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Rapid urbanization reshapes regional water resources by reconfiguring land
systems and altering the balance between runoff and infiltration. Empirical
evidence that jointly accounts for human and natural drivers while addressing
spatial dependence remains limited. Using harmonized 1-km data for the
Beijing–Tianjin–Hebei region during 2014–2023, including land use from
CLCD, nighttime lights from VIIRS, and precipitation, this study combines
Sen–Mann–Kendall trend detection with spatial models estimated by
Integrated Nested Laplace Approximation. The results show that urbanization,
measured by nighttime lights, has a consistently stronger association with water
resource related land change than precipitation. The interaction between
precipitation and nighttime lights is place specific and positive in Beijing and
Shijiazhuang, with coefficients of 0.0622 and 0.1579, which indicates
amplification of urbanization linked land conversion under wetter conditions.
The integrated framework distinguishes human and climatic signals and reveals
spatial heterogeneity that is relevant to water sensitive urban planning.

KEYWORDS

land use, urbanization, water resources, InlA, trend analysis

1 Introduction

Water is an essential resource for human survival and the evolution of ecosystems,
playing a critical role in the sustainable development of socio-economic systems (Akhtar
et al., 2021). In the context of a global population exceeding eight billion, both developed
and developing countries face severe water shortages and pollution, which have become
major threats to public life and health (Nayan et al., 2020). The growing imbalance between
water supply and demand is becoming increasingly evident, particularly in regions
undergoing rapid urbanization. The conflict between water supply and the demands of
urban expansion has become a key bottleneck limiting sustainable development (Feng et al.,
2022). Urbanization, as a key feature of modern societal development, is not only a
manifestation of economic growth and population concentration but also a process that
brings about profound changes in resource utilization and the structure of the ecological
environment. Rapid urbanization is often accompanied by shifts in land use and
environmental degradation, particularly having a far-reaching impact on the allocation
and utilization of water resources (Garg et al., 2019; Wei et al., 2020; Zhuge et al., 2023).
Factors such as land use changes, population mobility, and infrastructure development
during the urbanization process significantly impact various stages of the water cycle (Kalfas
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et al., 2024). Specifically, urbanization leads to increased water
consumption in urban areas, often resulting in reduced river and
lake water levels, as well as higher wastewater discharge. These
changes not only directly affect water quality but may also
contribute to the degradation of ecosystems (Camara et al., 2019;
Cheng et al., 2022). At the same time, the increase in chemical
concentrations due to water pollution can lead to the outbreak of
widespread diseases and fatalities. The interplay between
urbanization, water scarcity, and water pollution is closely
interrelated, forming a complex vicious cycle (Wang et al., 2024;
Yao et al., 2025b). Traditional urbanization studies often rely on
government statistical data, which lack timeliness and accuracy,
making it difficult to monitor urbanization spatially in real-time.
The breakthroughs in remote sensing technology have provided a
new paradigm for urbanization monitoring, offering more direct
and frequent temporal coverage of the study areas (Liu et al., 2024;
Yao et al., 2022c; Yao et al., 2022a). This approach has shown
superior performance in detecting urban sprawl and urban areas
(Wang et al., 2022). Compared to the limitations of spatial and
temporal resolution in traditional statistical data, nighttime remote
sensing data, by capturing the characteristics of human activity light
sources, can more accurately represent the spatial-temporal
heterogeneity of urban built-up area expansion (Li et al., 2020;
Yao et al., 2024b). The Defense Meteorological Satellite Program’s
Operational Line Scanner (DMSP/OLS) nighttime imagery, as an
early form of nighttime remote sensing data, has been widely used
for urbanization monitoring. DMSP/OLS data records the nighttime
light emitted from the Earth’s surface, capturing light sources from
both human activities and natural phenomena, with a long historical
record spanning over 30 years. This data source has demonstrated
unique advantages in large-scale urban area monitoring, urban
sprawl tracking, and population density inversion, making it
particularly suitable for monitoring historically established and
large-scale urban regions (Hasan et al., 2019). With
advancements in technology, the introduction of NPP/VIIRS data
has significantly improved the spatial-temporal resolution of
urbanization monitoring. Compared to DMSP/OLS, NPP/VIIRS
offers higher spatial resolution and more frequent observation
cycles, allowing for a more detailed capture of nighttime light
variations. This data has been widely applied in areas such as
urban expansion, land use change, and regional economic activity
monitoring (Xu et al., 2020; Yang et al., 2019; Yao et al., 2025a).

The Beijing-Tianjin-Hebei (BTH) region has long been subject
to rigid water resource constraints. The per capita water resources in
the Haihe River Basin have consistently remained at approximately
250–300 m3, significantly lower than both the national and global
averages (Xu et al., 2020). In Beijing, the per capita water availability
has long been below 200 m3 (recently around 150 m3), far beneath
the international threshold of “absolute water scarcity.” Against the
backdrop of continuously growing demand, the North China Plain
has experienced long-term groundwater over-extraction and
declining water tables. Related studies, based on GRACE data,
indicate significant groundwater depletion in the region (Wang
et al., 2024). To alleviate the supply-demand imbalance, the
South-to-North Water Diversion Middle Route Project has been
supplying water to northern China since its operation in 2014. By
early 2022, it had transferred over 50 billion m3 of water, becoming a
critical support for regional water supply security. During the same

period, the national government implemented the “Strictest Water
Resources Management” policy and the “Three Red Lines” control
system, imposing binding constraints on total water withdrawal and
usage efficiency. This further underscores the institutional context of
water governance in BTH. In summary, the BTH region exemplifies
a structural constraint characterized by supply-demand imbalance,
groundwater over-extraction, and inter-basin water transfer. It
serves as a typical area for identifying the impact of urbanization
and hydroclimatic conditions on land changes related to water
resources and their spatial heterogeneity, as well as a
representative empirical context for regional governance practices
such as “determining urban development based on water capacity.”
In the process of urbanization, accurately assessing its impact on the
environment, particularly on water resources, is a crucial issue in
current research (Ngondo et al., 2021; Yao et al., 2024a; Zhai et al.,
2022). To better understand these changes, researchers typically rely
on trend analysis and spatial analysis methods to reveal the spatial-
temporal evolution patterns of urbanization (Yao et al., 2022b).
Trend analysis methods are used to identify long-term trends in
variables over time, while spatial analysis methods help to uncover
the regional differences in the impact of urbanization (Bao and He,
2019; Zhao et al., 2018). As research demands continue to grow,
efficiently processing complex spatiotemporal data has become a key
challenge in analyzing the urbanization process.

Trend analysis methods reveal long-term change patterns by
calculating the trend of a variable over time. Linear regression
models, particularly those based on the computation of time-
series slopes, are commonly used trend analysis tools. These
models can effectively capture long-term trends within a given
time period and help identify key temporal points in the
urbanization process, providing scientific evidence for policy and
resource management (Hu et al., 2021; Sohail et al., 2019).

