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Ecosystems are vulnerable to water scarcity and human-induced landscape
tranformations. This study evaluates how land use changes alter hydrological
regimes in water-scarce regions, such as drylands, employing a novel framework
integrating class-level landscape metrics (LM) and Indicators of Hydrologic
Alteration (IHA). Historical (1990–2017) and future land use scenarios -
Business as Usual (BAU) and Strategic Land Use Planning (PROT) - for two
catchments within the Maipo River Basin in Chile were analyzed using LASSO
regression to identify key LM, which reflects landscape patterns influencing
hydrology. Results reveal that shape and aggregation metrics, particularly
urban patch size (SHAPE_MN) and agricultural dispersion (SPLIT), could
evidence strong connection between landscape dynamics and hydrology,
where deviation explained in critical hydrological signatures ranges from 15%
to 98% in monthly flows (IHA 1), and from 25% to 99% in extreme events (IHA 2).
Urbanization in Rinconada de Maipú (RM) catchment amplifies peak flows and
reduces baseflow, while rural abandonment in Los Almendros catchment
stabilizes baseflow (+23%) through vegetation recovery. Future scenarios
illustrate context-dependent outcomes. In Los Almendros, characterized by
low anthropogenic intervention, PROT scenarios mitigate hydrological
degradation more effectively than BAU. However, in the highly urbanized RM
catchment, PROT’s benefits are limited, requiring more actions to limit
hydrological impacts. Only 64% of LM (74/116) significantly relates to
hydrology in the study catchments. This approach offers a replicable tool to
identify the most influential landscape metrics over hydrology in a region,
streamlining actionable metrics to bridge the work of land use planners and
water resources planners by integrating spatial land use configuration with water
resources management.
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1 Introduction

Drylands, spanning over 40% of the Earth’s terrestrial surface
(Luo et al., 2022), are ecosystems of critical ecological and socio-
economic value, yet they remain acutely vulnerable to water scarcity
and anthropogenic disruption (Berdugo et al., 2020). Hydrological
signatures-quantitative measures of streamflow dynamics such as
peak discharge, baseflow contributions, and flow seasonality-serve as
essential indicators of water resource availability and ecosystem
health (Botterill and McMillan, 2023; Gnann et al., 2020). These
signatures are increasingly destabilized by human-induced
landscape transformations, including urbanization, agricultural
intensification, and deforestation, which modify land cover
composition and spatial configuration. Such alterations cascade
through hydrological systems, influencing infiltration capacity,
runoff generation, and groundwater recharge (Liu et al., 2025).
For example, impervious surface area (ISA), a metric quantifying
urban expansion, has been directly tied to heightened surface runoff,
as demonstrated in Turkey’s Terkos Basin, where a 15% increase in
ISA elevated peak discharge by 45% (Dogan and Karpuzcu, 2022).
Similarly, edge density, reflecting landscape fragmentation,
exacerbates hydrological connectivity, accelerating runoff in
disturbed catchments.

Landscape metrics, which quantify spatial patterns such as patch
cohesion, contagion, and aggregation, provide a mechanistic
understanding of how land use changes propagate hydrological
impacts (Boongaling et al., 2018). Recent studies highlight
specific causal pathways between these metrics and hydrological
responses. The percentage of landscape (PLAND) dedicated to
urban or croplands has been shown to increase flood frequency
in Huang-Huai-Hai River Basin, China, from 1961 to
2020 compared to the pre-industrial period (Ren et al., 2023). In
Chihuahua, Mexico, irregularly shaped agricultural patches,
increased irrigation inefficiency, contributing up to 80 m
groundwater depletion (Alatorre et al., 2019). Contagion, a
metric assessing landscape clumpiness, inversely correlates with
sediment yield, as observed in Ethiopia’s Upper Blue Nile Basin,
where dispersed vegetation raised erosion rates by 40% during
extreme rainfall events (Zheng, 2006). These findings underscore
the role of spatial configuration in modulating hydrological
processes, particularly in water-limited environments.

Despite advancements, significant knowledge gaps persist.
Research on landscape–hydrology interactions continues to
overlook dynamics that are specific to drylands, including
ephemeral streamflow regimes and pulse-driven vegetation
growth (Zhou et al., 2020; Langhammer and Bernsteinová, 2025).
Furthermore, hydrological models often overlook class-level
distinctions in landscape metrics, despite evidence that their
impacts vary by land cover type. For instance, forest-edge density
and urban-edge density differentially affect evapotranspiration and
runoff, yet such nuances are rarely quantified (Ali and Roy, 2010). In
Central Europe, deforestation-driven reductions in mean forest
patch size diminished annual evapotranspiration, intensifying
streamflow variability (Langhammer and Bernsteinová, 2025).
Such context-dependent relationships highlight the need for
systematic evaluations tailored to dryland ecosystems.

This study aims to address these gaps by identifying the most
influential class-level landscape metrics—such as urban patch

density, agricultural contagion, and vegetated connectivity—that
govern hydrological signatures in drylands, including flow
duration curves, recession rates, and low-flow frequency. By
establishment of empirical relationships between these metrics
and hydrological responses using LASSO regressions, this
research shows a framework to select and prioritize metrics for
integrations of land-use planning and water management. This
framework will enable policymakers to anticipate hydrological
trade-offs under future land use scenarios, such as balancing
agricultural expansion with groundwater sustainability or
mitigating urban flooding through green infrastructure.
Ultimately, this work bridges landscape ecology and hydrology,
offering actionable insights for sustainable water governance in
regions where societal resilience hinges on the prudent
management of water and land.

2 Materials and methods

2.1 Methodological framework

This study integrates multi-temporal Landsat imagery
(November–January, 1990–2017) to analyze landscape dynamics
and hydrological responses in two dryland catchments within the
Maipo River Basin, Chile (Figure 1). Seventy cloud-free satellite
scenes were processed using the System for Automated Geoscience
Analyses (SAGA-GIS) to classify local climate zones (LCZs)
following the World Urban Database and Access Portal Tools
(WUDAPT) protocol (Ching et al., 2018), generating 54 spatial
maps. Land use was initially classified into 17 categories but
reclassified into five simplified groups—urban, agriculture,
vegetation, bare soil, and water—to quantify anthropogenic
modifications while maintaining analytical tractability.

Normal water years represent baseline hydrological conditions
in which water withdrawals correspond to long-term average
demands, thereby avoiding distortions caused by emergency
rationing or excessive extraction that can obscure the impacts of
land use change (Scanlon et al., 2023). To ensure that the analysis
reflects landscape-driven hydrological alterations rather than
transient responses to climatic extremes or atypical management,
our study focused exclusively on these normal water years.
Hydrological data, consisting of daily streamflow records from
1990 to 2017 collected at gauging stations on the Mapocho River
at Los Almendros and Rinconada de Maipú, were stratified into wet,
normal, and dry water years using exceedance probability thresholds
(Benítez Girón, 1998). We used Indicators of Hydrologic Alteration
(IHA) as Hydrologic Signatures derived from the normal year data
to assess changes in flow regime characteristics, including peak flow
timing and baseflow stability, enabling robust monitoring of
hydrologic responses to landscape modifications.

