.12%)

Pingdingshan 0.0029 0.0034 0.0024 0.0026 0.0021 0.0015

(9.21%) (8.62%) (9.47%) (11.91%) (11.20%) (8.83%)

Puyang 0.0023 0.0004 0.0004 0.0002 0.0002 0.0004

(7.28%) (0.96%) (1.60%) (0.93%) (1.19%) (2.36%)

Sanmenxia 0.0011 0.0012 0.0005 0.0008 0.0011 0.0007

(3.36%) (3.12%) (2.07%) (3.90%) (5.99%) (3.88%)

Shangqiu 0.0001 0.0001 0.0000 0.0001 0.0004 0.0004

(0.26%) (0.19%) (0.18%) (0.64%) (1.93%) (2.58%)

Xinxiang 0.0022 0.0026 0.0015 0.0018 0.0011 0.0008

(7.08%) (6.57%) (5.89%) (8.51%) (5.94%) (4.60%)

Xinyang 0.0023 0.0031 0.0022 0.0014 0.0017 0.0013

(7.33%) (7.83%) (8.46%) (6.48%) (8.94%) (7.88%)

Xuchang 0.0015 0.0013 0.0011 0.0011 0.0009 0.001

(4.75%) (3.43%) (4.31%) (5.21%) (4.75%) (5.76%)

Zhengzhou 0.002 0.0021 0.001 0.0009 0.0008 0.0007

(6.24%) (5.38%) (3.98%) (4.19%) (4.33%) (3.94%)

Zhoukou 0.0009 0.0063 0.0006 0.0006 0.0006 0.0004

(2.78%) (16.03%) (2.44%) (2.91%) (3.01%) (2.67%)

Zhumadian 0.0008 0.0031 0.0022 0.0009 0.001 0.0009

(2.43%) (7.97%) (8.49%) (4.36%) (5.40%) (5.08%)

Difference between group Henan 0.0230 0.0204 0.0277 0.0158 0.0102 0.0091

Note: The figures in parentheses represent the contribution rate of the Theil index within each city group to the Theil index within the entire province group.
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3.3.1.1 Single-factor detection
Except for the agricultural machinery power per unit area,

which failed the significance test, local general public budget
revenue was significant at the 5% level in 2006 and 2010. Other
factors had P-values below 0.01, showing robust significance
(Table 6). Based on q value analysis, the county-level per
capita disposable income had the strongest influence, peaking
at 0.62 in 2014. Its core impact stems from driving urban-rural
factor flows and consumption upgrading. High disposable
income enhances farmers’ capacity to adopt eco-friendly
technologies and drives urban service industry expansion via
consumption, promoting industry-city integration. Per capita
cultivated land area’s influence reflects resource endowment’s
“scale effect”, while the nighttime light index directly maps
economic activity intensity to coordination degree. Industrialization
and service industry clustering promote spatial matching of cultivated
land utilization and urbanization through technology spillover and

employment absorption. Except for agricultural machinery power
per unit area, local general public budget revenue had the weakest
influence. Elevation, terrain ruggedness, and multiple cropping
index had q-values below 0.2, showing significantly weaker effects
than other factors.

From 2002 to 2022, the influencing factors exhibited marked
interannual fluctuations. The dominant factor, per capita disposable
income, peaked at 0.6188 in 2014, then declined to 0.4384 in 2022.
Per capita cultivated land area and nighttime light index reached
peak q-values from 2014 to 2018, indicating diminishing resource
intensification and economic activity effects on coordination degree
during the 14th Five-Year Plan period. Local general public budget
revenue’s overall influence was relatively weak, with only a brief
significant increase in 2022, revealing insufficient fiscal input
targeting and sustainability. Terrain and natural factors had
generally low and highly fluctuating q-values, reflecting the
gradual weakening of topographic constraints in plain areas.

TABLE 5 The Moran’I of coupling coordination degree of CLUEE and NTU in Henan.

Index 2002 2006 2010 2014 2018 2022

Moran’s I 0.3377 0.3152 0.4404 0.5132 0.3870 0.2204

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

Note: P value: p > 0.1, not significant; 0.1 > p > 0.0.5, significant at the significance level of 10%; 0.05 > p > 0.01, which was significant at the 5% significance level; p < 0.01 indicates significance at

the 1% significance level.

