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Synergistic effects of pollution and carbon reduction forms the core of ecological
civilization construction in the “14th Five-Year Plan” period. Based on the panel
data of prefecture-level cities in China from 2012 to 2023, first, the baseline
regression model and the spatial panel Durbin model are used to discuss the
direct and spatial effects of industrial digitization on synergistic effects of
pollution and carbon reduction. Second, based on whole-process
management, through the construction of a multiple intermediary effects
model, the indirect impact of industrial digitization on synergistic effects of
pollution and carbon reduction was explored. Third, heterogeneity tests from
multiple perspectives are conducted. It is found that: (1) industrial digitalization
has a remarkable positive impact on synergistic effects of pollution and carbon
reduction, and there is a positive spillover effect. (2) Industrial digitization can
indirectly promote synergistic effects of pollution and carbon reduction by
strengthening “Source prevention” through renewable energy substitution,
enhancing “process control” through green process innovation, and
strengthening “end-of-pipe treatment” through environmental regulations. (3)
Industrial digitization has a more remarkable promoting effect on synergistic
effects of pollution and carbon reduction in energy basins, higher-level cities,
large cities, and urban agglomerations. The research conclusions promote
traditional industries to use the “digital cloud” to help the combined
development of pollution and carbon reduction and offer a scientific
foundation and theoretical reference for promoting industrial digitization to
empower synergistic effects of pollution and carbon reduction.
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1 Introduction

The report of the 20th National Congress, the 14th Five-Year Plan, and the Central
Economic Work Conference was proposed to boost the synergistic effects of pollution and
carbon reduction (SPC). The essence of SPC lies in the construction of a closed governance
chain that links the whole process of “source--process--end-of-pipe”, and the “Pareto
optimality” of pollution goals and carbon goals is achieved, which is the “Imperial sword”
for building a “Beautiful China.” However, at this stage, China’s SPC is still in the
exploratory period, and there are governance difficulties, such as cracking of pollution
and carbon policies, and governance models of “pollution first and then treatment”; the
governance mode is “heavy Andover source” and fragmented (Yi et al., 2022). In addition,
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as a large developing industrialized country, China has long-term
contradictions between economic development and environmental
protection, and facingmultiple pressures such as economic recovery,
air quality standards, and the “dual carbon” goal, it needs to re-
arrange the joint reduction work of pollution and carbon, break
through the governance dilemma, and promote higher-quality
development of SPC as soon as possible.

The scale of industrial digitization (INDIG) is 4.5 times that of
digital industrialization, and due to its effects, INDIG plays a more
vital role in SPC. The proportion of INDIG in the digital economy
has risen steadily, becoming an essential starting point for the digital
economy to empower SPC (Lyu et al., 2023). On 30 August 2023,
General Secretary Xi Jinping highlighted at the National Eco-
environment Protection Conference: “Deepen the application of
digital technologies, build a beautiful digital governance system in
China, and build a green and intelligent digital ecological civilization.”
At present, China’s traditional industries urgently need to grasp the
occasion of INDIG; rely on abundant human and capital resources;
give full play to the advantages of “integration”; quickly cover all links
such as economic input, production, and sales; and inject a steady
stream of impetus into the “joint governance” of regional pollution
and carbon. So, what is the impact of INDIG on SPC, and is there a
spatial spillover effect? Which transmission mechanism of SPC is
affected by INDIG? Under different transmission mechanisms, how
does INDIG influence SPC? How to validly employ the indirect
transmission mechanisms to improve SPC? These deserve to be
explored. Based on the whole-process management and
heterogeneity, the mechanism of INDIG on SPC is deeply
researched, offering empirical basis for governments to bridge the
“digital divide” and improve SPC in all aspects.

The potential marginal contributions are as follows: first, based
on whole-process governance, it introduces renewable energy
substitution (RES), green process innovation (GPI), and
environmental regulations (ER) and employs a multiple
mediating model to deeply probe the mechanism of how INDIG
affects SPC. This provides theoretical support for deepening the
understanding of how the digital economy can enhance SPC.
Second, it depicts the spatial distribution of INDIG and SPC
and employs the spatial panel Durbin model (SPDM) to test the
spatial spillover effect of INDIG on SPC to provide empirical
support for local governments to coordinate the policies for the
transformation of INDIG. Third, the study explored the multiple
heterogeneous impacts of INDIG on SPC, offering a reference for
the government to enact and modify policies in a targeted manner.

2 Literature review

2.1 Research on INDIG

At present, the research on INDIG can be conducted from two
dimensions: connotation and measurement methods. First, from the
connotation of INDIG, Tapscott (1996) first put forward the term
“digital economy.” The China Academy of Information and
Communications Technology classified the digital economy into
two major systems: digital industrialization (basic digital economy)
and INDIG (integrated digital economy). This division has been
widely accepted, and subsequent studies have further developed it on

this basis. Some scholars have found that in regions with increased
INDIG compared to digital industrialization, the “substitution effect”
generated by the digital economy exceeds the “carbon-friendly effect,”
which effectively reduces carbon (Yang et al., 2023). Other scholars
have deemed that INDIG refers to the process in which new-
generation digital technologies empower traditional industries,
enabling the digital upgrading, transformation, and reconstruction
of all factors of the industrial chain and promoting the whole-round
and whole-chain transformation of INDIG (Lu et al., 2025; Wang
et al., 2022). Second, regarding the macro-level measurement of
INDIG, some scholars have constructed an evaluation system that
includes indicators such as industry output value and capital factors,
focusing on reflecting the depth of digital penetration from the
industrial level (Lu et al., 2025). At the micro level, some scholars
have adopted text analysis methods. Using Python technology, they
extracted keywords from corporate annual reports within a digital
thesaurus to construct an enterprise-level INDIG, which makes up for
the deficiency that macro data cannot easily capture the behaviors of
micro subjects (Lyu et al., 2023; Liu and Hong, 2022). It is worth
noting that studies have mostly centered on the digital economy and
its two subsystems: INDIG and digital industrialization, exploring the
contribution of the digital economy to social and economic
development. However, specialized measurements targeting
INDIG remain scarce (Han D. R. et al., 2023; Zhang et al., 2025).

2.2 Research on the environmental
governance effect of the digital economy

At present, the study on the effect of INDIG on SPC still has no
direct theoretical support, but the research on pollution and carbon
control in the digital economy provides a reference. While the
environmental consequences of the digital economy remain
ambiguous (Ma et al., 2022), a growing number of studies affirm
its positive role in environmental governance, especially its unique
value in addressing the fragmented predicament of traditional
environmental governance (Jiang et al., 2022). From the
government, the issue of regulatory fragmentation in traditional
environmental governance caused by departmental division and
regional barriers can be effectively alleviated through use of digital
technologies. The government has built a unified monitoring network
using technologies to realize real-time sharing and dynamic tracking
of cross-departmental and cross-regional pollution emission data,
breaking down “data silos.” Meanwhile, supplemented by informal
environmental regulatorymethods such as online public participation
(Liang and Li, 2023), it has constructed a collaborative governance
pattern of “government-led and public-supervised.” By mitigating the
efficiency losses arising from fragmented governance actors, the
model markedly enhances the coherence and synergy of
environmental governance. From the enterprise, digital
technologies provide tool support for breaking the fragmentation
of environmental governance in the industrial chain. Relying on
digital technologies, enterprises have built a global database using
“grid-based” and “three-dimensional” approaches (Yang et al., 2023),
bridging the information gap between production links and
environmental governance links. Furthermore, by establishing
digital trading platforms, they accurately connect the demand for
ecological products from the consumer side, promoting cross-regional
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and cross-subject supply–demand matching of regulatory service
ecological products such as water rights and emission rights
(Wang et al., 2025), thus effectively resolving the fragmentation
problems in traditional governance, such as poor factor mobility
and insufficient market synergy.

