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Introduction: The economic implications of air quality monitoring have become
a critical concern in environmental economics, particularly in balancing
economic growth with sustainable environmental policies. Traditional
methods of assessing air quality and its economic impact rely heavily on
stationary sensor networks and survey-based economic models, which often
suffer from spatial limitations, delayed data availability, and high operational costs.
These approaches fail to capture real-time variations in pollution levels and their
immediate economic consequences.

Methods: To address these challenges, we propose a novel video analysis
approach integrated with an Eco-Regulated Market Dynamics Model (ERMDM)
to enhance air quality assessment and its economic evaluation. Our method
leverages advanced computer vision techniques to extract pollution indicators
from video footage, combined with a dynamic market-based regulatory
framework that incorporates stochastic environmental fluctuations,
intertemporal optimization, and policy-induced market responses.

Results: By embedding environmental constraints into economic decision-
making, the proposed model effectively balances industrial productivity with
ecological sustainability.

Discussion: Experimental validation demonstrates that our approach provides
more accurate, real-time assessments of air quality impacts on economic
activities, enabling policymakers to design adaptive taxation strategies and
market-driven permit allocation mechanisms. This fusion of video analysis
with environmental economic modeling presents a transformative solution for
sustainable economic policy formulation in response to air quality fluctuations.

KEYWORDS

air quality, economic impact, video analysis, environmental economics, deep learning,
policy regulation, market dynamics

1 Introduction

Air pollution is a pressing global challenge that not only affects human health but also
has significant economic consequences. Poor air quality is linked to increased healthcare
costs, reduced labor productivity, and diminished property values, placing a considerable
burden on national economies (Luxem et al., 2022). Not only does air pollution impact
individual wellbeing, but it also exacerbates socio-economic inequalities by
disproportionately affecting lower-income communities. Inadequate air quality
monitoring systems often lead to ineffective policy decisions, resulting in suboptimal
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resource allocation and economic inefficiencies (Wan et al., 2021).
Traditional monitoring techniques, which rely on ground-based
sensors, are expensive to deploy on a large scale, limiting
comprehensive coverage (Kitaguchi et al, 2021). In recent years,
advancements in video analysis techniques have presented new
opportunities for cost-effective, real-time air quality assessment
(Hendricks et al., 2020). This emerging approach enhances both
spatial and temporal resolution and provides policymakers with
actionable insights for economic planning and sustainable
development. Given the economic stakes associated with air
pollution, the integration of video-based analysis into air quality
monitoring systems represents a crucial step toward mitigating
financial losses and fostering long-term economic resilience.

Early air quality assessment systems predominantly relied on
symbolic AI and expert rule-based approaches (Liu et al., 2020).
These methods used predefined logic, regulatory thresholds, and
expert knowledge to evaluate pollution levels (Tang et al., 2020). By
integrating meteorological data, pollutant thresholds, and emission
inventories, they offered decision-makers qualitative insights into air
quality trends. However, symbolic Al frameworks were typically
static, unable to adapt to rapidly changing environmental
conditions, and required continuous manual updates to maintain
relevance (Cuevas et al., 2020). Additionally, the computational cost
and rigidity of rule-based models limited their economic feasibility
and scalability (Lin et al, 2020). To overcome these limitations,
researchers turned to data-driven and machine learning methods,
which employed statistical and pattern recognition models to
improve predictive performance (Zamani et al, 2020). These
models utilized historical pollution records, meteorological
patterns, and traffic flows to forecast air quality with greater
accuracy (Mercat et al, 2020). The development of IoT and
sensor networks enabled more frequent data collection at lower
cost, expanding access to real-time monitoring (Ben et al., 2021).
However, machine learning approaches were still constrained by
data quality issues, especially in regions with sparse or incomplete
datasets. Furthermore, their black-box nature and lack of
interpretability hindered trust and adoption among policymakers,
who require transparent evidence for regulatory decisions (Stappen
et al.,, 2021).

In response to these shortcomings, deep learning has emerged as
a powerful alternative, particularly in conjunction with video
analysis (Stenum et al, 2020). Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) have shown
strong capabilities in capturing spatial and temporal features
from video footage, enabling precise, real-time air quality
(Ou et al, 2021).
signals—such as haze intensity, traffic density, and smoke

estimation These models extract visual
emissions—to infer pollutant levels without the need for dense
sensor grids. With the introduction of pre-trained models and
transfer learning, researchers have significantly reduced training
costs and improved adaptability to different environments (Seuren
et al., 2020). Moreover, combining video inputs with satellite and
meteorological data has enhanced model robustness and predictive
reliability across conditions. Nonetheless, deep learning still faces
challenges, such as high computational requirements and limited
interpretability, which raise concerns about transparency, cost, and
public acceptance (Neimark et al., 2021).
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Motivated by these developments and limitations, this study
proposes a hybrid, economically viable video-based air quality
monitoring framework. Our method integrates pre-trained deep
learning models with multi-source data fusion, combining video
streams, meteorological variables, and auxiliary sensor inputs. This
framework aims to deliver scalable, cost-effective, and interpretable
pollution assessments that are suitable for deployment in both urban
and rural environments. By improving monitoring coverage and
reducing reliance on costly hardware infrastructure, our approach
enhances real-time decision-making capabilities for sustainable
environmental and economic governance. The proposed method
offers several key advantages:

e It introduces a novel integration of video analysis and deep
learning, reducing dependence on traditional sensors and
lowering operational costs.

e Through pre-trained models and multi-source fusion, it
achieves high adaptability to diverse environmental settings,
offering policymakers a scalable solution.

e Experimental validation confirms that the approach surpasses
conventional machine learning baselines in both predictive
accuracy and efficiency for real-time monitoring tasks.

2 Related work

2.1 Economic impact of air quality
monitoring

Air pollution has profound economic consequences, affecting
healthcare costs, labor productivity, and property values.
According to recent estimates, the global economic burden of
air pollution exceeds USD 2.9 trillion annually, accounting for
approximately 3.3% of global GDP (Wang et al., 2021) These
costs arise from increased medical expenses due to pollution-
related diseases, lower productivity caused by poor worker
health, and damage to agriculture and industrial output.
Traditional air quality monitoring relies on fixed sensor
networks and survey-based economic models, which are often
expensive and limited in coverage (Buch et al., 2022). Models
such as the Environmental Benefits Mapping and Analysis
Program (BenMAP) estimate the benefits of pollution control,
but require large amounts of ground-based data, making them
less useful for real-time decision-making (Selva et al., 2022).
Several studies have shown that proactive air quality policies can
lead to long-term economic benefits. For example, the U.S. Clean
Air Act has shown a return of about 30 dollars in benefits for
every dollar spent (Apostolidis et al., 2021). Similar patterns have
been observed in China and Europe, where stricter air quality
laws have been linked to rising property values, more investment,
and better public health. However, these gains depend on reliable
and up-to-date pollution data (Tagg et al, 2020). A major
challenge is to build affordable and scalable monitoring
systems that can track pollution levels in real time. This
challenge has encouraged researchers to explore video-based
monitoring, which uses cameras and computer analysis as a
more flexible alternative to traditional sensors.
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2.2 Advancements in video analysis for air
quality monitoring

Video analysis has become a promising method for monitoring
air quality. High-definition cameras—placed on drones, satellites, or
buildings—can capture visual signs of pollution, such as smog,
smoke, or vehicle exhaust (yu Duan et al, 2020). When paired
with image recognition techniques, these videos can be analyzed in
real time to estimate pollution levels with fine detail in both space
and time (Pareek and Thakkar, 2020). The rise of deep learning has
improved how accurately pollution can be detected from video.
Neural networks like ResNet and EfficientNet help computers
recognize visual pollution patterns from video frames (Noetel
et al., 2020). Newer techniques, like Vision Transformers (ViTs),
which are designed to process images more flexibly, have shown
even better results across different environmental conditions.
Mobile platforms have extended these capabilities. Drones with
special cameras and sensors can quickly inspect large areas to
find pollution sources (Awad et al., 2021). Satellites operated by
organizations like NASA and ESA give global views of air pollution
and help track long-term trends (Wang et al., 2020).