FIGURE 8
County-level agglomeration distributionmap of coupling coordination degree of CLUEE andNTU inHenan. (a) 2002. (b) 2006. (c) 2010. (d) 2014. (e)
2018. (f) 2022.

Frontiers in Environmental Science frontiersin.org16

Liu 10.3389/fenvs.2025.1633927

mailto:Image of FENVS_fenvs-2025-1633927_wc_f8|tif
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1633927


3.3.1.2 Interactive detection
An interaction detection and analysis of the nine influencing

factors was conducted (Figure 9). With the exception of the
agricultural machinery power per unit area, which did not
pass the significance test, the interaction intensity of the
remaining factors exhibited clear patterns. The local general
public budget revenue demonstrates nonlinear enhancement
characteristics, and the average interaction intensity between
this factor and others is 2.8 times that of single-factor effects.
Due to its inherently strong effect, the county-level per capita
disposable income showed no significant change after
interaction. Notably, in 2002, 2018, and 2022, the interaction
effect intensity of this factor slightly decreased.

In the temporal dimension, the evolution of interaction-
dominant factor combinations reveals a ternary driving logic of
“institution-technology-resource”: In 2002, the dominant
interaction was between the county-level per capita disposable
income and local general public budget revenue, reflecting an
initial “investment-driven” growth model. In 2006, compared to
the previous year, the influence of various factors decreased, with
the strongest interaction shifting to the multiple cropping index
and county-level per capita disposable income, indicating a slight
increase in natural resource influence. In 2010, the interaction
between the nighttime light index and the multiple cropping index
peaked, reflecting the trend of synergy between economic and
natural factors during the coupling and coordination process. In
2014, the combined effect of the county-level per capita disposable
income and local general public budget revenue once again became
dominant, with urban economy influence surpassing that of
natural factors. By 2022, the synergy between the fiscal
expenditure on agriculture, forestry, and water conservancy
and the multiple cropping index was the strongest. These
phased shifts essentially result from the dynamic adaptation of
regional development policies to resource and environmental
carrying capacity.

3.3.2 Local scale analysis
The geographically weighted regression model was used to

analyze each factor affecting the coupling coordination degree of
CLUEE and NTU in Henan Province (Table 7). The adjusted R2 was
all greater than 0.5, and the fitting effect was good. The conditional
index is distributed within the range of −136.8879 to 354.5083,
verifying the reliability of the factor detection results. The regression
coefficients of each explanatory variable all show significant spatial
non-stationarity, and their action directions and intensities present
differentiated patterns with different geographical units. When
compared with the OLS model, both the R2 and Adj-R2 of the
GWR model are significantly larger, indicating that using GWR for
regional scale analysis is more credible.

The GWR regression coefficients were visualized via ArcGIS
10.6, and the spatial changes in the GWR regression coefficients of
nine influencing factors at the county scale in 2002 and 2022 were
compared (Figures 10, 11).

1. Elevation: The impact of elevation on the coupling
coordination of CLUEE and NTU strengthened significantly
from 2002 to 2022. The average regression coefficient per
county rose about 4.7 times, from −0.09 to 0.33, reflecting
intensified topographical constraints. Spatially, in 2002, from
the northwest to the southeast of Henan Province, there was a
transformation from a strong inhibitory effect to a strong
promoting effect, among which the strongest promoting
area was concentrated in Zhoukou City. By 2022, this
shifted to a strong inhibitory and promotional gradient
from southwest to northeast, forming a band-like pattern.
This differentiation reflects the dynamic interplay between
natural constraints and human interventions.

2. Terrain ruggedness: It induces systemic optimization through
spatial constraints, mandating compact urban layouts and
vertically stratified agricultural configurations that suppress
inefficient sprawl while enhancing ecological efficiency via

TABLE 6 Single-factor detection of influencing factors of CLUEE and NTU in Henan.