2.3 Research on SPC

IPCC first proposed the co-benefits of ecological and
environmental governance (“co-benefits”), and its Fifth Assessment
Report defined it as “positive side effects of policies or measures.”
Academic research on the externality of pollution and carbon mainly
focuses on four aspects: first, unilateral management of pollution and
carbon, including the generation mechanism, hazards, and emission
reduction measures of pollutants such as SO2 (Nazari et al., 2012), as
well as CO2 emission reduction, carbon emission rebound, and carbon
peak prediction (Jia et al., 2022). Second, theoretical research on SPC
focuses on the connotation, mechanism, and feasibility of collaborative
governance. Some scholars have pointed out that pollution and carbon
emissions in China share the same root cause due to fossil fuel
combustion, and they evaluated SPC, the synergistic pollution
reduction effect of greenhouse gas governance, and the synergy
degree between the two (Zhang Y et al., 2022; Qian et al., 2025).
Third, the evaluation of the policies of SPC. Scholars have taken China’s
urban agglomerations or industrial parks as samples; constructed
indicator systems from the aspects of pollutant emissions,
environmental protection investment, and resource utilization
efficiency (Liu and Hong, 2022; Li et al., 2025); and used methods
such as the composite system synergy degree model and entropy-
weighted TOPSIS (Behzadian et al., 2012) to assess synergistic benefits.
However, conclusions are divergent due to differences in methods and
indicators. Fourth, research on the driving paths of SPC, focusing on
“source prevention” (Sun and Deng, 2022), “end-of-pipe treatment”
(Nam et al., 2013), etc. For example, Yi et al. (2022) proposed that
“process control,” such as energy structure transformation, can promote
synergistic efficiency.

In summary, the current research progress still has room: first,
regarding research on SPC, few studies have incorporated whole-
process management on account of its essential requirements and
constructed a multiple mediating effect model for empirical
research. Second, among the existing limited research on the
mechanism of influence between the digital economy and
pollution, there are relatively few studies on INDIG. Few
scholars have focused on the characteristics of INDIG or
explored its spatial spillover effects. Third, existing studies have
not fully incorporated multiple heterogeneous perspectives, such as
regional and urban characteristics, making it hard to accurately
identify the differential impacts of INDIG on SPC.

3 Theoretical analysis and research
hypotheses

3.1 Direct effect

As a subsystem of the digital economy, INDIG increases the
output and improves efficiency of traditional industries employing

digital technology and resources. Based on the concept of
“integration,” the development of INDIG with “Dingxin” pulling
“revolution” promotes the integrated development of smart
agriculture, digital finance, and digital government (Tapscott,
1996), which not only improves regulatory transparency but also
helps reduce resource loss caused by information asymmetry. From
the perspective of externality theory, pollution emissions are a
typical form of negative externality. INDIG improves regulatory
transparency and reduces information asymmetry, which is
essentially a process of internalizing negative externalities. It
becomes more difficult for enterprises to hide pollution activities,
and the government or society can hold them accountable at a lower
cost, forcing enterprises to bear environmental costs. Meanwhile,
this is also in line with the Coase theorem. INDIG reduces the
transaction costs of defining environmental property rights (such as
the division of pollution liabilities) through technical means,
creating conditions for solving externality problems. “Metcalfe’s
Law” believes that when enterprises add the investment in digital
factors, it will decrease the marginal cost of products, achieve
economies of scale, and increase benefits, and INDIG makes
digital factors fully penetrate the industrial chain of traditional
industries, adopt an intelligent production mode to improve the
production efficiency, provide conditions suitable for clean
production of enterprises, and exert environmental welfare effects
(Ma et al., 2022). In terms of the market, INDIG has broken the
business model of traditional industries, created a disruptive
innovation model, spawned new business formats, and opened
up many market segments. Based on the theories of economies
of scale and by leveraging the advantages of digital platforms, the
“scale effect” in resource allocation can be achieved through
measures such as reducing transportation, thereby reducing
pollution emissions (Liu and Hong, 2022). In terms of green
production, due to the abundant capital and resources of
traditional industries, INDIG can more quickly and extensively
open up the upstream and downstream industrial chain, quickly
integrate digital technology, improve production efficiency and
cleanliness overall, and achieve sustainable development of green
production, compared with the green influence of digital
industrialization, while improving economic benefits and
promoting the sustainable development of enterprises through
green production (Zhao and Meng, 2022).

Hypothesis 1: INDIG can promote SPC.

3.2 Spatial effect

Compared with pollution types with clear boundaries such as
soil and water, pollutants and carbon emissions have the
characteristics of mobility and spillover, and atmospheric
pollutants and greenhouse gases generated in a certain area are
easily diffused and spilled over to adjacent areas due to the presence
of atmospheric circulation so that atmospheric pollution carbon
presents regional characteristics (Zhang Y. H. et al., 2022).
Digitalization has the characteristics of permeability and sharing.
Based on knowledge spillover theory, in the digital network,
knowledge, technology, information, and other key elements can
break space and industry barriers; achieve cross-regional flow, form
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“mobile space” and “mobile industry”; and radiate to drive the
development of adjacent regions. Based on the spatial
interconnectedness of regional and social development, digitally
transformed industries have a spatial effect on regional green
development through technology and information spillover
across spatial constraints (Jia et al., 2022), such as digital
government. The “trickle-down effect” theory holds that any
development is driven by local outward radiation to drive overall
development; INDIG fully penetrates all fields of the society,
strengthens regional cooperation, promotes multi-subject joint
participation, realizes cross-regional collaborative governance,
reduces negative environmental externalities, and exert a decisive
influence on the greening of social production (Huang et al., 2022).
On the one hand, information elements can boost the digital and
intelligent transformation of environmental management, establish
a database for rapid and accurate monitoring, and adopt a
differentiated management method of “one source and one file”
to achieve the integration of “sky, ground and sea.” On the other
hand, the flow of technical elements promotes exchanges and
learning flow between neighboring regions and other industries,
improves the overall green innovation ability, and technologies such
as big data help collect accurate information on regional green
innovation capabilities, help identify substantive and strategic green
innovation, and effectively improve green progress in neighboring
regions (Han et al., 2022), thereby promoting SPC.

Hypothesis 2: INDIG has a positive spatial spillover impact on
SPC in neighboring regions.

3.3 Indirect effect

The whole-process governance system is built based on the
cleaner production theory. The vital requirement of SPC is to boost
the transformation of the end governance model of “pollution first,
treatment later” to the whole-process governance model. To break
the dilemma of “pollution first, then treatment” and “emphasis on
the end over the source,” this paper probes the path of SPC from the
three links of whole-process governance. First, coal combustion
releases large amounts of greenhouse gases and atmospheric
pollutants. By replacing high-carbon and high-pollution energy
sources (such as coal), RES can prevent the source of pollution
and carbon emissions at the energy input end, which serves as the
core means of “source prevention” (Liu et al., 2021). Second, under
the realistic constraints of production costs, although GPI requires
more resource input in the short term, it can effectively curb the
disorderly consumption of energy and reduce unit energy
consumption through the iterative upgrading of production
equipment and systematic reconstruction of processes, thereby
improving production efficiency and output scale. From a long-
term perspective, such innovation can not only gradually offset
various costs required for environmental governance but also
directly reduce pollution generation during manufacturing, thus
achieving “process control” over atmospheric pollutants and carbon
emissions (Wang et al., 2016). Finally, the “Porter Hypothesis”
proposes that there is a close correlation between ER and
corporate innovation. Its core “innovation compensation” effect
not only promotes enterprises to reduce pollution and carbon

during manufacturing through technological improvement but
also urges enterprises to improve their secondary treatment
capacity for the generated pollution and carbon. As the last
guarantee for environmental governance, this post-processing
mechanism belongs to the “end-of-pipe treatment” link (Fare
et al., 2016). In addition, GPI can improve the efficiency of RES,
while RES can reduce the pressure of end-of-pipe treatment and
make ERmore likely to be implemented. These three factors form a
governance closed loop through the dynamic coordination of
“source prevention—process control—end-of-pipe treatment.”
Therefore, research centers on analyzing the mediating roles of
RES, GPI, and ER in the path of INDIG’s impact on SPC.

