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Validating the Environmental Kuznets Curve (EKC) hypothesis has been a core
subject for decades. Still, its universality is contested in contemporary studies due
to prior region-specific outcomes. Comprehensively estimating its applicability
for West African countries, while addressing the gaps in prior studies, second-
generation and non-spherical error methods, spatial approaches, and long-run
estimators are applied to 3 decades’ worth of data. The findings reveal that (1)
pertaining to environmental deterioration (EAI), West African countries fall within
clusters of low-low, low-high, and high-low, with the presence of spatial
dependencies. Thus, three types of spatial associations are discovered: low-
low clusters (LL), where low-EAI countries are neighbours to other low-EAI
countries; low-high outliers (LH), where a low-EAI country is surrounded by
high-EAI neighbours; and high-low outliers (HL), where a high-EAI country is
bordered by low-EAI countries. (2) Per capita GDP and its quadratic form locally
have an inverse relationship with environmental degradation, but in the long run,
have a positive correlation. (3) FDI’s impact supports the pollution halo
hypothesis, while trade exacerbates emissions through emission-intensive
goods and transportation-related emissions. (4) Industries affect
environmental degradation in the long run negatively, whereas population
density exhibits a similar effect locally, and its effects spill over to
neighbouring countries. (5) The inverted U-shaped correlation does not hold
for West African countries, insinuating that the EKC hypothesis is not universally
applicable. Overall, recommendations based on the empirical outcomes are cited
for policymakers, stakeholders, and future research.
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1 Introduction

The growing concern and focus on ecological sustainability have
been globally stretching, stemming from the continuous rise in
emissions (Tenaw and Beyene, 2021). Undoubtedly, the
anthropogenic contribution to this, driven by the notions of
survival and economic development, has been a key driver of the
now-renowned predicament. Thus, from the prehistoric to the
medieval, industrial, and contemporary eras, human activities
such as the agricultural revolution, the Renaissance, and the
industrial revolution have cohesively contributed to the current
emissions problem. From 1990 to 2024, the amount of
greenhouse gas (GHG) emissions stemming from agricultural
practices, fossil fuel extractions, industrial practices, and the
energy production substantially increased by 25%, 52%, 93%, and
104%, respectively; overall, global GHGs as of 2024, excluding land
use, land use and forestry, reached 53.2 Gt CO2eq (EDGAR, 2025).

Irrespective of the proliferation of climate accords and
regulatory measures over the past decades (Boamah et al., 2023),
GHGs have exhibited a persistent upward trajectory, raising an issue
of ecological degradation, pronounced in West African countries
over the past decade (Jiang et al., 2025). In 1994, the average
amounts of the top three GHGs for West African countries were
6.099 Mt CO2e for carbon dioxide emissions (CO2), 20.005 Mt CO2e

for methane emissions (CH4), and 2.253 Mt CO2e for nitrous oxide
(N2O). However, these amounts grew by 121.34%, 20.14%, and
134.80%, respectively, as of 2023 (see Figure 1). This raises the
critical question of what dynamics are propelling these sustained
increases. Jacquet et al. (2025) highlighted the minor fraction that
West Africa’s GHGs account for on the global scale. Still, their
growing amounts, as illustrated in Figure 1, reveal the severity within
the region and ultimately, globally. According to Adu and
Denkyirah (2018), economic development is a key driver of
environmental deterioration in West African countries, while
Ntiamoah et al. (2023) empirically demonstrated that agriculture
has a mitigating effect.

Nonetheless, ecological sustainability and economic studies have
been central in assessing the connection between economic
development and rising levels of environmental degradation
(Erdogan, 2023). This is because it is posited that the
environment degrades in early development phases but
diminishes after economies reach a specific income level birthing
the Environmental Kuznets Curve hypothesis (EKC)1, insinuating
that, as a host of developing economies, the West African region’s
environmental deterioration is tied to its economic development;
however, after reaching a certain threshold, this positive association
will divert to an inverse correlation, resulting in ecological
sustainability (Jian et al., 2022). Conversely, studies like (Abokyi
et al., 2019; Voumik et al., 2022; Miao et al., 2024; Yue and Byrne,
2024) challenge the EKC’s validity, finding that the evidence is
highly contingent upon the development stage, region, and
methodology. This underscores the need for region-specific

empirical testing, especially in West Africa, to determine if an
EKC turning point exists or if growth remains inextricably linked
to rising emissions.

Against the aforementioned backdrop, this study extends the
EKC works and contributes to the concept of ecological
sustainability by assessing the link between environmental
deterioration in West African countries and their economic
advancements. It addresses three core research questions:

First, accounting for internal factors such as industrial
advancements and population density while controlling for
external and global impacts, like FDI, does the EKC hypothesis
hold for West African countries? Second, considering their
transboundary systems and trade, do the local implications of
neighbouring West African countries spill over and spatially
impact the environmental degradation of the local country?
Third, whether on a full scale or across the region’s diverse
income groups, is there a long-run correlation between the
economic development and ecological deterioration of West
African countries? The answers to these questions furnish robust
empirical evidence on the EKC’s applicability to a developing region
and yield practical guidance for policymakers who aim to integrate
economic development with environmental protection.

Therefore, this study transcends the previous literary works
(Ogundipe et al., 2019; Salari et al., 2021) insightfully by
extending the single-metric-single-country assessment of
environmental deterioration from 1994 to 2023, creating an
index that focuses on renowned GHGs for West African
countries. Notwithstanding, it accounts for spatial dependencies
by employing Moran’s I index and plots, as well as the Spatial
Durbin Model (SDM), to address the spatial spillover effects that
have received limited scholarly attention in most existing works
related to this study’s context. Furthermore, it categorises the sample
into lower-middle and low-income groups to ascertain the
interdependencies between economic growth and environmental
depletion. Also, it accounts for long-run relationships by estimating
cointegration using the Fully Modified Ordinary Least Squares
(FMOLS) approach and robustly verifying the results with the
Canonical Cointegration Regression (CCR) model.
Understanding these dynamics is imperative to curb
environmental degradation in West Africa.

This study proceeds in four subsequent sections. A review of
literary works, in addition to this study’s hypotheses, is established in
Section 2. Section 3 delineates the empirical settings and approach,
followed by the analysis and discussion of the results in Section 4.
The study concludes in Section 5 with a synthesis of findings, policy
recommendations, and directions for future research.

2 Literature review

Greenhouse gases (GHGs), as a blanket, trap heat to warm the
Earth and make it inhabitable for humans, thereby introducing the
greenhouse effect (Basheer et al., 2024). However, anthropogenic
sources over the years have intensified this effect, leading to a well-
documented predicament: global warming (Liu and Li, 2025). As the
top three gases of the GHGs, CO2, CH4, and N2O have diverse
lifespans and impacts on the Earth, resulting from their modes of
generation and byproducts after reacting in the atmosphere. CO2, as

1 Grossman, G. M., and Krueger, A. B. (1991). Environmental impacts of a

North American free trade agreement. National Bureau of

Economic Research.
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the basis of reference for the other gases, is known for having a
GlobalWarming Potential (GWP) of 1, lingers in the atmosphere for
over 3 decades, and has a radiative efficacy that is low per molecule
but high in atmospheric concentration (Meinshausen et al., 2020).
CH4 is a shorter-lived but radiatively potent GHG compared to CO2.
When evaluated over a 100-year timeframe, its GWP is 28, reflecting
its strong instantaneous radiative force, which is roughly 120 times
more effective per molecule than CO2 at trapping energy (Saunois
et al., 2020). N2O, on the other hand, has a stronger radiative efficacy
with a GWP of 273 over a 100-year timeframe2. Consequently, the
profound impact of these GHGs has cemented their status as a
prioritised focus for scholarly inquiry.