Year Index X1 X2 X3 X4 X5 X6 X7 X8 X9

2002 q value 0.2357 0.2422 0.4378 0.0316 0.1920 0.3724 0.4745 0.4998 0.1953

P value 0.0000 0.0000 0.0000 0.5819 0.0000 0.0000 0.0000 0.0000 0.0000

2006 q value 0.1237 0.1566 0.3667 0.0477 0.1452 0.3092 0.4095 0.4112 0.0375

P value 0.0068 0.0000 0.0000 0.3115 0.0000 0.0000 0.0000 0.0000 0.4648

2010 q value 0.1845 0.1902 0.2271 0.0856 0.3474 0.2000 0.3513 0.3233 0.1013

P value 0.0000 0.0000 0.0000 0.0522 0.0000 0.0000 0.0000 0.0000 0.0224

2014 q value 0.2283 0.2311 0.5061 0.0649 0.1158 0.5016 0.6188 0.5102 0.0894

P value 0.0000 0.0000 0.0000 0.1404 0.0097 0.0000 0.0000 0.0000 0.0414

2018 q value 0.1922 0.2001 0.5323 0.1110 0.1512 0.4640 0.5522 0.3885 0.1577

P value 0.0000 0.0000 0.0000 0.0114 0.0000 0.0000 0.0000 0.0000 0.0000

2022 q value 0.1799 0.1542 0.4454 0.0442 0.1549 0.3950 0.4384 0.3566 0.1810

P value 0.0000 0.0000 0.0000 0.3588 0.0000 0.0000 0.0000 0.0000 0.0000

Note: X1 is elevation, X2 is terrain ruggedness, X3 is per capita cultivated land area, X4 is agricultural machinery power per unit area, X5 is multiple cropping index, X6 is fiscal expenditure on

agriculture, forestry, and water conservancy, X7 is county-level per capita disposable income, X8 is nighttime light index, X9 is local general public budget revenue.
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gradient-based resource layering, thereby achieving land
intensification. The influence of terrain undulation on
coupling coordination showed a polarizing trend of
“strengthening negative effects and weakening positive
effects” from 2002 to 2022. The average regression coefficient
per county dropped the most among the nine factors, from
0.21 to −0.34. Specifically, in 2002, a strong promotion-strong
inhibition spatial divide existed from west to east, with western
Henan’s mountainous areas most positively affected. By 2022,
the distribution shifted to a south-north strong promotion-
strong inhibition pattern, where northern plains faced the
strongest inhibition, while southern Henan’s hilly areas were
mildly positively driven.

3. Per capita cultivated land area: From 2002 to 2022, per capita
cultivated land area consistently dampened system
coordination. Larger per capita cultivated area promotes
extensive land management, diminishing marginal ecological

returns per input unit and disincentivizing intensive practices
vital for ecological efficiency. Simultaneously, abundant land
availability reduces compact urbanization imperatives,
dispersing populations and economic activities while
weakening industrial agglomeration economies. Spatially,
negative inhibition intensity weakened, and spatial
polarization diminished. In 2002, southern Henan’s hilly
areas were the strongest negative inhibition zones, with
Xinxiang City in northern Henan the weakest, forming a
roughly ring-shaped inhibitory gradient. By 2022, centered
on Zhoukou and Zhumadian Cities, western negative impacts
gradually intensified.

4. Agricultural machinery power per unit area: Although the total
dynamic effect of agricultural machinery per plot did not pass
the significance test, its spatial intensity shifts revealed a
pattern. The distribution evolved from a weak
enhancement-strong inhibition northwest-southeast gradient

FIGURE 9
Interactive detection of influencing factors for CLUEE and NTU in Henan. (a) 2002. (b) 2006. (c) 2010. (d) 2014. (e) 2018. (f) 2022.

TABLE 7 GWR model parameters.

Model Index 2002 2006 2010 2014 2018 2022

GWR R2 0.7956 0.5318 0.6961 0.7798 0.6877 0.5743

Adj-R2 0.7472 0.4599 0.6489 0.7212 0.6045 0.5067

AICC −90.0363 35.3123 −41.8107 −136.8879 −122.8407 354.5083

OLS R2 0.6112 0.4670 0.6416 0.6720 0.5832 0.5045

Adj-R2 0.5875 0.4346 0.6198 0.6521 0.5579 0.4743
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in 2002 to a strong promotion-weak inhibition northeast-
southwest pattern in 2022, with positively increasing
effect intensity.