3.3.1 Analysis on the mediating role of RES
From enterprise production, INDIG promotes innovation of

traditional industrial structures and models. According to the
energy substitution theory (core logic: when the cost–benefit ratio
of clean energy improves, it will replace high-carbon energy as the
dominant energy for production), the in-depth digital integration of
the industrial chain has promoted RES: in traditional industrial
production, the demand for traditional industrial raw materials has
decreased, while the demand for clean energy such as electricity has
increased. Existing studies have shown that the digital economy can
promoteRES by curbing the total energy consumption (Zhang S et al.,
2022). Meanwhile, services such as intelligent decision-making and
analysis on digital platforms have reduced information and R&D
costs, facilitating the precise development and application of new
clean energy. Although the short-term investment is relatively high,
the long-term green benefits are more remarkable (Shahbaz et al.,
2022a). From the public perspective, digital platforms reduce the
difficulty of resource acquisition, and competition among suppliers
lowers energy prices, which may stimulate consumption and produce
a “rebound effect”; However, INDIG creates diverse job
opportunities to increase per capita income, and the increase in
income makes it easier for the public to choose clean energy
(Wang and Cao, 2019). To sum up, INDIG promotes RES by
reducing the demand for traditional energy and developing clean
energy and ultimately contributes to SPC.

Hypothesis 3a: INDIG promotes SPC by advancing RES.

3.3.2 Analysis on the mediating role of GPI
GPI focuses on technical optimization during manufacturing,

which can validly alleviate the contradiction between economy and
ecology and offer technical support for the synergy between the digital
and green economy during manufacturing. The theory of
technological innovation and the theory of endogenous economic
growth propose that technological innovation is a valid element for
high-quality economic progress (Zhao and Meng, 2022). On the one
side, INDIG accelerates the cross-regional flow of innovation factors
by opening up the innovation system, forcing policy innovation to
create an open innovation environment, helping break the “resource
curse” and improving the level of GPI; the intelligent transformation
of enterprise production equipment and processes through green
technologies can promote the clean transformation of energy (Cao
et al., 2021), thereby promoting SPC. On the other side,GPI can boost
factor collaboration and production efficiency, increase output and
reduce energy consumption under the same input, and promote
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resource recycling and pollution and carbon emission reduction;
meanwhile, with the help of pollution data collection and the
construction of dynamic monitoring and early warning platforms,
production strategies can be supervised and adjusted on time (Feng
et al., 2022), stimulating “smart potential” for emission reduction and
having a positive impact on SPC.

Hypothesis 3b: INDIG promotes SPC by improving GPI.

3.3.3 Analysis on the mediating role of ER
INDIG relies on digital technologies to strengthen the

effectiveness of ER through information sharing and real-time
monitoring, providing institutional guarantees for SPC. This
process can be explained by the Porter Hypothesis: appropriate
ER can incentivize corporate innovation, and INDIG makes
regulation more precise and effective through technological
empowerment, amplifying the “innovation compensation” effect
(Fare et al., 2016). At this stage, China mainly adopts incentive-
based and public-participation ER (Liang and Li, 2023), and both
have enhanced effectiveness due to the in-depth integration of
INDIG. In incentive-based regulation, digital technologies
improve the measurement accuracy and market transparency of
carbon emission rights and energy use rights trading, dynamically
adjust quotas through intelligent algorithms, make corporate
emission costs measurable and controllable, and force enterprises
that have not achieved green transformation to withdraw from the
market through a “survival of the fittest”mechanism (Sun and Deng,
2022). In public-participation regulation, digital platforms break
down information barriers, enabling the public to easily access
enterprise pollution discharge data and participate in supervision,
which prompts enterprises to accelerate green transformation
through digital means and take the initiative to invest in end-of-
pipe treatment (Han X. F. et al., 2023).

Hypothesis 3c: INDIG promotes SPC by strengthening ER.
The research frame diagram of this paper is constructed,

see Figure 1.

4 Measurement methods and
data sources

4.1 Model building

First, the benchmark regression model is used to explore the
direct effect of INDIG on SPC, see Equation 1.

SPCit � αit + θ1INDIGit + θn ln Zit + ui + vt + εit, (1)
where: i means the city, t means the year, Zit represents the
control variables, including green finance level (GH),
opening up to the outside world (OPEN), human capital
accumulation (HCA), informationization level (INFO), and
population density (PD). α is a constant term; θ represents
regression coefficients; ui and vt , respectively, represent
individual-fixed and time-fixed effects; and ε is a random
perturbation term.

Second, referring to Elhorst (2010), the research employs SPDM
to probe the spatial spillover impact of INDIG on SPC in
neighboring regions, see Equation 2.

SPCit � αit + ρWijSPCit + β1INDIGit + βn ln Zit + φ1WijINDIGit

+ φnWij ln Zit + ui + vt + εit,

(2)
where α is the constant, i and j represent the city, W is the spatial
weight matrix of order 264 × 264, β1 is the spatial autoregressive
coefficient, β2 and β3 represent the regression coefficients of each

FIGURE 1
Research frame diagram.

Frontiers in Environmental Science frontiersin.org05

Zhang et al. 10.3389/fenvs.2025.1599549

mailto:Image of FENVS_fenvs-2025-1599549_wc_f1|eps
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1599549


variable, and β4 and β5 represent the regression coefficients of the
spatial lag term of each variable.

The spatial weights matrix: Wij. A geographical distance spatial
weight matrix is used, and explanatory power is not impacted by the
sample size (Feng et al., 2021). dij calculates the Euclidean distance
between the centroid of i city and j city according to the latitude and
longitude, see Equation 3.

Wij � 0 dij <d
1/dij dij ≥d.

{ (3)

Finally, this paper introduces three types of mediating variables:
RESit, GPIit, and ERit, and the multiple mediating effect model is
used to research the indirect influence mechanism of INDIG on
SPC, see Equations 4, 5.

mediationit � γ0 + γ1INDIGit + γnlnZit + ui + vt + εit, (4)
SPCit � φ0 + φ1INDIGit + φ2mediationit + φnlnZit + ui + vt + εit,

(5)
where, γ0 and φ0 are constant termsand γn and φn represent the
regression coefficient (i � 1, 2, 3 . . . . . .).

4.2 Variable measurement and description

4.2.1 Variable measures
1. Explained variable: SPC. The issues with reduction of air

pollution and greenhouse gas are key to China’s current
environmental governance, and the two generation
processes have the same origin, course, and influence on
each other (Zhang J et al., 2022; Sun and Deng, 2022), and
SPC is feasible. We selected the emission of sulfur dioxide,
soot, and wastewater to measure pollution reduction. CO2

emissions are selected to represent carbon reduction.
Drawing on the practice of Hu (2023), the coupling
coordination model is used. The range standardization
method is used to process the index dimensionless, and the
model is modified by referring Wang et al. (2021), see
Equations 6–8.

C � 2
�����
U1U2

√
U1 + U2

, (6)
T � aU1 + bU2, (7)
SPC � ������

C × T.
√

(8)

Among them,U1 is pollutant emissions, U2 is carbon emissions,
and a and b represent the proportion of gravity, taking a � b � 0.5.
SPC is measured as a coupling-coordination index bounded
between 0 and 1; the larger the value, the better the coupling
state between the two, and vice versa, the weaker.

2. Explanatory variable: INDIG. Referring to Zhang S et al.
(2022), from the three dimensions of primary industry,
secondary industry, and tertiary industry, the Indicator of
INDIG is measured using the projection pursuit method
based on the real-coded accelerated genetic algorithm.
Specifically, the indicators for the primary industry include
the number of internet broadband access users and the added

value of the primary industry; the indicator for the secondary
industry includes the added value of the secondary industry;
the indicators for the tertiary industry include e-commerce
transaction volume, digital inclusive finance index, and the
added value of the tertiary industry.