In spatial analysis, the Geographic Weighted Regression (GWR)
model is commonly used to handle spatial heterogeneity and reveal
spatial variations at the local level. However, GWR has limitations in
dealing with complex spatial autocorrelation structures, especially
when working with large-scale datasets, where computational
efficiency tends to be low (Huang et al., 2010). Although
Bayesian hierarchical models can effectively address spatial
autocorrelation and uncertainty, they suffer from high
computational complexity, particularly when applied to large
datasets, creating a significant bottleneck for practical
applications. To overcome the computational challenges of
traditional Bayesian models, the Integrated Nested Laplace
Approximation (INLA) method was introduced (Niekerk et al.,
2022; Palmí-Perales et al., 2022; Rue et al., 2009). INLA
constructs a hierarchical random effects model, maintaining the
advantages of Bayesian inference while significantly improving
computational efficiency. Its use of approximate Laplace
approximation allows for the rapid calculation of posterior
distributions, greatly enhancing the efficiency of analyzing large-
scale datasets (Brownscombe et al., 2019; Lindgren and Rue, 2015;
Poggio et al., 2016). INLA is particularly well-suited for spatial
analysis, as it effectively captures spatial dependencies, providing
precise parameter estimation and inference results. It shows
remarkable advantages when dealing with multi-dimensional,
large-scale, and multi-scale data (Achieng and Zhu, 2021;
Romero et al., 2023). In urbanization studies, the INLA method
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enables the simultaneous consideration of spatial heterogeneity and
temporal trends, offering a powerful analytical tool for
understanding the complex spatial dynamics of urbanization and
its impact on water resources, land use, and environmental quality
(Gong et al., 2021; Satria et al., 2021; Schaeffer et al., 2024; Wood,
2019). The Integrated Nested Laplace Approximation (INLA)
framework was selected for its ability to simultaneously model
spatial dependence and temporal structures in multi-year,
kilometer-scale grid data, effectively addressing parameter
inconsistency and estimation bias. This approach enables the
specification and testing of “urbanization × precipitation”
interaction effects within a unified model, facilitating
examination of how climatic conditions modulate urbanization
impacts. Additionally, the stochastic partial differential equation
(SPDE) method employed in INLA constructs sparse precision
matrices that substantially improve computational efficiency,
making it particularly suitable for high-resolution, multi-source
data integration scenarios such as the Beijing-Tianjin-Hebei
(BTH) region.

This study asks how rapid urbanization affects regional water
resources, where water-resource change is proxied by land-use
change (ΔLULC) and urbanization by nighttime lights (NTL)
dynamics. We (i) characterize spatiotemporal patterns of ΔLULC;
(ii) estimate the marginal effect of urbanization (NTL) on ΔLULC;
(iii) incorporate precipitation to examine the joint human–natural
influence in rapidly urbanizing cities and its spatial heterogeneity;
and (iv) keep the narrative centered on the urbanization pathway
while reporting precipitation as a complementary, robustness-
oriented factor. The research is in line with the national-level
policy orientations such as “coordinated development of the
Beijing-Tianjin-Hebei region” and “water-based urban
development, sponge cities, and protection of blue and green
corridors”, aiming to provide evidence support for the
optimization of urban space and the resilient construction of
infrastructure under the rigid constraints of water resources.

2 Study area overview and data

2.1 Overview of the study area

The Beijing-Tianjin-Hebei region is located between longitudes
113°04′–119°53′and latitudes 36°01′–42°37′, in the northern part of
the North China Plain, as shown in Figure 1. This region includes
11 prefecture-level cities from Beijing, Tianjin, and Hebei Province.
It is bordered by Liaoning, Inner Mongolia, Shanxi, Henan, and
Shandong provinces, and to the east, it faces the Bohai Sea. The area
has a typical warm temperate semi-humid, semi-arid continental
monsoon climate, characterized by cold, dry winters with little snow
and hot, rainy summers. The topography features a northwest high
and southeast low gradient. The Beijing-Tianjin-Hebei region lies
within the Haihe River Basin in China, and the main rivers include
the Chaobai River, Jiyun River, Yongding River, and Daqing River
(Li et al., 2018).

BTH is one of China’s three world-class urban agglomerations
(together with the Yangtze River Delta and Pearl River Delta) and
has undergone rapid urban development and built-up expansion
over the past decade, making it a nationally significant testbed for

urbanization research. At the same time, it sits in northern China’s
water-stressed zone: the Haihe River Basin is widely documented as
one of the most water-scarce basins in the country, with per-capita
water availability on the order of ~300 m3—far below national and
global averages; this chronic scarcity underpins long-standing
groundwater depletion and the need for large-scale inter-basin
transfers. Since late 2014, the central route of the South-to-North
Water Diversion has delivered water to Beijing and Tianjin,
highlighting both the severity of local constraints and the policy
salience of water-related land-use change in this urban cluster. The
period from 2014 to 2023 has been an important phase for the
coordinated development of Beijing, Tianjin, and Hebei. During this
period, the region has seen significant improvements in both
economic scale and industrial structure. In terms of economic
output, the regional GDP has experienced leapfrog growth,
increasing from 5.5 trillion yuan in 2013 to 10.4 trillion yuan in
2023, surpassing five trillion-yuan milestones over the 10 years, with
an average annual growth rate of approximately 5.5%. In terms of
industrial structure, the regional economy has undergone
continuous optimization and upgrading, with the ratio of the
three major industries shifting from 6.2:35.7:58.1 in 2013 to 4.6:
27.7:67.7 in 2023, with the value added by the service sector rising by
nearly 10 percentage points. Moving forward, the region will
continue to promote the “six chains and five clusters” industrial
collaborative development, building a horizontally coordinated and
vertically integrated joint working system. This will help resolve the
“bottleneck” issues in industrial coordination and foster new
achievements in the coordinated development of the Beijing-
Tianjin-Hebei industries (Bao and He, 2019).

2.2 Motivation for satellite datasets

Our objective is to quantify how rapid urbanization reshapes
water-resource–related land dynamics through a hydrology-focused
lens centered on impervious surfaces and water bodies. This requires
(i) spatially exhaustive, temporally consistent observation of land-
surface endpoints at regional scale and (ii) city-comparable drivers
representing human and natural influences. Satellite datasets meet
these needs with three advantages. Impervious expansion alters
infiltration–runoff partitioning, while gains/losses of water
surfaces reflect storage and conveyance changes; both are directly
observable as land-cover transitions. A national, consistent land-
cover product enables us to construct the dependent variable at the
1-km grid and to derive annual trends with uniform rules. VIIRS
Day/Night Band nighttime lights provide a stable, radiometrically
calibrated indicator of urban activity and built-environment
intensity, avoiding saturation and facilitating decade-scale
comparability—therefore serving as our human factor proxy. A
spatially downscaled 1-km precipitation field supplies the natural
factor, capturing hydro-climatic gradients that condition urban
effects and enabling a joint (human × natural) assessment in the
comprehensive model. All datasets are harmonized to ~1 km and
annual time steps, matching the resolution of our INLA/SPDE
specification and typical planning geographies. This common
grid reduces cross-product mismatch, limits error propagation
from multi-class classification (by focusing on impervious and
water), and ensures that results are comparable across cities and
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years. We acknowledge that satellite proxies are not direct
hydrologic measurements and that seasonality may affect small-
water detection; these uncertainties are addressed by annual
aggregation, typical-area inspection, and explicit modeling of
human–natural interactions.

2.3 Study data

The data sources for this study include land use data, nighttime
light data, and precipitation data, as shown in Table 1. The CLCD
(Annual China Land Cover Dataset) was integrated using the
Google Earth Engine (GEE) platform, incorporating all available
satellite sensor observation data from 1982 to 2022. This dataset
provides an in-depth analysis of the spatiotemporal characteristics
of LUCC (Land Use and Land Cover Change) across China, with
precise classification results obtained using a random forest
classifier. Based on the current land use classification in China,
the CLCD categorizes land cover into nine types: cropland, forest,

grassland, shrubland, water bodies, ice and snow, barren land,
impervious surfaces, and wetlands. This study uses the version
1 Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night
Band (DNB) monthly cloud-free composite nighttime light
product. Compared to DMSP/OLS nighttime light data, NPP/
VIIRS data has higher spatial resolution, a broader radiometric
detection range, and does not suffer from saturation issues.
Additionally, NPP/VIIRS data benefits from onboard calibration,
enhancing the overall data quality. The monthly precipitation
dataset for China is based on the global 0.5° climate data
provided by CRU and the high-resolution global climate dataset
from WorldClim, downscaled to China using the Delta spatial
downscaling method. The dataset has been validated using
496 independent meteorological observation points, ensuring its
reliability. The spatial resolution is 0.0083333° (approximately
1 km), covering the period from January 2014 to December
2023. The data is in NETCDF format. Empirically, we proxy
water-resource-related change by land-use/land-cover change
(ΔLULC) at the grid-cell level, because hydrologically relevant

TABLE 1 Introduction to the study data.

