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Conservation easement (CE) use in the U.S. and globally has expanded over the
past 40 years in fringe areas adjacent to urbanization, and this article examines
their spatial manifestation in twelve physically and socially heterogeneous, high
growth metropolitan U.S. counties within six states. Augmenting previous CE
studies relying on single spatial statistical tests, we employed multiple spatial
statistics for a more complete picture of CE spatial clustering over time. Our
results show nuanced associational—but not causal—spatial relationships
between CEs. Ripley's K and Average Nearest Neighbor results display distinct
clustering patterns across most counties over time despite county disparity and
CE difference. Global Moran's | results show that CE size impacts the clustering.
Notably, the CEs with a first designated biological purpose did not cluster based
on size. Counties with governmental oversight in CE placement lacked a
consistent clustering typology, suggesting that other factors have greater
influence on CE spatial expression. The results illustrate the importance of
using multiple spatial statistical tests to accurately reveal relationships
between phenomena across space, as CE clustering affects systematic
conservation planning and precision in the hazard model of land
development, promotes environmental management responses to climate
change biome shifts, and potentially limits development.
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1 Introduction

A private form of land conservation, conservation easements’ (CEs) use has expanded
over the past 50 years, especially in fringe areas adjacent to rapid urbanization (Whyte,
1968). CEs are a negative easement in gross, meaning that they permanently (if granted in
perpetuity) sever rights from a property, allowing its owner to continue ownership but
limiting property use by the terms of the CE, which is held by another entity with the power
to enforce the CE. Their popularity may correspond to federal and state tax laws creating
incentives for private land conservation in the public interest. However beneficial as a land
preservation tool, cumulative private CE decisions can potentially affect public land use
options and systematic conservation planning, arguably without direct public input
(Olmsted, 2011). With climate change associated biome shifts exacerbating biodiversity
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loss, there is an imperative to prevent intact ecosystem conversion
into extractive uses such as forest plantations or low-density

»

residential development often dubbed “sprawl.” Private land
conservation is an integral element of the conservation toolkit,
especially when “a group of small reserves may be more effective
than a large single reserve under changing climates if the former
encompasses broader climatic and elevational gradients” (Carroll
and Noss, 2021, p. 159; IPCC AR6, 2021). Scholars are beginning to
examine the spatial patterns of CEs, asking how they impact local
land use and relationships with other kinds of conserved lands.
To contribute to this line of inquiry, this article further addresses
a basic CE geographic question: whether and in what patterns CEs
are spatially clustering to conserve land in areas adjacent to “highly
developable lands” (Whyte, 1968, p. 80). CE spatial clustering (and
its detection) impacts multiple disciplines and their methodologies,
including environmental with its

management, conceptual

integration of regional science’s land use optimization;
conservation biology’s systematic conservation planning; and
urban planning for open space adjacency. These disciplines must
account for such clustering because it is a type of temporally and
spatially varying land use relationship that inherently influences
theories and policies about land availability and ecosystem
management in the following ways.

From an environmental management perspective, CE clustering
can impact sustainability principles, agricultural land preservation,
and spatial optimization modeling. Clustering may preserve
agricultural land threatened by conversion (Vining et al, 1977;
Hite, Sohngen and Templeton, 2003) and affects sustainability
principles (Yao, Zhang and Murray, 2018). It can impede or
promote sprawl, depending on the size of the open space
preservation and the contiguity and compatibility of conserved
areas (Irwin and Bockstael, 2004; Carruthers et al., 2012).

The presence and extent of CE clustering can constrain a
common environmental management and regional science
method of projecting land use change: the hazard model of land
development. This approach predicts and delineates patterns in land
use change over time, particularly urbanization trends across a
landscape (Carruthers et al., 2012; Irwin and Bockstael, 2004). It
does so by estimating “the conditional probability of a time frame
ending” which is land use change, using inputs such as the
surrounding kinds of lands uses for a particular parcel and the
parcel characteristics (e.g., economic value in type of land use, cost of
development, lot size, terrain, drainage, zoning allowances, etc.)
(Carruthers et al., 2012, p. 275; Irwin and Bockstael, 2004). Accurate
CE spatial clustering measurement—whether determining its
presence or absence—impacts the precision of the hazard model
because open space preservation is an input.

CEs are a relatively invisible presence on the landscape
compared to overt governmental policies, which have been
shown to affect development rates for cluster development
projects (Irwin and Bockstael, 2004). Cluster developments
concentrate or group residential, commercial or other kinds of
land uses in a subdivision or on a development site, respecting
the existing zoning for the amount of property (the entire site) but
clustering them at a higher density and leaving the remaining site
open to preserve a larger area of intact open space (Arendt, 1996).
Irwin and Bockstael (2004) conducted a parcel-level land use study

of sprawl and open space preservation in Calvert County, MD.
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Using the hazard model of land development, they examined the
effects of policy mandates to cluster residential development and
preserve a minimum open space volume on predicted rates of
development within the county. They found that a policy
requiring only a 50% conservation set-aside within cluster
additional
predicted development level. They attributed this outcome to the

developments induced development above the
cost-savings of the cluster development and the increased property
values surrounding the preserved open space, perceived as an
amenity. But an 80% open space set aside for larger parcels did
not induce greater development (Irwin and Bockstael, 2004, p. 723).

CE presence may also enhance or impede systematic
conservation planning objectives, depending on their location in
relation to other conserved lands. Although CEs can be employed
for a broad range of conservation purposes (agriculture, recreation,
scenic, historic, biologic and open space), much of the CE spatial
manifestation research has focused on its biological contributions
and protection of ecosystem integrity by preventing land conversion.
Non-random CE spatial relationships may reflect the influence of
biological principles to amass land in large quantities and create
connectivity between these parcels to promote conservation and
biological diversity (Carroll and Noss, 2021; Soule and Noss, 1998).
Some nongovernmental entities holding CEs have adopted a
carefully vetted and regularly utilized systematic conservation
planning framework for targeting conservation lands (i.e., The
Nature Conservancy (TNC)) (Groves et al, 2002), but others
may take a more passive or ad hoc approach for a variety of
reasons. Conservation planning requires a systematic process that
accounts for ecosystem attributes, targets levels for vulnerable or
irreplaceable populations and generates connectivity (Margules and
Pressey, 2000). Reserves of different sizes and locations may perform
functions at multiple scales, even in fragmented or degraded habitats
(Wintle et al, 2019). Both representation and connectivity are
integral to a reserve network, as well as elevation gradients with
variable climate change velocities; CE lands may offer these refugia
(Carroll and Noss, 2021). Graves et al. (2019) examined the spatial
distribution of 1,223 CEs (1970-2016) in a single region, the High
Divide of the Rocky Mountains, to assess their contributions to
landscape connectivity and ecosystem representation. Examining
only the locations of CEs and their ecosystem value in relation to
publicly conserved and non-CE lands, they found that CEs
complemented public lands but were located at lower elevations
and closer to roads, water and land trust offices (Graves et al., 2019).
Instead of spatial statistical tests, Graves et al. (2019) employed
landscape connectivity modeling (Circuitscape, 2025, https://
circuitscape.org/) to show that there were opportunities to link
CE contributions to broader national priorities.

Wallace et al. (2008) showed that additional benefits (e.g.,
connectivity) are emerging from conserved land regardless of the
conservation impetus, but these results are tempered by the
possibility that broad federal CE qualifications may encourage
piecemeal preservation of land with little ecologic value
(Coombes, 2003). A study involving 119 CEs in eight states, all
of which were held by TNC (a single, global nonprofit entity),
showed that while CEs are strategically placed to capitalize on
biological targeting (Kiesecker et al, 2007), they are also
permitting additional uses of the underlying land that may
impact their biological contributions (Rissman et al, 2007).
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Fouch etal. (2019) found that CE properties held by a local land trust
were not significantly different from similarly situated unconserved
lands in terms of the human modification index (HMI), a
measurement of naturalness as a gradient (Theobald, 2013), and
both have higher HMI than adjacent public lands.