3. Mediating variables: Different from the traditional model of
governance in a certain link, research explores the transmission
path of SPC in the affected areas of INDIG based on the
whole-process management of “source--process--end-
of-pipe.”

Source prevention is a preventive environmental management
strategy (Liu et al., 2021). China’s environmental governance has
focused on end-of-pipe and over-the-source, which, to a certain
extent, has led to slow ESA and industry structure adjustment in
high-carbon and high-energy-consuming industries, slowing down
the governance process. Promoting the clean transformation of
energy and minimizing pollution at the source, we refer to
Shahbaz et al. (2022b) to denote RES.

Process control is based on the source prevention that has not been
fully realized. Further treatment of pollutant sources that raise resource
utilization and production efficiency effectively reduces pollutant
generation, creating a subtractive effect on emissions and reinforcing
pollution control. GPI reduces pollution through methods such as
production process reengineering and equipment renewal. We refer
to Feng et al. (2022) to denote GPI.

End-of-pipe treatment is a complement to the association between
process and source, which refers to taking advantage of high and new
technology to clean the air pollutants and greenhouse gases that have
been produced at the end of product production to meet emission
standards, which is a “first pollution and then treatment” model of
emission reduction, which is hard to remove pollutants and is a
“palliative” behavior. Due to the “competitive tournament” system,
government officials are limited by the tenure rule and prefer to
adopt investment methods to deal with air pollution at the end of the
treatment and to quickly achieve the constraint goal of pollution carbon
emission reduction; we refer to Chen and Chen (2018) to denote ER.

4. Control variables: SPC will be affected by internal and external
factors in addition to INDIG. Drawing on existing studies, the
control variables are selected: (1) GH. Green finance is an
essential part of the economic system and promotes SPC,
referring to Cao et al. (2021) to denote GH. (2) OPEN.
Openness determines the flow of factors, thereby affecting
resource consumption and green technology innovation,
which is an important factor affecting SPC, referring to
Wang et al. (2019) to measure OPEN. (3) HCA. Human
capital is the main body of technological innovation and a vital
factor affecting sustainable development, referring to Lin et al.
(2021) to measure HCA. (4) INFO. The informatization
process promotes technological progress, optimal allocation
of resources, industrial structure optimization, etc., forming
the “energy factor substitution effect”, which is an important
way to reduce energy consumption and improve SPC, referring
to Wu and Deng (2023) and Rao (2025) to measure INFO. (5)
PD. PD is strongly correlated with energy consumption and
green development, and it is an important focus in the research
on SPC. It is denoted concerning Ribeiro et al. (2019).
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4.2.2 Data sources and descriptions
Considering the availability of data and avoiding the estimation

bias caused by data omission, the panel data of 264 cities in China
from 2012 to 2023 were selected as the research object, and the data
were derived from China City Statistical Yearbook, the website of the
National Bureau of Statistics, and the statistical yearbooks of various
provinces and public information. The linear interpolation and
logarithmic methods are used. Tables 1, 2 show that there are no
outliers in all variables, and the mean VIF is 1.65, showing that the
possibility of multilinearity between the explanatory variables is not
serious. To further enhance the visibility of the results, additional
figures, Figures 2, 3, have been added.

5 Empirical results and analysis

5.1 Benchmark regression

After the Hausman test, a fixed-effects model is selected (see
Table 3). The effect coefficient of INDIG on SPC is remarkably
optimistic, showing that INDIG can help boost SPC and test H1,

referring to Yang et al. (2023). From a control variable perspective,
GH promotes SPC at the 1% significance level. By guiding social
capital to tilt toward fields, clean energy, and R&D of carbon
emission reduction technologies, green finance provides financial
support for enterprises’ green production transformation and
regional ecological governance projects, thereby promoting SPC
(Lin et al., 2021). The effect coefficient of INFO on SPC is very
optimistic at the 1% level. With the help of technologies, real-time
tracking of enterprise pollution discharge and energy consumption
data can be realized, timely early warning of excessive behaviors and
rapid traceability can be carried out, and dynamic control and
management of pollution and carbon emissions can be
strengthened, which is conducive to the implementation of work
of SPC (Ribeiro et al., 2019).

5.2 Endogenous problem analysis

Starting from the research theme, it is very likely that there may
be a certain causal endogenous relationship between INDIG and
SPC. Although GH, OPEN, HCA, INFO, and PD have been

TABLE 1 Qualitative description of the variables.

Classify Variable Calculation method

Explained variable SPC Model calculations are coordinated by coupling

Explanatory variable INDIG Measured by the evaluation index system

Mediating variables RES Total supply of artificial/natural gas

GPI Total investment in tech transformation and internal R&D expenditure

ER Proportion of environmental-related word frequency in government work reports

Control variables GH Measured from four dimensions: green credit, securities, insurance, and investment

OPEN Proportion of total import–export volume to regional GDP

HCA Proportion of regular higher education enrollments to year-end total population

INFO Derived from mobile phone and internet penetration rates

PD Proportion of the registered population to the administrative land area

TABLE 2 Correlation analysis and multicollinearity analysis.

Variable SPC INDIG GH OPEN HCA INFO PD

SPC 1.000***

INDIG 0.374*** 1.000***

GH 0.243*** 0.380*** 1.000***

OPEN 0.019 0.394*** 0.296*** 1.000***

HCA 0.069*** 0.419*** 0.048*** 0.276*** 1.000***

INFO 0.423*** 0.592*** 0.308*** 0.546*** 0.474*** 1.000***

PD −0.014 0.530*** 0.232*** 0.405*** 0.219*** 0.323*** 1.000***

VIF — 2.12 1.25 1.59 1.38 2.07 1.50

1/VIF — 0.472690 0.801980 0.630855 0.722257 0.482500 0.665965

***, **, and * indicate significance at the 1%, 5%, and 10% levels respectively. The values within parentheses represent robust standard errors.
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included as control variables to solve the endogenous problem of
missing variables, there are many factors affecting SPC, and use of a
regression model makes it hard to contain all factors, and the
problem of missing variables is produced.

The DWH test method of heteroscedasticity is used, which solves
the problem that the Hausman test cannot solve the heteroscedasticity,
and obtains a statistic of 5.398 and a P-value of 0.020, showing that the
INDIG index in the model has endogenous problems. To reduce the
existing endogenous problem, the instrumental variable method is used

to alleviate the endogenous problem, drawing on the methods of Chen
et al. (2022) and Huang et al. (2019), taking the topographic undulation
(iv1) and Interaction term between 1984 provincial post offices per
hundred people and prior-year national internet users (iv2) as the tool
variables of INDIG, see Table 4.

The p-value of the LM statistic is 0.002, indicating that there is no
under-identification. Instrumental variables are remarkably relevant
to INDIG, thus verifying their validation. The coefficients of INDIG
are remarkably positive, showing that the conclusion of the research
still holds after alleviating the endogenous problem. From the system
GMM model’s results, the feasibility of the system GMM model is
verified by AR, Hansen, and other tests, and compared with the
traditional model; this model underestimates the promotion impact of
INDIG on SPC. Both models show that INDIG has a remarkably
positive impact on SPC, which further confirms H1.

5.3 Spatial effect test

5.3.1 Initial exploration
The three-dimensional nuclear density map of INDIG and SPC

from 2012 to 2023 is drawn, and its temporal evolution trend and
spatial distribution are observed, as shown in Figure 4. From (a), the
graph presents the characteristics of “single peak dominance, peak

FIGURE 2
Correlation analysis chart.