Data type Data name Spatial
resolution

Temporal
resolution

Time
range

Source

Land Use CLCD 30 m Year 2014–2023 https://zenodo.org/records/5816591

Nighttime
Light

NPP/VIIRS 500 m Month 2014–2023 https://developers.google.com/earth-engine/datasets/catalog/
NOAA_VIIRS_DNB_MONTHLY_V1_VCMCFG

Precipitation Precipitation
Dataset

1,000 m Month 2014–2023 https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-
5cee413766a2

FIGURE 1
Overview of the study area.
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pathways of urbanization—such as impervious-surface expansion
altering infiltration and runoff, and the redistribution of water/
wetlands—are consistently observable as land-surface transitions at
regional scales. The variable of interest is urbanization, represented
by nighttime lights (NTL) dynamics from VIIRS, which capture
built-environment intensity and expansion. Precipitation is
included as a natural background/moderator to quantify
human–natural joint influence in rapidly urbanizing cities; the
narrative focus remains on the urbanization pathway.

All datasets were first harmonized to a common spatial
resolution of 0.008333° (~1 km) and an annual temporal
resolution. CLCD 30 m categorical maps were reprojected
and resampled to the 1-km grid using a majority algorithm to
form the annual land-use mosaic. For the outcome construction,
the water-surface share in each 1-km cell was computed as the
ratio of underlying 30 m water pixels within that cell; the
dependent variable y is ΔLULC, defined as the year-on-year
change in this share and reported in percentage points per year
(pp·yr-1). VIIRS DNB monthly composites were aggregated to
annual totals (sum of monthly values) and bilinearly resampled
to the common 1-km grid. Precipitation was likewise aggregated
from monthly to annual totals (mm·yr-1) and snapped to the
same 1-km grid.

3 Research methods

The specific technical approach of this study is shown in Figure 2.
The process begins by obtaining multi-source remote sensing data:
land use data, precipitation data, and nighttime light remote sensing
data, which are then processed through various operations to yield the
analysis results. Specifically, land use transitionmatrices are calculated
from the land use data to determine the transition relationships
between different land types, thus quantifying the land use changes
during urbanization. The transition matrix helps analyze the
variations in land use types across different years, providing
foundational data for subsequent spatial analysis.

All datasets are first harmonized to a common spatial resolution
of 1 km (WGS-84) and to an annual temporal resolution for
2014–2023. CLCD 30 m categorical maps are reprojected and
resampled to 1 km using a majority (mode) algorithm
appropriate for discrete classes; on this 1 km grid, the
impervious-surface share in each cell is computed by counting
the underlying 30 m impervious pixels within the cell extent.
VIIRS nighttime-light monthly composites are aggregated to
calendar-year totals and bilinearly resampled to the same 1 km
grid. Monthly precipitation is likewise aggregated to calendar-year
totals on the 1 km grid. This harmonization ensures spatial co-
registration and strictly comparable annual time stamps across
variables. Following this, the Sen–Mann–Kendall (Sen + MK)
trend analysis is applied to the annual level series—namely, the
impervious-surface share per 1 km cell, the annual nighttime-light
totals, and the annual precipitation totals—which allows for the
extraction of interannual trend changes in water-related land use,
precipitation, and nighttime brightness over time. The Sen-slope
method helps identify the magnitude of change in the data, while the
MK test (Mann-Kendall test) is used to assess the significance of the
trends and determine the reliability of data changes.

The trend results of the three datasets are then subjected to
spatial correlation analysis using the INLAmethod, which can reveal
the spatial dependencies between different variables and analyze
how natural and human factors jointly influence changes in water
resources. The INLA (Integrated Nested Laplace Approximation)
method is effective in handling the complex relationships within
spatial data, helping to identify the spatial patterns behind water
resource changes and their interactions with other
environmental factors.

3.1 Land use transfer matrix

The land use transition matrix, as an application of the
Markov model in the field of land use change, is a two-
dimensional matrix constructed by analyzing changes in the
land use status of the same region at different time points.
This matrix quantitatively expresses the interactions and
transitions between different land types, visually displaying the
direction of land use type changes and the corresponding changes
in quantity. It provides a powerful tool for understanding the
dynamics of land use. The expression of the land use transition
matrix is given by Equation 1.

Aij �
A11 / A1n

..

.
1 ..

.

An1 / Ann

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

In Equation 1, A represents the area; n is the number of land use
types; i and j correspond to the land use types at the beginning and
end of the study period, respectively.

3.2 Change trend analysis

This study employs a combined approach of Theil-Sen
median analysis and Mann-Kendall (M-K) test to identify
trends in the long time series of land use data, nighttime light,
and precipitation in the Beijing-Tianjin-Hebei region. The Theil-
Sen median analysis is a robust non-parametric statistical
method for trend calculation, suitable for trend analysis of
long time series data (Fu et al., 2023). The calculation formula
is given by Equation 2:

β � median
Xj −Xi( )
j − i

⎡⎣ ⎤⎦ (2)

In the Equation 2, β represents the slope of the time series data
for land use, nighttime light, and precipitation, indicating the trend
of data change. β > 0 indicates an increasing trend, while β <
0 indicates a decreasing trend. The median refers to the median
function of the time series.Xi andXj represent the values of land use
data, nighttime light, and precipitation for the ith and jth years in the
time series, where i, j = 1, 2, . . . , n. Here, n denotes the length of the
time series data in this study.

Due to the lack of statistical significance testing in this method,
this study employs the M-K test method for evaluation. The M-K
test is also a non-parametric statistical test proposed by Mann et al.
The formula for the M-K test is given by Equations 3–6:
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S � ∑n−1
i�1

∑n
j�i+!

sgn Xj −Xi( ) (3)

sgn Xj −Xi( ) � +1, Xj −Xi > 0
0, Xj −Xi � 0
−1, Xj −Xi < 0

⎧⎪⎨⎪⎩ (4)

Var S( ) � n n − 1( ) 2n + 5( )
18

(5)

Z �

S − 1������
Var S( )√ , S> 0

0, S � 0

S − 1������
Var S( )√ , S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(6)

In the Equation 3, S represents the test statistic, which follows a
normal distribution; Var(S) is the variance of S; sgn is the sign
function of the rank sequence; Z is the standard normal statistic. At a
significance level of α, when |Z| > Z1-α/2, the time series exhibits
significant variability at the α level. In this study, a significance level

of 0.05 was chosen, and the results are classified as follows:
significant increase (β > 0, P < 0.05), no significant improvement
(β > 0, P > 0.05), stable (no change), significant decrease (β < 0, P <
0.05), and no significant decrease (β < 0, P > 0.05).