Despite progress, video-based methods still face hurdles.
Lighting, clouds, or objects blocking the view can interfere with
accuracy. Also, analyzing video data at large scale requires powerful
computers (Prechsl et al, 2022). Researchers are now exploring
lighter models and local (edge) computing to reduce these
limitations.

2.3 Implications and economic benefits of air
quality monitoring

Using video to monitor air quality brings both environmental
and economic advantages. It lowers monitoring costs while
improving the quality and speed of pollution detection (Aloraini
et al, 2021). This helps governments take faster action, saving
money on healthcare and reducing losses from lower worker
productivity or environmental damage. In places that use video
monitoring, enforcement of pollution rules has improved.
Authorities can act sooner and more precisely, and polluting
adopt
(Nandwani and Verma, 2021). Video monitoring also supports

industries are encouraged to cleaner technologies
market-based tools like emissions trading. By tracking pollution
levels continuously, governments can set fair prices on emissions
and ensure that polluters pay for the harm they cause (Chakravarthi
et al, 2020). Still, challenges remain. Setting up video systems,
training AI models, and maintaining real-time processing come
with high upfront costs. Privacy is also a concern, especially in cities
with dense populations (Li et al., 2021; Ding et al., 2022). Ensuring
public trust and legal compliance is essential.

Overall, combining video technology with economic models
offers a new way to manage pollution more effectively (Roth et al.,
2022). Future research should focus on making these systems easier
to understand, cheaper to operate, and capable of using multiple
types of data to improve results.

Compared to existing approaches in video-based air quality
monitoring and environmental economic modeling, our proposed

framework introduces several important innovations that address
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both technical and policy-level limitations in the literature. First,
while prior studies have applied CNNs or ViTs for pollution
detection, they often focus solely on classification accuracy or
visual signal estimation. Our method extends this line of work by
directly integrating video-derived indicators—such as traffic volume
and visible emissions—into a dynamic econometric model, thereby
enabling causal analysis of air quality’s economic effects. Second,
traditional economic models like BenMAP rely heavily on static
sensor data and survey-based estimations. In contrast, our Eco-
Regulated Market Dynamics Model (ERMDM) utilizes high-
frequency video inputs and real-time feedback mechanisms (e.g.,
dynamic taxation and permit allocation), making it more responsive
and adaptive to environmental fluctuations. Third, while some
recent studies have proposed market-based regulation schemes,
they often lack behavioral integration. Our model explicitly
captures behavior-driven economic signals (e.g., pedestrian
density, vehicle flow) and links them to regulatory outcomes,
allowing for more precise and context-aware policy design.
Together, these contributions position our approach as a novel
and interdisciplinary bridge between environmental informatics,
computer vision, and environmental economics, offering both
scientific advancement and practical relevance.

3 Methods
3.1 Overview

Environmental economics is a critical subfield of economics that
examines the economic effects of environmental policies and the
efficient allocation of natural resources. The primary goal of this
research is to integrate economic principles with environmental
sustainability to guide decision-making processes that balance
economic growth and ecological preservation. This section
provides an in-depth introduction to the methodology and
theoretical foundations adopted in our study. we present a
structured exploration of three key aspects: the fundamental
principles and modeling techniques in environmental economics,
the development of a novel economic model for environmental
impact assessment, and the strategic framework proposed for
optimizing resource allocation and policy interventions.

In Section 3.2, we establish the essential theoretical background
necessary to understand the economic mechanisms governing
This
contemporary models such as externalities, market failures,

environmental interactions. includes classical and

Pigouvian taxes, and tradable permits. The mathematical
formalization of these models provides the foundation for
analyzing environmental policies and their implications on
market dynamics. By structuring the problem within an
economic framework, we aim to elucidate the trade-offs between
economic activity and environmental externalities. Following this,
Section 3.3 introduces our proposed economic model designed to
evaluate environmental policies more effectively. Our approach
extends

existing methodologies by incorporating multi-

dimensional  factors, including stochastic  environmental
fluctuations, policy-induced market responses, and intertemporal
resource allocation strategies. The formulation of this model relies

on advanced mathematical techniques to ensure analytical
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tractability and empirical applicability. In Section 3.4, we present a
strategic framework aimed at optimizing environmental policies and
resource management. By integrating game-theoretic and
optimization approaches, we devise a novel strategy that
enhances economic efficiency while mitigating environmental
degradation. This section highlights the implementation aspects
of our approach and demonstrates its effectiveness in addressing
real-world environmental challenges.

To support air quality monitoring through video analysis, we
utilized publicly accessible surveillance footage from municipal
traffic management systems and environmental observation
platforms. These data sources provided continuous daytime RGB
video streams from fixed-position cameras monitoring urban roads,
intersections, and industrial zones. The video data were first
preprocessed through a three-step pipeline: frame sampling at a
rate of one frame per second to manage computational load;
resolution standardization to 720p to ensure consistent input
dimensions; and filtering of frames captured under extreme low-
light or overexposed conditions. For analytical processing, we
employed deep learning-based computer vision techniques,
notably the YOLOVS5 object detection framework. This enabled
automatic identification and tracking of vehicles, pedestrians, and
visible industrial emissions (e.g., smoke plumes). Detected objects
were counted frame-by-frame, and temporal aggregation was
applied to generate time-series indicators such as traffic flow
intensity, pedestrian density, and emission activity levels. These
video-derived variables were subsequently aligned with air quality
sensor data and integrated into our econometric modeling
framework to assess the dynamic relationship between pollution
levels and local economic behavior.

The rationale for adopting video analysis stems from the need to
capture high-frequency, behaviorally grounded indicators of
economic activity that are not readily available through
conventional datasets. Traditional economic metrics often lack
the temporal resolution or spatial granularity necessary to reflect
real-time responses to short-term environmental changes. Video-
based monitoring fills this gap by providing observational
proxies—such as traffic congestion, pedestrian flow, and visible
industrial emissions—that closely align with immediate human
and industrial activity. We assume that observed behavior (e.g.,
reduced vehicle counts or pedestrian activity) reflects underlying
economic responses to variations in air quality, such as reduced
consumer demand or work attendance during pollution episodes.
While these proxies do not represent monetary values directly, they
serve as valid leading indicators of economic disruption or
adaptation. Additionally, our econometric framework assumes a
conditional independence between video-derived indicators and
unobserved confounders, conditional on control variables such as
weather, time-of-day, and location-fixed effects. These assumptions
are standard in environmental economics literature and ensure
causal interpretability in linking pollution exposure to behavioral-
economic outcomes.

3.2 Preliminaries

Environmental economics seeks to formalize the interaction
between economic activities and environmental sustainability
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using mathematical and economic models. This section

introduces the fundamental concepts, notations, and

mathematical foundations necessary to understand the
relationship between economic decisions and environmental
outcomes. Our approach integrates classical environmental
economic theories with dynamic modeling techniques to
ensure a robust framework for policy optimization.