We identified landscape metrics (e.g., impervious surface
density, patch cohesion) with significant influence over IHAs
using LASSO regression models (Tibshirani, 1996; Li and Zhou,
2015). LASSO regression is especially effective for variable selection
in high-dimensional datasets (where many explanatory variables are
present for potentially small datasets) because it introduces a penalty
that shrinks some coefficient estimates to exactly zero, thereby
excluding less relevant variables from the model. Unlike
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traditional regression methods, LASSO handles high-dimensional
data efficiently by simultaneously performing variable selection and
regularization, which helps prevent overfitting. Furthermore,
LASSO effectively deals with multicollinearity by selecting among
correlated variables, producing more stable and parsimonious
models. It balances model fit and complexity by tuning the
penalty parameter, ensuring robustness and better generalization
to unseen data. As a result, LASSO is highly suitable for
environmental studies involving many interrelated variables,
identifying key predictors while avoiding overfitting and
excessively complex models (Slater et al., 2023; Pak et al., 2025;
Moosavi et al., 2022).

Finally, we applied these LASSO regression models to future
land use scenarios from Henríquez-Dole et al. (2018) to evaluate
hydrological impacts under varying urbanization and policy
trajectories. Metrics prioritized through this analysis -such as
connectivity index and mean patch size-provide actionable
insights for sustainable water management in drylands, where
balancing agricultural and urban demands remains critical to
resilience (Ghahremani et al., 2024).

2.2 Study area

The Maipo River Basin is situated between 33°S and 34°S in
central Chile. Encompassing an area of 15,157 km2, the basin spans
an elevational gradient from sea level to 6,500 m above sea level
(m.a.s.l.) within the Andes Mountain range. It lies within a
Mediterranean bioclimatic zone characterized by semi-arid
conditions, marked by hot, dry summers and cool, wet winters
(Luebert and Pliscoff, 2006; Vogiatzakis et al., 2006). Mean annual

temperatures range from 14 °C in lowland areas to below 0 °C at high
elevations, with summer (December–February) maxima exceeding
30 °C in the central valley and winter (June–August) minima
dropping to 3 °C–5 °C. Annual precipitation averages
300–400 mm, predominantly concentrated during the winter
months (May–September), though spatial variability is significant
due to orographic effects, with Andean regions receiving up to
1,000 mm annually, partly as snowfall (Garreaud, 2009). Humidity
levels are generally low (<50% annual average), particularly during
summer, exacerbating aridity in the basin’s lowland areas
(MOP, 2021).

The basin spans three administrative regions, including the
Metropolitan Region, which hosts Santiago, Chile’s capital. The
Metropolitan Region supports a population exceeding 7 million
residents across its 52 municipalities, with a population density of
430 individuals per km2 (Meza et al., 2014). Additionally, the region
contributes approximately 40% of Chile’s Gross Domestic Product
(Ocampo-Melgar et al., 2016).

This study focuses on two contrasting catchments within the
Maipo River Basin: Los Almendros and Rinconada de Maipú (RM)
(Figure 2). These catchments exhibit distinct landscape
configurations and anthropogenic influences. The RM
catchment encompasses 4,004 km2, whereas Los Almendros
covers a smaller area of 637 km2. RM catchment is
characterized by intensive human activity, including
urbanization and agriculture, whereas Los Almendros remains
predominantly undisturbed, with minimal anthropogenic
impact. Given that human activity is a primary driver of land
use change (Lambin and Geist, 2006), the RM catchment has
historically undergone more significant landscape modifications
compared to Los Almendros. Projections suggest this trend will

FIGURE 1
Methodological flamework.
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FIGURE 2
Maipo river basin and selected catchments: Los Almendros and Rinconada de Maipú.

TABLE 1 List of landsat thematic mapper (TM) scenes used in the study.

Year Scenes Acquisition dates (month/day) Year Scenes Acquisition dates (month/day)

1990 2 01/15, 12/09 2004 3 01/30, 02/15, 12/31

1991 3 01/10, 02/11, 02/27 2005 2 01/16, 02/01

1992 2 12/14, 12/30 2006 2 12/05, 12/21

1993 2 01/15, 01/31 2007 2 02/07, 02/23

1994 2 01/18, 02/03 2008 3 01/25, 02/10, 12/10

1995 3 01/05, 12/07, 12/23 2009 3 01/11, 02/12, 12/13

1996 5 01/08, 01/24, 02/09, 02/25, 12/23 2010 4 01/14, 01/30, 02/15, 12/16

1997 1 01/26 2011 2 01/01, 02/02

1998 3 02/14, 12/15, 12/31 2012 0 -

1999 3 02/01, 02/17, 12/02 2013 0 -

2000 2 02/04, 02/20 2014 3 01/09, 01/25, 02/26

2001 5 01/05, 01/21, 02/06, 12/07, 12/23 2015 4 01/12, 01/28, 02/13, 12/30

2002 2 01/08, 02/25 2016 1 01/15

2003 2 12/13, 12/29 2017 4 01/01, 01/17, 02/02, 02/18

*Bold dates are the final selected scenes for analysis.
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persist, with continued land use transformations anticipated in RM
(Henríquez-Dole et al., 2018).

2.3 Land use maps

2.3.1 Historical land use maps
To develop a time series of land use, we acquired 70 cloud-

free Landsat Thematic Mapper (TM) scenes spanning late spring
and summer (November–January) from 1990 to 2017 through
NASA’s Earthdata archive. Landsat Thematic Mapper (TM) is

preferable for constructing a 1990–2017 land use time series due
to its uninterrupted data continuity since 1984, ensuring
consistent spectral and spatial resolution (30 m) across
decades -critical for long-term comparability. In contrast,
Sentinel-2, launched in 2015, lacks historical coverage before
its deployment, while other satellites often suffer from
inconsistent sensor specifications or fragmented archives,
undermining multi-decadal analysis. Additionally, two
classified land use maps from 1999 (Puertas, Henríquez, and
Meza, 2014) to 2010 (Henríquez-Dole et al., 2018) were
integrated as reference baselines. These maps, previously

FIGURE 3
Historic (a) 1991, (b) 2017, and future ((c, e) BAU HUD, (d,f) PROT LUD) land use maps of Los Almendros and Rinconada de Maipú (RM) catchments.
*Future scenarios were obtained from (Henriquez-Dole et al., 2018) supplementary data.
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validated in studies simulating future land use scenarios, ensured
methodological consistency for comparative analysis.

The Local Climate Zone Classification (LCZC) framework
(Stewart and Oke, 2012) was selected for land use classification
due to its unique capacity to integrate microclimatic and structural
landscape characteristics, a critical advantage for assessing
hydrological responses in dryland environments. Unlike
traditional land use classifications, which often rely on broad
categories (e.g., “urban” or “agriculture”), the LCZC framework
distinguishes 17 standardized zones based on surface structure,
cover, and human activity, enabling granular analysis of how
specific landscape configurations -such as compact low-rise urban
areas versus sparsely vegetated bare soil-modulate hydrological

processes like infiltration, runoff, and evapotranspiration (Ching
et al., 2018). This precision is particularly vital in drylands, where
subtle variations in land cover (e.g., patchy vegetation, impervious
surfaces) disproportionately influence water retention and flow
regimes (Zhou et al., 2020).