3.3 Correlation analysis

INLA is an efficient Bayesian approximation inference method,
particularly suitable for handling large datasets and complex models
(Bakka et al., 2018; Blangiardo et al., 2013). This method combines
Gaussian approximation and Laplace approximation to provide
both efficient and accurate solutions through analytical
approximation calculations. Compared to traditional Markov
Chain Monte Carlo (MCMC) methods, the advantage of INLA
lies in its faster computational speed and its ability to avoid sample
convergence issues, making it especially suitable for Bayesian
inference in latent Gaussian models. Latent Gaussian models are
widely used in INLA, including general linear models, generalized

FIGURE 2
Technology roadmap.
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linear models, generalized additive models, and spatiotemporal
models. INLA uses a combination of analytical approximation
and sparse matrices to calculate posterior distributions, which
not only improves computational efficiency but also avoids the
convergence and mixing issues commonly associated with MCMC
methods. Stochastic partial differential equations (SPDE) are widely
used to model dynamic systems with random properties,
particularly in spatial statistics for constructing spatial random
processes that describe the uncertainty and complexity of spatial
data. Spatiotemporal field modeling is shown in Equation 7.

y t, Si( ) � u + x t, Si( )β + μ t, Si( ) + ε t, Si( ) (7)

In this equation, y(t, Si) represents the spatiotemporal field; Si
denotes the monitoring point I; t represents time, where t = 1, 2, . . . ,
T (1 ≤ T ≤ 183); u is the intercept; x(t, Si) =(xi (t, si), x1(t, si), . . ., xp(t,
si)) is the sequence of predictor variables at time t and station si; β =
β1,β2,/βp is the corresponding vector of coefficients; ε~N (0, σ2ε )
represents the random error defined by a Gaussian white noise
process; μ(t, Si) captures the spatiotemporal correlation beyond the
covariates.

We represent the spatial random field via the SPDE approach
and build a constrained Delaunay mesh over the BTH boundary
with a coastal buffer. The mesh uses an inner target edge length
of about 10 km, an outer extension of about 25 km, and a 1 km
cutoff to merge nearly coincident 1-km centroids. This
resolution follows exploratory correlation lengths of several
tens of kilometers and balances accuracy with cost.
Continuous covariates are standardized. We adopt penalized-
complexity (PC) priors: for the spatial field, P (range <30 km) =
0.5 and P (sd > 1) = 0.01; for observation noise, P (sd > 0.5) =
0.01; for the yearly temporal component (random walk of order
1), P (sd > 0.3) = 0.01. Fixed effects, including the precipitation ×
nighttime-lights interaction, use Normal (0, 5) priors on the
standardized scale. Results are robust when halving or doubling
the inner edge length and when moderately varying these PC
prior scales.

4 Experimental results and analysis

4.1 Spatiotemporal pattern evolution
analysis of the Beijing-Tianjin-Hebei region

Figure 3 illustrates the distribution of different land use types
from 2014 to 2023. The results show that, with the acceleration of
urbanization, significant changes have occurred in the land use types
of the Beijing-Tianjin-Hebei region, particularly the reduction of
water body coverage and the expansion of urban impervious
surfaces. Specifically, the proportion of urban construction land
has continuously increased, while natural ecological land such as
grasslands, shrubs, and wetlands has gradually decreased. Forest
coverage increased during the study period, which may be related to
ecological restoration projects in North China. Additionally, the
urbanization process in the Beijing-Tianjin-Hebei region exhibits
spatial heterogeneity. Core cities such as Beijing and Tianjin have
experienced rapid urbanization, while some regions of Hebei have
seen slower urbanization, resulting in regional differences in land
use patterns.

From the spatial distribution map of precipitation, it is evident
that precipitation in the Beijing-Tianjin-Hebei region is
concentrated in the eastern and southern areas, with generally
lower precipitation in the western part. The annual precipitation
in the region showed a fluctuating upward trend during the study
period. In 2014, precipitation ranged from 277.2 to 645.3 mm, rising
to 325.8–787.8 mm in 2020, with a slight decrease in 2023. The
maximum precipitation in the region was 741.3 mm, still showing a
significant increase compared to 2014, indicating a continued trend
of regional wetting. This fluctuation may be related to the increased
frequency of extreme weather events under global climate change,
which aligns with the findings in the IPCC’s Sixth Assessment
Report that precipitation variability in the East Asian monsoon
region has increased.

Nighttime light data, as a key indicator of urbanization, reflects
the intensity of human activity in the region. From Figure 3, it is
clear that the intensity of nighttime lights in the Beijing-Tianjin-
Hebei region increased significantly from 2014 to 2023, particularly
in core cities such as Beijing, Tianjin, and Shijiazhuang in the central
and southern parts of the region. During the study period,
urbanization in these cities continued to progress. Peripheral
cities like Baoding, Handan, and Xingtai also saw some
expansion in nighttime light intensity, reflecting the overall trend
of rapid urbanization in the Beijing-Tianjin-Hebei region.

Mathematical statistical analysis of land use type data for the
Beijing-Tianjin-Hebei region from 2014 to 2023 reveals that the
total surface water area in the region has fluctuated little over the
period, with significant regional differences across cities
(Figure 4b). In particular, cities such as Shijiazhuang, Xingtai,
Handan, Baoding, and Beijing have shown notable increases in
surface water area, with Beijing and Shijiazhuang experiencing
increases of more than 40%. Conversely, Tangshan and Tianjin
have seen substantial reductions, while Qinhuangdao also
experienced a slight decline. Spatially, surface water
improvements are evident in the central and southern regions
of Beijing-Tianjin-Hebei, while coastal cities in the east exhibit a
prominent degradation trend. As shown in Figure 4c, changes in
impervious surface area from 2014 to 2023 also display clear
regional heterogeneity in Hebei Province and the two
municipalities of Beijing and Tianjin. Chengde saw the largest
increase, with a growth rate of 40.30%. Beijing and Zhangjiakou
also experienced significant increases, with growth rates of 18.62%
and 18.57%, respectively. In contrast, Tianjin and Shijiazhuang
had lower growth rates. Notably, Baoding, Cangzhou, Tangshan,
and Tianjin showed relatively high increments in impervious
surface area. It is worth noting that all cities in the region
experienced an increase in impervious surface area, with a total
growth rate of 11.91%, indicating that the overall urbanization
process in the Beijing-Tianjin-Hebei region is still accelerating.

Table 2 presents the land use type transition matrix data for the
Beijing-Tianjin-Hebei region from 2014 to 2023. According to
Table 2 and Figure 4a, the total area of cropland, forest, and
water bodies in the Beijing-Tianjin-Hebei region showed no
significant changes from 2014 to 2023. The total area of
shrubland, grassland, and impervious surfaces changed by
approximately 13%, with the most notable change being a
68.24% increase in barren land. Cropland was reduced by
5,789.84 km2, with 54.9% of it converted to impervious surfaces
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and 31.5% to grassland. The converted cropland was primarily used
for modern urban development and related purposes. A total of
4,826.41 km2 of cropland was converted into other land uses, with
68.4% originating from grassland and 24.6% from forested land.
Forestland decreased by 1,543.59 km2 but increased by 3,621.31 km2,
resulting in a net increase of 2,077.72 km2, with most of the land
being converted from cropland and into grassland. Shrubland
decreased by 88.13 km2, with conversions both into and from
forestland and grassland, with the area converted from shrubland
to grassland being larger than that converted in the opposite
direction. Grassland decreased by 6,561.63 km2, with
approximately 50% of the land converted into cropland and
forestland. It also increased by 2,119.11 km2, with 86.07% of the
increase coming from cropland. The total area of water bodies
decreased by 74.78 km2, with equal contributions from cropland
and impervious surfaces. The land converted into water bodies was
predominantly cropland and impervious surfaces, with cropland
representing a larger proportion. Barren land decreased by
77.45 km2, with most of the land being converted from water
bodies and impervious surfaces, while it was only converted into

grassland and water bodies. The total area of impervious surfaces
increased by 3,568.56 km2, with only 241.69 km2 of land being
converted out, 95% of which was water bodies. The total area
converted into impervious surfaces amounted to 3,810.26 km2,
with 83.48% originating from cropland.