5. Multiple cropping index: In 2002, the positive impact zone of
the multiple cropping index was significantly larger than the
negative impact area. Central Henan Province, with Xuchang
City as the core, initially experienced a positive impact that
gradually transitioned into a negative impact as it spread
outward. However, by 2022, the entire province exhibited a
negative driving effect, with the negative impact becoming
more pronounced. This shift from net positive to pervasive
negative influence stems from diminishing ecological returns

from intensified cultivation, whereby prolonged multi-
cropping progressively degraded soil structure, depleted
groundwater, and increased agrochemical dependency,
thereby undermining the ecological foundation for
synergistic CLUEE-NTU coordination. The consistently
strongest negative impact north of the Yellow River reflects
regionally entrenched agricultural overexploitation exceeding
local ecological thresholds, while the southward attenuation
corresponds to greater non-agricultural diversification
reducing cropland pressure.

6. Fiscal expenditure on agriculture, forestry, and water
conservancy: From 2002 to 2022, the trend of expenditure

FIGURE 10
Regression coefficients of GWR model in Henan in 2002.
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on agriculture, forestry, and water conservancy affairs was
similar to the overall intensity change of the multiple
cropping index, but spatial variations differed. In 2002,
Henan province showed a transition from negative to
positive impact from west to east, with the strongest
positive impact observed in Xinyang City, Puyang City,
and Shangqiu City. With the demarcation of ecological red
lines and the implementation of farmland-to-forest
programs, by 2022, only the western mountainous regions
of the province exhibited a weak positive impact, while the
rest of the regions showed a gradually strengthening negative
trend from west to east. Funds were prioritized for soil and

water conservation and forest and grassland restoration. The
crowdfunding effect of ecological protection expenditures
intensified the competition for funds between urbanization
and agricultural development, thereby restricting the optimal
allocation and functional coordination of industrial elements
between urban and rural areas.

7. County-level per capita disposable income: From 2002 to
2022, per capita disposable income in counties was the factor
with a positive driving effect among all influencing factors in
this study, although the intensity of the effect weakened. Over
time, the marginal effect of income on the system
coordination degree gradually diminished. Spatially, in

FIGURE 11
Regression coefficients of GWR model in Henan in 2022.
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2002, the intensity of influence showed a gradual weakening
trend from southeast to northwest. By 2022, the trend
reversed, showing a gradual weakening from northwest
to southeast.

8. Nighttime light index: It’s positive impact area progressively
contracted from 2002 to 2022. Initially radiating weakening
positive effects from cores like Puyang and Xinxiang, it
shifted to negative impacts province-wide by 2022, with
promotion intensity diminishing southeast-northwest. This
reversal stems from early-stage urbanization initially boosting
CLUEE-NTU coordination through agricultural intensification
near cities, whereas prolonged light exposure later disrupted
ecological cycles and fragmented peri-urban farmland. The
spatial gradient reflects advanced southeastern regions
surpassing an urbanization threshold where light pollution
and land competition degraded synergy, while northwestern
areas showed transitional development with declining marginal
coordination returns from lighting expansion.

9. Local general public budget revenue: Local general public
budget revenue continues to exhibit a negative weakening
effect. Local fiscal revenue prioritization of short-term
urban-industrial expansion accelerates peri-urban farmland
conversion while diverting resources from agricultural
ecological modernization. This fiscal-driven development
creates spatial competition through urban sprawl,
fragmenting agricultural landscapes and eroding the
ecological integrity underpinning CLUEE. Numerically, the
influence intensity of this factor does not change significantly.
However, spatially, it gradually strengthened from the
mountainous area in western Henan to the periphery in
2002. In 2022, it gradually strengthened from the hilly area
in southern Henan to the north. In 2022, it gradually
strengthened from the hilly area in southern Henan to
the north.

4 Discussion

4.1 Coupling mechanism of CLUEE and NTU

As the core dimension of the regional human-earth system
evolution, CLUEE and NTU in Henan province exhibit a dynamic
and coordinated coupling relationship. From 2002 to 2022, their
interaction experienced a phased leap from “initial coordination-
development stagnation-benign mutual feedback”. The coupling
coordination degree rose from 0.31 to 0.59, with the spatial
pattern shifting from unipolar agglomeration to multi-polar
synergy. CLUEE offers sustainable support for urbanization by
optimally allocating resources and enhancing ecological
functions, whereas NTU feeds back to the intensive use of
cultivated land through factor flow and technological innovation
(Hou et al., 2019). Constrained by resources, technological
empowerment and institutional adjustment lead to a nonlinear
feedback mechanism between the two, jointly shaping an
“efficiency driving urbanization quality improvement-
urbanization stimulating efficiency upgrading” spiral upward
path. The coupling relationship between NTU and CLUEE is a
pivotal issue in integrated urban-rural development and ecological

civilization construction. NTU focuses on people-oriented, eco-
friendly and sustainable development, while CLUEE aims for the
coordinated optimization of economic, social and ecological benefits
in agricultural production. Through factor flow, technological
innovation and policy regulation, the two form a dynamic
interaction (Azam, 2019). This coupling relationship not only
reflects the optimal allocation of urban and rural resource
elements but also significantly impacts regional high-quality
development.