Recent works examining causality of CE spatial patterns reveal a
definite non-random expression over time that is influenced by a
heterogeneous mix of both biological and social policies.
(2021) used the National Conservation

(NCED), while acknowledging its
(Dyckman et al, 2025), to
manifestation in all 50 states over 25 years. They calculated

Lamichhane et al
Database
incompleteness

Easement
examine CE

Moran’s I to examine CE spatial clustering, with the dependent
variable representing the percentage of CE land out of the total land
of each state. While accounting for state-to-state impacts, they found
that there was a state-by-state CE spread, suggesting a contagion
effect. They also found greater CE counts in areas with more
forestland, higher incomes and education, a Republican political
bias, and greater development pressure (Lamichhane et al., 2021).
Baldwin and Leonard (2015), who used the NCED but focused on
the Appalachian Blue Ridge region of the U.S., found that social
predictors were more powerful than environmental predictors in CE
placement but there was interaction between the two kinds of
variables. For Blue Ridge CEs, “the odds of finding an easement
were greater closer to urban areas and at lower elevations, in areas of
greater housing density and median incomes, closer to roads and
with greater landscape-level habitat heterogeneity, in areas of greater
crop productivity, and farther from protected areas” (Baldwin and
Leonard, 2015, p. 12).

Evaluating the Blue Ridge and Piedmont ecoregions across
states, (2019) examined the spatial
expression and biodiversity contributions of public and private

several Lacher et al
lands. They used 5-year increments between 1985 and 2015 to
assess spatial clustering changes with Getis-Ord General Gi, as well
as total area and core area of protected patches and patch
aggregation They spatial
differentiation over time, with comparatively fewer but bigger
patches in the Blue Ridge than the Piedmont, which exhibited
smaller, more plentiful but less resilient CEs that protected

across the landscape. found

cropland and grasses and were farther from existing patches of
conserved land. They attributed this differentiation to the types of
land uses on the CE parcels, the geography and economic value of
the area and historic preservation in the Blue Ridge (Lacher
et al.,, 2019).

CEs may affect the viability of public open space conservation
and land use projections in the field of urban planning. Whyte’s
(1968) theory about where CEs should occur and consequently
cluster responds to the tensions between urban planning for
conserved lands with increasing growth pressures, and the
expectations of the open space owner. Public open space
conservation approaches include: “the police power, the purchase
of land, and [. . .] purchase and leaseback and the acquisition of
easements on private property” (Whyte, 1968, p. 11). [Whyte (1968),
p. 80] argues that the CE should be used selectively and should be
“tailor [ed]. .. To the pattern that has been set by nature and by such
man-made features as highways.” Using a hypothetical stream valley
to show where they should be employed, he states: “[there are] three
kinds of land: the flood plain that can be kept open by zoning, the
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highly developable land that probably cannot be kept open, and the
in-between land where there is a fighting chance. Here is where the
easements can be most useful” (Whyte, 1968, p. 80). In a clustered
combination, CEs can prevent development in the “in-between
lands,” creating a bulwark that impacts ecosystem function and
offers climate change defense with biodiversity maintenance and
fewer structures in hazardous areas.

Knowing where and how CEs are clustering also helps to guide
future land use choices in county and city comprehensive plans, but
most CE placement lacks public oversight. As [Olmsted (2011),
pp. 53 - 54] argues, “[CEs], and the invisible forests they create, can [.
. .] undermine public planning processes. . . There is an academic
movement to place [CE] practice within the context of land use
planning by requiring proposed easements to be subject to a public
approval process,” particularly since their spatial outcomes may
influence public land use choices in urbanizing areas. Public
oversight has multiple manifestations and gradations (Richardson
and Bernard, 2011) and the forms are not prescribed. Some overt
manifestations occur at the state level through recordkeeping (Pidot,
2011), and at local levels with planning departments or local
governments through discussion, review and/or approval of CE
placement and comprehensive plan consistency (Richardson and
Bernard, 2011). Other manifestations are more indirect, including
public entities who hold the CEs, suggesting that there is public
notice through traditional public processes to determine whether to
assume the responsibility for the CE (Morris and Rissman, 2009). Tt
is not clear how these forms of oversight affect a CE’s spatial
manifestation.

Part of the challenge of the CE instrument in urban planning is
the fact that it is a hybrid form of public and private good because its
use is partially determined by individuals rather than regulation or a
governmental planning process with mandated public participation
(Morris, 2008). U.S tax laws govern the criteria that determine land
eligibility for use of the CE tool and subsequent CE tax incentives,
but there is no mandate to employ a CE except through exaction via
development deal or court holding. While varied, some of the
postulated drivers in individual CE placement choice include
policy (nonprofit, local, state, and federal), tax incentives,
landowner’s ecological ethos, land characteristics and adjacent
land uses (e.g., the size of the CE parcel, development pressure,
the type of land use underlying the CE parcel, and neighboring CE
placement aka “contagion effect”), and the multiple federally-
enumerated purposes for a valid CE (Ernst and Wallace, 2008;
Brenner et al., 2013; Farmer et al., 2011; Stroman and Kreuter, 2014).
Of these, two significant contributors include the varied provisions
of each state’s CE enabling statutes and the legal requirements for
federal income and estate tax deductions for qualified conservation
contributions (Lindstrom, 2008). Every state across the U.S. now has
complementary or similar statutes codifying the federal CE and its
available income tax deduction and property tax reduction scenarios
(Sundberg and Dye, 2006). Ernst and Wallace (2008) showed that
tax incentives, while not the primary reason for CE utilization,
facilitated the Larimer County, CO property owners’ decision-
making processes. Farmer et al. (2011) affirmed this finding with
a slightly larger geographic sample of CE donors in seven
Midwestern states.

U.S. tax law has magnified taxpayers’ ability to realize CE
donative value over the last 4 decades, despite recent IRS

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1575788

Dyckman et al.

scrutiny of the concept of perpetuity (McLaughlin, 2017). The
1997 Taxpayer Relief Act expanded posthumous donation of a
CE; from 1997 through 2001, estates’ federally deductible CEs
were encouraged in close proximity to urban areas, and after
2001, they were permitted anywhere if they met the
characteristics for all qualified CEs under 26 U.S.C.S. §170(h)
(McLaughlin and Weeks, 2009; McLaughlin and Machlis, 2008).
It is not yet evident whether—or how—the tax incentive expansion
affected CE spatial manifestation, but a statistically significant
difference in the spatial locations of the CEs placed between
1997 and 2001 and those after 2001 would demonstrate a
potential relationship between the law and the spatial outcomes.
If CEs lacked spatial randomness for each period, this could
implicate other influences, including CE purposes and systematic
conservation planning policies.