Figure 5 illustrates the trends in precipitation and nighttime
light changes in the Beijing-Tianjin-Hebei region from 2014 to 2023.
As shown in Figure 5a, positive values of precipitation slope are
primarily concentrated in the southeastern part of the region,
especially in Beijing, Tianjin, Baoding, Cangzhou, and Langfang.
These areas not only have high positive slope values but also
extensive coverage, indicating that precipitation has been
increasing over time in these regions. The region is
predominantly flat and close to the ocean, which allows it to
receive abundant moisture from the sea, leading to relatively
higher precipitation. In contrast, the lowest precipitation slope
values are concentrated around the transition zone between
Beijing, Zhangjiakou, and Chengde. This area, located at the
junction of plains and mountains, experiences a reduction in
precipitation over time due to the obstructive effect of the

FIGURE 3
Spatial distribution of land use, annual precipitation, and night light in the Beijing-Tianjin-Hebei region from 2014 to 2023.
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mountains. Figure 5b presents the slope of changes in nighttime
lights. The positive values in the nighttime light slope are
concentrated in the southeastern part of the region, particularly
in Beijing, Tianjin, Shijiazhuang, and Baoding. These areas exhibit
the largest distribution of high positive slope values in nighttime
light, coinciding with major cities in the Beijing-Tianjin-Hebei
region that are densely populated and have extensive impervious
surfaces. As a result, the trend in nighttime light changes is
particularly prominent. Figure 5c further illustrates the
significance of the trend in nighttime light changes. The results
show that the regions with significant increases in nighttime light
coincide with the areas exhibiting the highest values of precipitation
and nighttime light slopes, predominantly located in the

southeastern plains of the Beijing-Tianjin-Hebei region.
Specifically, areas with an increasing trend in nighttime light are
mainly concentrated in the periphery of the urban circles of Beijing,
Tianjin, Shijiazhuang, and Baoding, while areas with significant
reductions in nighttime light are primarily located at the boundary
between Handan and Xingtai, the southern part of Tianjin, and the
northern part of Tangshan. This trend suggests a clear expansion of
the urban circles of Beijing, Tianjin, Shijiazhuang, and Baoding, and
the precipitation in these areas is also showing an increasing
trend over time.

Given the unique geographic location, economic development
level, and population density of Beijing, Tianjin, Shijiazhuang, and
Baoding within the Beijing-Tianjin-Hebei region, the performance

FIGURE 4
Statistical data chart (a) Land use transfermatrix from 2014 to 2023 (b) Annual surface water distribution in various urban areas of the Beijing-Tianjin-
Hebei region (c) Annual impervious water distribution in various cities of the Beijing-Tianjin-Hebei region.
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of these four cities in terms of precipitation and nighttime light
changes is regionally representative. To make the city selection
transparent and reproducible, we adopt a quantitative criterion
based on the Sen–MK classification of annual VIIRS nighttime-
light trends at 1-km resolution (2014–2023). For each city, we
compute the proportion of grid cells exhibiting a “significant
increase” (positive Sen slope with MK p < 0.05) and a “weak
increase” (positive Sen slope but not significant). Cities are
ranked by the combined share of “significant increase + weak
increase,” and the top four are selected. Under this rule, Beijing,
Tianjin, Shijiazhuang, and Baoding rank highest across the region.
Studying the trend changes in these cities is of significant
importance for revealing the impact of the urbanization process
on surface water, especially in the context of the interaction between
regional climate change and human activities. Therefore, this study
will focus on these four cities and conduct an in-depth analysis of the
specific impacts of urban expansion on the distribution and changes
in surface water. We also verified that the ranking is robust when
using only the “significant increase” share or when applying
alternative thresholds on trend magnitude; the same four cities
remain within the top tier.

4.2 Typical region analysis

4.2.1 Land use change analysis
Figures 6a1–d1 presents the land use type distribution maps for

Beijing, Tianjin, Shijiazhuang, and Baoding in 2014. Each map uses
different colors to represent major land use types such as cropland,
forestland, grassland, water bodies, and impervious surfaces. It is
evident that during this period, cropland and forestland accounted
for a significant proportion of land use in each city, while impervious
surfaces were relatively concentrated in the urban core and
surrounding areas. Figures 6a2–d2 shows the land use conditions
in these cities in 2023. Compared to 2014, impervious surfaces have
expanded significantly, reflecting further growth in urban
construction land. At the same time, the distribution patterns of
forestland and grassland have undergone localized changes in some
areas, and water bodies have experienced noticeable increases,
decreases, or shifts in certain cities.

The land use transitions in each city are presented in Figures
6e1–e4, with Figure 6f1 showing the changes in water body area over
the 10-year period and Figure 6f2 depicting the changes in
impervious surface area. Specifically, in Beijing, the area of

TABLE 2 Land use transfer matrix in the Beijing-Tianjin-Hebei region from 2014 to 2023 Unit: km2.

2014 2023

Cropland Forest Shrub Grassland Water Barren Impervious Total

Cropland 89294.31 477.37 0.00 1824.01 307.12 0.67 3180.67 95084.14

Forest 1188.41 51450.14 189.61 66.76 2.00 0.00 96.81 52993.73

Shrub 0.00 121.51 315.13 208.31 0.00 0.00 0.00 644.95

Grassland 3304.18 3017.09 52.08 29562.70 15.36 10.01 162.91 36124.32

Water 317.13 4.67 0.00 12.69 2384.16 8.01 322.47 3049.14

Barren 7.34 0.00 0.00 7.34 36.05 15.36 47.40 113.50

Impervious 9.35 0.67 0.00 0.00 229.67 2.00 29219.53 29461.22

Total 94120.73 55071.45 556.82 31681.81 2974.36 36.05 33029.78 217471.00

FIGURE 5
Trend analysis (a) Change slope of precipitation data (b) Change slope of night light data (c) Change trend of night light data.
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impervious surfaces increased by approximately 201.91 km2 over the
10 years. This change primarily resulted from the conversion of
cropland, forestland, and grassland, reflecting the large-scale land
hardening during the urbanization process. Meanwhile, the area of
water bodies increased from 168.1416 km2 in 2014 to 243.4581 km2

in 2023, an increase of approximately 75.32 km2. This growth is
attributed not only to the retention of water bodies but also to the
conversion of some cropland and impervious surfaces into water
bodies. In Tianjin, the total area of cropland decreased from
6,478.5555 km2 in 2014 to 6,279.0588 km2 in 2023, while the
area of impervious surfaces increased from 3,750.426 km2 in
2014 to 4,115.0403 km2 in 2023, indicating that urbanization led
to a certain degree of cropland conversion. Notably, 640.89 km2 of
cropland was converted into impervious surfaces, reflecting a
significant shift of agricultural land to urban construction land.
In contrast, the water body area decreased from 1,043.5383 km2 in
2014 to 905.7015 km2 in 2023, a reduction of about 137.84 km2. Of
this, 75.285 km2 of water bodies were converted into impervious
surfaces, and some water bodies were transformed into cropland,
forestland, or other land types, indicating that water bodies have
been influenced by both human intervention and natural changes
over the past decade. In Shijiazhuang, the overall cropland area

remained stable, but there was significant internal movement, with
approximately 513.0612 km2 of cropland converted into impervious
surfaces, while some cropland was supplemented by forestland,
grassland, and other land types. Forestland showed some degree
of expansion, while shrubland and grassland decreased. Water body
area increased from 102.2166 km2 to 143.4438 km2, an increase of
about 41.2272 km2, reflecting a trend of water body recovery or
addition in some areas. The area of impervious surfaces increased by
about 244 km2, a significant portion of which came from the
conversion of cropland. Overall, these changes reflect the
expansion of impervious surfaces due to urbanization, the
degradation of grassland and shrubland, and, in some areas, an
increase in water bodies and expansion of forestland. In Baoding,
cropland remained the dominant land type, although it decreased
from 10,310.7267 km2 in 2014 to 10,166.8284 km2 in 2023, still
maintaining an area greater than 10,000 km2. During this period,
forestland showed some expansion, while grassland slightly
decreased. Water body area increased from 132.1227 km2 to
157.4334 km2, reflecting a slight increase. The area of impervious
surfaces significantly increased from 3,094.5438 km2 to
3,497.2848 km2, an increase of more than 400 km2, with
cropland conversion to impervious surfaces (about 675.2403 km2)