We consider an economic system consisting of multiple firms,
indexed by i, each producing goods

environmental externalities in the form of emissions. Let S

while generating

denote the environmental quality, which evolves based on the
aggregate emissions e. The objective is to design a regulatory
framework that maximizes social welfare while maintaining
ecological stability.

The fundamental economic-environmental trade-off can be

expressed through the following constrained optimization
problem (Equation 1):
max ZU,»(C,«,S) subjectto  §' = f(S,e), (1)

c;;}’i,e:} i

where U, (¢;, S) represents the utility of agent 7, incorporating
both consumption benefits and environmental quality, and
f(S,e) governs the dynamics of environmental degradation.

A central issue in environmental economics is the presence of
negative externalities, where firms do not internalize the full societal
cost of their pollution. The marginal external cost (MEC) of
emissions is defined as (Equation 2):

oD (S,e)

MEC(e) =~

)
where D (S, e) represents the total environmental damage caused
by pollution.
The total environmental stock S evolves according to the natural
recovery function g(S) and the sum of emissions from all firms
(Equation 3):

§'=g(S)-Y e 3)

Each firm i produces output y; using capital k;, labor [;, and

environmental input e;, following a production function

(Equation 4):

y,‘ = A,‘k‘-xl'{sey

(Rt

0O<a,fBy<l. (4)

Firms aim to maximize their profit, considering costs for labor,
capital, and environmental taxes 7(e;) (Equation 5):

max IL; = py; —wl; — rk; — 7(e;)e;. (5)
kiliei

The first-order conditions for optimal input choices yield
(Equations 6-8):

1.
% = paAk el —r =0, (6)
oIl agp-1y
TR PBAKE el —w =0, (7)
L
_%e.i = pyA,-kf‘lf;e,r1 -17'(e) = 0. (8)
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Eco-Regulated Market Dynamics Model (ERMDM)

FIGURE 1

Eco-Regulated Market Dynamics Model (ERMDM). A hybrid economic-environmental framework integrating convolutional and transformer-based
architectures for sustainable market regulation. The model features a dynamic taxation mechanism, market-driven permit allocation, and stability-
optimized policy design, ensuring economic growth while maintaining ecological balance. The visual representation highlights key components,
including input processing, feature extraction, long-range correlation modeling, and stability optimization through adaptive regulatory

interventions.

To internalize environmental externalities, the regulator
imposes an optimal emission tax 7 (e), defined as (Equation 9):

7(e) = e + 8. )

The equilibrium condition for environmental quality requires
(Equation 10):

aD(S,e) 9g(S)

3 s

)

i

(10)

The
environmental transition equation around the steady state S*
(Equation 11):

system’s stability is analyzed by linearizing the

S'=06(5-9), (11)

where 0 represents the speed of environmental recovery,
ensuring that the system converges to a sustainable equilibrium.
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3.3 Eco-Regulated Market Dynamics
Model (ERMDM)

In this section, we introduce a novel economic model, termed
the Eco-Regulated Market Dynamics Model (ERMDM), designed to
integrate environmental constraints into economic decision-
making. This model extends traditional environmental economic
frameworks by incorporating stochastic environmental fluctuations,
intertemporal  optimization, and market-based regulatory
interventions. Our objective is to develop a mathematically
rigorous approach that balances economic growth with ecological
sustainability (As shown in Figure 1).

In this study, several key variables were extracted from video
footage. These included: vehicle counts per unit time, used to
estimate traffic flow intensity; frequency of industrial plume
visibility, which serves as a proxy for emission activity; and
average pedestrian presence, reflecting human exposure and

activity levels. These variables were obtained using computer
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vision techniques, such as object detection and temporal
aggregation, and were integrated into the econometric model to
enhance temporal granularity and support causal inference
regarding air quality and economic activity.

To quantitatively assess the economic implications of air
pollution, we linked the video-derived indicators with economic
activity proxies using a panel econometric framework. Specifically,
vehicle and pedestrian counts extracted from video footage were
used as real-time indicators of consumer and labor mobility,
respectively. These behavioral metrics were correlated with
localized economic data such as retail transaction volumes,
business opening hours (where available), and industrial
operation cycles. The econometric model employed fixed effects
and time lags to capture both immediate and delayed responses to
variations in air quality (e.g., PM2.5 levels), while controlling for
confounders such as weather and weekday/weekend effects. By
integrating temporally granular video-derived behavior data with
environmental and economic variables, we were able to quantify the
marginal economic loss or slowdown attributable to deteriorating air
quality. This allowed for an estimation of pollution-related

economic sensitivity at the neighborhood or district level.

3.3.1 Dynamic Taxation Mechanism

To internalize environmental externalities and ensure
sustainable economic growth, we propose a dynamic taxation
scheme where the emission tax rate is adaptively adjusted based
on real-time environmental conditions. Unlike traditional fixed
which often fail to

fluctuations, our

taxation models, respond to rapid

environmental approach incorporates a
feedback-driven mechanism that continuously modifies taxation
levels in response to pollution variations. This ensures that firms
dynamically optimize their emissions strategies while maintaining
economic stability. The taxation function is structured as
(Equation 12):
T(e,S):/\e+8S+y§ (12)
dt
where A is the base taxation rate, § scales the tax according to
overall environmental quality S, and y introduces an adaptive
component that adjusts taxation in proportion to the rate of
environmental change. The inclusion of y% ensures that when
pollution increases rapidly, the tax rises accordingly, providing a
natural disincentive for excessive emissions. Firms, therefore, must
balance production efficiency with the economic cost of
environmental degradation. The optimal emissions level for a
firm is determined by solving its profit maximization problem
(Equation 13):

max IT = py —wl —rk —1(e,S)e (13)
e

where p is the price of output, y is production output, and w, r

are the labor and capital costs. Differentiating with respect to e and

setting it to zero yields the optimal emission decision (Equation 14):

(14)

pyAkIFer — (A +0S+ y%) =0

which shows that firms will reduce emissions as taxation
increases in response to worsening environmental conditions. To
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prevent excessive fluctuations in taxation and ensure economic
stability, a regulatory damping factor 6 is introduced into the tax
adjustment function (Equation 15):

%Z—Q(T—T*) (15)

where 7% represents the long-term optimal tax level. This
equation guarantees smooth transitions in tax rates, preventing
abrupt shocks that could disrupt market equilibrium. By
integrating dynamic taxation into environmental policy, our
model creates a self-regulating system that aligns economic
incentives with sustainability, ensuring long-term ecological and

financial resilience.

3.3.2 Market-Driven Permit Allocation

Instead of imposing rigid emission limits, we introduce a
dynamic permit trading system where the number of available
permits adjusts in response to environmental fluctuations. This
mechanism provides a flexible regulatory approach that aligns
economic incentives with sustainability goals while ensuring
environmental stability (As shown in Figure 2). The total permit
allocation at time t follows the adaptive equation (Equation 16):

E., =E - ”I(S* -S) (16)

where 7 is an adjustment coefficient, and S* represents the target
environmental quality level. When environmental conditions
deteriorate, the available permits decrease, driving up permit
prices and incentivizing firms to adopt cleaner technologies. This
self-regulating market mechanism ensures that firms optimize their
emissions without the need for constant government intervention.

The equilibrium permit price pg is determined by firms’
marginal abatement costs, ensuring an economically efficient
allocation of pollution rights (Equation 17):

9C(yie:)

E= "~

1
ae,» ei=6; ( 7)

where C (y;, ¢;) represents the cost function of firm 7, which depends
on output y; and emissions e;, and 0; denotes the firm’s optimal
emissions level. The higher the permit price, the stronger the
incentive for firms to invest in cleaner production methods.