FIGURE 3
Multicollinearity analysis chart.
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elevation, and distribution convergence.” The single peak stems from
policy inclusiveness and low technology reuse costs, which promote
synchronous digital transformation in all regions and avoid regional
polarization. The peak growth reflects the advancement of INDIG
from a production auxiliary to a core link. The distribution convergence
indicates that the gap in INDIG between regions has narrowed. From
(b), the phenomenon of “coexistence ofmultiple peaks and right shift of
the main peak” appears. Multiple peaks indicate that SPC is not very
stable, being in a state of constant fluctuation with regional differences.
The right shift of the main peak shows that, despite large intra-regional
differences, SPC has gradually strengthened over time.

5.3.2 Exploratory spatial data analysis
The spatial correlation test of the research objects is conducted

using global Moran’s I, as shown in Table 5; Figure 5. Both INDIG
and SPC exhibit a remarkable positive spatial correlation, with stable
changes in their spatial correlation characteristics. This indicates a
positive connection between local and adjacent regions, meaning
that the improvement of SPC and INDIG in one region helps drive
up the corresponding indicator levels in neighboring regions.
Moreover, over time, the connections between various regions
remain relatively stable, and their spatial agglomeration and
dependence degree will not weaken accordingly.

5.3.3 Spatial spillover effect
The above model verifies the remarkable positive impact of

INDIG on SPC, but it does not consider the mutual influence
between regions. Therefore, SPDM is adopted for further research.
After LM,Wald, LR, and Hausman tests, this paper finally selects the
SPDM of space-time dual fixed spatial panel to analyze the spatial
spillover effects of INDIG on SPC, see Tables 6, 7. Column (1) of
Table 6 shows that the impact coefficient of the interaction termW*
INDIG on SPC is remarkably positive.

To fully verify the rationality of the selection of spatial weight
matrices, economic distance matrices and economic–geographical
nested matrices are further used for empirical tests; see columns
(2)–(3) of Table 6. The results show that the impact coefficient of
INDIG on SPC is not remarkable. Thismay be because the spatial logic

of SPC is more dependent on the governance convenience and
pollution diffusion characteristics brought about by geographical
proximity, while economic distance matrices and
economic–geographical nested matrices have a weak correlation with
this logic, which ultimately leads to the insignificant impact coefficient.

Robustness test. According to column (4) of Tables 6, 7, to
mitigate endogeneity issues, this paper further adopts the
dynamic of SPDM for testing. The results show that the
spatial lag term of SPC is remarkable. The intra-regional
spillover effect of INDIG on SPC is not remarkable, but there
exists a strong inter-regional spillover effect, and the long-term
spillover impact of INDIG is significantly greater than the short-
term one. Its economic logic can be further elaborated by
combining the characteristics of regional factor flows and the
research by Ren et al. (2023): regarding the insignificant intra-
regional spillover, on the one hand, it stems from the
“polarization effect” in the core regions of INDIG: factors of
technology and capital agglomerate in regions with marked
digitalization, making it difficult to effectively diffuse to
surrounding areas within the same region in the short term. In
contrast, the high energy-consuming nature of the digital
industry itself leads to an increase in local pollution and
carbon, while measures of emission reduction, such as energy
structure optimization and green innovation, have a time lag in
taking effect. The reallocation of factors within the region has not
yet formed sufficient compensation for green benefits, so no
remarkable intra-regional spillover has been observed. In terms
of the long-term and short-term differences in inter-regional
spillover, the short-term effect mainly arises from the rapid
cross-regional diffusion of digital technologies and the real-
time flow of information factors. INDIG forms a
demonstration effect through technology promotion and model
innovation, forcing enterprises in the surrounding regions to
participate in SPC by introducing technologies or conducting
independent innovation. This process quickly manifests itself,
relying on the high mobility of digital factors. The strengthening
of the long-term effect is closely related to the continuous cross-
regional allocation of factors such as capital and talent. With the

TABLE 3 Baseline regression results.

Variable Coefficient Standard error T-value P-value [95% Confidence
interval]

INDIG 1.022*** 0.039 25.89 0.000 0.945 1.099

GH 0.931*** 0.123 7.54 0.000 0.689 1.173

OPEN −0.031 0.042 −0.73 0.468 −0.113 0.052

HCA 0.492 0.425 1.16 0.247 −0.342 1.326

INFO 0.054*** 0.008 6.85 0.000 0.038 0.069

PD −0.000 0.000 −0.46 0.643 −0.000 0.000

_cons −1.041*** 0.040 −25.89 0.000 −1.120 −0.962

Sigma_u 0.342 N 3168 F 752.40

Sigma_e 0.177 R2 0.609

rho 0.788

F test that u_i = 0: F (263, 2898) = 8.20; Prob > F = 0.000.
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increase in INDIG, the optimal reorganization of factors across regions
becomes more adequate, promoting the gradual formation of a long-
term mechanism for collaborative emission reduction, thus producing
remarkable long-term spillover effects. Comparedwith the results of the
static of SPDM, the dynamic of SPDM is not an obvious change in
regression, showing that the model is robust and verifying H2.

5.4 Mechanism analysis

Based on the above results, the mediating mechanism of how
INDIG affects SPC is further tested, see Table 8. From whole-
process management, under the impacts of RES, GPI, and ER,

INDIG has an indirect impact on SPC in China to a certain extent,
and H3a, H3b, and H3c have been confirmed.

Columns (1) and (2) present the test results with RES as the
mediating variable. Under the influence of RES, INDIG has a partial
mediating effect on SPC. For every 1-unit change in INDIG, RESwill
increase by 2.255 units, which in turn exerts an indirect effect of 0.092
(2.255*0.041) on SPC. This result is supported by Lin et al. (2021) and
Ren et al. (2023), demonstrating that INDIG can reduce the technical
threshold and cost of RES through smart grid dispatching and digital
twin simulation, enhance RES, and reduce pollutants and carbon
emissions from fossil energy combustion at the energy input stage.

Columns (3) and (4) present the test results with GPI as the
mediating variable. INDIG has a remarkable optimistic effect on
GPI, with an impact coefficient of 2.187, while GPI significantly
promotes SPC, with an impact coefficient of 0.029. The product of
the two regression coefficients is significantly positive, indicating
that INDIG exerts an optimistic impact on SPC by promoting GPI,
with an impact coefficient of 0.960. This conclusion is supported by
Feng et al. (2022), which states that INDIG effectively improves
GPI, thereby indirectly promoting SPC.

Columns (5) and (6) report the test results with ER as the
mediating variable. When other factors remain unchanged, every 1-
unit change in INDIGwill promote an increase of 0.006 units in ER;
every 1-unit increase in ER will significantly drive up SPC by
4.444 units. That is, INDIG indirectly promotes SPC through
the mediating role of enhancing ER, with a total impact
coefficient of 0.994. This result is evidence in Han X. F. et al.
(2023), which indicates that ER is a mediating mechanism
through which INDIG affects SPC.

Overall, the positive indirect impact of INDIG on SPC runs
through the entire governance chain of “source--process--end-of-
pipe”: through RES, it reduces reliance on fossil energy and the
generation of pollutants from the source of energy consumption;
relying on GPI, it strengthens energy efficiency improvement and
pollution control during manufacturing; and through the transmission
of ER, it forces technological upgrading and collaborative emission
reduction at the end of governance. These three paths confirm that
INDIG not only affects SPC through direct spillover effects but also
constructs a collaborative mechanism of “prevention-control-
treatment” through the whole-process transmission of “source -
process - end.” This transition facilitates SPC evolution from
isolated process improvements to holistic system upgrades, while
simultaneously enhancing the systematic coordination of regional
eco-environmental governance through digital enablement.

5.5 Robustness test

The robustness of the results is further verified, see Table 9:
addressing endogeneity issues, adjusting research samples, and
modifying control variables: first, addressing endogeneity issues.
This paper employs a dynamic panel regression model, selecting the
t-1 lagged term of SPC as the explained variable. The results in
column (1) are like the above results, indicating model robustness;
second, adjusting research samples. ① To resolve the problem of
right-censored samples, this paper excludes relevant data for 2023.
The results of Column (2) show no remarkable differences from the
previous test results, demonstrating the robustness of the empirical

TABLE 4 2sls and system GMM regression of INDIG to SPC.