Revealing their interaction mechanism can offer theoretical
support for balancing urbanization expansion and cultivated land
protection, as well as promoting green transformation. The
improvement of CLUEE drives NTU development via multiple
pathways. Firstly, efficient agricultural production releases surplus
rural labor, providing human resources for population urbanization.
It reduces the labor-intensive operation’s reliance on labor force,
prompting farmers to migrate to towns and cities, and accelerating
population urbanization. Secondly, the increase in CLUEE boosts
agricultural economic output. Through higher grain production and
agricultural output value, it offers material guarantees for
urbanization. Meanwhile, the rise in farmers’ income drives
consumption upgrading and creates market conditions for
optimizing the urban industrial structure. Moreover, the
improvement of cultivated land ecological efficiency reduces non-
point source pollution and carbon emissions, alleviating
environmental pressure during urbanization and laying the
foundation for ecological urbanization. NTU nurtures CLUEE
improvement by aggregating technological, capital and policy
elements. On the one hand, technological innovation and capital
investment brought by urbanization promote the shift of
agricultural production modes towards intensification and
ecologicalization. On the other hand, during urbanization,
governments restrict extensive cultivated land use and encourage
green production through environmental regulations and ecological
compensation mechanisms. Furthermore, the social effects of
urbanization and industrial upgrading promote the exploration of
the multi-functional value of cultivated land. However, urban
construction and industry have occupied a large amount of
cultivated land, and the large-scale use of chemical fertilizers,
although it can increase grain production, will also have side
effects on the environment, seriously affecting the ecological
environment and the efficiency of cultivated land utilization
(Wang and Zhang, 2013). But through factor reorganization and
policy intervention, the cultivated land utilization structure can be
optimized to achieve a balance between efficiency and protection.

In the existing research on the coupling coordination degree of
CLUEE and NTU, it is basically shown that the levels of CLUEE and
NTU and the coupling coordination degree of the two have been
continuously increasing, and the growth rates vary among different
provinces (Yang et al., 2021). This feature was also demonstrated in
Wei et al.’s research on Hunan Province, China (Wei et al., 2023),
and it also showed an imbalance in spatial distribution. The findings
of this study are in line with the above. In China’s rapid economic
and social development, the coordination degree between CLUEE
and NTU has been continuously improving and shows the
characteristics of spatial heterogeneity. In the future, it is still
necessary to continuously optimize policy measures to promote
the coordinated development of the two.
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4.2 Driving mechanism of influencing
factors of CLUEE and NTU

On a global scale, the driving mechanism of the coupling
coordination degree of CLUEE and NTU in Henan province was
analyzed. The county-level per capita disposable income emerged as
the core dominant factor, followed by the per capita cultivated land
area and the nighttime light index. Factors such as local general
public budget revenue, elevation, and multiple cropping index
played relatively weak roles. The county-level per capita
disposable income drives the flow of factors between urban and
rural areas and promotes the integration of industry and city.
Meanwhile, if the intensity of the effect of natural factors is
significantly weak, it reflects the characteristic of weakened
terrain constraints in plain areas. The temporal evolution shows
that the dominant factors present phased fluctuation characteristics:
the driving effect of county-level per capita disposable income has
decreased since 2014, the promoting effect of per capita cultivated
land and nighttime light index has slowed down during the “14th
Five-Year Plan” period, and the weakening of the volatility of terrain
factors further confirms the transformation trend of the human-land
system from natural constraints to social and economic dominance.
However, the coupled and coordinated development of CLUEE and
NTU is not only affected by a single factor, but also by the
interaction of multiple factors. The average interaction intensity
between local general public budget revenue and various factors
reached 2.8 times that of the single-factor effect, showing a
significant nonlinear enhancement effect. However, the intensity
of county-level per capita disposable income after interaction did not
increase significantly and even decreased in some years. In terms of
timing, the combination of interaction dominant factors showed
phased leaps: In 2002, the investment-driven model of county-level
per capita disposable income-local general public budget revenue
was dominant; In 2006, the multiple cropping index-resources of
county-level per capita disposable income in county areas became
the main driving force; The 2010 nighttime light index-multiple
cropping index reveals that economic and natural factors are turning
towards synergy. In 2014, the county-level per capita disposable
incomes-local general public budget revenue once again dominated.
By 2022, the fiscal expenditure on agriculture, forestry, and water
conservancy-the multiple cropping index is the core. The evolution
of this ternary driving logic of “system-technology-resources” is
essentially a manifestation of the dynamic adaptation between
regional development policies and the carrying capacity of
resources and the environment.

