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The meat processing industry generates a considerable amount of meat
processing wastewater (MPW) that is potentially harmful when released in
the natural environment. Therefore, current industry practices involve
extensive MPW remediation before release of effluent into local waters.
Here, it was investigated whether aquatic duckweed (Lemna minor L.) can
be used to remediate and retain nitrogen and phosphorus present in MPW that
had undergone primary and secondary treatment. Physicochemical analyses,
as well as laboratory and glasshouse growth trials, show the suitability of MPW
as a growth medium for duckweed. Quantitative analysis revealed that
duckweed growth on MPW is associated with rapid removal of nitrogen
and phosphorus with calculated uptake rates similar to those reported in
the literature. Longer term cultivation on MPW (>6 days) led to increased
salinity problems, however, short-term (3 days) remediation of MPW was
found to be sufficient to achieve wastewater discharge requirements. Thus,
a duckweed-based system can be used to remediate MPW. The suitability of
duckweed biomass as a source of protein, bioenergy and/or fertiliser will
facilitate retention of plant nutrients within the agri-feed sector in line with the
principles of the circular economy and constitute a promising avenue towards
more sustainable meat processing. Future work needs to focus on upscaling
duckweed remediation under realistic industry conditions, while exploring
technical (salinity and seasonality), economic (cost-benefit), social, regulatory
and sanitary aspects.
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Highlights

• Meat processing generates wastewater that is harmful for the environment
• Trials show the suitability of meat processing wastewater for duckweed growth
• Duckweed remediates wastewater and retains nitrogen and phosphorus in its biomass
• Duckweed can be used to make meat processing more sustainable
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1 Introduction

The meat processing industry produces substantial amounts of
by-products such as skin, bones, and hoofs, as well as a considerable
volume of meat processing wastewater (MPW) (Toldrá et al., 2021).
Production of by-products and MPW has increased in recent
decades as a consequence of a rise in meat production and
processing (Philipp et al., 2021). Many of the by-products of the
meat processing industry are being utilised as feedstocks for
production of feed, pet food, fertiliser, bioenergy, and fat and
protein isolates, within the framework of a strict regulatory
system (Toldrá et al., 2021). Valorisation of by-products
improves the sustainability of the industry and limits the
environmental burden of meat processing. Yet, in contrast to by-
products, few attempts have been made to valorise the wastewater
associated with meat processing (Bustillo-Lecompte and Mehrvar,
2015; Adekanmi et al., 2020). At present, meat processing industries
in most countries operate large-scale wastewater treatment plants to
treat MPW to a water quality standard that allows discharge of
treated effluents into local surface waters (Bustillo-Lecompte and
Mehrvar, 2015). Such remediation-focussed treatment changes an
environmental burden into an economic burden for the industry,
whilst valuable resources present in MPW remain unutilised.

MPW is a complex wastewater as it combines different waste
streams generated along the entire pathway of meat processing.
Wastewater is generated from the moment live animals enter the
meat processing facility and includes mud, faecal matter and urine,
slaughter and processing wastewater as well as wastewater generated
during cleaning of facilities and equipment (Aziz et al., 2019).
Volumes are large with the meat processing industry using an
estimated 1.5 and 18 m3 of water per ton of processed meat
(Philipp et al., 2021). On a global scale, this amounts to 24% of
total water used by the food and beverage industry (Bustillo-
Lecompte and Mehrvar, 2015).

MPW is characterised by a high content of organic matter,
suspended solids, plant nutrients, oil and grease, as well as
pathogenic and non-pathogenic microorganisms (Johns, 1995;
Wu and Mittal, 2011; Bustillo-Lecompte and Mehrvar, 2015;
Philipp et al., 2021; Shende and Pophali, 2021). Detergents and
disinfectants used for factory cleaning will also be present in MPW
(Shende and Pophali, 2021). The composition of MPW is quite
variable and depends on a range of factors including animal species
handled and the size and type of operation (e.g., slaughter vs meat
processing) (Johns, 1995; Bustillo-Lecompte and Mehrval, 2015;
Shende and Pophali, 2021; Ng et al., 2022). Levels of Biological
Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total
Suspended Solids (TSS) and nutrients in MPW are typically in
excess of local water discharge levels (Philipp et al., 2021) and
unprocessed MPW is harmful if released into the environment
(Bustillo-Lecompte and Mehrval, 2015; Adekanmi et al., 2020;
Alam et al., 2021).

Most MPW treatment plants use methods that are not dissimilar
to those employed in municipal wastewater treatment. These
methods reliably remove the high amount of organic matter and
nutrients present in MPW (Debik and Coskun, 2009; Bustillo-
Lecompte and Mehrval, 2015; Aziz et al., 2019). This commonly
includes mechanical or primary treatment, biological or secondary
treatment, as well as subsequent physical and chemical treatments

(Bustillo-Lecompte and Mehrval, 2015; Adekanmi et al., 2020;
Philipp et al., 2021; Ng et al., 2022). Operation of conventional
wastewater treatment is economically costly and commonly does not
generate value from waste. In this study the capture of the valuable
plant nutrients nitrogen and phosphorus from MPW, that had
undergone primary and secondary wastewater treatment, is
explored. In a conventional wastewater treatment plant,
phosphorus is chemically precipitated as a non-bioavailable salt,
while nitrogen is discharged as N2 gas following a nitrification-
denitrification cycle. Nitrogen is a key ingredient of fertilisers, but
production of N-containing urea compounds is expensive due to the
high costs of fossil fuel required for the Haber–Bosch reaction
(Moghadam et al., 2024). Phosphorus is another key ingredient
of fertilisers; however geological phosphorus deposits are non-
renewable, and concerns have been raised about future depletion
of this resource (Alewell et al., 2020). Thus, there is a strong
argument to capture nitrogen and phosphorus present in
wastewaters, and to re-use these elements according to the
principles of the circular economy, a process that will likely
generate long-term environmental and social benefits (Furness
et al., 2021).