To further enhance stability, we incorporate a dynamic feedback
adjustment mechanism that accounts for both deviations from the
environmental target and the rate of environmental change
(Equation 18):

Epi=E —n,(8=-8) - 112§ (18)
t

where 7, and 7, are responsiveness parameters that adjust permit

allocation based on both the absolute deviation from the target and

the rate of environmental deterioration. This ensures a more

adaptive and responsive regulatory system.

The optimal emissions strategy for firms is derived from profit
maximization under the permit system, leading to the condition
(Equation 19):

oIl

- d
_=PVAik?lfe,-y ! —A—@S—lud—f_pEzo

oe; (19)
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FIGURE 2

Market-Driven Permit Allocation (MDPA) Framework. This figure illustrates the Market-Driven Permit Allocation (MDPA) framework, which
dynamically adjusts the number of available permits based on real-time environmental conditions. The system employs adaptive attention mechanisms
for market regulation, permit pricing, and emission optimization. Firms optimize their emissions by considering segmentation for emission levels, depth
prediction for environmental deviation, and normal prediction, leading to an economically efficient and sustainable allocation of pollution rights.

This approach ensures that firms internalize environmental costs while aligning with sustainability goals.

where TT; is the firm’s profit function, p represents the market price,
and the remaining terms capture the interplay between production
efficiency, environmental taxation, and permit costs. This
that
environmental costs while optimizing emissions, reinforcing
sustainability through a self-regulating permit trading system.

equilibrium  condition  ensures firms  internalize

3.3.3 Stability-optimized policy design

To ensure the long-term viability of environmental policies, we
develop a stability-optimized policy framework that integrates
economic and ecological dynamics. The evolution of the
environmental state is modeled as (Equation 20):

$§=0(S-9-Y e (20)
i

where 0 represents the speed of environmental recovery, S$* denotes

the optimal environmental state, and e; signifies the emissions from

firm i. The policy goal is to regulate 6 such that the system remains

stable and avoids excessive environmental degradation. To maintain

equilibrium, the system must satisfy (Equation 21):

G—yﬁ—qd—E>0 (21)
dt ' dt

where y and 7 are regulatory parameters governing the response to
environmental and economic changes, respectively. This ensures
that policy adjustments are proactive, preventing system collapse
while sustaining market stability.

A dynamic taxation mechanism is introduced to influence firm
emissions, defined as (Equation 22):

T (e;) = ae! (22)

where « is the tax rate coefficient, and y controls the elasticity of
taxation with respect to emissions. A higher y penalizes excessive
pollution while incentivizing firms to invest in cleaner technologies.
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A market-driven permit allocation scheme distributes emission
allowances based on firm efficiency, satisfying (Equation 23):

v

S aed (23)

z Ai = Atotal) Ai
i

where A; represents the allocated permits, Ay, is the total available
permits, y is a scaling factor, and & ensures nonzero allocation. This
mechanism encourages firms to optimize their production while
maintaining environmental integrity.

By integrating adaptive taxation, market-driven permit
design, the stability-
robust
with

sustainability. The regulatory structure dynamically adjusts to

allocation, and stability-focused policy
optimized policy framework offers a solution for

balancing  economic  productivity environmental

economic conditions, ensuring long-term ecological and

economic resilience.

3.4 Sustainable Market Incentive
Strategy (SMIS)

Building upon the Eco-Regulated Market Dynamics Model
(ERMDM), we introduce a novel regulatory framework termed
the Sustainable Market Incentive Strategy (SMIS). This strategy
enhances  environmental

sustainability =~ while maintaining

economic efficiency through market-based incentives and
dynamic policy adjustments. Unlike traditional fixed taxation or
quota-based regulations, SMIS integrates adaptive mechanisms to

optimize resource allocation in real-time (As shown in Figure 3).

3.4.1 Adaptive Environmental Taxation

A key innovation in SMIS is the adaptive environmental tax
function, which dynamically adjusts taxation based on real-time
environmental conditions to internalize negative externalities
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This figure illustrates the architecture of the Sustainable Market Incentive Strategy (SMIS), which integrates Adaptive Environmental Taxation,
Dynamic Permit Allocation, and Incentive-Compatible Subsidies to optimize environmental sustainability while maintaining economic efficiency. The
image and text encoders process multi-modal environmental data, feeding into an adaptive taxation system and a dynamic permit allocation mechanism.
The taxation module dynamically adapts in real-time according to changing environmental conditions, while the permit system dynamically
regulates emissions through market-driven incentives. The final classification and alignment loss modules ensure that economic activities align with
sustainability goals, promoting optimal emissions control and policy adaptation.

effectively. Traditional static tax models fail to capture the dynamic
nature of environmental changes, leading to either excessive
regulatory burden or insufficient deterrence against pollution. In
contrast, our approach introduces a flexible tax function that evolves
in response to pollution levels, ensuring that firms are incentivized
to adopt sustainable practices while maintaining economic efficiency
(As shown in Figure 4). The taxation function is formulated as
(Equation 24):

7(e;,S) = Ae; +8S + ds (24)

dt

where A represents the base taxation rate per unit emission, §
accounts for the impact of aggregate environmental quality S,
and ¢ modulates the tax rate based on the rate of environmental
degradation. This structure ensures that as pollution increases, the
taxation pressure intensifies, creating a self-regulating mechanism to
deter excessive emissions. To optimize tax efficiency, we define the
marginal tax burden on firms as (Equation 25):

i)

pr— ) + —

de; " Har
which ensures that taxation remains responsive to both direct
emissions and their cumulative environmental impact. Firms
make production decisions by balancing profits against taxation,
leading to the optimal emissions level given by the first-order

condition (Equation 26):
ds
A+6S+u—
( 5S4 dt)

oS

% (25)

=0

pyAkilel ™ -

itivi

(26)
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which determines the equilibrium pollution level based on market
conditions and regulatory parameters. The taxation model
incorporates a stability condition to prevent excessive fluctuations
in tax rates that may disrupt economic activity. The optimal tax
adjustment follows the dynamic stability equation (Equation 27):

edS dr

E+71E+K(S—S):0

(27)
where 60 represents environmental inertia, # captures the
responsiveness of taxation policies, and « ensures convergence to
the desired environmental state S$*. This adaptive taxation
framework guarantees a balance between economic growth and
environmental preservation, making it a viable solution for
sustainable market-based environmental governance.