At the local scale, the effects of different factors vary. From
2002 to 2022, the county-level per capita disposable income
continued to be positively driven, but the driving intensity
showed a decreasing trend. The per capita cultivated land area
and local general public budget revenue show inhibitory effects,
and the inhibitory intensities have both increased. The elevation and
agricultural machinery power per unit area show the transformation
characteristics from inhibitory effect to promoting effect. The area of
the promoting effect area keeps expanding, and the promoting
intensity also gradually increases. The other four factors mainly
show an evolution from a promoting effect to an inhibitory effect.
Among them, the multiple cropping index has evolved from a
dominant promoting effect at the beginning to a pure inhibitory

effect. The negative evolution effects of terrain ruggedness,
expenditure on fiscal expenditure on agriculture, forestry, and
water conservancy, and nighttime light index are also very
significant.

From the spatial transfer perspective, the factor effects at the
local scale were analyzed, and the intensity distribution of the effects
of some factors showed similarities. In 2002, the terrain ruggedness,
the agricultural machinery power per unit area, and the local general
public budget revenue all showed a trend of weakened promoting
effect and strengthened inhibitory effect from the west to the east of
Henan province, which might be related to the traditional
agricultural dominance model in the east. In 2022, the spatial
correlation of each factor became more obvious: both the
elevation and the agricultural machinery power per unit area
showed a trend of decreasing coefficients from northeast to
southwest, reflecting the reconstruction of the differentiated
human-land relationship between the construction of high-
standard farmland in the Northeast Plain and the ecological
migration in the mountainous areas of southwest China. The
terrain ruggedness, the multiple cropping index and the local
general public budget revenue have been exerting increasingly
stronger inhibitory effects from south to north. Expenditures on
fiscal expenditure on agriculture, forestry, and water conservancy
and county-level per capita disposable income show a weakening
trend in intensity from west to east.

Existing studies have also shown that the utilization efficiency of
cultivated land is strongly influenced by social and economic
conditions (Yang et al., 2021). In the CLUEE study on the karst
areas in southwest China, the land replanting index and average
altitude mainly showed inhibitory effects (Zhang et al., 2024), which
is the same as the conclusion of this study. This reflects that the same
influencing factor may also show similar degrees of influence in
different regions. However, in Wang et al.’s study, the number of
laborers per unit of cultivated land and the proportion of
agricultural input were important positive driving factors for
cultivated land utilization efficiency (Yang et al., 2021), which
might be due to the fact that this study did not consider the
coupling coordination of urbanization. Regarding the influencing
factors of NTU, in the research of Gu et al., the degree of
urbanization is mainly affected by economic factors, especially
the land economy. Local public budget revenue has become the
main driving factor, but a large part of this revenue comes from land
sales, which is unfavorable for the long-term coordination between
CLUEE and NTU (Gu et al., 2017).