Implemented via the World Urban Database and Access Portal
Tools (WUDAPT) within SAGA-GIS (Conrad et al., 2015; Ching
et al., 2018), the LCZC framework ensures methodological
reproducibility and global comparability, while SAGA-GIS’s
advanced geo-computational tools streamline the processing of
multi-temporal Landsat imagery into high-resolution land use
maps. Recent studies demonstrate that LCZC-based classifications
improve hydrological model accuracy by capturing microclimatic

TABLE 2 Category, definition and code for selected landscape metrics (LM).

Category No. Class level metrics Code Units

Composition 1 Class total area CA ha

2 Percentage of Landscape PLAND %

3 Number of patches NP None

4 Patch density PD Number per 100 ha

5 Largest patch index LPI %

6 Mean patch size AREA_MN ha

7 Patch size standard deviation AREA_SD m2

8 Patch size coefficient of variation AREA_CV None

9 Mean radius of gyration GYRATE_MN m

10 Radius of gyration standard deviation GYRATE_SD m

11 Radius of gyration coefficient of variation GYRATE_CV None

Shape 12 Total edge TE m

13 Edge density ED m/ha

14 Landscape shape index LSI None

15 Mean shape index SHAPE_MN None

16 Shape index standard deviation SHAPE_SD None

17 Shape index coefficient of variation SHAPE_CV None

18 Mean contiguity index CONTIG_MN None

19 Contiguity index standard deviation CONTIG_SD None

20 Contiguity index coefficient of variation CONTIG_CV None

21 Perimeter-area fractal dimension PAFRAC None

Aggregation 22 Clumpiness index CLUMPY None

23 Percentage of like adjacencies PLADJ %

24 Interspersion and Juxtaposition index IJI %

25 Patch cohesion index COHESION None

26 Effective mesh size MESH ha

27 Splitting index SPLIT None

28 Aggregation index AI %

29 Normalized landscape shape index NLSI None
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TABLE 3 Hydrologic signatures (Indicators of hydrologic alteration) based on the ELOHA framework (Poff et al., 2010).

Category No. Indicator of hydrologic alteration (IHA) Code Units

IHA 1 (Magnitude of monthly water conditions) 1 Median value for April Qapr m3/s

2 Median value for May Qmay m3/s

3 Median value for June Qjun m3/s

4 Median value for July Qjul m3/s

5 Median value for August Q.aug m3/s

6 Median value for September Qsep m3/s

7 Median value for October Qoct m3/s

8 Median value for November Qnov m3/s

9 Median value for December Qdec m3/s

10 Median value for January Qjan m3/s

11 Median value for February Qfeb m3/s

12 Median value for March Qmar m3/s

IHA 2 (Magnitude and duration of annual extreme water
conditions)

13 Annual minima, 1 day mean Q1 day min m3/s

14 Annual minima, 3 days mean Q3 day min m3/s

15 Annual minima, 7 days mean Q7 day min m3/s

16 Annual minima, 30 days mean Q30 day min m3/s

17 Annual minima, 90 days mean Q90 day min m3/s

18 Annual maxima, 1 day mean Q1 day max m3/s

19 Annual maxima, 3 days mean Q3 days max m3/s

20 Annual maxima, 7 days mean Q7 days max m3/s

21 Annual maxima, 30 days mean Q30 days max m3/s

22 Annual maxima, 90 days mean Q90 days max m3/s

23 Baseflow index Qbase flow None

IHA 3 (Timming of annual extreme water conditions) 24 Juliane date of annual 1 day minimum Qmin date None

25 Juliane date of annual 1 day maximum Qmax date None

IHA 4 (Frequency and duration of high and low pulses) 26 Number of low pulses within each water year Qlow pulses None

27 Number of high pulses within each water year Qhigh pulses None

28 Mean duration of high pulses Qhigh pulses

length

Days

IHA 5 (Rate and frequency of water condition changes) 29 Rise rate: mean or median of all positive differences among consecutive daily
values

Qrise rate None

30 fall rate: Mean or median of all negative differences among consecutive daily
values

Qdown rate None

31 Number of hydrologic reversals Reverses None

IHA 6 (Peak flow conditions) 32 Annual peak discharge Qpeak m3/s

33 Annual peak discharge duration Qpeak dur Days

34 Annual peak discharge frequency within water year Qpeak freq None

35 Peak rise rate: Mean or median of all positive differences between
consecutive daily values

Qpeak rise None

36 Peak fall rate: Mean or median of all negative differences between
consecutive daily values

Qpeak down None
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feedback-such as urban heat islands altering evaporation rates-that
traditional systems overlook (Han et al., 2024; Lehnert et al., 2021;
Robineau et al., 2022). By reclassifying LCZC outputs into five
consolidated categories (urban, agriculture, vegetation, bare soil,
and water), this study balances spatial detail with analytical
tractability, ensuring landscape metrics (e.g., impervious surface
density) directly aligned with Indicators of Hydrologic Alteration
(IHA). This approach not only enhances the detection of
anthropogenic impacts on dryland hydrology but also supports
scalable water management strategies in regions facing escalating
climate pressures. Of the initial 70 scenes, 54 met quality criteria and
were retained for analysis (Table 1).

• Urban: Areas dominated by urban cores, peri-urban
development, transportation infrastructure, utilities, and
rural-industrial constructions (LCZC classes 1–10).

• Agriculture: Lands dedicated to crop cultivation, hay
production, or livestock grazing (LCZC class D).

• Vegetation: Regions characterized by herbaceous cover,
shrubs, native vegetation, or tree-dominated ecosystems
(LCZC classes A–C).

• Bare Soil: Sparsely vegetated zones, exposed rock, fallowed
agricultural land, and unpaved rural roads (LCZC
classes E–F).

• Water: Open water bodies such as lakes and rivers
(LCZC class G).

The water category was subsequently merged with bare soil due
to its limited spatial representation and distinct hydrological drivers
compared to other classes. This aggregation minimized analytical
complexity while maintaining focus on terrestrial land
use dynamics.

2.3.2 Accuracy assessment
To assess classification accuracy, a proportional cross-tabulation

matrix and the Kappa Index of Agreement (KIA) were computed for
reference images (1999 and 2010). The proportional cross-
tabulation quantifies category-wise correspondence between the
classified and reference maps, where a higher proportion along
the diagonal indicates stronger agreement between land use
categories. The KIA, a robust statistical metric, evaluates the
degree to which observed agreement between classifications
exceeds that expected by random chance (Rosenfield and
Fitzpatrick-Lins, 1986). KIA values range from 0 to 1, where
1 denotes perfect agreement and 0 reflects agreement no better
than random allocation, ensuring rigorous validation of
classification consistency over time.