While we do not respond to the entire canon of studies exploring
CE spatial location, we address the majority in this emerging but still
nascent avenue of research that assesses influences on CE spatial
manifestation. Accordingly, we focused on the knowledge gaps
noted above by first asking if there was a statistically significant
difference in the spatial distributions of CEs before and after the
legal tax change in 2001, which would illustrate its physical effects.
We also tested the potential for other influences on CE spatial
manifestation, including systematic conservation planning policies
and CE purposes. Understanding the need to amass conserved areas
and the role that CEs can play in doing so, we grouped the CEs
within our datasets by purpose to specifically determine whether CE
clustering patterns are associated with biologically related purposes
in the CEs themselves. These grouped CEs had one or more of the
following purposes: a direct quotation of the Internal Revenue
Service’s biologically-related conservation purposes (i.e., “the
protection of a relatively natural habitat of fish, wildlife, or
plants, or similar ecosystem” and “the preservation of open space
(including farmland and forest land) where such preservation is
pursuant to a clearly delineated Federal, State, or local governmental
conservation policy, and will yield a significant public benefit”
(26 US.CS. §170(h) (4) (A) (ii) and (iii) (II), 2025) and other
purposes with a direct biological conservation intent, including
protection of endangered species, rare species, and threatened
species. They also included significant habitat preservation, water
resources protection, watershed protection, forest ecosystem
protection, seasonal wetlands, and grasslands. These CEs are
distinguished from CEs with an overt “open space preservation”
purpose because even if open space offers biological benefit by
preventing land conversion, the intent of the open space
preservation CE is not directly biological. Finally, given the
potential for public oversight to affect CE placement and spatial
location, we asked whether there was any difference in CE clustering
when overt public oversight is present in the CE process.

2 Data and methods

To answer these questions, we used several kinds of spatial
hypothesis testing that distinguish types of CE clustering and/or
dispersion across twelve physically and socially disparate counties
six Level 1

experiencing urban growth in eco-regionally

representative U.S. states to reveal nuanced relationships between
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CEs in urbanizing counties. We assumed that a non-random spatial
pattern in CEs expression over time gives evidence of underlying
factors driving the selection of CE locations and randomness
suggests their absence.

2.1 Measuring CE clustering and the MAUP

Using a single spatial statistical approach to examine CE spatial
expression can lead to the modifiable areal unit problem (MAUP)
and issues of accuracy and type I errors. According to [Hennerdal
and Nielsen (2017), p. 556], “a particular aggregation at a specific
scale can yield an arbitrary result that is valid only for that specific
delineation. This problem is referred to as the MAUP and can be
avoided by varying the delineation parameters to test multiple
aggregations.” MAUP applies to both spatial segregation and
clustering analysis when using a single test, which is why
Hennerdal and Nielsen (2017) argue for a multi-scaled approach,
including Average Nearest Neighbor (ANN) testing. For clustering
analysis, the varied scales are introduced through global and local
tests. [Grubesic, Wei and Murray (2014), p. 1137] present four
categories of cluster analysis, with the “autocorrelation-based”
category as most relevant to CE clustering. Both global and local
testing are needed because the global lacks the ability to identify
autocorrelation, while the local compensates for this shortcoming
but risks type I errors (Grubesic, Wei and Murray, 2014,
pp. 1139-1140; Self et al., 2023). Given the postulated CE drivers,
CEs can manifest spatial autocorrelation, suggesting that multi-
scaled (Global and Local Moran’s, and ANN) testing will most
reliably distinguish CE spatial patterns.

2.2 Study area selection and dataset
construction

Counties are the ideal study unit for a project examining CEs,
with their administrative authority in stewarding CE and other
property records, and the most common scale at which CEs occur.
We constructed twelve county-level datasets that typify high-growth
metropolitan counties and are generalizable to other areas with
similar characteristics. We purposefully sampled these twelve
counties from each Census region to guard against results that
only represent smaller regional trends. Our selection criteria
included: (1) at least one county within each Census region of
the U.S. and ideally, within the states with the highest numbers of
square meters preserved in CEs in each, without normalizing by
urbanized area (Supplementary Material); (2) Level one ecoregion
exemplification (Supplementary Material); and (3) a balance of
states with state easement enabling laws that mandate some form
of land use planning principles/public oversight in easement
placement. Our chosen states and counties are Sacramento and
Sonoma in California (CA), Boulder and Mesa in Colorado (CO),
Douglas and Washington in Minnesota (MN), Lebanon and York in
Pennsylvania (PA), Charleston and Greenville in South Carolina
(SC), and Albemarle and Loudon in Virginia (VA).

Of these, VA is the only state with enabling legislation that
includes a form of public oversight in CE placement. We tested two
aspects of public oversight in this analysis: state mandated CE
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TABLE 1 Spatial statistical tests employed within a county over time®.

Spatial

statistical
test

Average Nearest
Neighbor

Ripley’s K

Purpose

Testing whether the
presence of a CE in
any given location in a
county impacts the
likelihood that
another CE is nearby
[do CEs cluster,
generally?]

Testing whether CEs
are clustered or
dispersed at a specific
geographical scale
(e.g., 1 ha) [do CEs
cluster generally?]

Null hypothesis

CE locations are
completely randomly
spatially distributed over
space

CE locations are
completely randomly
spatially distributed over
a specific geographic
scale

Consequence of
rejecting null

Two possible outcomes: (1)
CEs are clustered (presence of
on CE in an area makes it
more likely for other CEs to
be in proximity) or (2) CEs
are dispersed (presence of one
CE in an area makes it less
likely for other CEs to be in
proximity)

Two possible outcomes: (1)
CEs are clustered on the
specified geographic scale, or
(2) CEs are dispersed on the
specified geographic scale

Differentiation from
other spatial
statistical tests

Solely assesses patterns in the
CE locations without regard to
other characteristics

Solely assesses patterns in the

CE locations without regard to

other characteristics BUT at a
specified geographic scale

10.3389/fenvs.2025.1575788

Associated equations

Average negrest neighbor
distance: iZd,ﬂ n: number of
CEs =1

d;: distance from CE i to
nearest CE

Estimated Ripley’s L function:

Az:‘:l = ﬁk’f

= m: number of
CEs
kij: 1if CEsiand j are within
the specified distance of each
other, 0 otherwise
A: area of the county

Global Moran’s T

Testing whether CEs
cluster by CE size
across the entire
dataset with a single
statistic and p-value
[does knowing the size
of a CE provide
information on the
likelihood of nearby
CEs being large or
small?]

CE spatial distribution
by size is completely
random over space when
measured across the
dataset

Spatial autocorrelation is
present, manifesting either:
(1) positively, with a large CE
more likely to have other
large CEs nearby, or (2)
negatively, with a large CE
more likely to have small CEs
nearby

Assesses patterns in the CE
locations with regard to size
over the entire dataset

Global Moran’s T statistic:

n . 2 ijl“"lz'zﬁ
Yo Xowi o XLd
n: number of CEs
wjj: weight associated with
CEs i and j (inverse distance
between CEs if less than cutoff,
0 otherwise)
z;: size of CE i

Local Moran’s 1

Testing whether CEs

cluster by CE size for

each observation (CE)

with its own statistic
and p-value [does

knowing the size of a
specific CE provide
information on the
likelihood of nearby
CEs being large or

small?]

CE spatial distribution
by size is completely
random over space when
measured by each
observation (CE) in the
dataset

Spatial autocorrelation is
present for each individual
CE, manifesting either: (1) the
CE is an outlier, or (2) the CE
is part of a cluster with respect
to the characteristic of interest
(e.g., CE comparative size)

Assesses patterns in the CE

locations with regard to size

for each observation in the
dataset

Local Moran’s I statistic for CE

@Y w2
N

of CEs

wj;: weight associated with

n: number

CEs i and j (inverse distance
between CEs if less than cutoff,
0 otherwise)

z;: size of CE i

z: average CE size

“Note: these tests control for volume by year, so that an accumulation of CEs over time will not influence presence (or absence) of clustering patterns.

conformance with the local comprehensive plan (Albemarle and
Loudoun), and the implied public input associated with most CEs
being held by a public entity (state, county or city). This introduces
public oversight in Albemarle, Loudoun, Boulder, Douglas,
Washington, Lebanon, York, and Sonoma counties.