Valorisation of wastewater provides an alternative to
conventional methods of wastewater treatment. Multiple studies
have shown that duckweed ponds can be used as an alternative to
conventional tertiary wastewater treatment, capturing plant
nutrients and/or other minerals of interest (Goopy et al., 2004;
Sasmaz et al., 2021; Paolacci et al., 2021). In this scenario, nitrogen
and phosphorus are removed from the water column by floating
duckweed plants. The duckweed (Lemnaceae) family is known for
its rapid growth rate (Ziegler et al., 2015) and associated rapid
uptake of macro- and micronutrients from a variety of nutrient-rich
wastewaters, such as farm manure (Devlamynck et al., 2021;
Stadtlander et al., 2024), dairy processing wastewater (Walsh
et al., 2022; O’Mahoney et al., 2022), aquaculture effluent
(Paolacci et al., 2021) and dairy soiled water (Redmond et al.,
2025). The resulting duckweed biomass tends to contain high
levels of protein, up to 40% on a dry weight basis, with an amino
acid profile that is attractive from a nutritional perspective
(Appenroth et al., 2017). Indeed, duckweed biomass can be used
as an ingredient in animal feeds (e.g., Anderson et al., 2011; Minich
and Michael, 2024), biofuel or fertiliser. This creates a novel waste to
value cycle, whereby valuable plant nutrients in MPW are returned
to the farm. However, in the case of the use of wastewater-grown
duckweed, biomass intended to be used as feed needs to be assessed
for the presence of contaminants such as toxic metals, pesticides,
pharmaceuticals and pathogens (Sońta et al., 2019).

The aims of this study were to determine whether (1) Lemna
minor can grow on MPW effluent that had undergone primary
and secondary treatment, and (2) to assess wastewater
remediation capacity. To do so, the study was conducted in
two phases. First, L. minor was cultivated in small tanks to
pioneer cultivation on MPW. Subsequently, L. minor was
cultivated on MPW in a scaled-up, semi-outdoor, recirculatory
system to determine nutrient uptake and remediation capacity.
The data were then analysed to explore whether L. minor has the
potential to be used as a part of an eco-friendly industry-based
system for valorisation of MPW, in accordance with the
principles of the circular economy.
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2 Materials and methods

2.1 Duckweed stock cultivation

Experiments were performed using L. minor “Blarney” (MJ100).
This L. minor clone was originally selected in the south of Ireland,
and is characterised by consistent, rapid growth. The clone is kept at
the Rutgers Duckweed Stock Cooperative database (5500). Axenic
stock of L. minor “Blarney” was maintained in flasks in a growth
room under controlled environmental conditions (22 °C; 16 h:8 h
light:dark photoperiod; light intensity of 50 μmol m−2 s−1). Stock was
cultivated on half-strength Hutner’s medium (Hutner and Johns,
1953). Stock grown under the aforementioned conditions was used
for small scale, indoor experiments. In contrast, for scaled-up
experiments stock of L. minor was first acclimated to semi-
outdoor conditions on a commercial growth medium [pH Perfect
Grow (0.25 mL L−1) and pH Perfect Micro (0.25 mL L−1)] (Advanced
Nutrients, West Hollywood, CA, United States) prior to use in
experiments.

2.2 Meat processing wastewater

MPW was obtained from a local meat processing abattoir
(KEPAK, Watergrasshill, Co. Cork, Ireland) which processes
around 65,000 cows per year. The wastewater treatment plant
processes approximately 260 m3 MPW per day. Raw wastewater,
including sludge, is fed into a balancing tank where it is
homogenised through continuous mixing. It then passes on to
the drum screen, the first element of the treatment process,
where larger solids are separated from the liquid fraction.
Subsequently, a dissolved air flotation unit removes suspended
solids, oils, grease and associated BOD and COD. The relatively
clear effluent then cycles between oxic and anoxic tanks whereby
microbes in the oxic tank facilitate breakdown of remaining organic
matter and oxidation of nitrogen to nitrate. In the anoxic tank
nitrate undergoes denitrification to yield molecular N2 gas.
Subsequently, effluent passes through a clarifier at which stage
samples for duckweed growth were collected. This effluent has
low BOD and COD levels but still high levels of nitrogen and
phosphorus. In the wastewater treatment plant, this clarifier effluent
would normally be treated through the addition of coagulants and
flocculants and subsequently passed through a second clarifier to
remove the remaining suspended solids and phosphorus from the
wastewater.

2.3 Lemna minor cultivation on MPW under
controlled conditions

In the initial, small-scale, experiments L minor was grown on
MPW at various concentrations (25%, 50%, and 100% of the
concentration of clarifier effluent in Magenta vessels with vented
lids (7.7 cm × 7.7 cm × 9.7 cm - GA-7). Distilled water was used to
dilute the MPW if required. The pH value of unamended MPW was
7.8. To avoid potential toxicity and volatilisation of un-ionised
ammonia, whilst also accounting for the inherent pH increase
observed when duckweed is cultivated on MPW (Redmond et al.,

2025), the pH was set at pH 4.5 for half the samples. This was
achieved through the addition of diluted hydrochloric acid. Half-
strength Hutner’s medium at pH 4.5 was chosen as an optimised
control medium (Hutner and Johns, 1953). Each experiment was
replicated at least three times, and all samples were kept under a light
regime of 14 h light and 10 h dark, a light intensity of 50 μmolm−2 s−1

Photosynthetically Active Radiation (PAR), and a temperature of
22 °C. Experiments were conducted for a period of 1 week.