2.3.3 Future land use maps
Eight (8) future land use scenarios developed for the study

region (Henríquez-Dole et al., 2018) were used as future landscape
configurations: four in 2030, and four in 2050. Under contrasting
drivers of population growth and urban expansion, these scenarios
are structured along two axes: urban demand (Low Urban Demand,
LUD, vs. High Urban Demand, HUD) and policy frameworks
(Business-as-Usual, BAU, vs. Strategic Land Use Planning of
Plan Regional de Ordenamiento Territorial of Metropolitan
Region of Santiago, PROT). Figure 3 shows two land use maps

for 2030 and two for 2050 (four of the eight scenarios), which
represent the extreme conditions of both axes on each year to
highlight differences among scenarios: (1) a trending scenario
with high urban demand (BAU HUD), and (2) a territorial
planning with low urban demand (PROT LUD). Scenario
narratives were co-developed through participatory workshops
using the Open Space Approach (Owen, 2008) and guided by a
Scenario Building Team (SBT) comprising over 30 stakeholders
from public, private, and civil sectors within the Maipo River Basin
(Ocampo-Melgar et al., 2016; Henríquez-Dole et al., 2018). All
scenarios predict urban growth to concentrate in the
northwestern periphery of Santiago City (RM catchment), though
strategic planning (PROT) moderates its spatial extent by
redistributing development to smaller towns. While PROT
safeguards agricultural and natural areas, urban expansion
persists, particularly in risk-prone zones adjacent to the city.
Also, an increase in vegetation over bare soil areas in all
scenarios is noticeable, specifically in the mountain region where
Los Almendros catchment is located. This reflects trends of
historical conversions for the whole region in the modelling,
adding uncertainty to the effective representation of future
scenarios in the mountains, mainly because the construction of
future scenarios were focused on urban and agricultural lands
(Henríquez-Dole et al., 2018).

Landscape metric analysis reveals consistent trends across
scenarios: urban and agricultural land uses exhibit increased
patch density, reflecting fragmentation. The Large Patch Index
(LPI) and Mean Patch Size (MPS) further demonstrate that (a)
strategic planning fosters urban development in designated zones
outside Santiago’s core, and (b) agricultural land continues to
decline in all scenarios, with fragmentation intensifying even
under protective policies.

2.4 Landscape metrics (LM)

Landscape metrics (LM) are widely employed to quantify spatial
patterns in ecosystems, assess landscape configuration, and evaluate
interactions between anthropogenic activities and land use
dynamics. In this study, class-level LM were computed for each
land use map using FRAGSTATS v4.2 (McGarigal and Marks, 1995;
K. McGarigal et al., 2012) to systematically analyze temporal
changes in land use patterns. A total of 60 LM were initially
calculated per land use/cover category (aggregating to 240 LM
per map), but due to inherent redundancy—where multiple
metrics capture overlapping spatial attributes (Cushman et al.,
2008; K. McGarigal et al., 2012; Zhang et al., 2017) -a subset was
selected to ensure analytical independence. Detailed definitions and
computational algorithms for all class-level LM are documented in
FRAGSTATS v4.2 technical resources (McGarigal et al., 2015).

To mitigate collinearity, Pearson’s correlation coefficients (|r|)
between all class-level LM (i.e., metrics specific to individual land use
categories) were computed for the Maipo River Basin. Metrics
exhibiting weak correlations (|r| < 0.3) with one another were
retained, resulting in 29 non-redundant class-level LM (Table 2),
or 116 LM per land use map. While this threshold minimized
interdependencies, some metrics remained indirectly linked to
excluded variables. Annual time series were constructed for each

Frontiers in Environmental Science frontiersin.org08

Henriquez-Dole et al. 10.3389/fenvs.2025.1569574

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1569574


class-level landscape metric (LM). For cases where multiple maps
corresponded to the same water year, LM values were averaged to
ensure a single representative value per year.

2.5 Streamflow data and normal water years
classification

Daily streamflow data (1990–2017) were obtained from two
gauging stations situated at the outlets of the study catchments
(Figure 2). To isolate the influence of landscape configuration on
hydrologic regimes, normal water years -defined as periods where
streamflow reflects the integrated effects of land use and climatic
conditions without extreme anomalies-were used for analysis. While
multiple methodologies exist to classify wet, normal, and dry years
based on annual streamflow exceedance probabilities (Tejada et al.,
2015), the criteria established by Chile’s Dirección General de Aguas
(DGA) (Benítez Girón, 1998) were applied to the Los Almendros
catchment, which exhibits minimal anthropogenic influence. Under
DGA guidelines, normal years correspond to annual streamflow
volumes with exceedance probabilities between 30% and 85%. Using
this threshold, 17 normal, 5 wet, and 5 dry water years were
identified, with only normal water years exclusively incorporated
into subsequent analyses.

2.6 Hydrologic signatures (indicators of
hydrologic alteration)

Hydrologic signatures from the Ecological Limits of
Hydrologic Alteration (ELOHA) framework (Poff et al., 2010)
were selected to evaluate changes in the hydrological regime. The
ELOHA framework defines 33 annual Indicators of Hydrologic
Alteration (IHA), organized into five ecologically relevant groups
(Table 3). These groups align with specific ecological functions:
Group 1 quantifies baseflow availability critical for aquatic
habitats; Group 4 assesses the cumulative impacts of flood and
drought events; and Group 5 identifies flow conditions that risk

stranding aquatic organisms or disrupting riparian vegetation
through groundwater drawdown (McMillan, 2021).
Supplementary ecological flow components, such as seasonal
flow variability and extreme event frequency, were also
incorporated into the analysis.

All IHA were computed using the Indicators of Hydrologic
Alteration software v7.1.0.10 (The Nature Conservancy, 2009),
based on daily streamflow data from 1990 to 2017. Software
delivers annual time series of all IHA selected during the
timeframe defined. Within this software, non-parametric
statistical methods (statistics based on median and percentiles)
were chosen to compute IHA to ensure statistical robustness to
biased data distributions. More details can be found in the User
Manual and the Tutorial of the IHA software (The Nature
Conservancy, 2009).

2.7 Regression analysis

Least Absolute Shrinkage and Selection Operator (LASSO)
regressions were employed to analyze the relationship between
selected class-level landscape metrics (Table 2) as predictor
variables and Indicators of Hydrologic Alteration (Table 3)
during normal water years (17 years with normal hydrologic
conditions). On each catchment, 36 LASSO regressions were
performed using a total of 116 LM (29 class-level LM by 4 land
uses) as predictors during the timeframe selected (17 years). LASSO
regression applies L1 regularization, a technique that enhances
model accuracy by penalizing the absolute magnitude of
regression coefficients (Tibshirani, 1996; Tibshirani, 2011). This
penalty term shrinks non-informative coefficients toward zero,
effectively performing automated variable selection and
mitigating multicollinearity -a critical advantage in high-
dimensional datasets common to environmental studies.
Coefficients reduced to zero are excluded from the final model,
simplifying its structure while retaining only the most influential
predictors, a method validated in environmental applications
linking landscape patterns to streamflow variability and

TABLE 4 Crosstab and KIA values for each land use between selected images and reference images.

Categories Out basin Urban Agriculture Vegetation Bare soil Water KIA

Proportional crosstab: February 1999 vs. Reference 1999

Out basin 0.4013 0 0 0 0 0 1

Urban 0 0.1904 0.0158 0.0366 0.0015 0.0011 0.6951

Agriculture 0 0.0184 0.054 0.0031 0.0028 0.0001 0.6549

Vegetation 0 0.0215 0.0075 0.149 0.0029 0.0003 0.7756

Bare Soil 0 0.0035 0.0052 0.0039 0.0175 0.0001 0.5679

Water 0 0.0298 0.015 0.0135 0.0038 0.0014 0.0197

Proportional crosstab: February 2010 vs. Reference 2010

Out basin 0.4013 0 0 0 0 0 1

Urban 0 0.1799 0.0129 0.0291 0.0014 0 0.7359

Agriculture 0 0.0160 0.0557 0.0022 0.0033 0 0.6932

Vegetation 0 0.0347 0.0043 0.1596 0.0018 0.0001 0.7422

Bare Soil 0 0.0037 0.0066 0.0043 0.0198 0 0.5634

Water 0 0.0293 0.0155 0.0142 0.0029 0.0015 0.0222

*Diagonal values in the cross-tabulation matrices represent the proportion of correctly classified pixels.
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TABLE 5 Land use changes between 1991 and 2017.