For each county, we generated individual parcel-level datasets
that contain spatially-linked assessor’s information for the period of
study (1997-2008/2009, which was the start of the Great Recession
that significantly impacted land and property values), a spatial layer
of conservation easements, and spatially-linked conservation
easements’ characteristics—individually coded and randomly
verified using intercoder reliability—which are associated with
each of the parcels that the CEs contact/touch. We constructed a
GIS dataset with the CE location, size, year of placement, purposes,
restrictions, and allowances for every CE placed between 1997 and
2008/2009. With permission, we used county, city or nonprofit GIS
databases of the CEs locations but verified them against the actual

Frontiers in Environmental Science

legal description in each CE. Within each county, we mapped the
parcels to their centroids and calculated distances based on centroids
(Supplementary Material). The datasets are a subset of the total
number of CEs within each county (as the spatial datasets are
constrained to those CEs whose characteristics are available from
the recorder’s offices) and constitute only those on record that could
be searched through the “easement” term. They are limited by the
quality of each county recorder’s system (Morris and Rissman, 2009)
and by the time period, as well as the potential for human error,
given the sheer quantity of human effort that it required to assemble
and verify the datasets.

Our approaches build on but are distinct from the previous
efforts to understand CE representation across a landscape in several
respects. Rather than relying on a single spatial statistical test
(Lamichhane et al.,, 2021; Lacher et al, 2019), we used multiple
spatial statistics across representative ecoregions. This reveals more
nuance in associational—but not causal—spatial relationships
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TABLE 2 Basic CE statistics across the counties.

Tiers of County, Mean CE Total CEs Whether the CE is in perpetuity  First listed CE
median CE  state (CE  size in m? between reason
size range median (St'd 1997-2007/ Finite  Perpetual Unspecified (highest

size in m?) Error) 2008 CE CE percentage in
the county)
<4,046.86 m’ Washington, 61,350.40 255 2001 0.00% 96.47% 1.18% Scenic value/beauty
MN (3,965.92) (28.95) (0.00144) (0) (246) (3) (49.41%)
4,046.86 to Greenville, SC 1,402,560.74 116 2005 0.00% 99.14% 0.86% Natural condition/
202,342.82 m* (57,950.98) (2,607.34) (0.00157) (0) (115) (1) natural
environment/
natural resource
values
(22.41%)
Boulder, CO 271,180.09 561 2001 0.53% 97.15% 2.32% Agricultural
(72,479.26) (205.54) (0.00146) 3) (545) (13) viability/livestock
(19.79%)
Douglas, MN 243,782.85 64 2002 7.81% 92.19% 0.00% Soil
(145,322.74) (56.01) (0.00109) 5) (59) (0) (65.62%)
202,343.82 to Loudoun, VA 397,037.43 453 2003 0.44% 98.90% 0.66% Open space
404,685.64 m? (220,027.78) (146.52) (0.00155) ) (448) 3) preservation
(59.82%)
Charleston, SC 757,572.19 215 2003 0.00% (0) 99.53% 0.47% 170(h) (4)A) (ii) the
(308,370.73) (298.27) (0.00188) (214) (1) protection of a
relatively natural
habitat of fish,
wildlife, or plants
(64.19%)
Sacramento, CA 1,497,459.61 70 2004 1.43% 97.14% 1.43% (1) Agricultural
(352,279.16) (946.60) (0.00176) (1) (68) viability/livestock
(21.43%)
York, PA 478,945.88 308 2004 0.00% 100.00% 0.00% Agricultural
(393,354.79) (116.57) (0.00189) (0) (308) (0) viability/livestock
(61.69%)
404,686.64 to Mesa, CO 1,712,833.50 184 2005 0.00% 100.00% 0.00% Agricultural
607,028.46 m? (440,945.87) (1,077.96) (0.00173) (0) (184) (0) viability/livestock
(41.85%)
Lebanon, PA 456,000.18 111 2005 (0.0016) 0.00% 100.00% 0.00% Agricultural
(447,744.59) (59.83) (0) (111) (0) viability/livestock
(84.68%)
Albemarle, VA 820,824.61 361 2004 0.00% 100.00% 0.00% 170(h) (4) (A) (iii)
(470,123.73) (250.48) (0.00171) (0) (361) (0) (II): pursuant to a
clearly delineated
governmental
conservation policy
(46.26%)
Sonoma, CA 1,906,232.93 125 2003 0.80% 98.40% 0.80% Open space
(540,579.56) (1,461.22) (0.00162) (1) (123) (1) preservation
(48.00%)

between CEs over time. We did not utilize regression to  evaluation is on an annual basis, unlike the 5-year increments in

examine causality and environmental outcomes of CE placement  other studies.

and location (Baldwin and Leonard, 2015; Graves et al., 2019);

instead, our spatial statistics showed the effect of tax policy on

2.3 Revealing basic CE characteristics and

measuring CE spatial randomness

and the role of CE purpose in CE spatial location. Our work
is neither national (Lamichhane et al, 2021) or focused on a
single or a few ecoregions (Baldwin and Leonard, 2015; Graves

et al, 2019; Lacher et al, 2019). Our analysis sites exemplify
urbanizing areas under growth pressure (Irwin and Bockstael,
2004), and our time period spans more than a decade, but our
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To examine relative similarity across the CEs as a possible
explanatory factor for subsequent spatial analysis, we assessed
them according to several features, including their count; the
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TABLE 3 Spatial Trends by County for Full Study Period (grouped by the four Global Moran’s | patterns for all CEs).

State

County

Public
oversight
Form(s)

Ripley's K*

Trend for full study period

Average
nearest
neighbor?®

Global
Moran's [°

10.3389/fenvs.2025.1575788

Trend for bio first CEs for full study

period

Ripley's K*

Average
nearest
neighbor?

Global
Moran’s I°

CA Sacramento Near and far Dispersed 1997 - Random to Near significant Dispersed to Entirely
significant 1998, random 1999 - | clustered (with clustering random’ random”
clustering* 2003, clustered (all random patterns

years after 2003)¢ in 2001-2002)

Cco Mesa Near and far Dispersed 1997 - Random to Near significant Dispersed to Entirely
significant 1998, clustered (all clustered clustering in all random’ random”
clustering® years after 1998) years after 2004

MN Washington | Majority city- Near and far Random 1997, Random to Near significant Dispersed to Entirely

held CEs significant clustered (all years clustered clustering in random’ random”
clustering in all after 1997)¢ 2004, 2005, 2008;
years after 1997¢ far significant
clustering in 2002
PA York Majority state or Near and far Random 1997, Random to Near significant Dispersed to Random to
county-held CEs significant clustered (all years clustered clustering in random to clustered in
clustering in all after 1997)¢ 2008, 2009 clustered! 2007-2009
years after 1999¢
VA Loudoun State-mandated CE | Near significant Random 1997 - 1998, | Random to Far significant Dispersed to Entirely
conformance with clustering clustered (all years clustered clustering in random’ random”
comprehensive plan; after 1998)° 2009 only
majority county-
held CEs
CA Sonoma Majority county- Near and far Dispersed 1997 - Entirely Mostly random Dispersed to Entirely
held CEs significant 1998, random 1999 - | random" random to random”
clustering post- 2004, clustered (all dispersed
2001°¢ years after 2004)"
MN Douglas Majority state- Near and far dispersed 2000, Entirely Near significant Dispersed to Entirely
held CEs significant random 2001, random” clustering in random’ random”
clustering* clustered (all years 2000 and
after 2001)¢ 2009 only

sC Charleston Near and far Random 1997, Entirely Near and far Dispersed to Vacillating
significant clustered (all years random" significant random to between
clustering in all after 1997)° clustering in all clustered? random and
years after 1997¢ years after 2000° clustered’

sC Greenville Near significant Random 1998 - Entirely Near significant Vacillating Entirely
clustering in all 1999 and 2001, random" clustering between random”
years, far clustered (1997, 2000, clustered and
significant all years after 2002)° random
clustering in
2002, 2003, 2007

PA Lebanon Majority state or Near and far No value 1997, Random to [No bio reasons | [No bio reasons | [No bio

county-held CEs significant dispersed 1998 - clustered to first] first] reasons first]
clustering* 1999, random random’

2000 and 2002 - 2005,

clustered (2001, all

years after 2005)¢

VA Albemarle State-mandated CE | Near significant Clustered (all years) Random to Near and far Random to Vacillating

conformance with clustering in all clustered to significant clustered between
comprehensive plan; | years, far random' clustering in all random and
majority state- significant years after 1997¢ clustered’

held CEs

Frontiers in Environmental Science

clustering in all
years after 1999

07

(Continued on following page)

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1575788

Dyckman et al.