The influence mechanism functions through a synergistic
interplay of natural constraints, economic drivers, and policy
interventions that dynamically reconfigure system coordination
across spatiotemporal scales (Figure 12). Foundational natural
geographical factors impose spatially structured land-use patterns
that enforce compact urbanization and stratified agriculture while
suppressing inefficient sprawl, yet exhibit intensifying topographic
constraints that diverge regionally-initially concentrating
development in western highlands while progressively limiting
northern plains. Concurrently, agricultural inputs trigger self-
reinforcing feedbacks: expanded per capita cultivated area
diminishes ecological returns through extensive management,
while multi-cropping transitions from initial gains to systemic
inefficiency as soil depletion and water overexploitation erode
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ecological foundations, culminating in province-wide negative
coordination effects. Economic-fiscal dimensions further
modulate outcomes via nonlinear pathways: urbanization
thresholds shift from synergistic agglomeration to ecological
disintegration through light pollution and farmland
fragmentation, while fiscal prioritization of urban expansion
accelerates agricultural conversion and crowds out ecological
investments, despite diminishing returns from disposable income.
Policy instruments like ecological redlines attempt corrective
redistribution but inadvertently intensify urban-agricultural
competition. Crucially, short-term economic gains progressively
erode long-term coordination by exceeding regenerative
capacities, while regional divergence manifests through
asymmetric adaptation. The system behavior thus reflects
competing optimization paradigms: geographical systems
regulating through equilibrium-seeking terrain adaptations,
socioeconomic systems driven by efficiency-maximizing
intensification, and policy frameworks mediating through
redistributive interventions. Their complex alignment across
temporal scales and spatial gradients ultimately generates the
observed band-like inhibition-promotion patterns, wherein
synergy dominates where environmental limits accommodate
economic diversification, while conflict arises where intensive
resource demands outpace ecological regeneration capacities. This
integrated mechanism underscores the non-stationary interplay
between endogenous human activities and exogenous
environmental forcings in shaping sustainable landscape evolution.

4.3 Policy recommendations

In central-eastern and northeastern regions with higher CLUEE,
efforts must prioritize synergistic enhancement of farmland quality
and ecological conservation. Strict implementation of controls
against non-agricultural conversion and non-grain production
use of cultivated land is essential, enforcing the joint party-
government accountability system with lifelong responsibility to
ensure total farmland and permanent basic farmland stability at
nationally mandated targets. Promotion of eco-agricultural
technologies and high-standard farmland construction should be
integrated into the Yellow River Ecological Belt’s comprehensive
governance framework to consolidate its strategic role as a
“national granary”. Concurrently, in western and southern
low-CLUEE regions, ecological protection and restoration
projects should be prioritized through rigorous ecological
conservation redline delineation, farmland-to-forest or
grassland conversion, and mine rehabilitation. Development of
distinctive eco-agriculture should be permitted, supported by
policy instruments such as point-based land allocation and
composite land use to facilitate rural tertiary industry
integration, thereby optimizing synergy between cultivated
land’s ecological functions and economic productivity.

Central-northern regions with advanced NTU should pursue
innovation-driven intensive development by elevating
Zhengzhou’s national central city status through decongestion
of non-core urban functions and reduced development intensity.

FIGURE 12
Driving mechanism of the coupling coordination development of CLUEE and NTU.
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Accelerated integration of Zhengzhou-Kaifeng-Xuchou via rail-
based metropolitan development must prioritize allocation of
new construction land quotas for industrial collaboration,
scientific innovation platforms, and shared public services,
while advancing land-saving technologies and three-
dimensional development models. Conversely, remaining low-
NTU areas require county-centered urbanization, supporting
Yongcheng and Dengzhou’s evolution into medium-sized
cities while cultivating key population-center towns.
Deepening of county-level administrative reforms should
expand infrastructure and public service coverage, with the
“Everyone with a Certificate, Skillful Henan” program
enhancing rural migrants’ employability to ensure equitable
access to urban public services.

Highly coordinated central-western-northeastern regions should
establish a dual “urban-rural integration and ecological security”
support system, piloting construction land quota-pooling mechanisms
within Zhengzhou Metropolitan Area to revitalize approved-but-idle
land while exploring “land use rights and ecological product value”
transfer models. Comprehensive territorial consolidation must optimize
agricultural-ecological-urban spatial ratios, developing 15-min
community living circles and smart resilient cities. For less-
coordinated southwestern areas, an “ecological compensation and
characteristic revitalization” policy framework should designate special
revitalization zones, integrating historical-cultural resources with
ecological assets for cultural tourism development. Strengthened fiscal
transfers and ecological compensation must support integrated urban-
rural waste management systems, with point-based land allocation
securing rural industrial land to resolve conflicts between ecological
preservation and lagging urbanization.