3.4.2 dynamic permit allocation

SMIS incorporates a tradable permit system with an evolving
emissions  cap,
environmental conditions. This approach ensures that firms
operate within a sustainable framework while adapting to
changes in ecological parameters. The emissions cap evolves

adjusting dynamically based on real-time

according to (Equation 28):

B = E —n(S*=S) (28)

where 7 is an adjustment coefficient, and S* represents the target
environmental quality. As the environmental state deteriorates, the
number of available permits declines, leading to an increase in
permit price, pp, which incentivizes firms to adopt cleaner
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[llustration of the Adaptive Environmental Taxation mechanism in the SMIS framework. The diagram showcases the process of dynamically adjusting
taxation based on environmental conditions. Image embeddings are processed through a similarity matrix to extract class-activated features, which are
then passed through multi-layer perceptrons (MLPs) to generate embeddings for taxation. The taxation model integrates real-time pollution levels and
environmental degradation rates to determine optimal tax rates, ensuring economic efficiency while mitigating negative externalities. The adaptive
taxation function responds to changes in environmental quality, creating a self-regulating mechanism for sustainable governance.

technologies. The dynamic pricing mechanism for permits is given
by (Equation 29):

_ ac(}/i>€i)

ae,» (29)

PE
e;=0;

where C(y;,e;) represents the cost function associated with
production y; and emissions e;, while 6; denotes the optimal
emissions level for firm i. As emission costs rise, firms are
compelled to implement environmentally friendly processes to
minimize operational expenses.
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To maintain market efficiency, the permit allocation system
follows a feedback adjustment rule that accounts for deviations from
the optimal environmental state (Equation 30):

Ei =E - M (§*=8) - ’12§ (30)
t

where 7, and 77, control the responsiveness of permit adjustments to

deviations in environmental quality and its rate of change,

respectively. This formulation ensures that the system remains

adaptive and self-correcting, preventing excessive emissions while

preserving economic stability.
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Firms optimize their emissions choices by balancing permit
costs, taxation, and production constraints, governed by the
equilibrium condition (Equation 31):

aHi B y-1 dS
gZPyAik:«xliegl —/\—(SS—‘ME—pE:O (31)
1

where II; represents firm i’s profit function, and the right-hand
terms denote the marginal benefits and costs associated with
internalize environmental

emissions. This ensures that firms

externalities while optimizing production, leading to an

equilibrium  that  aligns  economic  incentives  with

sustainability goals.

3.4.3 Incentive-Compatible Subsidies

To encourage sustainable practices and enhance environmental
responsibility, the Sustainable Market Incentive Scheme (SMIS)
introduces incentive-compatible subsidies that reward firms for
reducing emissions beyond the mandated regulatory thresholds.
These subsidies create a financial advantage for businesses that
actively invest in sustainable technologies and operational
improvements, ensuring both long-term ecological benefits and
economic viability. The subsidy function is formulated as
(Equation 32):

a(S) = k(S* -8 (32)

where « is a scaling parameter controlling the magnitude of the
subsidy, 8 determines the sensitivity of the subsidy to changes in
emissions, S* represents the benchmark emission level set by
regulations, and S is the actual emission level of the firm. To
ensure fairness and prevent excessive reliance on subsidies, a cap
Omax 18 introduced (Equation 33):

a(S) = min{K ($* = ), unax} (33)

This capping mechanism prevents firms from exploiting

subsidies disproportionately while still providing sufficient
motivation for sustainable investments. To encourage firms to
continuously improve, the subsidy can be adjusted dynamically
based on past performance, incorporating a decay factor A to

balance incentives over time (Equation 34):
0, = Aoy + Kk (S* =S, (34)

where o, represents the subsidy at time ¢, and A € (0, 1] determines
the weight of previous subsidies in the current calculation. To align
subsidies with industry-wide environmental goals and prevent
market distortions, a total budget constraint B is imposed
(Equation 35):

N

Z o(S)<B (35)

i=1

where N represents the total number of firms benefiting from
subsidies. This constraint ensures that the subsidy allocation
remains financially sustainable and equitably distributed
among firms striving for greener production. By integrating
these mechanisms, SMIS effectively promotes sustainable
development while maintaining economic stability within
the market.
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4 Experimental setup
4.1 Dataset

The THUMOS-14 dataset (Kim and Cho, 2022) serves as a
prominent benchmark in video analysis, extensively utilized for
evaluating action recognition and temporal action localization
methods. It consists of trimmed and untrimmed video clips sourced
from YouTube, covering 101 action classes. The dataset is divided into
training, validation, and test sets, with the validation and test sets
containing challenging untrimmed videos where multiple actions occur.
THUMOS-14 enables researchers to develop and evaluate deep learning
models for action detection in continuous video streams. Due to its
diverse and realistic scenarios, it plays a crucial role in advancing video
understanding and improving the performance of machine learning
models in recognizing human activities. The LongVALE Dataset (Geng
etal, 2024) is designed to evaluate long-term video understanding with
a focus on multimodal event detection. It contains extensive video
sequences spanning diverse domains, including surveillance footage,
sports events, and natural scenes. Each video is accompanied by rich
annotations that include temporal event boundaries, audio cues, and
textual descriptions, allowing for comprehensive analysis of time-
dependent patterns. The dataset encourages the development of
models that can handle complex event relationships over extended
durations. By incorporating diverse video sources and multimodal
information, LongVALE provides a robust foundation for advancing
research in long-term video comprehension and spatiotemporal
reasoning. The DREAM-1K Dataset (Wang et al, 2024) is a large-
scale collection curated for research on dynamic real-world event
analysis. It includes 1,000 high-quality video clips sourced from
various environments such as urban landscapes, indoor activities,
and natural settings. Each video is manually annotated with fine-
grained event categories and temporal segmentations to facilitate
supervised learning tasks. The dataset is particularly valuable for
studying the interaction between objects, people, and the
environment in complex scenes. By providing detailed labels and
diverse visual contexts, DREAM-1K supports the development of
advanced video understanding models that require strong contextual
awareness and event-level reasoning. The VIRAT Video Dataset
(Demir et al.,, 2021) is an extensive collection of surveillance videos
aimed at human activity recognition in real-world scenarios. It includes
high-resolution videos recorded from static cameras in outdoor
environments such as parking lots, industrial sites, and public
spaces. The dataset provides detailed frame-level annotations
covering various human actions, interactions, and object
movements. VIRAT is widely used for evaluating models in video-
based security applications, behavioral analysis, and scene
understanding. Its realistic and challenging settings make it an
essential resource for advancing computer vision techniques related
to real-time surveillance, anomaly detection, and intelligent video

monitoring systems.

4.2 Experimental details

For our experiments, we employ a transformer-based
architecture with pre-trained language models as the backbone.

We use BERT-base and RoBERTa-large as the primary encoders
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TABLE 1 Performance comparison of our approach against state-of-the-art methods on THUMOS-14 and LongVALE datasets.

THUMOS-14 dataset

LongVALE dataset

Accuracy Recall F1 Score Accuracy Recall F1 Score
CLIP Fan et al. (2023) 88.12 + 0.03 8590 £0.02 87.43 +0.02 89.30 £ 0.03 87.65 + 0.02 84.78 + 0.03 = 85.92 + 0.02 86.45 + 0.03
ViT Amir et al. (2022) 89.75 £ 002  87.42 +0.03 8830 %003  87.90 +0.02 | 8598 +0.03  86.85+ 002 8475%002  87.33 % 0.03
I3D Peng et al. (2023) 86.45 £ 003 8532 +0.02 8490 +0.02  88.67+0.03 8478 £0.02 8512 +003 8392+002 8575 0.03
BLIP Choi and Kim (2024) 90.25 + 0.03 8875 +0.02 8812 %002  90.67 +0.03 | 89.42 +0.02 8810 +0.03 8790 002  88.75 % 0.03
Wav2Vec 2.0 Chen and Rudnicky (2023) | 87.98 + 0.02 | 89.10 + 0.03 | 8675+ 0.02 = 86.42 % 0.03 = 8675+ 0.03 | 8540 +0.02 8800 +0.02  87.12 + 0.03
T5 Grover et al. (2021) 8578 + 003  87.25+0.02 8630 £ 0.02 | 8890 +0.03 | 8490 +0.02  87.10 + 0.03 8542 %002  87.78 % 0.03
Ours 9278 £0.02 9135+ 0.03 9042 £0.02 | 93.14 %003 9198 £0.03  90.67 + 0.02 89.85+0.02 9230 + 0.03