10.3389/fenvs.2025.1575788

TABLE 3 (Continued) Spatial Trends by County for Full Study Period (grouped by the four Global Moran’s | patterns for all CEs).

State Public
oversight

Form(s)

County Ripley's K*

Average
nearest
neighbor?

CcO Boulder Near and far
significant

clustering*

Majority county-
held CEs
after 1997)¢

“Test asks: do CEs, cluster generally?

Trend for full study period

Random 1997,
clustered (all years

Trend for bio first CEs for full study

period
Global Ripley's K*  Average Global
Moran’s I° nearest Moran’s I°
neighbor?
Clustered to Near and far Vacillating Random to
random significant between clustered to
clustering* clustered and random'
random

PTest asks: does knowing the size of a CE, provide information on the likelihood of nearby CEs, being small or large across the entire dataset?
“Bright red text indicates near and far significant clustering in Ripley’s K testing for the majority, if not all of the years.
dGreen text indicates dispersed to random to clustered pattern in Average Nearest Neighbor results.

“Blue text indicates random to clustered pattern in Average Nearest Neighbor results.

Dark green text indicates dispersed to random pattern in Average Nearest Neighbor results.
8Purple text indicates random to clustered pattern in Global Moran’s I results.

POrange text indicates entirely random pattern in Global Moran’s I results.

Dark red text indicates random to clustered to random pattern in Global Moran’s I results.
/Navy text indicates vacillating between random and clustered in Global Moran’s I results.

year in which they were placed; their size; whether they permit
public access; the duration of the CE instrument (i.e., whether
perpetual or term-limited); the primary CE holder typology/ies;
and the first reason enumerated in each CE document by county. To
indirectly address the issue of parcel eligibility for a CE at the time of
placement, we analyzed the median and average non-CE parcel sizes
by land use categories in each county and compared them to those
on which the CEs manifested.

Based on existing spatial analyses of CEs, our overarching
hypothesis was that there is a non-random and similar set of
spatial relationships over time between CEs within a county,
detected by multiple global and local tests. Table 1 displays these
tests (Average Nearest Neighbor (ANN), Ripley’s K, Global Moran’s
I, and Local Moran’s I), our intent in using them, the associated null
hypotheses and consequences of rejection, differentiation of the test
from the others, and the associated formulas. For ANN and Ripley’s
K, we ran the tests on CE physical location, with default settings in
ArcGIS (i.e., Euclidean distance for ANN and distance bands of
10 for Ripley’s K). Ripley’s K was calculated over a range of distances
selected by ArcGIS based on the size and shape of the county. The
specific distances are provided in the x-axis of each county’s Ripley’s
K plot (Supplementary Materials). With Ripley’s K, it is possible to
reject the null hypothesis at certain scales but not others; we could
find that the presence of a CE in an area made it more likely for
another CE to be within two miles but had no effect on the likelihood
of another CE within one mile. The null distribution of Ripley’s K
function was estimated with 99 Monte Carlo permutations
in ArcGIS.

For Global and Local Moran’s I, we ran the tests on the CE
physical size, again with the default settings in ArcGIS
(i.e., Euclidean distance for each test). In both of these tests, we
used inverse distance weights with no maximum distance, as
adjacency-based weights were inappropriate since most CEs are
not directly adjacent to other CEs. For the Local Moran’s I test, in the
context of CE size, an outlier CE is one whose size is dissimilar to the
size of the nearby CEs (e.g., a large CE surrounded by small CEs) and
a clustered CE is one whose size is similar to the size of nearby CEs
(e.g., a large CE with other large CEs nearby). If the CEs revealed a

Frontiers in Environmental Science

non-random spatial pattern through these tests, we asked which
previous findings and positive theories from the literature might
help to explain that spatial pattern. These analyses are inclusive, so
there is no independence of years (Supplementary Material). The
sheer volume of CEs does not lead to spatial clustering outcomes
over time, as the spatial statistical tests control for this possibility.

To examine the potential effects of the 2001 federal tax law
change, we subdivided the CEs in each county into those adopted
between 1997-2001 and those adopted between 2002-2008/2009 for
one set of analysis and subsequently divided the CEs into two other
subsets by county: those that had a biological reason enumerated
first, and those that did not. For each of these subsamples, we ran the
spatial analysis enumerated in Table 1. For the biological analysis,
fewer counties had a biological reason as the primary purpose
throughout the time frame—and one county, Lebanon, had none.

3 Results
3.1 Basic CE distribution and characteristics

The median years in which CEs were added ranged from 2001 to
2005, with very low coefficient of variation (CV) values, suggesting
little dispersion in the years of CE placement in each of the counties
(Table 2). All counties had greater than 90% of perpetually restricted
CEs. Douglas had the highest percentage of CEs established for a
finite, rather than perpetual period (7.81%). Only one county,
Washington, had CEs that are generally than
4,046.86 square meters (one acre) (Table 2). Otherwise, the

smaller

counties could be divided into fairly equal distribution across
three tiers: 4,046.86-202,342.82 square meters (one to fifty acres,
three counties), 202,343.82-404,685.64 square meters (fifty to one
hundred acres, four counties), and 404,686.64-607,028.46 square
meters (one hundred to one hundred fifty acres, four counties).
There was no discernable geographic trend across these tiers, and no
state had two counties in the same tier. The CE holders were notably
different depending on the county (Supplementary Figure S1). Land
trusts were the predominant CE holders in four counties, while a
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FIGURE 1

Exemplary Ripley's K results. The figure depicts examples of the behavior of Ripleys K function under different types of spatial patterns. Sacramento
County, California exhibited a random pattern in 1997 (first row left) but near and far significant clustering in 2009 (first row right). Loudon County, Virginia
(second row) exhibited near significant clustering in 1997 (right) and 2009 (left). Sonoma County, California (third row) exhibited a random pattern in Bio
First CEs in 2003 (right) and a mostly random pattern in Bio First CEs in 2009 (left). Greenville County, South Carolina (fourth row) exhibited

significant near clustering in Bio First CBs in 1997 (right) and 2009 (left). In each graph, the red line indicates the observed K value, the blue line indicates

the expected K value, and the dotted grey lines indicate the confidence envelope.
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TABLE 4 Local Moran'’s | Clustering for All CEs Over Time (numbers of clusters by year).
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TABLE 4 (Continued) Local Moran's | Clustering for All CEs Over Time (numbers of clusters by year).
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FIGURE 2

Pattern
High—high
High-low
Low-high

Low-low

Not significant

Exemplary Local Moran's | results. The figure displays the Local Moran's | results for Boulder County, Colorado (top) and Greenville County, South
Carolina(bottom) counties. Results for all CEs are shown in rows 1 and 3; results for Bio First CEs are shown in rows 2 and 4. The columns correspond to
the years 1997/1998 (left) and 2009 (right). Greenville County, South Carolina had no Bio First CEs in 1997, so results are shown for 1998.