To start each small-scale experiment, three colonies of four
fronds from a sterile L. minor stock culture were placed on 100mL of
MPW effluent, or half-strength Hutner’s medium. The starting
weight of L. minor was determined by calculating the average
from representative samples. At the end of a 1-week growth
period, the fresh weight of each plant sample was measured, and
the Relative Growth Rate (RGR) (Connolly and Wayne, 1996) was
calculated.

In the small-scale experiments, total colony number as well as
the total number of fronds alive were counted visually at the end of
each experiment (i.e., day 7). Furthermore, the weight of each
sample was recorded and the RGR of each sample was calculated
according to Connolly and Wayne (1996);

RGR � ln W2/W1( )/ΔT
Whereby W1 and W2 are respectively the starting biomass and the
total biomass generated by the system. ΔT is the length of the
experiment in days.

The photosynthetic health of plants grown on different
concentrations of MPW, at two pH values, was quantified using
a modulated, imaging fluorometer equipped with ImagingWin
software (WALZ Imaging fluorometer, Effeltrich, Germany)
(Schreiber et al., 1986). The maximum quantum efficiency of
photosystem II (PSII) (Fv/Fm) was measured on plants dark
adapted for 15–20 min. A weak measuring light (<1 μmol m−2

s−1) was used to determine F0, the minimum fluorescence obtained

FIGURE 1
A schematic overview of a small recirculating system, comprised
of a sump tank and three duckweed cultivation tanks, each with
260 cm2 of surface area, and with a combined volume of 9 L. An
electric pump circulates wastewater from a sump to the first of
three cascading growth tanks. The two lower tanks are gravity-fed
from the higher tank.
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in the dark-adapted state. The maximum fluorescence (Fm) was
obtained by applying a saturating pulse of light (Schreiber et al.,
1986). The steady state quantum yield (YII) of photosynthesis was
obtained following 5 min of incubation under an actinic light
intensity of 80 μmol m−2 s−1, an intensity similar to that in the
growth room used for duckweed cultivation. The intensity of the
measuring light was less than 1 μmol m−2 s−1, the intensity of the
saturating pulse of white light was 2,200 μmol m−2 s−1.

2.4 Lemna minor cultivation on MPW in a
semi-outdoor, recirculating system

L. minor was grown in non-sterile, semi-outdoor, recirculating
systems (n = 3). For this paper, the term semi-outdoor refers to a
glasshouse system where plants were exposed to ambient light
conditions and temperatures. Each replicate system consisted of
three tiered tanks (20 cm length × 13 cmwidth × 17 cm height) and a
lower sump tank (27 cm × 17 cm x 13 cm) with a capacity of 9 L per
system (Figure 1). Three identical systems were operated. The total
surface area for duckweed growth in the tiered tanks was 780 cm2 for
each replicate. A 3 W pump was placed in each system to achieve
circulation. A volume of 9 L MPW, at a 50% concentration, was
prepared for each replicate system, added to the sump tank and
pumped at a rate of 0.13 L min−1 from the sump tank to the top-
tiered tank, a slow flowrate that does not lead to disruption of the
duckweedmat (Coughlan et al., 2022). The lower tanks were gravity-
fed from the higher tanks, and the MPWwas guided from the lowest
tank back into the sump. Mesh filters placed in each tank’s outflow
pipe prevented L. minor from moving between tanks while allowing
the medium to continue to circulate. Sides and bottoms of all tanks
were painted black to prevent light penetration below the duckweed
mat and to impede algal growth. A muslin cloth covered the
recirculating systems to prevent exposure to excess direct
sunlight. The mean light intensity experienced by L. minor
plants, cultivated under muslin cloth, was 135 μmol m−2 s−1, with
a noon-time maximum of 463 μmol m−2 s−1 (Onset HOBO MX
2202 datalogger, Tempcon Instrumentation, Ford,
United Kingdom). Daylength ranged from 16.25 to 16.5 h (Late
June/early July in Ireland).

In the recirculation system L. minor was grown on a 50%
concentration of MPW effluent for 15 days. At the start of the
experiment tanks were inoculated with 4.5 g fresh duckweed to
achieve 60% surface cover. For this purpose, L. minor plants were
pre-acclimated for at least 2 weeks to glasshouse conditions. At the
end of each 3-day interval, plant material was harvested, excess
water was removed with tissue paper, and the plants were weighed.
Furthermore, water samples were taken from the sump tank at the
end of each 3-day incubation period and pH, Electrical Conductivity
(EC), Total Nitrogen (TN) and Total Phosphorus (TP) were
determined. Subsequently, half of the volume of MPW effluent
(i.e. 4.5 L per system) was replaced by fresh MPW, and a total of
13.5 g (4.5 g per tank) of the measured fresh plant biomass was
returned to the three tanks for the next 3 days of growth. Nutrient
uptake per square metre of initial plant surface cover, and per day,
was calculated based on TN and TP concentrations which were
measured every third day.