Variable (1) (2) (3)

One-
stage

Two-
stage

Dynamic
GMM

L SPC 0.260***

(0.002)

INDIG 1.192** 0.172***

(0.493) (0.005)

iv1 −0.018**

(0.007)

iv2 −0.000**

(0.000)

GH 0.536*** 1.192** 0.009

(0.045) (0.493) (0.015)

OPEN −0.073*** 1.192** 0.002

(0.025) (0.493) (0.010)

HCA 2.161*** 1.192** −0.560***

(0.206) (0.493) (0.054)

INFO 0.101*** 1.192** 0.006**

(0.007) (0.493) (0.002)

PD 0.000*** 1.192** −0.000***

(0.000) (0.493) (0.000)

cons 0.678*** 1.192** 0.447***

(0.019) (0.493) (0.008)

DWH 0.020

Kleibergen-Paap rk LM
statistic

12.279[0.002]

Hansen 0.996

AR(1) 0.000

AR(2) 0.113

*, **, *** indicate significance at the 1%, 5%, and 10% levels respectively. The values within

parentheses represent robust standard errors.
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findings. ② Samples from regions with the largest and smallest 1%,
5%, and 10% of SPC are sequentially removed, and benchmark
regression tests are conducted on 258, 236, and 210 cities,
respectively. The results of INDIG in column (3) are similar to
the previous results with no obvious differences (due to space
constraints, only the empirical results for 236 cities are presented
in this paper). Third, modifying control variables.①Adding control
variables. Urbanization level (UR) in China is highly correlated with
SPC, and it is also a a factor influencing SPC. Therefore, UR is
increased as a control variable, measured by the proportion of non-
agricultural population in the registered population (Nam et al.,
2013), as shown in column (4). ② Reducing control variables by
excluding PD, see column (5). The results obtained by adding or

reducing control variables are similar to the above results, showing
the robustness of the findings in this paper.

Figure 6 is provided to more clearly present the robustness test
results and their differences from the benchmark regression results.

6 Heterogeneity analysis

6.1 Urban geographical location
heterogeneity

To further explore the heterogeneous impact of INDIG on SPC, the
sample is divided into two regions, energy basin and non-energy basin, as

FIGURE 4
Spatial distribution of the three-dimensional nuclear density (a) INDIG. (b) SPC.

TABLE 5 Spatial correlation test.

Year INDIG SPC

Moran value Z-value P-value Moran value Z-value P-value

2012 0.026*** 5.427 0.000 0.018*** 3.985 0.000

2013 0.025*** 5.263 0.000 0.026*** 5.434 0.000

2014 0.024*** 5.171 0.000 0.007** 1.977 0.024

2015 0.019*** 4.232 0.000 0.022*** 4.778 0.000

2016 0.016*** 3.748 0.000 0.015*** 3.473 0.000

2017 0.024*** 5.156 0.000 −0.005 −0.213 0.416

2018 0.025*** 5.364 0.000 −0.002 0.357 0.361

2019 0.026*** 5.490 0.000 0.009*** 2.461 0.007

2020 0.031*** 6.367 0.000 0.079*** 15.369 0.000

2021 0.031*** 6.461 0.000 0.022*** 4.753 0.000

2022 0.031*** 6.403 0.000 0.018*** 4.028 0.000

2023 0.030*** 6.170 0.000 0.019*** 4.220 0.000

*, **, *** indicate significance at the 1%, 5%, and 10% levels respectively. The values within parentheses represent robust standard errors.
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shown in columns (1)–(2) of Table 10. INDIG has significantly
promoted SPC in energy basins, and the impact coefficient and
significance are higher than those of non-energy basins. The rationale
stems from the energy basin’s dual role as both a critical ecological barrier
and a key economic zone in China. As government recognition of the
basin’s strategic importance has grown, so has policy attention. This
enhanced focus manifests in two ways: on the one hand, enterprises are
more likely to grasp the chance of digitization to carry out the clean

transformation, and on the other hand, the government and individuals
rely on digital platforms to dynamically monitor environmental pollution
and governance and implement stricter ER than other regions; the
“pollution shelter” hypothesis considers that polluting corporations are
easier to be transferred to other regions. In contrast, non-energy basins
experience weaker governmental oversight and support. These regions
additionally suffer from negative environmental externalities resulting
from the transfer of polluting industries from energy basins.

FIGURE 5
Mean value Moran scatter plot of (a) INDIG and (b) SPC.

TABLE 6 Results of SPDM.

Variable (1) (2) (3) (4)

SPDM (W1) SPDM (W2) SPDM (W3) The dynamic of SPDM (W1)

L.W* SPC −0.693*** (0.035)

INDIG −0.176** (0.079) −0.091 (0.061) −0.103 (0.070) −0.051 (0.068)

W* INDIG 0.754* (0.397) −0.059 (0.152) 0.103 (0.151) 0.432** (0.199)

ρ 0.758*** (0.062) 0.047 (0.034) 0.164*** (0.033) 0.912*** (0.019)

σ2 0.019*** (0.000) 0.020*** (0.000) 0.019*** (0.000) 0.015*** (0.000)

Controls YES YES YES YES

R-sq 0.473 0.415 0.000 0.686

Log-L 1797.08 1737.84 1747.74 2076.83

N 3168 3168 3168 2904

*, **, *** indicate significance at the 1%, 5%, and 10% levels respectively. The values within parentheses represent robust standard errors.

TABLE 7 Results of the dynamics of SPDM.

变量 Short-term Long-term

Direct Indirect Total Direct Indirect Total

INDIG −0.028 (0.063) 4.493** (1.943) 4.466** (1.932) −0.133 (0.221) 5.563** (2.576) 5.430** (2.527)

*, **, *** indicate significance at the 1%, 5%, and 10% levels respectively. The values within parentheses represent robust standard errors.
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6.2 Urban hierarchical heterogeneity

Further analysis is conducted on the effect of urban hierarchy
on INDIG. Referring to Yu et al. (2021), the samples are divided
into three categories: first-tier cities, second/third-tier cities, and
fourth/fifth-tier cities for research, see columns (3)–(5) of
Table 10. INDIG remarkably promotes SPC, but the impact
coefficients follow the order: first/second/third-tier cities >
fourth/fifth-tier cities. The reason may be that first-/second-/
third-tier cities have more complete digital infrastructure, with
stronger support from 5G, industrial internet, etc., enabling real-
time monitoring and regulation of pollution discharge. In
addition, these cities have more high-end industries, providing
a sound foundation and greater space for digital transformation.
In contrast, fourth-/fifth-tier cities are dominated by traditional
industries, which face higher costs and greater difficulties in
transformation.

6.3 Urban scale heterogeneity

Further investigation is made into the impact of urban scale on
the effect of INDIG. For samples of different urban scales, we
examine whether there are differences in the impact of INDIG on
SPC. By the Notice on Adjusting the Standards for Classifying Urban
Scales published by the State Council, cities are classified as follows:
large cities (with a permanent population of more than 1 million)
and small and medium-sized cities (less than 1 million), see columns
(1)–(2) of Table 11. The results show that INDIG significantly
promotes SPC in large cities, with a higher impact coefficient
compared to small cities. The reason lies in that large cities have
greater superiority in terms of resource endowment, industrial
foundation, technical support, and policy coordination, which
form a more efficient match with the technical characteristics of
INDIG and the implementation conditions for SPC. Conversely,
small and medium-sized cities have a lag in digital infrastructure,

TABLE 8 Test of the mechanism of INDIG affecting SPC.