Land use/cover 1991 2000 2010 2017 Change between 1991 and 2017a

Area (ha) Catchment
proportion (%)

Area (ha) Catchment
proportion (%)

Area (ha) Catchment
proportion (%)

Area (ha) Catchment
proportion (%)

Area (ha) %

Los Almendros

Urban 45.3 0.07 67.1 0.11 82.7 0.13 53.8 0.08 8.5 18.76%

Agriculture 61.2 0.10 209.9 0.33 171.6 0.27 30.6 0.05 −30.6 −50.00%

Vegetation 12562.9 19.72 13764.9 21.61 11403.3 17.90 12020.2 18.87 −542.7 −4.32%

Bare soil 51030.6 80.11 49658.1 77.96 52042.4 81.70 51595.4 81.00 564.8 1.11%

Rinconada de Maipú (RM)

Urban 28676.5 7.16 33958.1 8.48 36674.5 9.16 53739.9 13.42 25063.4 87.40%

Agriculture 47182.2 11.78 42917.2 10.72 41213.0 10.29 37206.3 9.29 −9975.9 −21.14%

Vegetation 207860.8 51.91 202679.9 50.62 209298.2 52.27 221687.4 55.37 13826.6 6.65%

Bare soil 116680.5 29.14 120844.8 30.18 113214.3 28.28 87766.4 21.92 −28914.1 −24.78%

aPercentage of change for each class are calculated by dividing the net area changes between 2017 and 1991 by the class area in 1991.
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TABLE 6 Change (%) in landscape metrics.

Landscape
metric

Los Almendros catchment

Urban Agriculture Vegetation Bare soil

1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017

CA 51.1% −2.3% −82.8% 205.1% −0.8% −90.7% −8.2% 4.0% 1.5% 2.1% −0.8% −0.3%

PLAND 51.2% −2.2% −82.8% 205.1% −0.8% −90.7% −8.2% 4.0% 1.5% 2.1% −0.8% −0.3%

NP 4.6% 14.7% −74.9% 134.4% 27.5% −89.3% 7.8% −7.1% −3.3% −24.3% 15.5% 1.3%

PD 4.6% 14.7% −74.9% 134.4% 27.5% −89.3% 7.8% −7.1% −3.3% −24.3% 15.5% 1.3%

LPI 891.5% −21.4% −87.5% 337.2% −26.6% −88.1% −20.1% 8.5% 8.9% 3.4% −0.3% −0.5%

AREA_MN 21.1% 2.6% −77.3% 167.6% 11.2% −90.3% −1.8% −1.7% −4.2% −1.5% −3.1% −4.5%

AREA_SD 21.1% 2.6% −77.3% 167.6% 11.2% −90.3% −1.8% −1.7% −4.2% −1.5% −3.1% −4.5%

AREA_CV −0.6% 3.0% −46.9% 53.3% 16.9% −68.6% 2.4% −3.8% −5.1% −2.5% −2.8% −4.2%

GYRATE_MN 58.8% −12.0% −30.2% 31.1% −10.6% −12.5% −15.4% 18.3% 4.7% 33.1% −16.6% −5.4%

GYRATE_SD 475.8% −20.7% −79.2% 155.8% −20.8% −59.7% −23.4% 14.9% 10.5% 18.1% −8.4% −2.7%

GYRATE_CV 250.7% −2.6% −70.3% 89.9% 1.9% −53.9% −9.1% 0.9% 5.8% −11.8% 8.5% 1.0%

TE 9.9% −5.2% −7.1% 7.6% −2.4% −5.1% 3.8% 0.4% −2.9% 0.2% −2.8% 1.8%

ED 122.8% −20.2% −47.8% 53.4% −10.3% −53.1% −4.8% 7.7% 3.5% 13.9% −8.8% −1.8%

LSI 101.9% −15.5% −43.4% 42.1% −5.8% −50.6% −8.3% 6.8% 6.7% 13.6% −6.5% −3.5%

SHAPE_MN 2.6% −2.1% −1.6% 1.8% −0.6% −2.4% 1.4% −0.2% −2.0% −1.3% −0.5% 0.6%

SHAPE_SD 61.3% −24.4% −10.4% 12.2% −5.3% −47.9% −7.1% 3.2% −3.3% 11.8% −12.4% −5.7%

SHAPE_CV 56.9% −22.8% −8.7% 10.2% −4.0% −46.6% −8.3% 3.4% −1.3% 13.3% −12.1% −6.3%

CONTIG_MN 38.7% −13.9% 14.0% 46.5% −15.9% −14.2% 6.7% 0.6% 1.1% −4.7% −3.5% 3.1%

CONTIG_SD 33.9% −6.5% −9.7% 27.0% −8.5% −3.2% 3.9% 0.6% 2.1% −0.3% −2.8% 5.4%

CONTIG_CV −5.7% 8.7% −24.6% −13.8% 6.1% 12.2% −2.5% 0.1% 0.9% 4.6% 0.7% 2.1%

PAFRAC −2.2% −4.8% 0.3% −3.1% 1.2% −8.1% −0.1% −0.2% −2.0% −0.9% 0.7% −1.1%

CLUMPY 127.0% −1.1% −44.2% 62.3% −13.7% −18.6% −3.9% 3.2% 4.8% −4.4% 3.7% 5.0%

PLADJ 131.1% −1.2% −47.1% 65.6% −13.2% −24.3% −3.9% 2.7% 3.6% 0.4% 0.2% 0.4%

IJI 51.6% −27.0% 84.3% 1.5% −7.5% −9.6% −35.5% −19.8% 19.0% −9.1% −37.3% −7.8%

COHESION 107.0% −12.2% −37.5% 41.7% −4.6% −46.2% −0.2% 0.1% 0.1% 0.0% 0.0% 0.0%

MESH 5875.0% −47.9% −97.7% 1125.0% −64.7% −100.0% −37.2% 14.9% 16.3% 6.8% −0.8% −1.1%

(Continued on following page)
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TABLE 6 (Continued) Change (%) in landscape metrics.

Landscape
metric

Los Almendros catchment

Urban Agriculture Vegetation Bare soil

1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017

SPLIT −91.8% −73.4% 4,271.0% −88.1% −76.6% 1866.6% 48.2% −23.1% −19.7% −6.5% −0.2% 0.7%

AI 127.2% −1.1% −44.3% 62.8% −13.4% −20.0% −3.9% 2.7% 3.6% 0.4% 0.2% 0.4%

NLSI −22.9% 0.5% 26.9% −12.5% 3.1% 2.9% 6.7% −6.2% −6.1% 7.4% −6.4% −6.2%
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TABLE 7 Change (%) in landscape metrics.