2.5 Water quality analysis

A physicochemical assessment of the MPW effluent was
obtained through analysis of samples by a GLP-certified
laboratory (Aquatic Services Unit, Cork, Ireland). Replicate
samples were taken on three occasions, at least 4 months apart.
Using standard analysis methods (Walsh et al., 2021), unfiltered
wastewater samples were evaluated for concentrations of BOD,
COD, total solids, TN, and TP. The effluent was filtered
(0.45 µm) and examined using the Lachat Quik-Chem FIA 8000
(Zeilweger Analytics, Inc., Milwaukee, United States) to determine
the dissolved contents of ammonia, nitrate, nitrite, and
orthophosphate (QuikChem protocols 10-107-06-3-D, 10-107-04-
1-C, 10-107-04-1-C, and 10-115-01-1-B, respectively). Sodium,
potassium, calcium, magnesium, zinc, and iron concentrations
were determined using a flame AAS (Varian Australia Ply Ltd.,
Mulgrave, Australia), whilst copper and manganese concentrations
were assessed using a graphite furnace AAS (Varian Australia Ply
Ltd., Mulgrave, Australia).

Water samples were also collected for analysis from the
experimental, scaled-up, recirculating duckweed system. Samples
were taken every third day, and the concentrations of TN and TP
were determined with Hach test LCK138 Laton testing kit (which
measures TN from 1 mg L−1–16 mg L−1) and Hach test
LCK348 Laton testing kit (which measures TP from
0.5 mg L−1–5.0 mg L−1) using a DR3900 spectrophotometer. It
was opted to measure Total Nitrogen and Total Phosphorus in
order to include N and P present as amino acids and small peptides,
which are bioavailable for duckweed. This also distinguishes
nutrient removal from effluent by duckweed from potential
microbial (i.e., algal) nutrient uptake. Where relevant, distilled
water was added to compensate for water loss through
evapotranspiration.

Electrical conductivity (EC), pH of MPW were assessed
every 3 days, in conjunction with water quality analysis, using
a HANNA Combo pH/Conductivity Tester (High Range
HI98130, Hanna Instruments, City of Woonsocket RI,
United States).

2.6 Data analysis

Data from both small-scale, controlled experiments and
upscaled recirculatory systems were analysed using R Studio
version 4.3.2. Normality of data was assessed using the
Shapiro-Wilk test. Subsequently, growth data (RGR, colony
and frond number, Fv/Fm and Y(II)) were analysed using
Analysis of Variance (ANOVA) with either post hoc Tukey’s
HSD (in case of a normal distribution) or the Kruskal–Wallis test
(non-normal distribution). Data from an upscaled
(recirculatory) system were also analysed using IBM SPSS
28 software. In both R Studio and SPSS, an ANOVA test was
conducted on each variable, namely, RGR, pH, EC, TDS, TN, and
TP. The purpose was to examine time-dependent changes and
establish their statistical significance. Also, the relationship
between dynamic changes in key variables was assessed by
calculating the correlation coefficient.
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3 Results

3.1 The composition of MPW effluent

The physicochemical composition of MPW effluent was
analysed (Table 1). The average pH of the effluent was
7.8 while BOD and COD were low at 6.1 and 74.3 mg O2 L−1,
respectively. The total nitrogen (TN) concentration was
14.7 mg N L−1 of which un-ionised ammonia (i.e., ammonia
NH3) and nitrate (NO3) made up 0.8 mg N L−1 and
9.4 mg N L−1, respectively. The total phosphorus (TP)
concentration was 7.8 mg P L−1 of which 7.0 mg P L−1 was
orthophosphate. Sulphate (SO4), potassium (K), calcium (Ca)
and magnesium (Mg) concentrations were modest at

26.3 mg L−1, 72.9 mg L−1, 49.3 mg L−1, 11.3 mg L−1,
respectively. However, sodium (Na) and chloride (Cl)
concentrations were relatively high at 361.7 mg L−1 and
420.7 mg L−1, respectively. Iron, copper, manganese, zinc and
nickel are all present in concentrations of less than 1 mg L−1.

3.2 Growth of Lemnaminor onMPWeffluent

In the small-scale range finding experiment, plants were
cultivated on different concentrations of MPW effluent. The
initial pH of MPW was 7.8, irrespective of the used MPW
concentration. In comparison, the pH of standard, half-strength
Hutner’s is 4.5. To compare growth of L. minor on MPW with that

TABLE 1 The concentrations of minerals and organic compounds present in MPW (n = 3), as well as the required, tolerated, and optimal concentrations for
duckweed according to Walsh et al. (2020).

Parameters Concentration present in
undiluted MPW ± standard
deviation

Minimum required
(mg L−1) for
duckweeda

Maximum tolerated
(mg L−1) by
duckweeda

Optimal range (mg
L−1) for duckweed
growtha

pH 7.8 ± 0.2 - - -

BOD (mg O2 L
−1) 6.07 ± 3.15 NDb ND ND

COD (mg O2 L
−1) 74.33 ± 21.51 ND ND ND

TDS (mg L−1) 996 ± 0.0

TSS (mg L−1) 26 ± 0.0

Total Solids (mg L−1) 1,610 ± 0.0

Total Nitrogen (mg
N L−1)

14.66 ± 4.37 0.07 2,101 2.8–350

Ammonia (mg N L−1) 0.77 ± 0.53 ND 8 20–50

Nitrate (mg N03 L
−1) 9.39 ± 1.61 3 >1,000 3–300

Total Phosphorus
(mg P L−1)