To elaborate, Kircher (2025) refined the United States EPA’s
GHG estimates to more accurately reflect CH4 leakage generated
from natural gas infrastructure. Lin et al. (2025), from a cost-
benefit perspective, focused on the marginal abatement cost
(MAC) of GHGs for some Chinese provinces. Bao et al. (2025)
evaluated the environmental footprint, with a specific focus on
GHG, of eastern China’s petrochemical wastewater treatment
plant (PWWTP). Alvi et al. (2025) introduced a framework for
Organisation for Economic Co-operation and Development
(OECD) countries to enhance their achievement of
Sustainable Development Goals 13 (SDG 13) by assessing the
impact finance has on GHG emissions. And, Rahman et al.
(2025) examined the causality between GHGs and GDP in
Middle East and North Africa (MENA) economies. Still,
cross-contextual divergence is apparent in the trajectories of
GHG emissions; leveraging strong institutions and
technological capacity, advanced economies have
demonstrated a capacity to decouple economic growth from
emissions (Yang and Khan, 2021). In contrast, developing
economies, especially those across Africa, are often
characterised by an energy-intensive growth model reliant on
fossil fuels, wherein industrial expansion and urbanisation

directly propel GHG emissions upward (Alex-Oke et al.,
2025). Externally, inflow of investments (Boamah et al., 2023)
and trade (Espinosa Gracia et al., 2023) also reel in emission-
intensive goods from other global economies. However,
empirical evidence is emerging that confirms the significant
mitigation potential of renewable energy and green investments
(Wu and Ampong, 2025).

In West Africa, key drivers of emissions-driven
environmental degradation include the dominance of
extractive industries, cross-border energy trade, and external
factors. This is exemplified by Nigeria (Oladimeji et al., 2015),
Ghana (Abokyi et al., 2019), and Côte d’Ivoire (Keho, 2015),
whose status as the region’s largest emitters stems directly from
their intensive oil, gas, and industrial operations. Conversely,
Mali, a landlocked country, and others exhibit lower cumulative
emissions but are susceptible to regional spillover effects.
Additionally, non-regional inflows, including the import of
used vehicles and the net displacement of environmental
impacts from the global North through trade, contribute to
the rising levels of GHGs in the region (Ayesu and Asaana,
2023; Boateng and Klopp, 2022). This heterogeneity in emission
profiles, as well as global spillover, underscores the need for

FIGURE 2
Visual EKC representation Source: Author construct.

FIGURE 1
West African CO2, CH4, and N2O from 1994 to 2023 Graph source: Author construct; Data source: WDI (2025).

2 EPA (2025). Understanding global warming potentials. United States

Environmental Protection Agency. Available online at: https://www.epa.

gov/ghgemissions/understanding-global-warming-potentials.
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spatial methodologies that capture interdependencies, alongside
long-term analyses capable of distinguishing between transient
fluctuations and persistent structural drivers.

2.1 GHGs vs. economic growth

Economic growth in developing countries often spurs
environmental degradation, as rising incomes and improved living
standards expand the consumption of energy and goods, thereby
increasing the per capita GHG footprint (İnal et al., 2022). To
elaborate, rising incomes enable previously unaffordable
consumption, such as vehicle purchases and migration to urban
centres. This behavioural shift accelerates urbanisation, often
facilitated by deforestation, and increases GHG emissions through
fumes from exhaust pipes, as well as heightened consumption of
petroleum-based fuels for energy and transportation. However,
economic development can also create pathways for GHG mitigation.
As economies mature, heightened sustainability awareness often
emerges, which fosters public recognition of environmentally friendly
products and activities, subsequently contributing to emission
reductions. These aforementioned insights reveal the centrality of
GHG and economic growth in the EKC discussions.

The EKC postulates an inverted U-shaped relationship
between income per capita and environmental degradation
(Grossman and Krueger, 1991). Initially, economic expansion
exacerbates pollution through industrial scale-up and fossil fuel
dependence (scale effects). Upon reaching a higher income
threshold, economies transition towards cleaner technologies,
stringent regulation, and service-based sectors, thereby reducing
emissions through composition and technique effects. Figure 2
outlines the conceptual framework of the EKC hypothesis, tracing
a three-phase evolution. The pre-industrial phase is marked by
rising emissions fueled by resource-intensive growth. Emissions
peak during the industrial phase, where rapid economic expansion
typically supersedes environmental considerations. Finally, the
post-industrial phase is characterised by declining emissions,
driven by the synergistic effects of technological innovation,
robust regulation, and shifting consumer preferences toward
sustainability.

Empirical support for the EKC is nevertheless inconclusive.
Findings validating the hypothesis exist for specific contexts,
including Nigeria (Ogundipe et al., 2019), West Africa (Konan
and Aklobessi, 2021), and other middle-income regions
(Erdogan, 2023; Jiang et al., 2025), yet these are counterbalanced
by contradictory results from Ghana (Abokyi et al., 2019), broader

TABLE 1 Comparative evidence from recent literature on EKC, GHGs, and economic growth–GHG nexus.

Author (Year) Study area Variable Method Key findings

Abokyi et al. (2019) Ghana CO2, industrial growth ARDL EKC✓
↑ GDP → ↑ CO2 then GDP ↑CO2 ↓

Ogundipe et al. (2019) Nigeria CO2, GDP, food production index VECM EKC✓
↑ GDP → ↑ CO2 then GDP ↑CO2 ↓

Konan and Aklobessi
(2021)

West Africa CO2, CH4, N2O, GDP, energy use FE, RE, Semi-
parametric

EKC✓ weak environmental policies delay decoupling

Salari et al. (2021) USA GDP, energy consumption OLS EKC✓
An inverted U-shape exists

İnal et al. (2022) 10 African
countries

GDP, CO2, renewable energy AMG ↑ GDP → ↑ CO2; renewables are insufficient to offset
emissions

Voumik et al. (2022) 34 countries GDP, energy intensity, R&D CS-ARDL EKC Χ; innovation not strong enough to offset growth

Erdogan (2023) 13 African
countries

CO2, GDP, resources, population FMOLS, DOLS EKC ✓ natural resource rents amplify emissions

Gyamerah &Gil-Alana
(2023)

West & Central
Africa

CO2, electricity consumption, GDP VECM GDP and electricity consumption ↑→CO2 ↑; no turning
point

Boamah et al. (2023) Africa FDI inflows, CO2 GMM FDI ↓ CO2 via technology transfer: evidence of cleaner
investment effects

Miao et al. (2024) Tianjin, China GDP, energy intensity, population LMDI EKC Χ; GDP ↑ → CO2 ↑, growth is fossil-intensive

Yue and Byrne (2024) Global airline
industry

GDP, operational scale, CO2 LMDI Expansion ↑ CO2; no EKC.