4.4 Shortcomings and future prospects

This study is based on county-level data from Henan
province between 2002 and 2022. Although it reflects the
coupling dynamics of regional CLUEE and NTU, the
relatively short time span makes it difficult to capture long-
term fluctuation patterns. In the future, the research period can
be extended. By combining long -term remote sensing data with
statistical yearbook data, the understanding of the long-term
coupled and coordinated evolution of CLUEE and NTU can be
deepened. Furthermore, the research area focuses on Henan
province, whose high plain proportion and resource constraints
differ significantly from mountainous and coastal areas,
limiting the conclusion’s universality. In the future, multi-
scale national comparisons can be conducted to identify
heterogeneous driving mechanisms across different
geographical units and provide a scientific basis for
differentiated policy design. In terms of driving mechanism
analysis, existing studies have revealed the influence factor
intensity and spatial non-stationarity using geographic
detectors and GWR models, but the analysis of nonlinear
relationships remains insufficient. In the future, machine
learning methods like random forest models can be
introduced to analyze complex variable relationships through
feature importance ranking and partial dependency plots.
Additionally, combining the system dynamics model to

simulate the coupling coordination degree evolution path
under scenarios like policy intervention and climate change
can quantify the long-term effects of different regulatory
strategies and enhance decision-making’s forward-
looking nature.

5 Conclusion

Henan Province witnessed significant improvement in
CLUEE from 0.09 to 0.47, while NTU exhibited inverted
U-shaped growth from 0.15 to 0.32. Spatially, CLUEE
transitioned from point-like dispersion to contiguous
expansion, culminating in 2022 with high-value agglomerations
in the Zhengzhou metropolitan area and low-value clusters in
western Henan’s mountainous regions, whereas NTU displayed
pronounced polarization. The coupling coordination degree
between CLUEE and NTU ascended in an N-shaped trajectory
from 0.31 to 0.59, spatially evolving toward a T-shaped corridor
with residual low-value pockets in the southwest. For the driving
factors of coupling coordination degree,at the provincial scale,
county-level per capita disposable income dominates as socio-
economic forces supersede weakening natural constraints. At the
county scale, significant spatiotemporal differentiation emerges:
inhibitory effects on per capita cultivated land and local fiscal
revenue intensify, while elevation and agricultural machinery
power shift from suppression to promotion—changes most
pronounced on the Northeast Plain but attenuated in
southwestern mountains. Spatially, terrain ruggedness and
cropping index exhibit strengthening south-north inhibitory
gradients, whereas fiscal expenditure-disposable income
synergy weakens west-east, reflecting divergent regional
intensification and ecological adaptation pathways. Policy
recommendations for enhancing CLUEE-NTU coupling
coordination focus on spatially differentiated interventions: In
high-CLUEE regions, synergistic farmland quality-ecological
conservation is prioritized through strict non-agriculturalization
or non-grainization controls, lifelong accountability systems, and
integration of eco-agricultural technologies with Yellow River Belt
governance. Low-CLUEE areas emphasize ecological restoration
via redline delineation, farmland conversion, and eco-agriculture
development supported by flexible land policies. Advanced-NTU
zones pursue innovation-driven intensification through
metropolitan rail-integration, core-area decongestion, and land-
saving technologies, while low-NTU regions advance county-
centered urbanization with administrative reforms and skills
certification. Highly coordinated areas establish dual urban-rural or
ecological security systems via land quota-pooling and value-transfer
mechanisms, whereas less-coordinated zones implement ecological
compensation, cultural revitalization, and targeted land allocation to
resolve ecology-urbanization conflicts, ultimately harmonizing
regional pathways.

Data availability statement

The statistical data from Henan statistical yearbook (2002-
2022), is available at https://data.cnki.net/. The GIS data for
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1985-2023 annual China 30 meters resolution land cover
data, is available at https://essd.copernicus.org/articles/13/
3907/2021/. The elevation data is sourced from the Center
for Resources and Environmental Sciences and Data Center
of the Chinese Academy of Sciences can be found at https://
www.resdc.cn/. Terrain data from China degree of km grid
terrain data set is accessible at https://geodoi.ac.cn/WebCn/
doi.aspx?Id=887. The night lights index data from China
lighting at night long time series data set (2000-2020), is
available at https://www.geodoi.ac.cn/doi.aspx?DOI=10.3974/
geodb.2022.06.01.V1). The PM2.5 data selection high
resolution quality PM2.5 data set (2000-2023), can be found at
https://data.tpdc.ac.cn/zh-hans/data/6168e75d-93ab-4e4a-b7ff-
33152e49d0bf.
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