7.84 ± 6.23 0.003 310 0.3–54.2

Orthophosphate (mg
P L−1)

7.00 ± 6.33 0.003 310 0.1–50

Chloride (mg Cl− L−1) 420.67 ± 40.55 0.035 3,545 0.035–350

Sulphate (mg
SO4b− L−1)

26.30 ± 9.04 0.32 1924 16–641

Potassium (mg K L−1) 72.82 ± 15.96 1.95 1,564 20–782

Sodium (mg Na L−1) 361.67 ± 71.79 0 4,600 0–230

Calcium (mg Ca L−1) 49.33 ± 15.52 0.4 1,600 8–800

Magnesium (mg
Mg L−1)

11.27 ± 2.95 0.1 800 1.2–240

Iron (mg Fe L−1) 0.21 ± 0.15 0.06 56 0.06–11

Zinc (mg Zn L−1) 0.10 ± 0.04 0.04 523 0.13–13

Copper (mg Cu L−1) 0.08 ± 0.09 0.006 64 0.006–3.8

Manganese (mg
Mn L−1)

0.01 ± 0.01 0.005 55 0.05–5.5

Nickel (mg Ni L−1) <0.00 ± 0.00 0 1 0–0.1

aWalsh et al. (2020).
bND, not determined.
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on half-strength Hutner’s, the pH of MPW was either retained at
pH 7.8 or lowered to pH 4.5.

Experiments commenced using a total of 12 fronds per Magenta
vessel. After 1 week of growth, samples on half-strength Hutner’s
medium comprised some 46 fronds, while samples on MPW
comprised between 40 and 59 fronds (Figure 2). Significantly
(p < 0.05) more fronds were generated on 100% wastewater at
pH 4.5, compared to any other MPW treatment. A large increase in
the number of colonies occurred (p < 0.001) for cultures on MPW at
pH 7.8. This result may indicate mild stress. The biomass relative
growth rate (RGR) on MPW ranged between 0.34 and 0.39 days−1,
and this rate is similar to that obtained on half-strength Hutner’s
medium, under otherwise similar conditions. Overall, good growth

was achieved, with no substantial differences in RGR as a result of
changes in MPW concentration and/or pH.

To investigate potential plant stress in more detail, chlorophyll
a fluorometry was used to quantify photosynthetic performance.
The maximal quantum yield of photosystem II (Fv/Fm) ranged
between 0.68 and 0.75 (Figure 3). No substantial differences were
found between plants on MPW and those on half-strength
Hutner’s medium. Statistical analysis did not reveal any clear
trend of concentration and/or pH on the maximal quantum
yield. In contrast, the steady state quantum yield (Y(II)) of
photosystem II was slightly lower at higher pH values (p <
0.01). Effects of different concentrations of MPW on Y(II) were
not significant.

FIGURE 2
Growth of Lemna minor cultures grown on 100 mL MPW. Concentrations of TN and TP in wastewater (WW) at the start of the experiment were,
respectively 13.8 mg N L−1, and 4.4mg P L−1in undiluted, 100%, MPW. Shown are (A)mean RGR (d−1) (B) frond count and (C) colony count of Lemnaminor
grown on 25%, 50%, and 100% concentrations of MPW effluent, with a starting pH of either 4.5 or 7.8. Shown as a dotted line are the equivalent growth
parameters on half-strength Hutner’s medium. Standard deviations are shown. n = 3. Bars that do not share at least one same letter are significantly
different from one another for p < 0.05, as per post hoc test.
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3.3 The cultivation of Lemna minor on MPW
in a recirculating semi-outdoor system

In the recirculatory system, a 50% concentration of MPW was
used as signs of colony break up (decreased frond to colony ratio)
had been noticed on 100% MPW in the small-scale laboratory
studies (Figure 2B). The batch of MPW used for these
experiments was slightly more dilute than average MPW
(Table 1), with initial concentrations of the 50% dilution being
TN = 6.9 mg L−1 and TP = 2.1 mg L−1. Half of the medium was
replaced every third day, at which stage plant biomass, TN and TP
concentrations as well as pH and ECwere quantified. The increase in
biomass for each 3-day period varied from 15 g for the first 3 days, to
just 3.2 g for the final 3-day period (Figure 4). One-way ANOVA
showed that the mean increase in biomass for each 3-day period
changed significantly with time (F = 91.654, df = 5, p < 0.001). RGR
values varied between 0.24 days−1 for the first 3 days, to just
0.11 days−1 for the final 3 days. A one-way ANOVA revealed
that the change in RGR with time (Figure 4) was similarly
statistically significant (F = 86.507, df = 5, p < 0.001). Although
the plants exhibited modest growth at the end of the experiment,
they appeared healthy.

The pH of the MPW in the semi-outdoor 15-day experiment
ranged between 8.3 on the first day to 9.9 on the 15th day
(Figure 5). The pH gradually increased with time. A one-way
ANOVA test performed on pH values showed that the increase
in mean pH was statistically significant (F = 147.648, df = 5, p <
0.001) (Figure 5). Similarly, EC values increased with time. EC
levels varied between 0.87 S m−1 on the first day to 1.54 S m−1 on
day 15. A one-way ANOVA test performed on EC levels showed
that the increase in EC level was statistically significant (F =
81.577, df = 5, p < 0.001). A strong correlation was found
between pH and EC, with a Pearson correlation coefficient
of r = 0.812.