FIGURE 6
(a1–d1) Land use situation of four cities in 2014 (a2–d2) Land use situation of four cities in 2023 (e1–e4) Land use transfer matrix of four cities in
2014–2023 (f1) Water body data statistics of four cities in 10 years (f2) Statistics of impervious water surface in four cities over 10 years.
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being particularly evident, indicating that urban or construction
land expansion had a considerable impact on agricultural land.
Overall, the matrix reflects the land use change trends in Baoding
from 2014 to 2023, characterized by the reduction of cropland and
grassland and the increase in impervious surfaces and forestland.
This pattern not only indicates the pressure of urbanization but also
suggests that some areas may have implemented forest restoration or
greening activities.

4.2.2 Human factor analysis
The trends in nighttime lights for the four cities (Beijing,

Tianjin, Shijiazhuang, and Baoding) over the past decade are
shown in Figures 7a1–a4. The trend maps use a color gradient to
represent the intensity of nighttime light changes in different
regions. Nighttime lights in Beijing and Shijiazhuang increased
significantly, particularly in the city centers and surrounding
areas, indicating a rapid urbanization process and increased
nighttime activity. Tianjin exhibited more uniform changes in
nighttime lights, with some localized growth, while Baoding
showed minimal changes, suggesting a slower pace of urbanization.

A univariate spatial correlation analysis based on INLA was
performed by combining the nighttime light trend data with the land
use trend data, and Table 3 presents the posterior statistical results
for the fixed effects of the model. The parameter estimates indicate a
generally positive relationship between the 10-year trends of
nighttime lights and land use changes, although there are notable
differences among the cities. Specifically, Beijing has an estimated
mean of 0.0109 with a narrow credible interval, suggesting that the
impact of nighttime light changes on land use is relatively stable.

Tianjin’s mean is 0.0186, which also shows a positive relationship,
but the larger standard deviation indicates significant internal
regional variation. Shijiazhuang has the highest mean, reaching
0.0576, with the credible interval entirely in the positive range,
indicating the most significant positive correlation between
nighttime light and land use changes in this city. In contrast,
Baoding’s mean is only 0.0039, and the credible interval crosses
zero, implying that the impact of nighttime light changes on land use
is neither stable nor significant.

Figures 7b1–b4 further illustrates the spatial patterns of nighttime
light slope changes and land use changes across different regions
within the cities. The color gradients clearly reflect the differences in
trends between the city center and peripheral areas. In Shijiazhuang
(Figure 7b3), nighttime lights and land use changes are highly
coupled, showing a relatively uniform and significant positive
effect. Beijing and Tianjin (Figures 7b1,b2) exhibit moderate levels
of correlation, with higher uncertainty in some regions of Tianjin,
resulting in more scattered color variations in the map. Baoding
(Figure 7b4) shows minimal change in some regions, consistent with
the lower effect values observed in the parameter estimates. Overall,
these results suggest that during the urbanization process, nighttime
light, as an indicator of urban activity, is closely related to land use
changes. However, the intrinsic correlation and spatial heterogeneity
vary across cities due to differences in development stages and
regional characteristics.

4.2.3 Natural factor analysis
The precipitation trendmaps presented in Figures 7c1–c4 provide

a visual representation of the spatial distribution of precipitation

FIGURE 7
(a1–a4) Night lighting trend diagram of the four cities; (b1–b4) Distribution of INLA results of night light on land use; (c1–c4) Precipitation trend
chart of four cities; (d1–d4) Distribution of INLA results of night light on land use; (e1–e4) Distribution of INLA results of night light and precipitation on
land use.
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changes in each city over the past decade. In these maps, Beijing and
Tianjin show relatively uniform changes in precipitation, with some
areas exhibiting an increasing trend. Shijiazhuang, however, displays
more uneven precipitation changes, with some areas experiencing an
increase while others remain stable. Baoding shows minimal
precipitation change, with relatively stable precipitation levels. By
combining the precipitation trend data with the land use trend data
for univariate spatial correlation analysis based on INLA, the output
values from INLA reflect the extent to which precipitation trends
influence land use changes. According to the parameter estimation
table (Table 4), the 10-year trends in precipitation and land use are
generally positively correlated. Specifically, Beijing’s mean is 0.0095,
with a moderate standard deviation. The credible interval shows that
precipitation changes have a significant and stable positive impact on
land use. Tianjin’s mean is 0.0089, also showing a positive correlation,
but the value is slightly lower and more concentrated. Shijiazhuang’s
mean is 0.0077, lower than that of Beijing and Tianjin, but the smaller
standard deviation indicates a more uniform relationship between
precipitation and land use in this city. In contrast, Baoding has amean
of only 0.0042, suggesting that precipitation changes have a weaker
impact on land use. The corresponding spatial distribution maps
(Figures 7d1–d4) show that the precipitation trends in the core and
surrounding areas of each city align with the distribution of land use
changes to varying extents. The color gradient, from light to dark,
illustrates the strength of the correlation between the size of the
precipitation slope and land use transformation. In Beijing and
Tianjin, more prominent positive correlation areas tend to appear
around the central urban areas, while Shijiazhuang exhibits a more
evenly distributed, moderate correlation across the city. Baoding,
however, only shows significantly higher correlation in some
areas. Overall, these results indicate that precipitation changes
have a positive impact on land use in all four cities, but the extent
of this impact varies according to the city’s size and
development model.

4.2.4 Comprehensive factor analysis
A bivariate spatial correlation analysis based on INLA was

conducted using the nighttime light trend data, precipitation trend
data, and land use trend data. From the parameter estimation table
(Table 5), it is evident that the impacts of precipitation and nighttime
light on land use change, as well as their interaction effects, vary across
different cities: In Beijing, the average effect of precipitation is 0.0061,
which is small but still positive, while nighttime light has a significant
negative effect (−0.0309). The positive interaction term (0.0622)
indicates that under wetter conditions the association between urban
expansion and water-related land-use change is strengthened,
consistent with intensified drainage upgrades and surface hardening
in built-up areas during wet years. In Tianjin, all three effect values cross
the zero interval, indicating that the impact of precipitation and
nighttime light on land use is unstable or not significant. This is
consistent with its coastal-plain setting and engineered water system,
where tide-influenced hydrology and extensive flood-control works can
dampen the co-variation between precipitation and urban land
conversion. In Shijiazhuang, the effect of precipitation
is −0.1100 and the effect of nighttime light is −0.0326, both of
which are negative. However, the interaction term is significantly
positive (0.1579), which has a clear physical meaning when local
geography is considered: Shijiazhuang sits on the Taihang Mountain
piedmont and alluvial-fan zone, where short, intense summer storms
produce flashy runoff across fan toes and low-lying peri-urban areas. In
such settings, wetter years amplify the pace of road paving, yard
concretization, river training, and storm-drain upgrades associated
with urban growth; consequently, the combined action of
precipitation and urban expansion yields a larger incremental land-
use change than either factor alone. In Baoding, the effects of
precipitation and nighttime light, as well as their interaction term,
are not significant, suggesting that the joint effect of natural and human
factors on land use is relatively weak in this area. As a simple diagnostic,
stratifying city-level observations by precipitation terciles shows that the

TABLE 3 Night light factor parameter estimation based on annual scale INLA model.