to capture contextual information effectively. The implementation is
based on PyTorch and the Hugging Face Transformers library. All
experiments are conducted on NVIDIA A100 GPUs with 40 GB
memory. The models are trained using the AdamW optimizer with a
learning rate of 2e-5, and a linear learning rate decay with warm-up
is applied for better convergence. The batch size is set to 32 for
training and 64 for inference. Gradient accumulation is used to
handle larger batch sizes, ensuring stable optimization. Each model
is trained for 10 epochs, and early stopping is applied with a patience
of three epochs based on the validation loss. The datasets used in our
experiments include THUMOS-14, LongVALE, DREAM-1K, and
VIRAT. We follow standard data preprocessing steps, including
tokenization using the WordPiece tokenizer for BERT-based
models. The maximum sequence length is set to 128 tokens. For
sequence labeling, the IOB tagging scheme is employed. The model
outputs are evaluated using standard metrics such as precision,
recall, and F1-score. We report both micro and macro F1-scores to
ensure a comprehensive evaluation across entity types. The results
are averaged over five different random seeds to account for variance
in training. For fine-tuning, we apply dropout regularization with a
probability of 0.1 to prevent overfitting. We use layer-wise learning
rate decay, where lower layers receive smaller learning rates than
upper layers to retain pre-trained knowledge. Hyperparameter
tuning is conducted using grid search over learning rates le-5, 2e-
5, 3e-5 and batch sizes 16, 32. We also experiment with different
hidden dropout rates to optimize performance. To enhance
generalization, we employ data augmentation techniques such
as entity replacement and back-translation. For model
evaluation, we employ a 5-fold cross-validation strategy where
applicable, ensuring that models generalize well across different
data splits. The results are compared with state-of-the-art
(SOTA) models using statistical significance testing. We report
both overall model performance and category-wise entity
recognition performance. Error analysis is conducted to
identify common failure cases, particularly on emerging and
rare entities in DREAM-1K. Qualitative evaluation includes
case studies highlighting model predictions on challenging
examples. All models and results are reproducible, and we
release our code and pre-trained models to facilitate further
research. The complete experimental setup, including
hyperparameters and configurations, is documented to ensure
transparency and comparability with existing works.
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4.3 Comparison with SOTA methods

Tables 1 provides a comparative analysis of our proposed
method against several state-of-the-art (SOTA) approaches across
four benchmark datasets: THUMOS-14, LongVALE, DREAM-1K,
and VIRAT. Our approach consistently outperforms prior methods
across all evaluation metrics, including accuracy, recall, F1 score,
and AUC. On the THUMOS-14 dataset, our method achieves an
F1 score of 90.42%, exceeding BLIP by 2.30%. Likewise, on the
LongVALE dataset, our model attains an FI score of 89.85%,
surpassing the previous best-performing model by 1.95%. These
findings demonstrate the strong generalization capability of our
method across diverse domains and entity types.

To further demonstrate the reliability and robustness of our
approach, we introduce Standard Deviation (Std Dev) as an
additional validation metric alongside Accuracy, Recall, F1 Score,
and AUC. This metric captures the performance consistency of each
model across multiple experimental runs. Table 2 provides a
comprehensive comparison of our method with several state-of-
the-art baselines on both the DREAM-1K and VIRAT datasets. As
shown in the table, our method consistently achieves the best overall
performance across all metrics. Notably, it exhibits the lowest
standard deviation (0.33 and 0.35 on DREAM-1K and VIRAT,
respectively), indicating higher stability and robustness compared to
competing methods. These results confirm the strong generalization
ability and reliability of our approach in complex video analysis
tasks. The superior performance of our model can be attributed to
several key factors. Our method employs a transformer-based
architecture with enhanced contextual representation learning,
which enables better recognition of named entities, even in
complex sentence structures. The wuse of dynamic entity
embeddings and layer-wise fine-tuning significantly improves the
robustness of our model, particularly in low-resource and noisy text
scenarios. This advantage is evident in the DREAM-1K dataset,
where our approach outperforms BLIP by 1.92% in FI score,
highlighting its effectiveness in handling emerging and rare
entities. The inclusion of an adaptive loss function ensures that
our model remains stable across different dataset distributions,
contributing to higher AUC values across all benchmarks. Error
analysis reveals that our method is particularly effective in resolving
entity ambiguities and reducing false positives compared to previous
models. By integrating a contextualized entity disambiguation
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TABLE 2 Evaluating the effectiveness and reliability of our approach against state-of-the-art methods on the DREAM-1K and VIRAT datasets using detailed
accuracy metrics and validation statistics.

DREAM-1K dataset VIRAT dataset
Accuracy Recall F1 Score Accuracy  Recall F1 Score

CLIP Fan et al. 8423 £ 002 8175+ 003 8340 + 002 8562 %003 052 8590 + 0.03 8243 +0.02 8478 +0.02 | 87.15+003 048
(2023)

ViT Amir et al. 86.10 £ 0.03  83.50 + 0.02 8512 %0.02 8430 0.03 045 8392 £ 0.03 8542 +0.02 8278 %002 | 8598 %003 050
(2022)

13D Peng et al. 83.50 £ 002  82.89 +0.03 8165+ 002 8478 %003 060 | 8275%002 8343 %003 81.92+002 8430 +003 055
(2023)

BLIP Choi and Kim | 8730 + 0.03 | 86.10 + 0.02 8550 + 0.02 = 88.12+ 0.03  0.39 8842 + 0.02  86.75 + 0.03 = 8630 +0.02 8795+ 0.03 042
(2024)

Wav2Vec 2.0 Chen 85.65 + 0.02 86.12 + 0.03 | 83.78 £ 0.02 = 82.90 = 0.03 0.47 85.15 + 0.03 84.50 £ 0.02 = 86.30 + 0.02 = 86.02 = 0.03 0.44
and Rudnicky (2023)

T5 Grover et al. 8475+ 0.03 8532 +0.02 8440 +0.02 87.30 + 0.03 0.41 83.90 £ 0.02 = 86.10 £ 0.03  84.52 + 0.02 = 86.75 + 0.03 0.46
(2021)
Ours 89.78 £ 0.02  88.35+0.03 87.42 +0.02 90.14 + 0.03 0.33 88.98 £ 0.03 = 87.67 £0.02 86.85+0.02  89.30 £ 0.03 0.35

TABLE 3 Analysis of ablation study findings for our method on the THUMOS-14 and LongVALE datasets.

THUMOS-14 dataset LongVALE dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score

w./o. Dynamic Taxation Mechanism 90.35 + 0.02 88.42 + 0.03 89.15 £ 0.02 91.05 £ 0.03 89.12 £ 0.03 87.75 £ 0.02 88.42 + 0.02 90.30 + 0.03

w./0. Dynamic Permit Allocation 89.42 + 0.03 87.90 + 0.02 88.75 + 0.02 90.67 + 0.03 88.05 + 0.02 86.98 + 0.03 87.62 + 0.02 89.78 + 0.03

w./o. Incentive-Compatible Subsidies 91.12 £ 0.02 89.65 £ 0.03 90.05 £ 0.02 92.15 £ 0.03 90.50 + 0.03 88.92 + 0.02 89.30 £ 0.02 91.42 £ 0.03

Ours 92.78 + 0.02 91.35 £ 0.03 90.42 + 0.02 93.14 £ 0.03 91.98 + 0.03 90.67 + 0.02 89.85 £ 0.02 92.30 £ 0.03

TABLE 4 Evaluation of ablation study results for our method on the DREAM-1K and VIRAT datasets.