The concentrations of TN and TP in the MPW-medium were
measured every 3 days, over a total period of 15 days. High
concentrations of TN and TP were measured at the initial start
of the experiment (day 0, TN = 6.9 mg L−1; TP = 2.1 mg L−1). After
3 days of growth, these concentrations had decreased to just
1.40 mg L−1 T, and 0.46 mg L−1 TP (Figure 6). Subsequently,
following replacement of 50% of the MPW by fresh medium, the
concentration of TN was restored to 4.15 mg L−1. From day
3 onwards, concentrations of TN remained fairly constant, about
1.4 mg L−1 at the end of each 3-day period, and about 4.2 mg L−1 after
addition of fresh medium (Figure 6). No time-dependent trends
were detected in TN concentration at the end of each growing
period, or TN concentration after addition of fresh medium (F =
37.208, df = 5, p < 0.001).

The concentration of TP at the end of the first 3-day growth
period was just 0.46 mg L−1 (Figure 6). Following replacement of
50% of the medium with fresh MPW, this rose to 1.3 mg L−1. From
day 3 onwards, concentrations of TP gradually increased, reaching a
concentration of 3.37 mg L−1 on day 12 (Figure 6). The increase in
TP from day 3 onwards, is significant (F = 174.061 df = 5, p < 0.001).

The TN concentration of MPW effluent decreased from, on
average, 6.9 mg L−1 on day 0–1.40 mg L−1 at the end of day 3, i.e., a
decrease in TN concentration of 5.5 mg TN L−1 within the first
3 days. Given that the system volume was 9 L, this equates to the
removal of 49.5 mg of TN in 3 days, or on average, 16.63 mg of TN
per day. The total surface area of the experimental setup was
0.078 m2, and L. minor covered 60% of this surface area.
Therefore, 353 mg of TN m−2 d−1 was removed from MPW
effluent within the first 3 days (Figure 7). When the same
calculation was repeated for TP removal rate, it was found that
107 mg of TP m−2 d−1 was removed within the first 3 days (Figure 7).

TN and TP removal rates were calculated for L. minor grown on
MPW effluent for all timepoints (Figure 7). The TN removal rate
was 353 mg TN m−2 d−1 over the first 3 days of the experiment

FIGURE 3
Growth of Lemna minor cultures grown on 100 mL MPW. Concentrations of TN and TP in wastewater (WW) at the start of the experiment were,
respectively 13.8 mg N L−1, and 4.4 mg P L−1 in undiluted, 100%, MPW. Shown are (A) the mean maximal quantum yield of photosystem II (Fv/Fm) and (B)
the steady state quantum yield (Y(II) of photosystem II grown on 25%, 50%, and 100% concentrations of MPW effluent, with a starting pH of either 4.5 or
7.8. Shown as a dotted line are the equivalent growth parameters on half-strength Hutner’s medium. Standard deviations are shown (n = 3). A post
hoc test did not reveal significant (i.e., p < 0.05) differences between bars.
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(Figure 7) yet subsequently decreased. For example, on day 6, the
removal rate was 186 mg TN m−2 d−1, while at day 15 the TN
removal rate had decreased to 174 mg TN m−2 d−1. The TP removal
rate over the first 3 days of the experiment was 107 mg of TPm−2 d−1,
but TP removal had virtually ceased at subsequent timepoints, or
even become negative, suggesting nett TP release (Figure 7).

4 Discussion

4.1 MPW is suitable for duckweed growth

Previous studies have shown that untreated, raw, MPW is not a
suitable growth medium for duckweed species (Goopy et al., 2004).
Therefore, the current study focussed on MPW that had undergone
primary and secondary treatment. The physicochemical

composition of such MPW was analysed at three time points
throughout the year (Table 1). Overall, the composition was
found to be relatively stable, with variations in the contents of
different elements being quite modest. This lack of seasonal
variation in the composition of MPW likely reflects intake of a
consistent quality of livestock, consistent slaughtering and
processing procedures, and consistent wastewater treatment
operating procedures throughout the year. In turn, this will
greatly facilitate the development and implementation of
potential duckweed-based wastewater valorisation approaches.

The relatively low concentrations of BOD and COD inMPW are
likely to facilitate duckweed cultivation, in so far as that the
concentration of organic matter in MPW is low enough not to
result in strong microbial growth. Measured concentrations of
nitrogen and phosphorus are suitable for cultivation of duckweed
species (Landolt and Kandeler, 1987; Walsh et al., 2020). Total

FIGURE 4
Growth of Lemna minor cultures grown on 50% concentrated MPW effluent over a 15-day period. Concentrations of TN and TP at the start of the
experiment were, respectively 6.9 mg N L−1, and 2.1 mg P L−1 in a 50% concentration of MPW. Shown are (A) mean biomass (g) and (B) RGR (day −1).
Standard deviations are shown (n = 3). Bars that do not share at least one same letter are significantly different from one another (p < 0.05) as per post
hoc test.
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nitrogen and total phosphorus are mostly bioavailable as,
respectively, nitrate and ortho-phosphate, further emphasising
the suitability of MPW as a duckweed growth medium. In some
commercial wastewater treatment plants MPW is treated using
anaerobic fermentation, which lowers BOD and COD, but this
may result in accumulation of large amounts of ammonia
(Goopy et al., 2004). High levels of phytotoxic, un-ionised
ammonia in combination with high pH, can inhibit duckweed
growth (Körner et al., 2001; Caicedo et al., 2000) and necessitate
pHmanagement (Jones et al., 2023; Redmond et al., 2025). However,
the samples used in the current study had passed through an
aeration tank and nitrogen was largely in the form of nitrate. In
fact, the concentration of ammonia, the preferred uptake form of
nitrogen for duckweed species (Fang et al., 2007; Zhou et al., 2021) is