Landscape
metric

Rinconada de Maipú catchment

Urban Agriculture Vegetation Bare soil

1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017

CA 14.7% 8.6% 26.7% −15.0% 3.9% −9.7% 2.7% 0.1% 5.9% −1.5% −1.0% −22.2%

PLAND 14.7% 8.6% 26.7% −15.0% 3.9% −9.7% 2.7% 0.1% 5.9% −1.5% −1.0% −22.2%

NP 9.6% 5.0% −33.0% −12.8% 2.9% −22.6% −6.7% 5.0% −40.8% 2.9% −2.9% −44.2%

PD 9.6% 5.0% −33.0% −12.8% 2.9% −22.6% −6.7% 5.0% −40.8% 2.9% −2.9% −44.2%

LPI 11.7% 9.5% 28.5% −28.7% 28.1% 37.2% 2.8% −1.2% 9.4% −2.3% 4.1% −12.0%

AREA_MN 13.4% 1.9% −17.6% −16.1% 3.2% −15.8% −5.0% −10.1% −28.1% 0.3% −3.7% −46.5%

AREA_SD 13.4% 1.9% −17.6% −16.1% 3.2% −15.8% −5.0% −10.1% −28.1% 0.3% −3.7% −46.5%

AREA_CV 5.9% −3.2% −26.8% −9.2% 1.2% −11.4% −6.3% −10.2% −30.0% 1.3% −2.9% −39.0%

GYRATE_MN 4.6% 4.0% 89.2% 0.2% 0.9% 16.4% 9.3% −4.7% 78.3% −3.9% 1.3% 39.1%

GYRATE_SD 6.6% 6.9% 57.2% −23.6% 21.6% 43.4% 6.1% −3.5% 42.0% −3.6% 5.0% 17.6%

GYRATE_CV 2.0% 4.3% −17.0% −20.4% 21.4% 23.1% −3.0% 1.1% −20.5% 0.4% 3.6% −15.5%

TE −0.1% −3.7% 16.9% 5.3% 0.2% 7.8% 0.1% 1.0% 5.1% 1.8% −2.4% −9.5%

ED 7.2% 1.6% 36.1% −2.6% 4.2% 12.6% 4.0% −2.5% 32.8% −3.4% 1.8% 21.5%

LSI 7.4% 5.4% 16.4% −7.6% 3.9% 4.5% 3.7% −3.5% 26.4% −5.3% 4.2% 34.3%

SHAPE_MN −1.0% −1.6% 3.0% 0.8% 0.2% 1.7% −0.6% 0.3% −0.3% 0.5% −1.1% −3.9%

SHAPE_SD 2.0% −4.8% −6.9% −5.9% 1.2% 1.8% −3.0% −11.3% −3.3% −2.9% −2.2% −13.8%

SHAPE_CV 3.1% −3.2% −9.6% −6.7% 1.0% 0.1% −2.4% −11.6% −3.0% −3.4% −1.0% −10.3%

CONTIG_MN 0.0% −11.6% 42.7% 10.1% −0.8% 16.3% 0.4% 0.7% 7.9% 7.7% −3.8% −17.5%

CONTIG_SD 3.7% −4.9% 23.7% 7.3% −0.5% 9.9% 2.8% 0.8% 9.2% 4.0% −1.5% −9.9%

CONTIG_CV 4.0% 7.4% −13.4% −2.6% 0.0% −5.5% 2.4% 0.0% 1.2% −3.6% 2.2% 9.2%

PAFRAC −1.9% −0.1% −3.6% −1.4% 0.4% −1.7% −1.3% 0.0% −3.0% −0.6% −0.3% −0.6%

CLUMPY 0.1% 2.8% 11.0% 1.8% 0.1% 4.0% 1.8% 4.0% 9.2% −0.4% 1.2% 12.5%

PLADJ 0.5% 2.8% 10.2% 0.9% 0.3% 3.0% 1.1% 1.7% 4.4% −0.4% 0.6% 6.9%

IJI 8.6% 3.7% −40.9% 3.4% −2.9% −23.6% 2.8% −16.4% −1.7% 16.4% 6.8% −46.4%

COHESION 0.0% 0.0% 0.0% −0.2% 0.2% 0.3% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0%

MESH 23.7% 17.1% 64.9% −53.2% 51.4% 58.9% 5.5% −2.2% 19.6% −4.9% 8.1% −22.6%

(Continued on following page)
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TABLE 7 (Continued) Change (%) in landscape metrics.

Landscape
metric

Rinconada de Maipú catchment

Urban Agriculture Vegetation Bare soil

1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017

SPLIT −24.0% −23.4% −40.0% 34.3% −36.0% −37.8% −6.4% 2.5% −16.6% 3.6% −8.2% 29.0%

AI 0.5% 2.8% 10.2% 0.9% 0.3% 3.0% 1.1% 1.7% 4.4% −0.4% 0.6% 7.0%

NLSI −1.3% −8.2% −35.2% −2.4% −0.8% −6.8% −3.2% −9.6% −23.3% 2.0% −2.3% −31.1%
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environmental models (Slater et al., 2023; Pak et al., 2025; Moosavi
et al., 2022).

LASSO regressions were obtained using RStudio 2025.05.1 (R
v4.4.3) using all dataset available (no training-test split was done due
to limited sample size) and tuning the lambda penalty parameter
using a variable k-fold (from 3 to 10) cross-validation until the
minimal lambda value was obtained, which was set as the optimal
value for this parameter on each regression. Prior to analysis, all LM
and IHA values were standardized (z-score normalization) to
eliminate scale-dependent biases in coefficient penalization, a
preprocessing step widely recommended for LASSO applications in
landscape-hydrology studies (Zhou et al., 2020). Model performance
was quantified using the percentage of explained variance (deviance
explained), which measures the proportion of variability in IHA
accounted for by the selected LM relative to a null model. This
approach aligns with recent advancements in regularization
techniques for ecological and hydrological datasets, where LASSO
has proven effective in isolating drivers of environmental change
despite collinear predictors (Tian et al., 2024).

Our datasets are characterized by a moderately high
dimensionality, where the number of predictor variables
(116 LM) surpasses the number of observations (17 years). For
this reason, LASSO regression is a particularly suitable
methodology, as it inherently incorporates feature selection and
regularization to mitigate the risk of model overfitting. This
advantage, however, is tempered by the limited sample size in
specific model implementations, which can compromise the
robustness and stability of the derived regression coefficients.
Consequently, the results must be interpreted with caution,
acknowledging the potential for increased model variance and
reduced generalizability to other sites.

2.8 Strength, universality and influence

To evaluate the predictive relevance of landscape metrics (LM)
in LASSO regression models, three criteria were adopted: strength,
universality, and influence (Cushman et al., 2008).

1. Strength (S) quantifies the mean coefficient magnitude of LM
across all regressions where it was retained (Equation 1),
reflecting its average contribution to predicting Indicators of
Hydrologic Alteration (IHA).

2. Universality (U) measures the frequency with which a LM was
selected across all regressions, indicating its consistency as
predictor (Equation 2).

3. Influence (Equation 3) integrates strength and universality into
a composite metric, repreenting the overall predictive
importance of a LM.

Strength S( ) � ∑n
i�1βLMi

n
(1)

Universality U( ) � ∑
n

i�1
δLMi (2)

Influence � S × U (3)

Here, β denotes the standardized regression coefficient of a
landscape metric in the i-th LASSO model, δ is an indicator variable

(1 if LM is retained, 0 otherwise), and n is the total number of
LASSO models analyzed.