Ochi and Saidi (2024) 33 countries Economic growth, GHGs PVAR GDP ↑→ GHGs↑

Jiang et al. (2025) Africa & Europe Environmental quality, GDP, and
electricity access

DSUR EKC ✓ in middle-income countries; EKC Χ in low-
income ones

Rahman et al. (2025) MENA countries GHGs, GDP, population FMOLS 1% GDP ↑→ 0.48% GHGs ↑

Alex-Oke et al. (2025) West Africa Renewable energies, CO2 GAM Economic growth ↑→ CO2 ↓

CS-ARDL, cross-section autoregressive distributed-lag model; FE, fixed effects; RE, random effects; VECM, vector error correction model; FMOLS, Fully Modified Ordinary Least Squares;

DOLS, Dynamic Ordinary Least Squares; DSUR, dynamic seemingly unrelated regression; GMM, Generalised Methods of Moments; LMDI, Log-Mean Divisia Index; OLS, Ordinary Least

Squares; PVAR, Panel Vector Autoregressive; AMG, Augmented Mean Group; GAM, Generalised Additive Model; MENA, Middle East and North Africa.
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African samples (Gyamerah and Gil-Alana, 2023; İnal et al., 2022),
and global datasets (Voumik et al., 2022). These inconsistencies
imply that the EKC is a contingent, rather than universal,
relationship, shaped by structural determinants such as industrial
structure, energy portfolio, and governance efficacy. While
developed economies often transition to cleaner production post-
industrialisation, many developing regions remain locked in fossil-
fuel-dependent growth. This divergence necessitates a rigorous,
spatially sensitive empirical assessment to determine the validity
of the EKC hypothesis within the West African context.

2.2 Literary gaps and hypothesis
development

A synthesis of recent empirical works on GHGs, the
economic growth–GHG nexus, and EKC is exhibited in
Table 1. The outcomes, as iterated in Section 2.1, reveal the
inconclusiveness on the validity of the EKC hypothesis, while
insightfully showing the context-specific nature. Moreover,
structural factors, including foreign direct investment (FDI),
Industrial activities, population, and openness to trade, are
found to be significant contributors to environmental
degradation. However, three key gaps were noticed. (1) Most
works applied a single-metric approach to quantify

environmental degradation in relation to GHG, even though
it encompasses other pollutants, and those that accounted for
more than one assessed them individually. (2) Prior works
assessed the linear correlation between economic growth and
environmental degradation, but did not address spatial spillover
effects or, in a unified paradigm, estimate their long-run
dynamics. (3) Despite the disparities among the various West
African income groups, most of the prior studies seldom
addressed the income group heterogeneity. As such, this
study proposes the following hypotheses to empirically
address the aforementioned gaps while contributing to the
theoretical understanding of the EKC.

H1a: As a measure of economic development, per capita GDP
impacts the level of the top three greenhouse gases in West Africa,
i.e., the GDP effects.

H1b: A cointegrated interdependence exists between West
African countries’ per capita GDP and their ecological
degradation, i.e., long-run effects.

H2a: Owing to their transboundary systems encompassing cross-
border trading, shared energy, and infrastructure, West African
countries’ greenhouse gases are impacted by their surrounding
countries’ structural activities, i.e., spatial spillover effects.

H2b: The non-regional inflow of investments and trade impacts
the varying levels of greenhouse gases in West African countries,
i.e., global effects.

FIGURE 3
Study area.
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H3: West African countries’ per capita GDP positively impacts their
environmental deterioration, while the square of per capita GDP has a
negative impact, i.e., an invertedU-shape exists, and the EKC is validated.

3 Settings and methods

Data from the 16 West African countries (refer to Figure 3)
spanning from 1994 to 2023 are utilised for the analyses in this
study. The variables’ specifications and their corresponding data,
along with sources and referenced literary works, are displayed
in Table 2.

3.1 Entropy approach

An environmental deterioration index (EAI) comprising CO2

intensity, CH4 intensity, and N2O intensity is created to measure the
degree of degradation in the West African region. The processes
involved in the index creation are as follows.

Step 1: Create CO2 intensity (ICO2cy), CH4 intensity (ICH4cy),
and N2O (IN2Ocy) intensity metrics utilising
Equations 1–3

ICO2cy �
CO2cy MtCO2e( )[ ] × 109

GDPcyconstant 2015US

(1)

ICH4cy �
CH4cy MtCO2e( )[ ] × 109

GDPcyconstant 2015US

(2)

IN2Ocy �
N2Ocy MtCO2e( )[ ] × 109

GDPcyconstant 2015US

(3)

The metrics are transformed into kg for a more readable ratio,
and GDP (constant 2015 US$) is employed to adjust for inflation
and facilitate comparison over time.

Step 2: Data standardisation utilising Equation 4.

Scyv � icyv −min iyv{ }( ) ÷ max iyv{ } −min iyv{ }( )
c � 1, 2, 3, . . . n; y � 1, 2, 3, . . .f (4)

Scyv is variable v standardised outcome for the sampled countries
and their years, where indicator v corresponds to ICO2cy, ICH4cy, or
IN2Ocy; icyv represents the actual value of the variable in question for
c (sampled countries) in all y (years); min{ iyv} and max{ iyv} denote
the minimum and maximum values of each f of indicator v in
1994–2023 within the sample.

The equation yields values [0,1]; however, to avoid assessment with
zeros, Equation 5 is applied to transform and omit calculated zeros.

Scyv′ � Icyv + γ

γ � 10−8 (5)

Step 3: Estimate contribution Ccyv using Equation 6.

Ccyv � Scyv′ ÷ ∑n
c�1

∑f
y�1

Scyv′⎡⎢⎢⎣ ⎤⎥⎥⎦ (6)

Step 4: Estimate the value of entropy Ev for v with Equation 7.

Ev � −1
ln nf( )∑

n

c�1
∑f
y�1

Ccyv ln Ccyv( ) (7)

Step 5: Estimate v’s entropy redundancy (EDv) using Equation 8.

EDv � 1 − Ev (8)

Step 6: Estimate the weight (Wv) of v applying Equation 9.

Wv � EDv∑r
v�1EDv

(9)

Step 7: Estimate the composite index (EAIcy) with Equation 10.

EAIcy � ∑r
v�1
WvScyv′ (10)

TABLE 2 Variable specification.