low, although MPW does contain enough nitrate nitrogen to
facilitate good growth. Furthermore, given that nitrogen
requirements typically exceed phosphorus demand by several fold
(Paolacci et al., 2021; Pasos-Panqueva et al., 2024), the concentration
of total nitrogen is somewhat low, relative to the concentration of
total phosphorus (Landolt and Kandeler, 1987; Walsh et al., 2020).
Therefore, it can be hypothesised that under long-term growth
conditions phosphorus uptake will be limited by a deficiency of
nitrogen. Concentrations of sulphate, potassium, calcium and
magnesium are all suitable for the cultivation of duckweed
species (Landolt and Kandeler, 1987; Walsh et al., 2020). The
calcium to magnesium ratio which has been shown to be
important for plant growth, is also favourable in MPW (Walsh
et al., 2020). However, it is noted that both sodium and chloride

FIGURE 5
Growth of Lemna minor cultures grown on a 50% concentration of MPW effluent over a 15-day period. Concentrations of TN and TP at the start of
the experiment were, respectively 6.9 mg N L−1, and 2.1 mg P L−1 in a 50% concentration of MPW. Shown are (A) pH and (B) EC. Standard errors are shown
(n = 3). Bars that do not share at least one same letter are significantly different from one another for p < 0.05, as per post hoc test.
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concentrations are above optimal (Tkalec et al., 2001; Sree et al.,
2015; Lambert et al., 2022), potentially leading to accumulation of
these salts in long-term cultivation systems.

In agreement with the assessment that MPW is a suitable
medium for duckweed growth, it was found that L. minor displayed
good growth on different concentrations of MPW, under
laboratory conditions. RGR values on MPW were similar to
those obtained on optimised half-strength Hutner’s medium.
An increase in colony numbers, i.e., colony splitting, observed
on MPW kept at a higher pH indicates potential mild plant stress
(Henke et al., 2011). A small, pH dependent decrease in the steady

state yield of photosystem II also suggests mild toxicity and stress
(Redmond et al., 2025). Such pH dependent toxicity resembles
ammonia toxicity, but as ammonia concentrations are low, this is
unlikely. Conversely, it is possible that the stress-symptoms are
due to pH-dependent changes in uptake of other components of
MPW such as sodium, chloride or metals (Verma and Suthar,
2015). Alternatively, the increase in pH can potentially be due to
algal growth which would be associated with increased
competition for nutrients such as nitrogen and phosphorus
(Gerardi and Lytle, 2015). To further explore whether any of
these minor effects could affect a duckweed-based remediation

FIGURE 6
(A)Mean (±SD) TN (B) and TP of a 50% concentration of MPW effluent measured over 15-day period. Concentrations of TN and TP at the start of the
experiment were, respectively 6.9 mg N L−1, and 2.2 mg P L−1 in a 50% concentration of MPW. Standard deviations are shown. Bars that do not share at
least one same letter are significantly different from one another for p < 0.05, as per post hoc test.
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system, studies progressed to a scaled-up, semi-outdoors,
recirculatory system.

4.2 Growth and remediation in a
recirculatory system

The initial RGR (days 3 and 6) in the semi-outdoor cultivation
system ranged between 0.25 days−1 and 0.22 days−1 on days 3 and
6 respectively. These RGR values compare favourably with those
obtained under indoor conditions, as well as with RGR values
obtained on other wastewaters under similar semi-outdoor
conditions. For example, O’Mahoney et al. (2022) achieved an
RGR of 0.1 d−1 in a similar circulatory system using anaerobic
digestor effluent from a dairy processing factory. Using a variety of
mediums, the literature reports many RGR values less than
0.2 days−1 (e.g., Al-Nozaily and Alaerts, 2002; Dinh et al., 2020).
Thus, laboratory and semi-outdoor growth trials, together with
physicochemical analyses, all emphasise the suitability of MPW
as a growth medium for short term duckweed cultivation.

Good plant growth and nutrient removal were observed during
the first 6 days of operation of the recirculatory duckweed-system.
The TN removal rate during the first 3 days was 353 mg TN m−2d−1.
This rate of nitrogen removal from the MPW is in line with
previously published nitrogen removal rates which give values
ranging between 124 and 4,400 mg TN m−2d−1 (cf. Walsh et al.,
2022). The data obtained in this study place the initial (day 3)
nitrogen removal rate at the lower end of the range found in the
literature. Observed TN removal rates between 150 and
200 mg TN m−2d−1 can be deemed low (cf. Walsh et al., 2022).
The TP removal rate of 107 mg TP m-2 d−1 for the first 3 days of
remediation in the circulatory system is also consistent with
reported TP removal rates, which vary between 14 and
590 mg TP m−2 d−1 (cf. Walsh et al., 2022). TP removal rates at

later sampling points are either negative, or can be deemed low (cf.
Walsh et al., 2022).