state entity held the majority in four others (Supplementary
Materials). The CE reasons varied in content and number, with
a range of 1-16 enumerated reasons per CE. The average reason
count was 5.60 (median 6) and 363 (12.6%) CEs had one
enumerated reason. Table 2 and Supplementary Table S2 include
the first listed reasons by county, which varied across the counties;
half have an agriculturally related first reason. In nine counties, we
found that CE parcel sizes exceeded median parcel sizes of the
same or other land uses in the county. In Greenville, Washington
and Douglas, median agricultural parcels were consistently larger
than the median CE parcel size (Table 2 and
Supplementary Table S3).
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3.2 Spatial CE patterns

3.2.1 CE clustering by CE area over the entire
study period

The Ripley’s K function indicated statistically significant
clustering, showing a consistently higher observed value than the
expected value over time in each county. The counties are divided
into two distinct clustering patterns: near and far significant
clustering for most years, as the observed values were higher
than the expected values regardless of distance (nine counties);
and near significant clustering for all years but either far
significant clustering in only a few years or none at all (three

frontiersin.org
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Local Moran's | clustering typologies.The figure displays the Local Moran's | results for all of the CEs over time in each county.

counties, Table 3; Figure 1). With a fixed area in each county’s
boundary, we ran the ANN tool to calculate the average distance
from CE centroid to the other nearest CE centroids by county and
over each year. This displayed a consistent clustering trend over
time, with CEs in all counties ultimately clustered by 2009 (Table 3).
Both global tests that measure whether CEs cluster generally showed
that they did so.

However, when asking whether CEs tend to be like proximate
CEs by size through Global Moran’s I, results revealed an absence of
a single pattern across the study counties. Size does not impact
adjacent CE size when clustering, or alternatively stated, CE
distribution by size is spatially random across these datasets.
Most counties started in a random pattern in early years and
evolved in four ways. Five counties showed clustering of CEs by
size, while CEs remained randomly associated by size in four other
counties. Two counties moved from a random to clustered and back
to a random pattern. Boulder alone moved from clustered to
random. At the end of the study period, when combining the
entirely random, clustered to random, and random to clustered
to random patterns, most counties (seven) displayed overall spatial
randomness in CEs associating with other CEs by size (Table 3).

Local Moran’s I results suggest that smaller CEs are clustered
with smaller CEs, while larger CEs are clustered with larger CEs over
time. Toward the end of the study period, there are some smaller
CEs clustering with a larger CE as well (Table 4; Figures 2, 3). The CE
sizes are relative, meaning that there is no threshold for small or
large CEs; their size is determined by those in proximity in any given
year. Of the clustering and outlier patterns, the low-low (small-
small) clustering was volumetrically the largest from
1999-2009 compared to the other forms (followed by high-high
clustering, high-low outliers, and low-high outliers). However, it was
concentrated in fewer counties (eight of the twelve), while the high-
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high clustering was present in every county (Table 4; Figure 3). The
high-high clustering was the second highest in total count, which
was logically lower compared to physically smaller (low-low)
clustering since there are likely fewer large CEs in a county. The
evolution in high-high (large-large) clustering over the study period
manifested consistently across most of the counties except in
Albemarle, Greenville, Lebanon, and Sonoma, which had many
fewer and more sporadic high-high clusters over time. The low-
low clustering and the high-low outlier patterns were present in the
early years, and then the high-high clustering emerged quickly while
the high-low outliers were comparatively less common. Later years
also had a few low-high outliers, particularly in Boulder and
York (Table 4).

3.2.2 Public oversight in the CE placement process

The subsample of eight public oversight counties (see Section
2.2) revealed the same Ripley’s K patterns represented in the larger
study, with near and far significant CE clustering in a majority (six)
of the counties and a smaller pattern of near significant clustering for
two counties (Table 3). Similarly, the ANN results moved from a
random to a clustered pattern over time. There were four patterns in
the Global Moran’s I results over the study period for these counties:
random to clustered (three counties), entirely random (two
counties), random to clustered to random (two counties), and
clustered to random (one county) (Table 3). These results suggest
that the spatial distribution of the CEs by size was clustered in only
three of the eight counties, with the majority resulting in a random
association over time like that of the larger study. In the Local
Moran’s I analysis, Boulder was the only county to reveal all types of
clustering and outliers by CE size consistently across the entire
period. Otherwise, the counties with public oversight do not display
a distinct trend in Local Moran’s I clustering typologies, save that the
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TABLE 5 (Continued) Local Moran'’s | Clustering for Bio-First CEs and Pre- and Post-2001 CEs (numbers of clusters by year).

Nesano jeyo |

sa)3uNod 3ybisiano dgnd — uou 4oy 1eY0 |

3)IAURRID

uoysajieyd

sa)3unod jybisiano ongnd — UON

VD ojuswWeIdes

sa1uNod JyBisIano dngnd 4oy .10 |

ewouos

Japinog

uoybuiysep

sejbnoQ

S913UNOJ YBISIBA0 dlignd

uoueqga

unopno

a)lewaqly

(3unod 433snyd) AbojodAy buieisn)D

Frontiers in Environmental Science

10.3389/fenvs.2025.1575788

25

31

)

(Continued on following page

23

25

14

10

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

1997-2001

2002 - end year

1997

Low-high

1998
1999

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1575788

Bao uisiauo.y

6T 29DU3|9S |_JUSWUOIIAUT Ul SIS13UOI

Clustering typology (cluster count)

Ieaf pud - 7007

T00T-L66T

6002

800T

L00T
9002
00T
¥00T
€00T
00T
1002
0002

Albemarle

91

— Loudoun

Lebanon

Public oversight counties

Douglas

Washington

43

[T N O - o w Boulder

g

8T

‘(1eak Aq s193sn)d Jo siaquinu) s3) TOOZ-1SOd Pue -aid pue s3D 1sii4-01g 4oy BulR)sSN)D | S,ueloly 18207 (PaNUNUO)D) § I19V.L

O R U Sonoma

PO O Y Y Y SN Total for public oversight counties

Sacramento CA

Non — public oversight counties

Charleston

Greenville

91

19

1€

Total for non — public oversight counties

PO O O T Y S SR Total overall

88/S/5T'5202'SAUR4/6855°0T

e 3@ uewdAg


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1575788

Dyckman et al.

two counties with majority state-held CEs (Albemarle and Douglas)
lacked both low-low clustering and low-high outliers (Tables 3, 4).
Together, the larger sample of twelve urbanizing counties and the
subsample of the public oversight counties display a definite, non-
random spatial pattern in the CEs, based—to some extent—on their
size if measured by location.

3.2.3 CE clustering pre- and post-tax law change

In both sets of tests asking whether CEs cluster generally
(Ripley’s K and ANN), each tax law period showed significant
near and far clustering for most of the counties, like the overall
study over time. Douglas, Greenville, and Loudoun were the
exceptions in the 1997-2001 period, with near significant
clustering (Ripley’s K), and Sacramento was an exception in the
2002-2009 period (Ripley’s K displaying near significant clustering).
Otherwise, Ripley’s K showed significant clustering at both near and
far distances for the rest of the counties in each study period.
than halfway between the
maximum evaluated distance were considered near; distances

Distances less minimum and
more than halfway were considered far. The ANN results were
slightly more differentiated, with three counties displaying
dispersion in 1997-2001 (Douglas, Sacramento, and Sonoma),
and nine with significantly clustered CEs. For 2002-2009, ANN
testing revealed significant clustering in all counties but Sonoma
(Supplementary Table S4). The general CE clustering similarity
across two study periods suggests that there is no difference
between CE spatial relationships pre-and post the tax law change.