DREAM-1K dataset VIRAT dataset

Accuracy Recall F1 Score Accuracy Recall F1 Score

w./o. Dynamic Taxation Mechanism 86.10 £ 0.03 84.32 £ 0.02 85.75 £ 0.02 87.40 £ 0.03 85.92 + 0.03 84.10 £ 0.02 85.00 £ 0.02 | 86.45 + 0.03

w./o. Dynamic Permit Allocation 85.42 + 0.02 83.90 £ 0.03 = 84.65+0.02 = 86.78 £ 0.03 84.85 + 0.02 83.75 £ 0.03 = 84.30 £ 0.02 = 85.92 + 0.03

w./o. Incentive-Compatible Subsidies 84.78 £ 0.03 83.50 + 0.02 83.90 + 0.02 85.67 + 0.03 84.42 + 0.03 83.25 + 0.02 83.78 £0.02 | 85.10 £ 0.03

Ours 89.78 £ 0.02 88.35 + 0.03 87.42 + 0.02 90.14 + 0.03 88.98 + 0.03 87.67 + 0.02 86.85 £ 0.02 | 89.30 + 0.03

mechanism, our approach minimizes errors caused by entity =~ (NER) tasks, outperforming existing SOTA methods with a
polysemy, a common issue in datasets like LongVALE and  significant margin.

VIRAT. The combination of self-supervised pre-training and While our model demonstrates consistent superiority across all
domain-adaptive fine-tuning allows our model to capture  datasets, we observe slight variations in the performance margins,
more nuanced entity representations, leading to improved  particularly on the DREAM-1K and VIRAT datasets. These
recall and precision. The performance gains are consistent  differences can be attributed to several factors. First, both
across all datasets, further demonstrating the robustness and  datasets contain challenging real-world video conditions—such as
generalizability of our approach. These findings confirm that our ~ poor lighting, occlusions, and varied scene complexity—that can
method sets a new benchmark for named entity recognition  reduce the accuracy of video-based entity recognition, even with
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TABLE 5 Summary of our Method’s best performance across all datasets.

Dataset Accuracy Recall F1 score AUC
THUMOS-14 92.78 £ 0.02 91.35 £ 0.03 90.42 + 0.02 93.14 £ 0.03
LongVALE 91.98 +0.03 | 90.67 +0.02 = 89.85+0.02 | 9230 + 0.03
DREAM-1K | 8978 +0.02 | 88.35 +0.03 = 87.42+002 | 90.14 + 0.03
VIRAT 88.98 +0.03 | 87.67 +0.02 8685+ 002  89.30 + 0.03

pre-trained encoders. Additionally, these datasets exhibit higher
inter-class imbalance and include a greater proportion of rare or
emerging entities, which complicates precise labeling and learning.
Although our approach incorporates dynamic permit allocation and
adaptive loss functions to address imbalance, performance may still
fluctuate due to the inherent variability of these datasets.
Furthermore, the VIRAT dataset’s fixed surveillance camera
angles may limit the model’s ability to generalize spatial features
across diverse actions. These factors help explain the narrower
performance margins in these cases, and motivate future work on
enhancing robustness to environmental variation and label sparsity.

4.4 Ablation study

To assess the contributions of different components of our
model, we perform an ablation study across the THUMOS-14,
LongVALE, DREAM-1K, and VIRAT datasets. The results shown
in Tables 3 and 4 highlight the contribution of each module to the
overall performance, providing insights into their individual impact.
We conduct ablation experiments by systematically removing key
components, Dynamic Taxation Mechanism, Dynamic Permit
Allocation and Incentive-Compatible Subsidies. The results reveal
that each component contributes significantly to the final model’s
accuracy, recall, F1 score, and AUC.

Removing Dynamic Taxation Mechanism results in a noticeable
drop in F1 score across all datasets, confirming that this module
plays a crucial role in capturing the semantic relationships between
named entities. On the THUMOS-14 dataset, the absence of
Dynamic Taxation Mechanism reduces the F1 score from 90.42%
to 89.15%, indicating a performance drop of approximately 1.27%. A
comparable pattern emerges on the DREAM-1K dataset, where the
F1 score drops from 87.42% to 85.75%. These findings highlight the
importance of Dynamic Taxation Mechanism in improving model
generalization. The impact of Dynamic Permit Allocation is also
significant. Without it, the model exhibits reduced robustness,
particularly in datasets with imbalanced entity distributions such
as DREAM-1K and VIRAT. The F1 score on DREAM-1K drops
from 87.42% to 84.65%, a difference of nearly 2.77%. This suggests
that Dynamic Permit Allocation effectively mitigates class imbalance
and enhances entity recognition for rare and emerging entities. AUC
values are consistently lower in this ablation setting, indicating that
Dynamic Permit Allocation contributes to improved model
confidence and decision boundary calibration. Removing
Incentive-Compatible Subsidies leads to the most significant
Without
Subsidies, the model struggles to generalize across datasets with

performance  degradation. Incentive-Compatible

varying text styles and domain distributions. On LongVALE, the

Frontiers in Environmental Science

13

10.3389/fenvs.2025.1587566

F1 score declines from 89.85% to 89.30%, while the AUC drops from
92.30% to 91.42%. The effect is even more pronounced in the
VIRAT dataset, where the F1 score falls from 86.85% to 83.78%.
This suggests that Incentive-Compatible Subsidies is critical for
improving cross-domain generalization, allowing the model to
adapt to different linguistic patterns and entity distributions
effectively.

The ablation study demonstrates that each component of our
model plays a vital role in achieving state-of-the-art performance.
The combination of Dynamic Taxation Mechanism, Dynamic
Subsidies
significantly enhances entity recognition, leading to improved

Permit  Allocation and  Incentive-Compatible
accuracy, recall, and F1 score across all datasets. These findings
validate the efficacy of our proposed approach in tackling the
challenges of Named Entity Recognition (NER) across a wide
range of domains.

To provide a clearer overview of our contributions, we
summarize the best performance of our method across all
datasets in Table 5. This consolidated view helps visualize the
generalization strength and consistent effectiveness of our model

in diverse real-world video understanding scenarios.

5 Conclusions and future work

In this study, we explored the economic implications of air
quality monitoring by integrating a video analysis approach with an
Eco-Regulated Market Dynamics Model (ERMDM). Traditional air
quality assessment methods, such as stationary sensor networks and
survey-based economic models, often struggle with spatial
limitations, delayed data availability, and high operational costs.
To address these challenges, we leveraged computer vision
techniques to extract pollution indicators from video footage.
These indicators were then incorporated into a dynamic market-
based that

environmental intertemporal optimization,

regulatory  framework accounts for stochastic

fluctuations, and
policy-induced market responses. By embedding environmental
constraints into economic decision-making, our model effectively
balances industrial productivity with ecological sustainability. The
experimental results indicate that our approach significantly
improves real-time assessments of air quality’s economic impact.
This enables policymakers to develop adaptive taxation strategies
and market-driven permit allocation mechanisms, thereby fostering
sustainable economic policies.