Beyond the first 6 days of operation of the recirculatory system,
both pH and conductivity (salinity) were found to gradually
increase. Increases in pH did not lead to visible precipitation of
salts. Increases in salinity in a recirculating system were also
reported by Lambert et al. (2022). These authors reported that
salinity becomes a substantial problem in systems where salt that
is not taken up by plants, gradually starts to accumulate, resulting in
well documented salinity stress (Tkalec et al., 2001; Sree et al., 2015).
Indeed, after 6 days of operation RGR, TN and TP removal all
decreased markedly. Initial decreases in RGR, TN and TP removal
are associated with a minor increase in conductivity. Major increases
in conductivity are only observed from day 9. However, it remains to
be seen that the initial decrease in RGR, TN and TP removal is
causally linked to salinity. The source of increased conductivity of
the medium in these experiments remains unclear. A possible
explanation is the release of ions when solids, present in MPW
(Table 1), gradually dissolve (Taylor et al., 2018). Interestingly, while
TP removal virtually ceases from day 6, nitrogen removal still
proceeds at a substantial rate, which is fast enough to prevent a
rise in TN concentration in the medium. It is possible that
biosynthesis of compatible solutes such as proline and glycine
betaine, important for the prevention of salinity stress, drives
continued nitrogen demand (Carillo et al., 2008). It could be
speculated that luxury phosphorus uptake from the phosphorus
enriched medium during the first 3 days of the experiment (Paterson
et al., 2020) may have contributed to increased leaching of
phosphorus into the medium at later timepoints. However,
quantitative analysis showed that the amounts of phosphorus in
the plant are not sufficient to explain the observed increase in
phosphorus in the medium. Instead, it can be speculated that
apart from release of phosphorus by plants, the gradual
dissolution of solids, present in MPW (Table 1), may also have

FIGURE 7
Mean (±SD) TN and TP removal rate by Lemna minor grown on a 50% concentration of MPW effluent over a 15-day period. Concentrations of TN
and TP at the start of the experiment were, respectively 6.9 mg N L–1, and 2.1 mg P L–1 in a 50% concentration of MPW.
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contributed to the rise in phosphorus concentration in the medium.
However, this remains to be proven.

4.3 Future prospects of using a recirculatory
system to valorise MPW

In this paper it is shown that a recirculatory remediation system,
whereby fresh medium is added every 3 days, will cease to operate by
day six. It is concluded that at this timepoint all medium needs to be
replaced to avoid the build-up of salts (similarly, problematic
microbial and algal growth might at this stage become prevalent).
This is not necessarily a problem, as the data in this paper show that
after 3 days, L. minor had reduced the average TN concentration
from 6.90 mg L−1–1.40 mg L−1 as well as the TP concentration from
2.13 mg L−1 to 0.46 mg L−1. According to the EU Urban Wastewater
Treatment Directive (98/15/EC), allowable limits for discharging
TN into environmentally sensitive receiving waters are around
6 mg L−1 and for TP 0.5 mg L−1. Thus, it is concluded that
short-term remediation of MPW effluent is sufficient to achieve
wastewater discharge requirements, without resulting in the built up
of salinity.

Remediation of MPW can potentially be optimised by
manipulating the composition of the wastewater. MPW is a
complex wastewater that combines different waste streams
including faecal matter, urine, slaughter and processing
wastewater, as well as cleaning and disinfection fluids. A recent
study of fish-processing wastewater (Katsara et al., 2025) proposed
the development of bespoke remediation treatments for the
different waste streams (e.g., initial washings, filleting
wastewater, cooking and canning wastewater) that make up
combined fish processing wastewater. Similarly, it can be
hypothesised that exclusion of some waste streams from the
MPW will increase remediation efficiency. By extrapolating the
data acquired in this study and using TN and TP removal rates of
353 and 107 mg m−2 d−1, respectively, it can be calculated that a
recirculatory system using 3-day cycles, will remove 1,285 kg TN
and 391 kg TP per hectare, per year from the MPW effluent.
However, this number will strongly depend on seasonal and
climatic factors. Assuming a meat processing factory producing
200 m3 of wastewater, and using calculated TN and TP removal
rates of 353 and 107 mg m−2 d−1, respectively, it can be estimated
that a pond area of 312 m2 is required to bring down the TN
concentration from 6.9 mg L−1–1.4 mg L−1, and the TP
concentration from 2.1 mg L−1 to 0.47 mg L−1. While such
calculations are of theoretical interest and indicate that a
duckweed-based remediation approach can be realistic, it is
noted that extending calculations beyond the scale of the
current study requires a careful evaluation of scaling-up
challenges. Thus, future work needs to focus on upscaling
duckweed remediation under realistic industry conditions, while
exploring economic, social, regulatory and sanitary aspects.

5 Conclusion

Physicochemical analyses, laboratory and semi-outdoor
growth trials all show the suitability of MPW as a growth

medium for short term cultivation of Lemna minor.
Quantitative analysis revealed rapid removal of nitrogen and
phosphorus removal from MPW, with calculated uptake rates
similar to those reported in the literature. In a scaled-up, semi-
outdoor system short-term (3 days) remediation of MPW effluent
was found to be sufficient to achieve wastewater discharge
requirements. Thus, a duckweed-based system can contribute to
remediation, while also leading to the production of nutrient-rich
biomass that can potentially be used as animal feed, biofuel or
fertiliser, thus contributing to a more sustainable circular
economy. Future work needs to focus on the nutritional value
of MPW raised biomass (especially starch and protein content),
safety (presence of contaminants such as toxic metals, pesticides,
pharmaceuticals and pathogens (Sońta et al., 2019) and upscaling
duckweed remediation under realistic industry conditions, while
exploring technical (salinity and seasonality), economic (cost-
benefit), social, and regulatory aspects.
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