Variable Symbol Description (unit) Attribute References Source

EAI α Environmental deterioration index comprising CO2, CH4, and N2O intensity + Tenaw and Beyene (2021) WDI
(2025)

GHGs α′ WDI total greenhouse gas emissions excluding LULUCF (Mt CO2e) +

GDP/c β GDP per capita (current US$) + Rahman et al. (2025)

GDP/c2 Square of GDP per capita (current US$) - Ogundipe et al. (2019)

Ind γ The value added by industries and construction (current US$) + Alex-Oke et al. (2025)

FDI Inflow of foreign direct investment (current US$) + Boamah et al. (2023)

Trd Sum of merchandise exports and imports (current US$) divided by the value of
GDP (current US$)

- Espinosa Gracia et al.
(2023)

Pop Population density (people per sq. km of land area) + Miao et al. (2024)

α: response variable, β: explanatory variables, γ: control variables, α’: robustness test response variable, CO2: total carbon dioxide emissions excluding LULUCF (Mt CO2e), LULUCF: Land-Use,

Land-Use Change and Forestry, WDI: world development indicators.
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3.2 Model specification

Due to the context of this work, the benchmark model is
specified as:

First, an OLS model is established.

αcy �
δ1Xcy + δn+1CVcy + εcy,
E ε( ) � 0,
Var ε( ) � σ2Ω

⎧⎪⎨⎪⎩ (11)

Second, the residuals after estimating Equation 11 are obtained
via Equation 12.

ε̂ � αcy −Xcyβ̂ols
β̂ols � XNX( )−1XNαcy

{ (12)

Third, Ω, an unknown covariance matrix of errors, is
estimated. Equations 13, 14 are applied to model the error
structure for heteroskedasticity and autocorrelation,
respectively.

Ω̂ � diag ε̂21, ε̂
2
2, . . . , ε̂

2
n( ) (13)

Ω̂ �

1

1 − ρ2

1 / ρ̂N−1

..

.
1 ..

.

ρ̂N−1 / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ρ̂ � ∑N
y�2ε̂yε̂y−1∑N

y�1ε̂
2
y

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

Fourth, the transformed FGLS model is established in
Equation 15.

β̂FGLS � XNΩ̂−1
X( )−1

XNΩ̂−1
αcy (15)

αc,y is EAI; N = 16; y = 1994 to 2023; δ is the coefficient; X is GDP/c
and GDP/c2; CV is Ind, FDI, Trd, and Pop; ρ̂ is the estimated
autocorrelation coefficient.

3.2.1 Spatial model specification
The analysis of spatial dependencies in EAI and its explanatory

factors across West African countries is conducted using the Moran

FIGURE 4
Study analytical framework.

FIGURE 5
Descriptive statistics.
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TABLE 3 Preliminary tests.

Level variable I (0) I (1)

EAI −1.958 −2.068* −2.142* −5.110*** −4.010*** −3.001***

GDP/c −2.173 −2.073 −1.859 −5.032*** −3.892*** −3.238***

GDP/c2 −2.090 −1.888 −1.696 −4.918*** −3.615*** −2.643*

Ind −1.628 −1.610 −1.355 −4.784*** −3.535*** −2.739**

FDI −2.800** −2.430 −2.136 −5.433*** −3.918*** −3.311***

Trde −2.306* −2.345** −1.899 −5.369*** −4.355*** −3.396***

Pop −2.826*** −3.539*** −2.017 −1.965 −2.490*** −1.801

Lag(s) 0 1 2 0 1 2

CD HSCD AR (1)

3.254 (0.001) 4163.76 (0.000) 34.177 (0.000)

The critical values for the unit root tests are −2.630 for a 10% significance level, −2.720 for a 5% significance level, and −2.880 for a 1% significance level. The parentheses display the probability

values. *, **, and *** represent significance at the 10%, 5%, and 1% levels.

TABLE 4 Benchmark estimates.

(a) (b) (c) (d) (e)

EAI

GDP/c −0.099*** −0.099*** −0.101*** −0.085*** −0.071**

(0.031) (0.031) (0.031) (0.030) (0.029)

GDP/c2 −0.061** −0.059** −0.063** −0.056** −0.045*

(0.028) (0.029) (0.029) (0.028) (0.026)

Ind 0.004 0.003 0.004 0.005

(0.012) (0.012) (0.012) (0.011)

FDI −0.008 −0.010** −0.008*

(0.005) (0.005) (0.004)

Trd 0.0002*** 0.0002***

(0.000) (0.000)

Pop −0.206

(0.061)

C 0.300*** 0.298*** 0.303*** 0.285*** 0.269***

(0.036) (0.036) (0.036) (0.035) (0.034)

Wald chi2 2904.92 2922.19 2920.33 3324.21 3767.00

Prob > chi2 0.000 0.000 0.000 0.000 0.000

Obs 480

Countries 16

Years 1994–2023

Country-effect Yes

Year-effect Yes

Hereinafter, standard errors are in parentheses, and ***, **, and * represent significance at 1%, 5%, and 10% levels.
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I index, formulated in Equation 16, with the applied weights equated
as shown in Equation 17.

I � N∑N
φ�1

∑N
ω�1

nwφω xφ − �x( ) xω − �x( )⎡⎢⎢⎣ ⎤⎥⎥⎦ ÷ ∑N
φ�1

∑N
ω�1

nwφω∑N
φ�1

xφ − �x( )2⎡⎢⎢⎣ ⎤⎥⎥⎦
(16)

nwφω � 0.5

1
dφω

φ ≠ ω

0 φ � ω( )
⎧⎪⎪⎨⎪⎪⎩⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ + 0.5

1
yφ − yω

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣φ ≠ ω

0 φ � ω( )
⎧⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (17)

Where N is the 16West African countries; ReferencingWu et al.
(2021), nwφω is the nested geographic and economic distance weight
matrix, with 0.5 assigned as weights due to equal importance; yφ and
yω are the differences between the GDP of countries φ and ω from
1994 to 2023; Countries φ and ω are not near if the value is 0, and
one if they are; and the independent variables and their means are x
and �x, where �x � 1

N∑N
φ�1xφ.

According to Chen (2014) and Zhang et al. (2022), a general
spatial model is given as depicted in Equation 18.

θcy � τθc,y−1 + pw′
cθy + xcy

′ β + d′
cXyδ + uc + θy + εcy (18)

εcy � λm′
cεy + vcy

θc,y−1 (i.e., dynamic panel; if it is not then τ � 0) is θcy first lag order;
the explanatory variable’s spatial lag is d′cXyδ, the corresponding

spatial weight matrix D’s cth row is d′c; θy is the year effect; and the
disturbance term space weight matrix M’s row is m′

c.

a. The Spatial Durbin Model (SDM) is feasible when λ � 0; see
Equation 19

αφy � ρ∑N
ω�1

wφωαωy + βxφyϑ∑n
ω�1

wφωxωy + λy + μφ + εφy (19)

b. The Spatial AutoregressionModel (SAR) is feasible when λ � 0
and δ � 0; see Equation 20

αφy � ρ∑N
ω�1

wφωαωy + βxφy + μφ + εφy (20)

c. The Spatial Error Model (SEM) is feasible when τ � p � 0 and
δ � 0; see Equation 21

αφy � βxφy + λy + μφ + Λφy (21)

Λφy � ρ∑n
ω�1

wφωΛωy + εφy

αφy and αωy are EAI for countries φ and ω at year y, with xφy and
xωy as the explanatory and control variables, EAI’s spatial lag terms
are ∑N

ω�1wφωαωy , and the spatial autoregressive coefficient is ρ. The
regression coefficients are β, and the country-fixed, year effect, and
random disturbance terms are μφ, λy, and εφy. The residuals with
spatial correlation is Λφy (φy depends on the residuals Λωy of
adjacent spatial units and a white noise process εφy).