City Mean Standard deviation Percentiles

2.5% Percentile 50% Percentile 97.5% Percentile

Beijing 0.0109 0.00161 0.0077 0.0109 0.0140

Tianjin 0.0186 0.0083 0.0024 0.0186 0.0345

Shijiazhuang 0.0576 0.0050 0.0477 0.0576 0.0674

Baoding 0.0039 0.0038 −0.0036 0.0039 0.0113

TABLE 4 Precipitation factor parameter estimation based on annual scale INLA model.

City Mean Standard deviation Percentiles

2.5% Percentile 50% Percentile 97.5% Percentile

Beijing 0.0095 0.0026 0.0044 0.0095 0.0144

Tianjin 0.0089 0.0020 0.0050 0.0089 0.0129

Shijiazhuang 0.0077 0.0017 0.0043 0.0077 0.0111

Baoding 0.0042 0.0014 0.0014 0.0042 0.0071
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slope associated with nighttime lights is larger in wetter groups for
Shijiazhuang (and to a lesser extent Beijing/Baoding), which is
consistent with the positive interaction reported in Table 5.

Figures 7e1–e4 illustrates the combined effects of precipitation and
nighttime light on land use change. These maps show the interaction
effects of natural and human factors. In Beijing (e1), the combined effect
of precipitation and nighttime light on land use is significant, especially
in the city center and surrounding areas, where strong positive
correlations are observed, indicating that the combined effect of
natural and human factors has a clear impact on land use changes.
In Tianjin (e2), the interaction effect of precipitation and nighttime light
is more balanced, with some areas showing a strong positive interaction
effect, particularly in suburban and rural areas, which may reflect the
joint influence of natural and human factors on land use changes in
those regions. In Shijiazhuang (e3), the combined effect of precipitation
and nighttime light exhibits a strong positive impact, especially in areas
of rapid urban development, where the interaction of natural and
human factors drives land use change. In Baoding (e4), the interaction
effect is weak, showing that the combined effect of precipitation and
nighttime light on land use change is relatively small, possibly due to the
slower pace of urbanization or the more independent roles of natural
and human factors.

The bivariate INLA output values reveal the spatial impact of
natural and human factors (precipitation and nighttime light) on
land use change. Beijing and Shijiazhuang exhibit strong
correlations and interaction effects, especially in the city center
and rapidly developing areas, while Tianjin and Baoding show
weaker correlations or insignificant effects. This indicates that
different cities respond to land use changes under the influence
of natural and human factors to varying degrees, and the interaction
effects of these factors display significant spatial heterogeneity.

The land use data was resampled to retain only the impervious
surfaces and water body types. As shown in Figures 8a1–d1 and
(Figures 8a2–d2), there is a significant increase in red-colored
impervious surfaces between 2014 and 2023 in Beijing, Tianjin,

Shijiazhuang, and Baoding, reflecting the rapid urban expansion. At
the same time, blue-colored water bodies exhibit varying degrees of
change in specific areas. In the case of Beijing, the selected Miyun
Reservoir is one of the capital’s important water sources. The
surrounding expansion of impervious surfaces observed in the
image indicates increased surface runoff and reduced infiltration,
which could potentially impact both water quality and water supply
to the reservoir. In Tianjin, the selected area is located along the
Yongding River, where accelerated urbanization around the town
has led to increased construction activities along both banks, which
may alter the river’s ecological functions and water environment.
Shijiazhuang’s Huangbizhuang Reservoir, which faces similar
pressures, is also experiencing urban expansion around its
perimeter, potentially leading to increased non-point source
pollution and changes in water flow management. In Baoding,
the selected Tang River basin is facing growing environmental
and ecological pressures as the distribution of impervious
surfaces continues to expand, particularly along the riverbanks.
Comparing the satellite images in Figures 8a3–d3 and (Figures
8a4–d4), it is visually apparent that these areas have transitioned
from agricultural or semi-natural states to more densely built urban
areas. These changes not only reflect the impact of urbanization on
the surrounding water resource systems but also emphasize the need
for greater attention to the balance between water source protection
and ecological restoration in future urban planning.

5 Discussion

5.1 Limitation analysis

5.1.1 Scale effects caused by inconsistent
resolutions of multi-source data

This study conducts a comprehensive analysis using land use
data, precipitation data, and nighttime light remote sensing data,

TABLE 5 Multi-factor parameter estimation based on annual scale INLA model.

City Concomitant variable Mean Standard deviation Percentiles

2.5% Percentile 50% Percentile 97.5% Percentile

Beijing precipitation 0.0061 0.0027 0.00009 0.0061 0.0114

Night light −0.0309 0.0051 −0.0409 −0.0309 −0.0211

Precipitation - Night lights 0.0622 0.1171 0.0483 0.0622 0.0762

Tianjin precipitation −0.0191 0.0226 −0.0635 −0.0191 0.0252

Night light −0.0065 0.0223 −0.0503 −0.0065 0.0374

Precipitation - Night lights 0.0398 0.0321 −0.0232 0.0398 0.1028

Shijiazhuang precipitation −0.1100 0.0198 −0.1488 −0.1100 −0.0712

Night light −0.0326 0.0158 −0.0637 −0.0326 −0.0015

Precipitation - Night lights 0.1579 0.0266 0.1058 0.1579 0.2101

Baoding precipitation 0.0120 0.0119 −0.0114 0.0120 0.0354

Night light 0.0113 0.1223 −0.0128 0.0113 0.0354

Precipitation - Night lights −0.0130 0.0174 −0.0472 −0.0130 0.0212
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and matches different data sources to a unified spatial scale (1 km
resolution). However, during the data downscaling process,
significant differences in the original spatial resolutions of the
various datasets can result in information loss or boundary
blurring due to interpolation and resampling, particularly in
regions with complex terrain and significant climate
variations. These errors are likely to accumulate further in
subsequent trend analysis and spatial correlation modeling.
Additionally, forcing different datasets to match a 1 km
resolution may overlook local details present in higher-
resolution data, making it difficult to accurately capture small-
scale land use changes or localized precipitation characteristics
within the study area, thereby affecting the reliability of
the results.

5.1.2 The static assumption of the land use
transition matrix and the ignorance of
dynamic changes

Land use transition matrix calculations are an important
method for identifying land type changes. However, this

approach typically analyzes data from two fixed time points,
assuming that land use change is a linear and static process. This
static assumption fails to adequately capture the dynamic driving
mechanisms of land use changes influenced by complex factors such
as rapid urbanization, policy adjustments, or ecological restoration.
For example, the rate of land use change and the direction of
transitions may vary significantly across regions and over time.
Ignoring these trends can lead to an oversimplified understanding of
processes such as urban expansion, farmland degradation, and
vegetation restoration. Furthermore, land use transition matrices
struggle to capture the spatial heterogeneity of land use changes,
particularly in urban fringe areas or ecologically sensitive zones,
where land use transitions tend to be more complex and
unpredictable. As a result, matrix analysis may introduce biases
in interpreting regional differences.