Knowing the size of a CE does appear to provide information
about the likelihood of adjacent CE size after the 2001 legal
expansion. Pre-2001, there were only three counties that reveal
CE clustering by size with the Global Moran’s I analysis for CEs’ size
(Boulder, Lebanon, and York). Between 2002 and 2009, the same
analysis revealed a definite clustering pattern in the majority (seven)
of the counties (Supplementary Table S4). The only counties
showing CEs clustered by size in both periods are York and
Loudoun, which are in the same state. Boulder was the only
county to change from a significantly clustered pattern prior to
2001 to a random one in the second period (2002-2009). The Local
Moran’s I clustering in the 1997-2001 period showed low-low
clustering dominance in all counties except Sonoma, followed
closely by high-high clustering in all counties except Douglas and
Sonoma, and the presence of lower volumes of high-low and low-
high outliers in seven counties for each (Table 5). For the
2002-2009 period, again, low-low clustering was volumetrically
dominant and present in every county, while high-high clustering
was second highest and manifested in all but Sonoma
(Supplementary Materials).

The clustering trend by size emerged in both periods, but with
greater prevalence and the most definitive difference in the Global
2002.
autocorrelation, the CEs exhibit a clustered pattern by size after

Moran’s I results after When measuring spatial
the tax law change, and both pre-and post-2001, low-low clustering
was volumetrically dominant, mirroring the broader study trend in

the full 1997-2009 period.
3.2.4 CE clustering by biological reason

Ripley’s K results for the subset of CEs with a biologically related
first reason revealed a less uniform pattern than the full study’s
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distinct trend of near and far clustering (nine counties). The
biological CE subset showed near significant clustering for all or
most years (three counties), near and/or far significant clustering in
select years (four counties), near and far significant clustering for all
or most years (three counties), and mostly random (one county)
(Table 3). ANN results also showed disparity across the counties
over time, with some clustering, some dispersion, and some random
CE placement. Some counties moved from dispersed to random to
clustered by 2009, while others started out dispersed and moved to
random by 2009 (Table 3). Still others moved from random to
clustered by 2009, while Sonoma vacillated between dispersed and
random over time (Table 3).

The biological CEs’ CE size pattern was variable across the
counties, but each county showed clustering, depending on the type
of analysis. Global Moran’s I revealed that most the counties’
biological CEs were entirely randomly associated by size over
time, except in three counties (Table 3). Local Moran’s I showed
high-high clustering over time in five counties, but it lacked
consistency by year in the counties where it manifested. Unlike
the larger CE population, low-low clustering was present in only
four counties, while high-low outliers appeared in different years in
nine counties (Table 5; Figure 2). Low-high outliers appeared in five
counties over the years (Table 5).

4 Discussion

Using multiple and slightly differentiated spatial tests, our
results indicate a non-random spatial distribution of inherently
different CEs physically and socially disparate
metropolitan counties experiencing growth pressure, affirming
Baldwin and Leonard (2015) and Lamichhane et al. (2021). This
trend existed even after the geographic limitation on posthumous

acCross

donations was lifted in 2001, suggesting that the distance limitation
in the posthumously donated CEs may have only slightly influenced
their spatial representation (i.e., whether CEs clustered based on size
but not whether CEs clustered with other CEs more generally). It
appears unrelated to differences in public oversight or whether the
CE’s first listed purpose is classified as biological. The Ripley’s K and
ANN results suggest that the CEs cluster in most of the counties over
time, whether generally or at specific distances.

4.1 CE clustering import for land use
optimization

These perpetual CE clusters would impact development
potential unless otherwise identified as constraints in spatial
optimization and would introduce spatial autocorrelation through
neighborhood interaction effects (Grubesic, Wei and Murray, 2014;
Irwin and Bockstael, 2004). Solely using Ripley’s K and ANN would
lead to the risk of assuming similarity in the CE clusters, but the
Global Moran’s I results indicate that CE size impacts clustering,
meaning that knowing the size of a particular CE does not
necessarily predict a similarly-sized CE in proximity. The Global
Moran’s I results showing spatial clustering in five counties present
the same spatial autocorrelation issue as the other global tests, but
the randomly associated CEs in four counties uphold the
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assumption that CEs, as “unobserved. . . attributes [,]. . . would not
cause estimation problems” in a county-level hazard model (Irwin
and Bockstael, 2004, p. 716). Viably determining whether there is
global clustering by size is critical to an accurate hazard model.

4.2 CE clustering import for systematic
conservation planning

Using both global and local clustering tests overcomes the
Global Moran’s I shortcoming of identifying whether—not
where—the clustering geographically occurs (Gruebesic, Wei and
Murray, 2014). Local Moran’s I results show that CEs are locally
spatially clustering based on size in eleven counties. The highest
count manifests in smaller CEs clustering with smaller CEs (small
CE clustering) in six of the counties, but larger CEs clustering with
larger CEs (large CE clustering) are more evenly distributed across
almost all counties (Figure 3; Table 4). Counties with small CE
clustering may be better positioned to support redundancy with
climate change (Carroll and Noss, 2021), depending on their
purpose and elevational gradients. Small CE clustering echoes the
findings in the Piedmont ecoregion in Lacher et al. (2019),
reinforcing emerging conservation biology principles and Whyte’s
(1968) suggested CE placement on “in-between lands”.

While logically slightly lower in count, the observable Local
Moran’s I trend in large CE clustering over time reinforces the
pattern observed in the Blue Ridge (Lacher et al., 2019) and is more
prevalent than the small CE clustering across all counties. Large
areas of conserved land show that a biologically imperative impact
may be present, assuaging climate change-induced land conversion
concerns and contravening piecemeal land conservation strategies
observed in prior work (Coombes, 2003). Local clustering by CE
size—whether in high-high or high-low—is present in every county
except Mesa, suggesting the potential for significantly larger land
areas to create habitat, regardless of CE purposes (Figure 3; Table 4).
Large CE clustering further promulgates the intent of the
governmentally mandated 80% open space preservation policy
for larger parcels in Irwin and Bockstael’s (2004) hazard
modeling for land use optimization and augments spatial
optimization to achieve sustainability and prevent sprawl (Yao,
Zhang and Murray, 2018).

The biological CE subset is not locally clustering based on size
(Table 5), despite some general CE clustering in close distances in
the global statistical results (Table 3, Ripley’s K). This means that
larger biological CEs are not being placed adjacent to other larger
biological CEs to establish buffered and connected areas using the
CE instrument (Soule and Noss, 1998). However, the biological CEs
are clustering with other biological CEs at finer scales (e.g., a large
CE with a few smaller CE parcels, all with biological purposes),
possibly ameliorating the size issue, whose import may already be
diminishing with climate change (Carroll and Noss, 2021). Non-
biological CEs (agricultural and open-space CEs) drive the non-
random spatial patterns in the larger population but they can
promulgate biological conservation even if they diverge from
systematic planning principles (Margules and Pressey, 2000).
They may offer remnant and ancillary biological value,
manifesting spatial massing for non-biological purposes (Wintle
etal., 2019; Brunson and Huntsinger, 2008; Carroll and Noss, 2021).
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4.3 CE clustering import for urban planning,
open space and climate change

This also suggests that CEs are mitigating urban encroachment
on agricultural lands (Vining, Plaut and Bieri, 1977; Hite, Sohngen
and Templeton, 2003), impacting urban planning. Land that
sustains food production and open space areas are being
permanently conserved, supporting urban centers but also
limiting developable land supply that can re-direct growth or
force densification in existing developed areas. If urban planners
are interested in achieving density in urban areas and in maintaining
an undeveloped greenbelt/open space network or in controlling
leapfrog greenfield subdivisions, they can encourage the use of the
CE, particularly in clusters (if they are aware of other CEs, whether
through public recording or a more overt public oversight process).
The underlying land on which a CE is placed does not have to be
biologically valuable to offer a broader public benefit from open
space preservation, particularly with the need for climate change
refugia. However, the challenge for planners lies in determining a
viable mechanism to encourage the property owner to agree to the
placement, given the generally perpetual nature of the CE
instrument. If the lands are still economically viable, especially in
agricultural use, then the property owner may be more inclined to
use the instrument. This is where a relationship between land trusts
and urban planners may improve the coordination of CE placement,
especially in Whyte’s (1968) “in-between lands” where urban
planners have less legal influence, but development pressure and
property tax increases are mounting. When clustered, the CE can be
considered an important element of an open space network.