3.2.2 Long-run model specification and study
analytical framework

The FMOLS andCCRmodels are employed as long-run estimation
approaches, as formulated in Equations 22, 23, respectively.

α̂FMOLS � ∑N
n�1

xnx
′
n

⎛⎝ ⎞⎠−1⎛⎝∑N
n�1

xnEC
+
n −NΔ̂+

εμ
⎞⎠ (22)

EC+
n � ECn − Ω̂εμΩ̂

−1
μμΔxn

α̂CCR � ∑N
n�1

x*
nx

*′
n

⎛⎝ ⎞⎠−1 ∑N
n�1

x*
nEC

+
n

⎛⎝ ⎞⎠ (23)

EC+
n � ECn − Ω̂ECΔxΩ̂

−1
ΔxΔxΔxn

x*
n � xn − Ω̂xΔxΩ̂

−1
ΔxΔxΔxn

Where xn = vector of regressors; Δ̂+
εμ = long-run covariance

kernel-based estimator; EC+
n = endogeneity corrector; Ω̂εμ =

estimated long-run covariance between the residuals and
regressor innovations; Ω̂−1

μμ = inverse of the long-run variance of
regressor innovations; Δxn = the regressors’ first difference.

The analytical framework for addressing the study’s aim, while
testing the proposed hypotheses, is presented in Figure 4.

4 Results and discussion

Table 2 provides a succinct description of the data. Furthermore,
key distributional characteristics, namely, mean (x�), standard

TABLE 5 West African countries’ EAI Moran I.

Year Moran’s I z-value p-value

2010 0.075 1.397 0.081

2011 0.100 1.657 0.049

2012 0.074 1.385 0.083

2013 0.086 1.504 0.066

2014 0.101 1.665 0.048

2015 0.112 1.762 0.039

2016 0.114 1.792 0.037

2017 0.107 1.729 0.042

2018 0.102 1.678 0.047

2019 0.095 1.607 0.054

2020 0.095 1.630 0.052

2021 0.080 1.496 0.067

2022 0.085 1.526 0.064

2023 0.090 1.605 0.054

Spatial error Spatial lag

LM 6.991*** 1.451

Robust LM 36.452*** 30.913***

Country Year

LR2 27.31*** 1223.28***

*, **, and *** represent significance at the 10%, 5%, and 1% levels.
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deviation (σ), skewness (Skew.), and kurtosis (Kurt.), is estimated
and visually reported in Figure 5 σ < x�indicates that the respective
variables’ data are clustered relatively tightly around their mean
values. Thus, in the case of EAI, it digresses from its mean (0.321) by
0.199, whereas for GDP/c and GDP/c2, they digress from their mean
values by 0.310 and 0.304, respectively. In terms of measuring the
asymmetry of the distribution to identify the data’s lopsidedness
while assessing the heaviness and peakedness of the tails, the kurtosis
values <3 reveal platykurtic distributions; thus, light tails with fewer
outliers, while the skewness values of EAI (0.692), Ind (0.475), FDI
(1.004), PoP (0.177), and GHGs (0.171) reveal a right-skewed
distribution. In a nutshell, the |skewness| < 2 and
kurtosis <4 values for the employed variables indicate a moderate
or approximately normal distribution (Kline, 2016) with lower
relative variability from their corresponding centre of distributions.

Proceeding from the descriptive statistics, the Pesaran cross-
sectional dependence (CD), Modified Wald test for groupwise
heteroscedasticity (HSCD), and Wooldridge autocorrelation (AR
(1)) tests are run to estimate the error structure of the data in a
regression setting to avoid spurious outcomes. The results, as
reported in Table 3 under the columns CD (3.254,
p-value <0.01), HSCD (4163.76, p-value <0.01), and AR (1)
(34.177, p-value <0.01), indicate the presence of the three errors.

The presence of CD also suggests that applying traditional unit root
tests to assess stationarity may be inaccurate due to the violation of
the assumption that the panels are independent of each other.
Therefore, the Pesaran unit root test in the presence of cross-
sectional dependence (PCADF) is applied (Pesaran, 2007), and
the results are reported in Table 3.

The PCADF is conducted with three forms of lag augmentation:
(1) there are no lags included, (2) a lag of one is included, and (3) a
lag of two is included. Column I (0) reports on the variables at the
level, while column I (1) reports on their first differences. The
findings reveal that, except for Pop, which was stationary with lag 0
(−2.826, p-value <0.01) and lag 1 (−3.539, p-value <0.01), and FDI,
which was stationary with lag 0 (−2.800, p-value <0.05), the rest of
the variables were all non-stationary at I (0). However, at I (1), all but
Pop were stationary; as such, Pop is integrated at level while the
remaining variables are integrated of order 1.

4.1 Benchmark regression analysis

Considering the CD, HSCD, and AR (1) outcomes, the FGLS
(Feasible Generalised Least Squares) approach is employed to conduct
the benchmark analysis. As a BLUE (Best Linear Unbiased Estimator),

FIGURE 6
EAI Moran plots for 2010, 2015, 2020, and 2023.

Frontiers in Environmental Science frontiersin.org10

Tang et al. 10.3389/fenvs.2025.1621251

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1621251


the FGLS addresses the issue of biased standard errors that result in
incorrect inference that OLS (Ordinary Least Squares) faces. Moreover,
it is an efficient estimator when the type of error structure is specified,
making it a suitable benchmark regressionmodel. Table 4 reports on the
results obtained after applying the FGLS approach; five models are
generated, where column (a) regresses GDP and its square on EAI, and
columns (b) to (e) regresses GDP and its square on EAI while gradually
controlling for Ind, FDI, Trd, and Pop.

The models accounted for country and year effects to control for
time-invariant unobserved heterogeneity and common year shocks,
revealing that GDP/c and GDP/c2 have an inverse correlation with
EAI. So, on average, ceteris paribus, a unit increase in per capita
GDP reduces the intensity of environmental degradation by 0.085,
while a unit increase in its squared term reduces it by 0.056,
invalidating the EKC hypothesis. On the one hand, Ind and Trd
are found to have a positive influence on EAI; however, while the
coefficients for Trd are significant at the 1% level, those for Ind are
statistically insignificant. On the other hand, FDI and Pop are found
to have a negative impact on EAI, but only the FDI coefficient
(−0.010) in column (d) is statistically significant at the 5% level.
Overall, the Prob > chi2 indicates that the models are a good fit.

4.2 Spatial analysis

The preliminary tests (Table 3) revealed no presence of
homogeneity; therefore, to address spatial dependencies and

avoid model misspecifications, spatial approaches are employed
for further analysis to account for geographical correlations. The
Moran I results (see Table 5) reveal the presence of spatial
dependence from 2010 to 2023, with highly significant outcomes
in the years 2011 (p-value <0.049), 2014 (p-value <0.048), 2015
(p-value <0.039), 2016 (p-value <0.037), 2017 (p-value <0.042), and
2018 (p-value <0.047).