5.1.3 Urban expansion typologies and water-
related change

We analyze BTH through a hydrology-focused
lens—impervious surfaces and water bodies—with rapidly

FIGURE 8
(a1–d1) four cities in 2014 through the water and the water distribution (a2–d2) four cities in 2023 through the water and the water distribution
(a3–d3) 2014 real terrain situation (a4–d4) 2023 real terrain.
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urbanizing cities pre-selected by NTL before typical-area inspection.
This framing aligns with our observed impervious growth and
water-body signals. Recent LULC studies provide a compact
reference frame. In West Africa, post-classification change
detection shows net gains of settlements/cropland at the expense
of natural covers, alongside contrasted water-body trajectories
(humid vs arid), helping separate anthropogenic and climatic
influences (Asenso Barnieh et al., 2020). For urban morphology,
the infill–edge–leapfrog triad is widely observed; in Hyderabad,
built-up area increased while water bodies decreased (e.g.,
~17.95→8.96 km2, 1979–2020), illustrating co-evolution between
impervious growth and water-related change (Ul Din and Mak,
2021). Scope and limitations relative to these studies. Our
manuscript intentionally models only impervious and water (two
classes) rather than a full multi-class transition system; we therefore
do not compute sprawl indices or a complete transition-matrix
accounting (gains/losses) beyond hydrologically salient endpoints,
whereas prior work formalizes multi-class gains/losses and
transition probabilities (Hu et al., 2019). In addition, water-body
mapping is season-sensitive (e.g., flood-season imagery), a known
caveat we consider when interpreting local water signals. Future
work can integrate urban morphology metrics and multi-class
transitions to complement our NTL-guided, hydrology-
focused approach.

5.2 Research on the coupling coordination
and sustainable development strategy of the
“water-soil-energy-carbon-human” system

5.2.1 Analysis of water-soil-energy-carbon
coupling coordination degree

This study empirically addresses the water–soil (land-use/
hydrology) and water–climate links using impervious-surface
dynamics (CLCD), urbanization intensity (VIIRS nighttime
lights), and precipitation. Energy and carbon are discussed
conceptually as part of the broader framework and left for
future integration. Our results show that cities with a higher
share of grids displaying increasing nighttime lights also tend to
exhibit stronger positive impervious trends (Sen–MK).
Moreover, the positive precipitation × nighttime-lights
interaction is spatially heterogeneous (Table 5), indicating that
wetter conditions can amplify urbanization-related land-use
change in specific settings.

5.2.2 Complex feedback mechanism of man-
water system

Urbanization increases impervious cover, alters runoff/
infiltration, and changes flood and scarcity risks; water
conditions in turn influence urban form and infrastructure. The
piedmont/alluvial-fan context of Shijiazhuang aligns with its large
positive interaction (0.1579): short, intense summer storms trigger
flashy runoff, and wet years accelerate hard-surface expansion and
drainage upgrades, strengthening the urbanization–land-use
linkage. By contrast, Tianjin’s coastal-plain hydrosystem (tide
influence and engineered drainage) dampens such co-variation,
yielding weaker and unstable interactions. These city-specific
patterns ground the mechanism discussion in regional geography.

5.2.3 Future research direction and policy
suggestions

Future work should integrate city-scale energy-use and
carbon-emission inventories to complete the coupling beyond
the land-use and precipitation components quantified here. For
practice in the Beijing–Tianjin–Hebei “water-based urban
planning” agenda, and consistent with our spatial findings
(persistent increases in impervious surfaces and heterogeneous
precipitation × urbanization interactions), we propose an
actionable package that mandates low-impact development in
all new build and redevelopment (e.g., permeable pavements,
bioretention/rain gardens, green roofs, and on-site detention/
retention with post-development runoff control) drawing on the
Xiong’an New Area model; delineates and strictly protects
blue–green corridors and riparian buffers, restricting conversion
in cells identified with sustained impervious growth; and requires
plot-level net-runoff-increase controls linked to phased upgrades
of municipal drainage capacity. Measures should be calibrated to
local geography: in Shijiazhuang’s piedmont/alluvial-fan setting,
prioritise upstream detention, fan-toe conveyance retrofits, and
hillside development controls; in Tianjin’s coastal plain,
strengthen tide–river joint scheduling, upgrade pumps and
gates, and preserve coastal wetlands as multi-functional storage;
in Beijing and Baoding, favour compact infill over outward
expansion, enforce minimum permeability ratios in
redevelopment districts, and reconnect canals and wetlands to
restore storage–conveyance functions.

6 Conclusion

This study focuses on the Beijing–Tianjin–Hebei region and,
based on remote sensing, meteorological, and land use data, employs
Integrated Nested Laplace Approximation to analyze land system
dynamics during 2014–2023. The study quantitatively distinguishes
the roles of natural drivers (precipitation) and human drivers
(urbanization measured by nighttime lights) in water resource
related land change while addressing spatial dependence. The
specific conclusions are as follows:

1. Distinguishing the three analytical lenses. We distinguish
three complementary lenses before interpreting city-level
patterns of impervious growth and water-body change.
Human factor analysis isolates the anthropogenic signal by
regressing land-use change on the NTL trend in a univariate
INLA, yielding the marginal association between
urbanization and land transformation under a spatially
structured error. Natural factor analysis analogously
regresses land-use change on the precipitation trend,
quantifying the hydro-climatic contribution in space.
Comprehensive factor analysis fits a bivariate INLA with
NTL and precipitation and their interaction
(precipitation × NTL); the main effects represent each
driver’s conditional association, while the interaction
indicates amplification or attenuation of urbanization
effects under wetter or drier tendencies. This tripartite
design allows us to (i) attribute variation to human and
natural drivers separately and (ii) test whether their joint
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action exceeds either driver alone—consistent with the spatial
heterogeneity reported for Beijing, Tianjin, Shijiazhuang,
and Baoding.

2. Theoretical implications. Urbanization is the primary driver of
water resource related land change in rapidly developing areas,
whereas precipitation acts as a conditioning background that
can amplify or attenuate the urbanization signal through
interaction. The strength and sign of this modulation are
place specific and reflect regional geomorphology and
hydrosystem settings, such as piedmont alluvial fans
compared with coastal plains. Integrating trend detection
with spatial modeling provides a coherent approach to
separate human and climatic influences and to reveal spatial
heterogeneity that is masked in nonspatial analyses.

3. Policy implications. Findings support a water sensitive urban
planning portfolio for the region. Planning authorities should
require low impact development in new construction and
redevelopment, protect blue and green corridors and
riparian buffers where imperviousness is rising, and link
plot approvals to controls on net increases in runoff
together with staged upgrades of drainage capacity.
Implementation should be calibrated to local geography:
piedmont cities prioritize upstream detention, conveyance
improvements on fan toes, and stricter hillside development
control; coastal cities integrate tide and river scheduling,
improve pumps and gates, and preserve coastal wetlands as
multi functional storage; core cities emphasize compact infill,
minimum permeability ratios in redevelopment, and the
reconnection of canals and wetlands to restore storage and
conveyance.

4. Limitations and future research. Proxy indicators cannot fully
substitute for hydrologic measurements, annual aggregation may
conceal seasonal processes, and causal identification requires
stronger designs. Future work should incorporate energy use
and carbon emission inventories to extend the coupling
analysis beyond land use and precipitation, add seasonal and
event scale diagnostics, and adopt quasi experimental strategies to
strengthen attribution and policy evaluation.

In conclusion, the study provides a place specific and policy
relevant perspective on how rapid urbanization shapes water
resource related land dynamics under varying climatic
backgrounds, offering an analytical basis for sustainable land and
water management in Beijing–Tianjin–Hebei and similar water
limited urban regions.
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