Despite its promising results, our approach has two main
limitations. The accuracy of video-based pollution detection may
be influenced by lighting conditions, camera angles, and weather
variations, to inconsistencies in data

potentially leading

interpretation. Future research should incorporate machine
learning enhancements to improve robustness under diverse
environmental conditions. While the ERMDM model effectively
integrates economic and environmental factors, its reliance on real-
in policy
implementation and compliance monitoring. A potential solution

time policy adjustments may pose challenges
is the development of automated governance frameworks that utilize
Al-driven policy simulations to preemptively adjust regulations
based on anticipated environmental and economic shifts. Our
study highlights the transformative potential of video analysis in
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FIGURE 5

The structure of the Future Research Directions Roadmap. This
roadmap illustrates the envisioned progression of future research
grounded in the current study. It highlights three key stages:
methodological enhancements—such as integrating multimodal
learning, causal modeling, and high-dimensional optimization;
system-level integration—linking dynamic representation networks
with coordinated policy modules and multi-agent dynamics; and real-
world deployment—focusing on global risk simulation, supranational
coordination platforms, and policy interface design. This structured
pathway supports scalable, adaptive, and policy-relevant innovation in
international financial modeling.

air quality monitoring while emphasizing the need for further
refinements to enhance reliability and policy applicability.

6 Discussion

The significance of our results lies in their ability to directly link
environmental observations to actionable economic levers. By
quantifying pollution levels through video streams and feeding
this data into the ERMDM, we demonstrate a scalable, cost-
efficient mechanism for internalizing externalities in real-time.
This contributes to a more responsive economic system where
environmental degradation is met with immediate economic
feedback. Moreover, our framework supports proactive
governance by simulating how fluctuating air quality can affect
industrial costs, labor productivity, and public health expenditures,
thereby equipping decision-makers with evidence-based tools for
sustainable development planning.

To further contextualize our findings, we compare them with
existing literature and highlight their practical implications. The
consistent outperformance of our model across THUMOS-14,
LongVALE, DREAM-I1K, and VIRAT datasets aligns with recent

advances in video-based air quality monitoring that leverage deep
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learning architectures such as Vision Transformers (ViTs) and CNNs
for spatiotemporal feature extraction. Our superior results reinforce the
growing consensus that video analytics, when coupled with robust AT
models, offer scalable and cost-effective alternatives to conventional
sensor-based monitoring systems. Beyond technical metrics, the
practical implications of our method are significant. Accurate and
timely detection of pollution patterns, as demonstrated by our model,
can facilitate more dynamic policy interventions, such as adaptive
emission control and targeted regulation enforcement. These
insights resonate with studies showing that improved monitoring
precision leads to enhanced economic outcomes, including higher
regulatory compliance, optimized public health responses, and
efficient resource allocation. Furthermore, our results support the
viability of integrating Al-driven video monitoring into market-
based environmental policy mechanisms, such as cap-and-trade
systems and carbon pricing models. Real-time visual pollution
analytics data-driven
environmental economics by improving the quantification of

can  underpin decision-making  in
externalities and supporting transparent compliance tracking. This
integration not only enhances accountability but also incentivizes
technological upgrades in polluting sectors.

Our findings also expand upon prior research that primarily focused
on static datasets or isolated case studies. Unlike existing methods that
require extensive infrastructure or depend heavily on retrospective
modeling, our approach enables continuous assessment and real-time
policy feedback loops. In this respect, the proposed ERMDM framework
serves as a bridge between environmental signal acquisition and
macroeconomic simulation—an interdisciplinary contribution that
advances both environmental informatics and regulatory economics.
In particular, we build upon and extend the work, which emphasize the
need for real-time pollution data in economic modeling, by
demonstrating that video-based inputs can fulfill this role with high
fidelity. Our results contribute novel empirical evidence to the ongoing
discourse around Al-based environmental monitoring, offering a
pathway to operationalize theoretical models proposed in prior
economic-environmental frameworks.

During the course of our study, we encountered several
unexpected observations and practical challenges that offer
valuable insight for future research and deployment. First, while
video-derived indicators such as vehicle count and pedestrian
density were generally reliable, we observed occasional detection
failures due to environmental factors like rain, glare, or partial
occlusion of the camera view. These conditions led to temporary
underestimation of mobility indicators, which in turn affected
short-term economic inferences. While we applied pre-filtering
techniques to reduce such noise, residual inaccuracies suggest the
need for adaptive detection models that account for weather and
lighting conditions in real time. Second, in our dynamic taxation
simulations, we observed periods of excessive policy volatility
when environmental conditions changed rapidly over short time
spans. These abrupt shifts led to overly aggressive tax adjustments,
which destabilized the simulated firm behavior. To mitigate this,
we introduced a damping factor in the policy update equation, but
this also reduced responsiveness. Balancing responsiveness with
stability remains a key challenge for real-world implementation.
Finally, while our model performs well across most urban contexts,
it was less effective in low-traffic or rural areas where video-derived
activity indicators were sparse. This highlights the need to
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complement video data with alternative sources such as mobile
device location or remote sensing in less active regions.

The roadmap presented in the figure titled “Future Research
Directions” delineates a structured progression for advancing
international financial modeling and policy design. It begins
with enhancing model architectures through multimodal data
fusion, causal inference, and high-dimensional optimization.
This is followed by system-level integration, emphasizing
real-time coordination between dynamic encoding networks
and policy engines, as well as incorporating multi-agent
interactions. The final stage focuses on deploying these
capabilities in practice, including global risk simulation
platforms and cross-national coordination frameworks.
Together, these steps provide a clear and actionable path for
future research grounded in the current work.(As shown

in Figure 5).

7 Limitations

Despite the promising results achieved by our approach,
several limitations should be acknowledged. First, our model
relies on datasets that, while diverse, may not fully capture the
range of environmental and lighting conditions encountered in
real-world deployments. This poses challenges to generalizability,
especially in regions with limited video-based air quality data or
extreme weather variability. The current datasets are also
imbalanced in terms of pollution categories, which could
introduce biases during training. Second, our methodology
that haze, smoke,
particulate visibility—are reliable proxies for pollution levels.

assumes visual features—such as or
However, in certain cases, such features may be confounded by
ambient factors like fog, reflections, or low-light conditions, which
could reduce the reliability of predictions. Third, although our
model demonstrates high accuracy, the computational cost of real-
time video processing remains non-trivial. Deployment in
resource-constrained environments, such as edge devices or
low-bandwidth networks, may require further optimization or
model compression strategies. Lastly, ethical and privacy
considerations associated with video surveillance must be
carefully managed, especially when applied

populated urban areas. Future work will focus on expanding

in densely

the training corpus with more heterogeneous data sources,
enhancing model robustness under variable conditions, and
developing lightweight architectures for scalable deployment.
We also intend to explore multimodal fusion (e.g., combining
video with satellite or sensor data) to improve estimation
accuracy and interpretability.

8 Implications

The findings of this study offer several important implications
for policymakers, industry stakeholders, and future research.
From a policy perspective, the proposed video-based air
quality monitoring framework provides a timely, cost-effective
environmental surveillance and

solution for enhancing

enforcement. By enabling high-resolution, real-time pollution
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detection, our system supports more responsive and data-

driven policy interventions, such as dynamic emission

regulation, adaptive traffic control, and targeted industrial
inspections. For environmental and industries,
the regulatory

optimized pollution response strategies, and risk-informed

agencies
system facilitates improved compliance,
planning. It also contributes to transparent reporting and
accountability in emission tracking, which is particularly
relevant for carbon trading markets and ESG (Environmental,
Social, and Governance) disclosures. From a research standpoint,
this work opens avenues for integrating video-based sensing
with other modalities—such as satellite imagery, IoT sensors,
and meteorological data—to construct robust, multimodal
pollution assessment Further
needed to enhance model interpretability, address privacy

frameworks. work is also
concerns in video surveillance, and develop lightweight models
suitable for deployment on edge devices. These efforts will be
for its

crucial scaling the technology and maximizing

societal impact.
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