Our work contributes to the ability to predict preserved open
space using a hazard model in rapidly growing areas. Clustering
validity—Dby distance and typology—is integral as an input into the
hazard model. If tests such as Ripley’s K, and Global and Local
Moran’s I suggest clustering at near but not far distances and only
small CE clustering in some counties but large CE clustering across
all counties, this will impact the variable input in a hazard model that
optimizes land wuse change with open space preservation
requirements per parcel. Landowners are making these CE
placement decisions without formal local governmental policy
these of
“unobservable attributes that will generate

guidance, and decisions manifest one form
of landowners
differences in decisions regarding the optimal timing of
conversion”—or limit it entirely if a perpetual CE (Irwin and
Bockstael, 2004, p. 716). It is crucial to be able to rely on the
spatial clustering tests to reveal whether there is potential for
spatially correlated errors that skew the results of the hazard
model in predicting the effects of open space preservation.

Our study supplements existing gaps and/or limited geographic
scales of previous CE clustering investigation and generates a
baseline for future exploration of the revealed patterns
(Hennerdal and Nielsen, 2017; Grubesic, Wei and Murray, 2014).
We found higher counts of smaller CEs clustering with smaller CEs
in some counties, and a pattern of fewer but more consistently
present larger CEs clustered with other larger CEs across all
counties. Notably, the CEs with a first designated purpose
classified as biological did not indicate clustering based on size,
but biological CEs are clustering with other biological CEs at closer

scales. These results can impact environmental management
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responses to climate change biome shifts (Carroll and Noss, 2021),
particularly in the systematic conservation planning prioritization
matrix (Margules and Pressey, 2000).

4.4 Contributions to theories of CE
placement impetus

Non-biological CEs appear to drive the clustering patterns,
impacting both urban planning and hazard modeling for land
use optimization by limiting development potential on Whyte’s
(1968) “in-between lands”. As spatial placement of a public good
without uniform governmental planning, spatially clustered CEs at
different scales (global and local) affect eligibility of land use change
in optimization models, spurring or impeding sprawl depending on
the size of the clusters (Irwin and Bockstael, 2004). Our results
demonstrate the need to carefully choose spatial statistical tests to
reliably distinguish spatial CE patterns over time, reinforcing
Grubesic, Wei and Murray’s (2014) and Hennerdal and Nielsen’s
(2017) multi-scaled approaches to address the MAUP.

4.5 Limitations of our work

Our results need to be tempered by several limitations for which
we sought to reasonably control or correct.

There are actions that are beyond the scope of this article, as
follows. First, it is challenging to assess the reliability of the first
designated purpose of the CE as the basis for the CE typology. We
have assumed that the first listed CE reason is the CE’s primary
purpose, but acknowledge that without verification from the
property owner, we do not have confirmation of their objective
for the CE. The land trusts have individualized processes that can be
ad hoc and many use boilerplate language in their CE documents.
But we looked at the first purpose versus all purposes and have not
seen any statistically significant differences between results.
Additionally, slightly more than 10% of the CEs have a single
purpose, which justifies using the first reason.

Second, with the county as the unit of study, we do not have
information about eligible land for feasible CE placement for each
year in which a CE was placed. Instead, we indirectly addressed the
issue with the median and average parcel sizes for the other parcels
by land use in the counties over time to assess comparability. We
found that CE parcels are generally larger than the median parcel
size for non-CE land use parcels, suggesting a possible bias towards
larger parcels for CE eligibility. But we have no way of confirming
this bias without additional methods (e.g., interviews with land
trusts and counties). We also know that land uses influence one
another regardless of jurisdictional boundaries, making the county
line an arbitrary one. However, local policies rest at the municipal
and county levels, making them viable units of study.

Third, we do not have counts of CEs present prior to 1997 in
each county; if a CE was amended during the 1997-2008/
2009 period, then we located the original CE placed prior to
1997 but otherwise, we do not have that representation, which
could have already impacted development patterns in the counties
prior to 1997. With a limited period of study, we may not have fully
measured clustering with CEs that were present prior to 1997.
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Fourth, the datasets themselves have been compromised by
questions about CE recording in some counties, admissions from
the county assessor’s offices that some of their data are somewhat
suspect (with duplication, inability to explain inconsistencies or
elements of their datasets, inability to locate rolls for particular years,
etc.), and concerns that the spatial datasets of CEs do not correspond
to the recorded CEs in all counties, per Morris and Rissman (2009).
We have cleaned and verified repeatedly, seeking to reduce this
error. We also acknowledge that there are some multi-part CEs in
some counties with the physical distance between parcels that could
impact clustering (and its significance).

There are also aspects of our research design that have inherent
limitations. For instance, this work was conducted on twelve
counties within six states chosen based on specific criteria, so the
sample size is extremely small compared to the number of CEs
across the country and is possibly biased (i.e., urbanizing areas that
face growth pressure). Also, the parcel size is not part of the centroid
calculation, meaning that all of the spatial statistics do not control
for parcel size. And finally, some counties have higher CE counts or
years in which CEs were too low to be sufficient for analysis.

4.6 Suggestions for further work

We recognize that there are gradations of public oversight and
other potential factors influencing CE clustering in urbanizing areas
that are not fully reflected in this analysis, warranting additional
inquiry. Spatial statistics at multiple scales reveal the effect of
governance and/or other forces with an objective or plan,
supporting the import of the social influence found in Baldwin
and Leonard (2015). They also display the effect of aggregated
individual land use decision making (Irwin and Bockstael, 2004).
The consistent patterns in the Boulder CEs show stronger spatial
clustering than the other counties, but a similarly situated county
with many county-held CEs (Sonoma) does not exhibit the same.
This inconsistency invites further exploration of public oversight
gradations, their processes and variations by state and county, and
appurtenant factors that may influence CE spatial expression.

We responded to the dominant theories explaining CE
clustering, but there are other possible explanations for which we
have not controlled and that warrant additional examination. These
include the effect of CE holder type, social motivations driving these
patterns (Stroman and Kreuter, 2014), complementarity of CE
purposes and underlying land wuses on those properties,
characteristics of CE lands themselves, and the connectivity
between conserved lands (both CEs and other conserved lands in
each county) in the Graves et al. (2019), Wallace et al. (2008), and
Kiesecker et al. (2007) findings. These are within-county statistical
nuances that we have yet to explore and intend to do so in
future research.

Nevertheless, our results show that private land preservation is a
growing response to urban land conversion and CEs are perpetually
clustering as a complement to public land conservation, manifesting
Whyte’s (1968) vision of their locational utility. Depending on the
CE purpose, they may offer a spatial pattern of smaller but
redundant clusters that realize climate change resilience and large
CEs are amassing, reflecting island biogeography theory (Carroll
and Noss, 2021).
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