Variable (1) RES (2) SPC (3) GPI (4) SPC (5) ER (6) SPC

INDIG 2.255*** 0.930*** 2.187*** 0.960*** 0.006*** 0.994***

(0.127) (0.041) (0.233) (0.039) (0.001) (0.040)

RES 0.041***

(0.006)

GPI 0.029***

(0.003)

ER 4.444***

(1.446)

GH 2.759*** 0.819*** 0.401 0.919*** −0.004*** 0.949***

(0.399) (0.123) (0.729) (0.122) (0.002) (0.123)

OPEN 0.676*** −0.058 −0.944*** −0.004 0.000 −0.031

(0.136) (0.042) (0.249) (0.042) (0.001) (0.042)

HCA 2.853** 0.376 4.282* 0.370 0.015*** 0.427

(1.374) (0.422) (2.511) (0.420) (0.005) (0.425)

INFO 0.043* 0.052*** 0.035 0.053*** −0.000*** 0.056***

(0.025) (0.008) (0.046) (0.008) (0.000) (0.008)

PD 0.000 −0.000 −0.000 −0.000 −0.000*** −0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

cons 5.425*** −1.262*** 9.542*** −1.314*** 0.005*** −1.062***

(0.130) (0.050) (0.237) (0.049) (0.001) (0.041)

Bootstrap test Z = 6.080, P = 0.000 Z = 6.260, P = 0.000 Z = 2.990, P = 0.003

Sobel test Z = 6.619, P = 0.000 Z = 6.573, P = 0.000 Z = 2.986, P = 0.003

N 3168 3168 3168 3168 3168 3168

F 330.47 663.31 63.89 675.69 42.05 648.14

R2 0.406 0.616 0.117 0.620 0.080 0.610

*, **, *** indicate significance at the 1%, 5%, and 10% levels respectively. The values within parentheses represent robust standard errors.
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TABLE 9 Robustness test.

Variable (1) (2) (3) (4) (5)

L SPC Adjust study
sample 1

Adjust study
sample 2

Increase control
variables

Reduce control
variables

INDIG 1.186*** 1.051*** 1.069*** 1.017*** 1.017***

(0.047) (0.039) (0.042) (0.039) (0.038)

GH 1.072*** 0.937*** 0.939*** 0.881*** 0.922***

(0.125) (0.127) (0.132) (0.125) (0.122)

OPEN −0.011 −0.009 −0.037 −0.026 −0.031

(0.045) (0.043) (0.044) (0.042) (0.042)

HCA −0.003 −1.809*** 0.716 0.462 0.504

(0.416) (0.655) (0.469) (0.425) (0.424)

INFO 0.060*** 0.077*** 0.055*** 0.051*** 0.055***

(0.008) (0.008) (0.008) (0.008) (0.007)

PD −0.000 −0.000 −0.000 −0.000

(0.000) (0.000) (0.000) (0.000)

UR 0.166**

(0.067)

_cons −1.326*** 1.051*** −1.109*** −1.080*** −1.049***

(0.046) (0.039) (0.042) (0.043) (0.036)

N 2904 2904 2832 3168 3168

F 746.9 766.47 737.3 646.9 903.08

R2 0.630 0.636 0.631 0.610 0.609

*, **, *** indicate significance at the 1%, 5%, and 10% levels respectively. The values within parentheses represent robust standard errors.

FIGURE 6
Stability test graph.
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and some traditional industries have not even completed
the intelligent transformation of basic equipment, making it
difficult for INDIG to be implemented, and thus SPC is
naturally limited.

6.4 Urban agglomeration heterogeneity

Further examination is conducted on the impact of urban
agglomerations on the effect of INDIG. The influences of
INDIG on SPC in the Beijing–Tianjin–Hebei, Yangtze River
Delta, and Pearl River Delta urban agglomerations are tested,
respectively, see columns (3)–(4) of Table 11. The impact
coefficients of INDIG on SPC in these three urban
agglomerations are larger than those of the full sample. The
reason may be that industrial connections within urban
agglomerations are close, enabling digital technologies to spread
rapidly along the industrial chain and realize cross-regional
collaborative governance of energy consumption and pollution.
In addition, these areas are rich in innovative resources,
facilitating faster R&D and application of digital technologies,
and are supported by national collaborative policies, which
reduce coordination costs.

To present the heterogeneity analysis results of INDIG concerning
SPC more clearly and to highlight the differences between these results
and the previous results, the effect coefficients of INDIG on SPC are
summarized (see in Figure 7).

7 Main conclusions and implications

7.1 Main conclusions

1. INDIG has exerted a remarkable positive effect on SPC. The
instrumental variables are introduced, and the robustness tests
are conducted. The conclusion is still robust.

2. Through exploratory spatial data analysis, the spatial correlation
between INDIG and SPC is remarkably optimistic.INDIG has
obvious spatial spillover characteristics for SPC, and the inter-
regional spillover effect is strong, and the long-term spillover effect
of INDIG is significantly greater than that of the short term.

3. Based on whole-process governance, explore the mechanism of
INDIG on SPC. It can be found that INDIG has different
degrees of indirect impact on SPC, which is manifested in
indirectly promoting SPC by improving RES of “source
prevention,” GPI by improving “process control,” and
strengthening ER of “end-of-pipe treatment.”

4. In terms of the heterogeneity of urban geographical locations, it
is found that compared with non-energy basins, INDIG has a
greater impact on SPC in energy basins. In terms of urban
hierarchy heterogeneity, INDIG plays a more vital role in
boosting SPC in first-, second-, and third-tier cities. In terms of
urban scale heterogeneity, INDIG has a more remarkable
promoting impact on SPC in large cities. Regarding urban
agglomeration heterogeneity, INDIG exerts a more
remarkable promoting effect on SPC in urban agglomerations.

TABLE 10 Heterogeneity analysis 1.

Variable (1) (2) (3) (4) (5)

Energy basin Non-energy basin First-tier cities Second-/third-tier cities Third-/fourth-tier cities

INDIG 1.264*** 0.921*** 1.261*** 1.063*** 0.991***

(0.077) (0.046) (0.172) (0.065) (0.053)

GH 0.699*** 1.009*** 0.265 1.114*** 0.745***

(0.269) (0.139) (0.470) (0.193) (0.172)

OPEN 0.128 −0.059 −0.065 −0.093 0.044

(0.115) (0.045) (0.115) (0.068) (0.064)

HCA 0.567 0.545 −2.127** 0.800 1.587**

(0.843) (0.493) (0.860) (0.603) (0.792)

INFO 0.007 0.070*** 0.076*** 0.057*** 0.049***

(0.015) (0.009) (0.020) (0.014) (0.011)

PD 0.001*** −0.000 0.000 −0.000** −0.001**

(0.000) (0.000) (0.000) (0.000) (0.000)

_cons −1.662*** −0.994*** −1.946*** −1.072*** −0.563***

(0.154) (0.044) (0.177) (0.090) (0.120)

N 804 2364 216 1308 1644

F 194.94 571.46 72.01 352.40 349.30

R2 0.615 0.613 0.692 0.639 0.583

*, **, *** indicate significance at the 1%, 5%, and 10% levels respectively. The values within parentheses represent robust standard errors.
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TABLE 11 Heterogeneity analysis 2.

Variable (1) (2) (3) (4) (5)

Big city Small and medium-sized
cities

Beijing–Tianjin–Hebei The Yangtze River
Delta

Zhongguancun
Area

INDIG 1.135*** 1.007*** 1.503*** 1.104*** 1.637***

(0.083) (0.045) (0.259) (0.101) (0.480)

GH 0.814*** 0.954*** 1.035* 0.969*** 0.688

(0.224) (0.148) (0.537) (0.315) (0.962)

OPEN 0.001 −0.0147 −0.091 −0.119 0.276*

(0.079) (0.051) (0.161) (0.075) (0.163)

HCA 0.261 0.883 0.908 −1.432 −2.308

(0.549) (0.679) (1.844) (1.102) (1.838)

INFO 0.066*** 0.0434*** 0.146*** 0.075*** 0.0487

(0.014) (0.010) (0.049) (0.020) (0.037)

PD −0.000 0.000 0.000 0.000 −0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

_cons −1.513*** −0.929*** −2.280*** −1.639*** −2.385***

(0.082) (0.091) (0.370) (0.231) (0.541)

N 924 2244 120 312 84

F 237.39 520.36 97.36 199.14 11.70

R2 0.629 0.604 0.849 0.810 0.497

*, **, *** indicate significance at the 1%, 5%, and 10% levels respectively. The values within parentheses represent robust standard errors.