3 Results

3.1 Classification accuracy and land use
change dynamics

The accuracy of land use classifications for 1999 and 2010 was
assessed using proportional cross-tabulationmatrices and the Kappa
Index of Agreement (KIA) (Table 4). Diagonal values in the cross-
tabulation matrices represent the proportion of correctly classified
pixels, with overall accuracy reaching 81.4% in 1999 and 81.8% in
2010. Urban, agricultural, and vegetation classes exhibited moderate
agreement (KIA = 0.65–0.78), while bare soil showed weaker
agreement (KIA = 0.56–0.57), consistent with challenges in
distinguishing sparsely vegetated or transient surfaces. The water
class, merged with bare soil due to its minimal spatial representation
(<0.2% of the catchment area), was excluded from
subsequent analyses.

Land use changes between 1991 and 2017 revealed contrasting
trajectories across catchments (Figure 3; Table 5). In Los Almendros,
urban and agricultural areas remained marginal (<1% of the
catchment), with vegetation cover declining slightly (−4.3%) and
bare soil increasing marginally (+1.1%). In contrast, Rinconada de
Maipú (RM) experienced pronounced anthropogenic
transformation: urban areas expanded by 87.4% (25,063 ha),
while agricultural and bare soil lands decreased by −21.1%
(−9,976 ha) and −24.8% (−28,914 ha), respectively. Vegetation in
RM increased by 6.7%, which reflect conversion over bare soil
(mainly in mountains) and abandoned agricultural areas.

3.2 Landscape metrics dynamics

Landscape configuration exhibited significant dynamism
between 1991 and 2017, with nonlinear trajectories in landscape
metrics reflecting contrasting anthropogenic pressures in the two
catchments studied (Tables 6, 7). In the urban land use category, the
Rinconada de Maipú (RM) catchment experienced an increase in
urban class area (CA) by 15% between 1991 and 1999, followed by a
decline of 9% during 2000–2009, and then a substantial surge of 27%
from 2010 to 2017. Despite this expansion in CA, the mean patch
area (AREA_MN) decreased by 17.6% in the last period of
2010–2017, indicating fragmentation of urban patches.
Concurrently, the largest urban patch index (LPI) increased by
28.5% during the same period, driven by peri-urban sprawl,
while the radius of gyration (GYRATE_MN) rose by 89.2%,
reflecting more dispersed development patterns. In contrast, Los
Almendros treated urban growth nonlinearly, showing early
expansion with CA increasing by 51.1% from 1991 to 1999,
followed by intense fragmentation evidenced by an extraordinary
4,271% increase in the splitting index (SPLIT) from 2010 to 2017.
This fragmentation was accompanied by declining cohesion
(COHESION decreased by 37.5%) and aggregation (AI decreased
by 44.3%), indicative of patch disaggregation likely resulting from
scattered rural settlements.
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Agricultural land use dynamics diverged sharply between
catchments. In RM, agricultural class area declined overall by
21.1%, yet the LPI surged by 37.2% during 2010–2017, signaling
consolidation of the remaining farms into larger patches. Edge
density (ED) and shape complexity (LSI) also increased by 12.6%
and 4.5%, respectively, suggesting increasingly irregular field
boundaries. Conversely, in Los Almendros, agriculture peaked
dramatically in the 1990s with a 205.1% increase in CA during
1991–1999 but subsequently collapsed by 90.7% in 2010–2017. This

transformation manifested as a shift from early aggregation (MESH
index declined by 97.7%) to severe fragmentation (SPLIT increased
by 4,271%), consistent with abandonment and land
degradation processes.

Vegetation class area showed relative stability in RM, but patch
density increased by 40.8% in the 2010–2017 period, indicating
fragmentation. Increased edge density (up 32.8%) and shape
complexity (LSI increased by 26.4%) further suggest
encroachment of urban and agricultural edges into vegetated

FIGURE 4
Flow duration curve in Los Almendros (a) and Rinconada de Maipú (b) river flow stations.
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TABLE 8 Decadal average value of hydrologic signatures in Los Almendros and Rinconada de Maipú catchments.

IHA group Indicator Los Almendros Rinconada de Maipú

1991–1999 2000–2009 2010–2017 1991–1999 2000–2009 2010–2017

1 Qapr 2.1 1.9 1.8 20.8 28.5 14.4

Qmay 2.5 1.9 1.6 17.5 23.8 15.9

Qjun 4.1 3.6 1.8 32.3 44.3 17.4

Qjul 3.8 4.4 2.3 31.5 40.7 17.4

Q.aug 4.2 6.8 2.7 33.9 47.5 19.5

Qsep 7.1 8.4 4.1 33.3 43.9 21.0

Qoct 7.6 11.8 4.8 29.9 46.0 26.9

Qnov 9.3 13.1 5.0 35.3 53.2 32.2

Qdec 8.1 11.0 4.6 34.6 50.6 24.5

Qjan 6.4 6.3 3.5 29.7 40.9 21.9

Qfeb 3.6 4.0 2.6 24.0 35.4 17.8

Qmar 2.3 2.6 1.8 22.2 32.6 16.7

2 Q1 day min 1.3 1.3 1.0 11.0 17.1 10.0

Q3 day min 1.3 1.3 1.1 11.4 17.6 10.0

Q7 day min 1.4 1.4 1.1 11.9 18.4 10.1

Q30 day min 1.6 1.6 1.3 15.3 21.4 12.2

Q90 day min 2.8 2.9 1.8 22.3 30.4 15.4

Q1 day max 39.5 67.3 13.9 180.2 323.9 88.8

Q3 days max 23.6 40.7 9.8 130.3 229.9 61.5

Q7 days max 17.8 23.9 7.8 91.5 142.7 45.9

Q30 days max 11.5 15.0 5.8 54.0 80.9 36.0

Q90 days max 9.4 12.6 5.0 42.5 60.7 30.9

Qbase flow 0.3 0.3 0.4 0.4 0.4 0.5

3 Qmin date 130.6 124.1 131.0 150.2 133.3 110.6

Qmax date 203.6 236.5 252.7 168.3 206.3 170.9

4 Qlow pulses 5.0 4.3 5.1 6.1 0.9 11.7

Qhigh pulses 4.4 4.3 2.3 11.2 11.8 7.1

Qhigh pulses length 6.0 20.7 4.1 3.2 6.3 2.2

5 Qrise rate 0.3 0.4 0.2 1.1 1.5 1.5

Qdown rate 0.2 0.3 0.2 1.2 1.7 0.7

Reverses 108.4 100.9 89.0 165.9 159.2 98.4

6 Qpeak 8.1 9.8 9.2 41.3 45.3 46.7

Qpeak dur 2.0 11.5 4.0 2.5 5.9 2.1

Qpeak freq 3.8 2.9 2.1 9.8 9.6 6.7

Qpeak rise 0.8 0.6 2.4 7.2 4.1 22.2

Qpeak down 0.6 0.5 1.2 5.4 4.6 15.6
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TABLE 9 Deviation explained (Dev) and number of LM per category in LASSO regressions.