Nonetheless, to visually detect spatial clusters and outliers while
revealing different types of spatial correlations, the Moran I scatter
plot is applied using 2010, 2015, 2020, and 2023 as selected year
sections. The outcomes, as displayed in Figure 6, show that most of
the data points fall within the low-low (LL) quadrant, indicating a
spatial cluster of countries with low EAI. This reveals a cold spot,
meaning that countries with economies based on services or
sustainable agriculture rather than heavy industry or resource
extraction are bordered by countries with similar outlook. For
instance, Benin and Burkina Faso or Senegal and Guinea-Bissau.
The few countries that fall within the high-low (HL) and low-high
(LH) quadrants indicate spatial outliers. This means that countries
with high intensity in their environmental degradation are
surrounded by countries with low degradation intensity, and vice
versa. For instance, Nigeria with its oil industry emits high levels of
GHGs than its neibouring country Benin.

With the presence of spatial dependence established, the LM test
is estimated to find a fitting spatial regression model for the West
African data. The results, as reported in the columns ‘Spatial error’
and ‘Spatial lag’ of Table 5, indicate that the selection of an SDM
model is suitable due to the high significance level of the robust LM
outcomes. Additionally, the LR tests conclude that the inclusion of a
double fixed effects in the SDMmodel is warranted, given the highly
significant outcomes of the year (1223.28, p-value <0.01) and
country (27.31, p-value <0.01) effects. Therefore, an SDM with
double fixed effects is selected for estimating the spatial correlation
between EAI and GDP/c, GDP/c2, Ind, FDI, Trd, and Pop.

Table 6 reports on the results derived after implementing the
SDM model, with the columns ‘Main’ and ‘Wx’ corresponding to
local effects excluding spatial spillover effects and the effect of
neighbouring countries’ spatially weighted values on the outcome
of the local country’s EAI, respectively. Similar to the benchmark
outcome, the SDM reveals that locally, GDP/c and GDP/c2

significantly lessen environmental deterioration by 0.278 and
0.202 per their unit rise with all things being constant; thus,
pointing to economic development as a potential determinant of
enhancing environmental sustainability through environmental
degradation mitigation and invalidating the EKC hypothesis
locally and spatially. Pertaining to the control variables, Industry
value added has a boosting but a statistically insignificant effect
overall, FDI mitigates EAI through spatial spillovers
(Wx = −0.073*), trade openness locally enhances EAI by 0.027,
and population density has a strongly adverse effect locally by 0.197
(p-value <0.01) and spatially spills over by 0.700 (p-value <0.05).

4.3 Robustness testing

The benchmark and SDM models are modified to test the
robustness of their outcomes, specifically their sensitivity to
model and data adjustments. The robustness tests are conducted

TABLE 6 SDM estimates.

Variable Main Wx

GDP/c −0.278*** −0.119

(0.061) (0.197)

GDP/c2 −0.202*** −0.200

(0.059) (0.201)

Ind 0.015 0.062

(0.025) (0.098)

FDI −0.001 −0.073*

(0.011) (0.038)

Trd 0.027*** −0.018

(0.009) (0.032)

Pop −0.197*** −0.700**

(0.057) (0.352)

ρ −0.645*** (0.105)

σ2 0.002*** (0.0001)

Log-likelihood 802.9178

R2 0.039

Obs 480

Countries 16

*, **, and *** represent significance at the 10%, 5%, and 1% levels.
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in two-fold: (1) the years 2007–2009 and 2020 to 2022 are excluded
from the sampled years. The Great Recession of 2007–2009,
stemming from the global financial crisis, generated
unprecedented economic volatility. Subsequently, the COVID-19
pandemic (2020-2022) induced lockdowns and supply chain
disruptions that produced a structural break in economic
activities and data. (2) The EAI is replaced by WDI (2025) total
GHGs. This accounts for potential error from variable selection
while testing for scale and unit sensitivity.

Table 7 reports on the findings of the robustness analyses;
columns a and b report on the FGLS’ robust analyses, while the
rest report on the SDM’s robust analyses. It should be noted that the
FGLS estimates reported in column b are assessed solely by factoring
in heteroskedasticity and AR (1), as the presence of cross-sectional
dependence was not found; column a follows the benchmark specified
error structure. The consistency of the mitigation effect of GDP/c,
GDP/c2, FDI, and Pop is maintained even with the exclusion of the
2007-2009 and 2020–2022 data, in addition to the substitution of the
response variable. Moreover, the trade openness boosting impact is
realised, but spatially, it negatively spills over, although the impact is

statistically not significant. Overall, the robustness tests collectively
indicate that the benchmark and SDM specifications yield stable
estimates that are robust to both global economic shocks and
alternative model parsimony selections.

4.4 Heterogeneity analysis

West Africa’s economic landscape, composed predominantly of
lower-middle and low-income countries (WDI, 2025) (see Figure 7),
reveals significant stratification in development pathways. The low-
income countries feature informal sector dominance and volatile
GDP growth, coupled with limited technological development and
high climate vulnerability, while the lower-middle-income countries
display greater economic diversification, moderate growth stability,
increased infrastructure investment, and growing climate resilience.
With that, this study proceeds to assess the impact of per capitaGDP
and its square, the value added by industries, inflows of FDI, trade
openness, and population density on the extent of environmental
deterioration in the various West African countries’ income groups.

TABLE 7 Robustness estimates.

(1) (2)

a Main Wx b Main Wx

GDP/c −0.073* −0.281*** 0.025 −0.642*** −1.317*** −0.061

(0.039) (0.068) (0.230) (0.238) (0.272) (0.878)

GDP/c2 −0.028 −0.182*** −0.079 −0.276*** −0.967*** −0.296

(0.037) (0.067) (0.244) (0.232) (0.261) (0.892)

Ind −0.000 0.012 −0.017 0.042 −0.047 0.152

(0.016) (0.028) (0.112) (0.100) (0.109) (0.434)

FDI −0.006 0.005 −0.041 −0.080** −0.126** 0.142

(0.006) (0.014) (0.048) (0.033) (0.049) (0.170)

Trd 0.016** 0.034*** −0.034 0.062* 0.122*** −0.061

(0.009) (0.011) (0.041) (0.037) (0.039) (0.143)

Pop −0.141* −0.180** −1.029** −1.419*** −0.428* −0.805

(0.080) (0.070) (0.425) (0.504) (0.255) (1.567)

Wald chi2 2430.97 220.79

Prob > chi2 0.000 0.000

ρ −0.658*** (0.118) −0.710*** (0.097)

σ2 0.002*** (0.0002) 0.038*** (0.003)

R2 0.032 0.227

Obs 384 480

Countries 16 16

Years 1994–2006, 2010–2019, 2023 1994–2023

Country-effect Yes Yes

Year-effect Yes Yes

*, **, and *** represent significance at the 10%, 5%, and 1% levels.
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The panel-corrected standard error (PCSE) model is utilised for
the heterogeneity estimations. The SDM and FGLS models were
initially considered, but Moran’s I revealed no spatial dependence in
the low-income group, in addition to the small sample sizes after
decomposing the countries into their various income groups. As
such, to maintain consistency and allow for a fair comparison, the
PCSE approach is applied, and the results are reported in Table 8. It
should be noted that column EAI reports on the PCSE model with
EAI as the response variable, whereas the GHGs column is the
robustness test with the GHGs as the response variable. The
presence of cross-sectional dependence was found only in the
model under column EAI for the lower-middle income group; as
such, its PCSE model was modelled to factor in cross-sectional
dependencies, heteroscedasticity, and AR (1), while the remaining
three models were modelled to factor in all the errors, excluding
cross-sectional dependencies.