FIGURE 7
Visualization comparison chart of heterogeneity analysis.
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7.2 Practical enlightenment

1. Strengthen the spatial spillover effect of INDIG. On the one
side, establish a cross-administrative regional digital joint
platform to promote the sharing of digital technologies,
interconnection of green data, and coordination of emission
reduction standards among adjacent cities. For example,
through the joint construction of regional-level industrial
internet platforms, the diffusion of environmental protection
technologies and energy-saving solutions is accelerated in
adjacent regions and the spatial cost of technology spillover
is reduced. On the other side, in response to the geographical
attenuation characteristics of spillover effects, they give play to
the leading role of core cities and the undertaking role of
surrounding cities. Encourage cities with a higher level of
INDIG to transfer green digital technologies and low-
carbon industrial resources to adjacent regions, and
meanwhile, incentivize adjacent cities to actively undertake
spillover dividends through tax incentives, subsidy policies,
and other measures. In addition, it is needed to boost the inter-
regional ecological compensation and benefit-sharing
mechanism, provide reasonable compensation to the
exporting regions that have made emission reduction
contributions due to spillover effects, avoid the “free-rider”
phenomenon from weakening the collaborative motivation,
and ensure that the spatial spillover effect is continuously
transformed into the green development momentum of the
regional whole.

2. Attach importance to heterogeneity and promote coordinated
development. Previous studies have found that the impact of
INDIG on SPC varies. In the process of advancing INDIG to
empower SPC, the government needs to fully respect the
development differences of different spatial units and
implement differentiated and precision-oriented policy
strategies. At the geographical location level, emphasis should
be placed on strengthening the layout of INDIG in cities in
energy basins. Relying on their resource endowments and
industrial foundations, digital technologies should be used to
optimize energy development and utilization efficiency.
Meanwhile, increase investment in digital infrastructure in
cities in non-energy basins to narrow the gap in green
transformation capabilities between regions. Regarding
differences in urban hierarchy and scale, both gradient
advancement and key breakthroughs should be considered.
On one side, support first-/second-/third-tier cities and large
cities to leverage their first-mover advantages in digitalization
and form a benchmarking effect for green development through
the digital transformation of industrial clusters. Take Baoshan
District in Shanghai as an example: the green low-carbon supply
chain platform integrates enterprises, and the digitalization of
Baosteel and Ouyeel Cloud has formed a cross-field
demonstration. Linfen has promoted technological emission
reduction in enterprises while building 5G smart coal mines,
providing a model for the transformation of resource-based
cities. On the other side, improve the digital application level of
fourth-/fifth-tier cities and small cities through policy guidance
and technology deployment so as to avoid the imbalance of
emission reduction capabilities exacerbated by the digital divide.

Enshi Prefecture can rely on policies to strengthen infrastructure
and introduce technologies to support the green development of
agriculture and hydropower. Gaoyang County has promoted the
digitalization of textile enterprises through special plans to
achieve “zero discharge” in printing and dyeing, providing a
path for the transformation of small cities. For urban
agglomerations, efforts should be made to further strengthen
the collaborative linkage of internal INDIG. By the convenience
of factor mobility and the advantages of functional
complementarity within urban agglomerations, promote
cross-city sharing of digital technologies and radiation of
green achievements, amplify the scale effect of INDIG and
the synergy of emission reduction, and provide sustainable green
momentum for coordinated regional development.

3. Emphasize the effective integration of environmental governance
across the entire process and multiple links. Previous studies have
found that INDIG can exert an indirect impact on SPC by
empowering the whole-process management, which demands the
government to focus on building an integrated pollution control
and prevention system to achieve closed-loop management of
SPC. First, adjust RES for “source prevention.” The government
can establish a digital monitoring system for RES, relying on the
blockchain technology to record data such as enterprises’ clean
energy usage ratios and carbon emission reduction. These data
should be linked to tax incentives and green credit eligibility to
encourage enterprises to expand the scale of RES through digital
means. Meanwhile, through inter-regional data sharing, the
achievements of RES should be incorporated into the cross-
regional collaborative assessment of SPC. Second, enhance
GPI for “process control.” The government should support
enterprises to join forces with universities and research
institutions to establish digital process R&D centers, focusing
on tackling key issues such as clean production technologies based
on the industrial internet and optimization algorithms for low-
carbon manufacturing processes. For example, promote the
“digital twin factory” model in high-energy-consuming
industries, where virtual simulation is used to test the emission
reduction effects of different process parameters, accelerating the
transformation of green processes from laboratories to
production lines. Third, strengthen ER for “end-of-pipe
treatment.” The government should make full use of digital
platforms for precise monitoring, strengthen both formal ER
and informal ER involving public participation, formulate
appropriate policies of ER, increase investment in pollution
control, and ensure rational allocation of funds, with particular
emphasis on controlling industrial pollutant discharge. It should
use a combination of tools of ER to jointly address the drawbacks
of externality in pollution governance and the “green paradox.” In
summary, the government should formulate digital collaborative
linkage policies for whole-process environmental governance.
Local governments are required to build a management
platform with data integration across “source-process-end,”
where policies should clarify data docking standards for each
link (e.g., real-time association between clean energy usage data
and production process parameters), cross-departmental
collaboration procedures (e.g., tax authorities verifying
incentives based on emission reduction data, environmental
protection departments optimizing supervision frequency based
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on process data), and take the effectiveness of integrated
governance (e.g., the proportion of emission reduction across
the entire chain) as a core indicator in the ecological assessment of
local governments, thus forming an institutional guarantee for
closed-loop management.

7.3 Shortcomings and outlook

The impact of SPC on INDIG has been measured and analyzed,
and it proposes applicable differentiated development strategies for
regional actual scenarios. There are still certain shortcomings: first,
this research uses prefecture-level city panel data, and the applicability
of the research results to smaller scales (such as within urban
agglomerations) has not been verified. Future studies can use micro-
level data of enterprises for specific research and explore the impact
mechanismof INDIG on SPC according to the characteristics of various
sub-sectors. This will help put forward more applicable guiding
suggestions for effectively exerting the spatial spillover effect of
INDIG and improving SPC. Second, although this paper mitigates
endogeneity through methods such as SPDM, instrumental variable
approach, and dynamic GMM, the two-way causal relationship between
INDIG and SPCmay exist, which can be further explored in subsequent
studies. Third, this research probes the indirect effect of INDIG on SPC
based on whole-process governance. Future research can try to
incorporate threshold or moderating variables to further probe the
“black box” of the mechanism through which INDIG affects SPC.
Fourth, this research uses some variables as control variables to explore
the relationship between INDIG and SPC with reference to previous
studies. However, in real scenarios, there must be many factors affecting
the relationship between the two. In the future, a synthetic analysis of the
various factors that impact SPC can be conducted, and these factors can
be added to the model to make the research more rigorous.
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Appendix

To clearly present the correspondence between the
abbreviations and full names of the variables in this article, a
table is constructed, as shown in Table A1.

TABLE A1 Correspondence table of abbreviations and full names.

Variable Abbreviation

Synergistic effects of pollution and carbon reduction SPC

Industrial digitization INDIG

Renewable energy substitution RES

Green process innovation GPI

Environmental regulations ER

Green finance level GH

Opening up to the outside world OPEN

Human capital accumulation HCA

Informationization level INFO

Population density PD

Urbanization level UR

Spatial panel Durbin model SPDM
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