The PCSE models revealed an inverse correlation between per
capita GDP and environmental degradation in both income
groups, as discovered in the full sample; however, the EAI
model and GHGs model for the low-income group had
significant outcomes at the 5% level. Insinuating that, with all
things being equal, a unit rise in GDP/c of the low-income West
African countries will mitigate environmental degradation or
GHGs by 0.259 or 0.712, respectively. The EKC hypothesis is

invalidated in both income groups, as the GDP/c and GDP/c2

coefficients do not conform to the underlying concept of the
hypothesis. Nevertheless, the coefficients of population density
are found to impact EAI negatively, and the same outcome is
discovered for the GHGs model.

4.5 Long-run analysis

The second-generation unit root test (Table 3) indicated that all
but Pop are integrated of order 1. As such, the Kao cointegration test
is conducted to determine if a long-run equilibrium exists within the
data, excluding Pop, thereby corroborating the estimation of a long-
run analysis. According to the results (see Table 9), a conintegration
exists within both the full sample and the low-income group. Based
on this, the FMOLS approach is used, with the CCR implemented as
a robust testing approach to assess the long-run estimates of GDP/c,
GDP/c2, FDI, Ind, and Trd’s impact on EAI within the full sample
and low-income groups.

Table 10 reports the findings of the FMOLS and CCRmodels for
the total West African countries and those specifically categorised
within the low-income group. For the full sample, GDP/c and GDP/
c2 are found to exacerbate environmental degradation in West
African countries, whereas FDI, Ind, and Trd have an adverse

FIGURE 7
West African countries’ income categorisation.
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effect, as indicated in the FMOLS column. The CCR outcomes reveal
similar findings to the FMOLS, but only the estimates for FDI
(−0.01), Ind (−0.07), and Trd (−0.01) are statistically significant at
the 1% level. For the low-income countries, similar outcomes as the
full sample are realised for the explanatory and control variables
pertaining to their effect on EAI. However, the significantly positive
impact that GDP/c (0.15) and GDP/c2 (0.12) have on EAI, as shown
in the FMOLS column, is corroborated by the findings of the CCR.
Furthermore, the value added by industries is found to significantly
mitigate EAI in the long run. Thus, on average, ceteris paribus, a unit
rise in Ind will result in a decline in the value of EAI by
either 0.10 or 0.11.

4.6 Discussion

This study spatially examines the correlation between
environmental degradation and the role of population and
economic development, coupled with the inflow of foreign
investments, openness to trade, and the value industries add in
West African countries. Synthesising the outcomes, this study
contributes to the body of literature by empirically revealing that:

a. Spatial spillover effects: The presence of spatial dependencies
exists, validating H2a. The Moran outcomes (Table 5; Figure 6)
and the autoregressive coefficients in Tables 6 and 7 confirmed
that the ecological sustainability of countries in West Africa is
influenced by their neighbouring countries, as they are either
clustered with countries sharing similar environmental traits
(Burkina Faso and Niger) or surrounded by high emitters
(Togo and Ghana). This corroborates with Jian et al.’s (2022)
argument that the ecological predicaments of developing
economies are aggravated by cross-border interdependencies.

b. GDP effects: The dynamics of economic growth and
environmental degradation are quite complex. It is found
that per capita GDP and its square locally enhance the
ecological sustainability of West African countries by
mitigating environmental pollution, corroborating the
findings of Alex-Oke et al. (2025). However, a contrasting
effect is realised in the long run, with the effects being more
pronounced in low-income countries, substantiating the
findings of Miao et al. (2024) and challenging the premise
of income-driven decoupling. Nonetheless, these outcomes
validate this study’s hypotheses H1a and H1b. A growth in
GDP funds renewable and green practices–such as Côte
d’Ivoire’s climate-smart cocoa initiatives and Nigeria’s
cement plant carbon capture and storage trials–i.e., clean
energy, establishment of eco-friendly infrastructure, and
reduction in GHG emissions. Still, oil and gas extraction,
mineral mining, agricultural frontiers, and massive energy
trade are the economic strongholds of West African
countries (İnal et al., 2022). Countries like Nigeria reinvest
oil revenues in fossil infrastructure, while agriculturally based,
low-emitting countries like Burkina Faso have been
diversifying their economic structure by introducing and
increasing industrial processes. With these actions, high
emissions get locked in for decades, resulting in a rise in
GDP in tandem with GHG emissions in the long run.

TABLE 8 PCSE estimates.

Low income Lower-middle
income

EAI GHGs EAI GHGs

GDP/c −0.259** −0.712** −0.067 −0.038

(0.117) (0.337) (0.084) (0.372)

GDP/c2 −0.170 −0.485 −0.024 0.099

(0.117) (0.337) (0.072) (0.342)

Ind −0.029 −0.203 0.021 −0.043

(0.049) (0.141) (0.035) (0.165)

FDI 0.001 −0.067 0.000 −0.121**

(0.015) (0.045) (0.013) (0.054)

Trd 0.011 0.064 0.006 −0.025

(0.017) (0.054) (0.012) (0.057)

Pop −1.626*** −2.569*** −0.524*** −0.183

(0.381) (0.642) (0.114) (0.569)

Wald chi2 76.88 137.74 70.28 75.09

Prob > chi2 0.000 0.000 0.000 0.000

R2 0.460 0.447 0.586 0.304

Obs 240

Countries 8

*, **, and *** represent significance at the 10%, 5%, and 1% levels.

TABLE 9 Cointegration test.

Full Low income Lower-middle income

Stats p-value Stats p-value Stats p-value

Modified DF t −2.657 0.004 −3.700 0.000 0.569 0.284

DF t −4.151 0.001 −3.837 0.000 −0.196 0.422

Augmented DF t −4.127 0.000 −3.304 0.000 −1.514 0.065

Unadjusted modified DF t −3.614 0.000 −4.308 0.000 −0.024 0.490

Unadjusted DF t −4.539 0.000 −4.012 0.000 −0.676 0.249

DF: Dickey–Fuller.
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c. External global effects: The inflow of foreign investments into
West African countries is found to impact their environmental
degradation adversely (Tables 4, 7, and 10), supporting the
findings of Boamah et al. (2023) and the “pollution halo”
hypothesis, which suggests that globalisation promotes green
practices. Most investors contribute to the sustainability of their
host country to ensure long-term returns through cleaner
technology transfers and manufacturing processes. For
instance, Senegal’s wind farm reduces emissions along the
country’s coastal energy corridors; FDI into Lagos’ Blue Line
Rail and Accra’s electric buses lowers transport-related CO2; and
FDI into Liberia’s carbon credits conserves and protects the
cross-border forests. Conversely, openness to trade is found to
exacerbate environmental deterioration (Tables 4, 6–8),
repudiating the findings of Espinosa Gracia et al. (2023).
Through the importation of used vehicles, West African
countries introduce emission-intensive products, resulting in
a rise in their emissions due to heavy fumes from exhaust pipes.
Also, heavy reliance on imported products from the global
North necessitates the movement of ships and vessels, which
contributes to transportation-related emissions (Ayesu and
Asaana, 2023). These insights validate H2b.

d. Local structural effects: Unlike Boamah et al. (2023) and Alex-
Oke et al. (2025), the value added by industries is found to
affect environmental degradation in the long run negatively,
whereas population density exhibits a similar effect locally, and
its effects spill over to neighbouring countries, substantiating
the findings of Erdogan (2023). Using agricultural waste, some
palm oil mills in Ghana utilise palm kernel shells as boiler fuel,
while others treat their organic wastewater from the processing
stage to capture CH4 and use it to generate energy. The
continuous application of these processes, in conjunction
with new green industrial processes, helps mitigate the
impact of industrial value added on ecological degradation.
Population density, on the other hand, can mitigate GHGs
through agglomeration effects and more efficient
infrastructure, coined as “demand-side pressure reduction”
by Erdogan (2023), and these effects inherently spill over
into neighbouring areas. To elaborate, population density
reduces the per-unit cost of centralised infrastructure, such
as electrical grids and waste management, thereby displacing
the use of decentralised, high-emission sources like diesel
generators and charcoal, with benefits often extending to
surrounding areas.

e. EKC hypothesis validity: The EKC hypothesis and this study’s
H3 are invalidated. For the EKC to hold, the coefficient for
GDP/c must be positive, and its square must be negative.
However, Table 10 shows that both are positive and significant
in the long run, rejecting the inverted U-shape hypothesis. This
outcome challenges the EKC validation in middle-income
contexts, such as Nigeria (Ogundipe et al., 2019), but aligns
with broader African studies and global evidence that question
the EKC’s universality (Gyamerah and Gil-Alana, 2023;
Voumik et al., 2022).

Overall, the discussion depicts that the EKC is not validated in
West Africa for this study, where, in the long run, economic growth
intensifies emissions, and globalisation’s mitigating effect is limited.
This necessitates a policy shift towards stronger regional
governance, targeted green FDI, and industrial transformation to
avoid locking the region into an unsustainable, emission-intensive
development trajectory.

5 Conclusion and recommendations

Applying data from 1994 to 2023 for West African countries,
this study comprehensively estimates the validity of the EKC
hypothesis in the region. Through second generation (PCADF)
and non-spherical error methods (FGLS and PCSE), spatial
approaches (SDM), and long-run estimators (FMOLS and CCR),
the findings of the study reveal (1) the presence of spatial
dependencies in the environmental degradation of countries
within the region. Thus, three types of spatial associations are
discovered: low-low clusters (LL), where low-EAI countries are
neighbours to other low-EAI countries; low-high outliers (LH),
where a low-EAI country is surrounded by high-EAI neighbours;
and high-low outliers (HL), where a high-EAI country is bordered
by low-EAI countries. (2) Per capita GDP and its quadratic form
locally have an inverse relationship with environmental degradation,
but in the long run, have a positive correlation. (3) FDI is found to
boost environmental sustainability through cleaner technology
transfers and manufacturing processes, supporting the pollution
halo hypothesis; however, trade through the importation of
emission-intensive goods and transportation-related emissions
exacerbates environmental degradation. (4) Industries affect
environmental degradation in the long run negatively, whereas
population density exhibits a similar effect locally, and its effects

TABLE 10 Low-income and lower-middle-income long-run estimates.

Variable Full Low income

FMOLS t-stat CCR t-stat FMOLS t-stat CCR t-stat

GDP/c 0.07*** 4.47 0.07 0.91 0.15*** −6.86 0.15*** −6.41

GDP/c2 0.06*** 3.17 0.05 1.02 0.12*** −3.60 0.11*** −3.08

FDI −0.01*** −6.26 −0.01*** −4.62 −0.02 −0.91 −0.01 −0.59

Ind −0.07*** −13.79 −0.07*** −10.22 −0.10*** −8.72 −0.11*** −6.23

Trd −0.02*** −3.06 −0.01*** −2.88 −0.06*** 2.60 −0.06 1.43

*, **, and *** represent significance at the 10%, 5%, and 1% levels.
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spill over to neighbouring countries. (5) The inverted U-shaped
correlation does not hold for West African countries, insinuating
that the EKC hypothesis is not universally applicable.

5.1 Policy recommendations

Based on the above conclusions, this study yields contextually
grounded policy insights for West Africa as follows:

➢ The presence of spatial dependence insightfully shows that
addressing ecological deterioration in the region demands
spatially coordinated policies. By leveraging West Africa’s
diverse geography and economies of scale through regionally
integrated initiatives like the ECOWAS-led WAPP (West
African Power Pool) and the African Union’s GGWSSI
(Great Green Wall for the Sahara and Sahel Initiative),
complemented by cross-border green infrastructure
projects, countries in the region can effectively and
efficiently create a pathway to decouple economic growth
from emissions, rather than country-specific actions.

➢ The mixed impacts of FDI and trade reveal the complex
pressure globalisation exerts on the region. ECOWAS as a
bloc should negotiate for the reduction of tariffs on imported
EGS (Environmental Goods and Services) to make the green
transition cheaper and faster. Also, develop and implement
green FDI screening and incentive guidelines at the regional
level and offer tax breaks, fast-tracked permits, and other
incentives only to foreign investments that transfer advanced,
low-emission technologies and adhere to environmental
longevity standards.

➢ As local structures, the value industries add and the density of
population in the region mitigate their impact on ecological
degradation through agglomeration effects and more efficient
infrastructure. Therefore, policymakers should foster the
development of industrial symbiosis parks. In these
purpose-built hubs, the waste output of one facility serves
as the rawmaterial for another, creating a circular economy. A
foundational element of this strategy is the implementation of
modern, centralised waste management systems in densely
populated cities. These systems are essential for capturing
landfill CH4 for energy generation and for supplying
industries with standardised, reliable streams of
recyclable materials.

The recommended measures offer a viable pathway to align the
region’s development with the SDGs (Sustainable Development
Goals), facilitating a transition away from emission-intensive
trajectories.

5.2 Limitations and future research direction

This study achieved its aim, but it remains limited nonetheless.
Some variables’ data had to be interpolated to fill in missing spots,
which may have affected the precision, suggesting that sector-
specific or primary data could enhance precision in future works.
Core EKC drivers are captured, but significant factors such as

renewable energy adoption and urbanisation patterns were not
accounted for. Methodologically, the SDM, FGLS, PCSE, FMOLS,
and CCR provided robust outcomes, but they assume linearity;
future studies could explore dynamic or nonlinear models to
uncover more complex pathways. The exclusive focus on West
Africa limits the generalisability of the findings. A comparative
analysis across other African regions is essential to determine if the
rejection of the EKC hypothesis is a unique feature of West Africa or
a broader continental phenomenon.
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