IHA group Indicator Los Almendros

n Total LM Selected Dev* LM per land use LM category

LM U A V BS C S A

1 Qapr 17 116 1 27.3% 0 1 0 0 1 0 0

Q.aug 17 116 1 23.3% 0 0 1 0 0 0 1

Qsep 17 116 5 67.6% 0 3 1 1 0 3 2

Qoct 17 116 9 90.1% 1 5 2 1 3 5 1

Qdec 17 116 1 15.5% 0 0 0 1 0 1 0

Qfeb 17 116 8 96.5% 4 0 2 2 2 3 3

Qmar 17 116 3 52.8% 1 1 1 0 1 2 0

2 Q3 day min 17 116 5 25.3% 2 1 1 1 1 1 3

Q90 day min 17 116 8 84.0% 1 5 1 1 1 6 1

Qbase flow 17 116 6 83.6% 1 2 1 2 0 3 3

3 Qmin date 17 116 2 31.5% 1 0 0 1 1 1 0

Qmax date 17 116 4 24.1% 4 0 0 0 1 0 3

4 Qhigh pulses length 17 116 1 22.5% 0 0 1 0 0 0 1

5 Qdown rate 17 116 6 87.1% 1 3 1 1 0 4 2

Reverses 17 116 4 66.6% 1 0 1 2 2 1 1

6 Qpeak dur 17 116 1 9.4% 0 0 1 0 0 0 1

17 116 Rinconada de Maipú

1 Qapr 17 116 4 68.0% 1 1 2 0 0 3 1

Qmay 17 116 1 40.9% 1 0 0 0 0 1 0

Qjun 17 116 1 21.1% 0 0 0 1 0 0 1

Q.aug 17 116 4 29.4% 1 1 0 2 2 2 0

Qmar 17 116 13 98.4% 5 2 3 3 1 5 7

2 Q1 day min 17 116 4 29.8% 2 1 1 0 0 2 2

Q3 day min 17 116 7 75.7% 2 2 1 2 1 3 3

Q7 day min 17 116 9 96.3% 3 4 1 1 0 5 4

Q30 day min 17 116 2 44.7% 1 0 1 0 0 1 1

Q90 day min 17 116 14 99.9% 4 5 1 4 1 8 5

Q1 day max 17 116 11 96.8% 3 2 3 3 0 6 5

Q3 days max 17 116 6 69.0% 1 1 1 3 2 2 2

Q7 days max 17 116 2 50.6% 0 0 0 2 1 0 1

Q30 days max 17 116 1 32.7% 0 0 0 1 1 0 0

3 Qmax date 17 116 1 25.8% 0 1 0 0 0 1 0

4 Qhigh pulses length 17 116 9 86.8% 4 1 2 2 1 4 4

5 Qrise rate 17 116 10 98.5% 1 2 4 3 3 5 2

Reverses 17 116 8 93.5% 3 2 1 2 0 4 4

(Continued on following page)
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areas. In contrast, Los Almendros experienced a modest increase in
vegetation cover (1.5% growth during 2010–2017) coupled with
reductions in the number of patches (NP decreased by 40.8%) and
mean patch area (AREA_MN decreased by 28.1%), indicating
vegetation consolidation likely due to reforestation or shrub
encroachment.

Changes in the bare soil category displayed opposing patterns in
the two catchments. RM showed a decrease of 22.2% in bare soil area
between 2010 and 2017, with declining patch density and increased
clumpiness, signaling efforts toward stabilization. Meanwhile, Los
Almendros experienced intensified fragmentation of bare soil (NP
increased by 1.3%), which is likely caused by erosion or
afforestation efforts.

3.3 Hydrologic signatures

Streamflow regimes in Los Almendros and Rinconada de
Maipú (RM) catchments exhibited pronounced decadal shifts
(Figure 4; Table 8). In Los Almendros, the flow duration curve
(FDC) showed increased peak and low flows during 2000–2009,
followed by a sharp decline in very low flows (exceedance
probability >0.97). By 2010–2017, low flows partially recovered,
but mid-range flows diminished, reflecting altered infiltration
patterns linked to vegetation consolidation (Table 6). The FDC
slope steepened post-2000, signaling reduced flow variability -a

hallmark of land use homogenization. Conversely, RM
experienced magnitude shifts in 2000–2009, with slope
flattening in 2010–2017, indicative of urban-driven flashiness
and groundwater depletion.

The Indicators of Hydrologic Alteration (IHA) revealed
contrasting hydrological trajectories between the catchments.
Baseflow increased by 23% in Los Almendros (2010–2017), likely
due to vegetation recovery enhancing aquifer recharge, while
Rinconada de Maipú (RM) saw a 16% rise linked to managed
groundwater extraction for irrigation. Extreme flows exhibited
parallel declines: minimum flows decreased by 23% (Los
Almendros) and 17% (RM), and maximum flows halved in both
catchments, consistent with reduced rainfall intensity and elevated
evapotranspiration under Mediterranean aridification (Vicente-
Serrano et al., 2020).

Flow timing shifts disrupted ecological regimes: peak flows in
Los Almendros occurred 1 month later, while RM’s minimum flows
advanced by 1 month, altering cues critical for riparian species
phenology (Poff and Zimmerman, 2010). Flow pulse dynamics
diverged sharply: high-pulse frequency declined by 48% (Los
Almendros) and 36% (RM), while RM’s low pulses doubled,
reflecting urban runoff amplification and irrigation-driven flow
regularization. Peak flow rates intensified markedly, with rise
rates tripling in both catchments (2010–2017) and fall rates
doubling (Los Almendros) or tripling (RM), signaling accelerated
stormwater mobilization from expanding impervious surfaces.

TABLE 9 (Continued) Deviation explained (Dev) and number of LM per category in LASSO regressions.

IHA group Indicator Los Almendros

n Total LM Selected Dev* LM per land use LM category

LM U A V BS C S A

6 Qpeak rise 17 116 6 63.0% 2 0 3 1 0 4 2

In bold those LASSO, regressions where deviation explained are higher than 60%. n, number of observations (normal water years); Total LM, Total number of LM, used as predictors; Selected

LM, Number of LM, with non-zero coefficient in the LASSO, regression; U, urban; A, agriculture; V, vegetation; BS, bare soil; C, composition; S, shape; A, aggregation; *Dev, deviation

explained.

FIGURE 5
Landscape metrics strength (a) and universality. (b) Separation from center represents magnitude. Just 74 LM (points) were graph out of 116 LM in
total: Urban LM (19), Agriculture LM (22), Vegetation LM (18) and Bare soil (15).
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3.4 LASSO regressions

LASSO regression models identified key landscape metrics
(LM) driving hydrologic alterations in both catchments, with
substantial explanatory power (Table 9). Deviance explained in
LASSO regression serves as a measure of goodness-of-fit akin to R2.
While no strict scale exists, values above 60% were selected as
indicative of strong model performance, following the studies of
Santhi et al. (2001) and (Moriasi et al., 2007) who used threshold of
R2 = 0.6 or NSE = 0.5 to evaluate model´s performance while
recognizing that thresholds can vary depending of context and new
databases (Gupta et al., 2024; Lin and Wiegand, 2023). In Los
Almendros, high deviation explained (>60%) was observed for
IHA Groups 1 (mean flows), 2 (extreme flows), and 5 (flow rate
changes), aligning with its vegetation consolidation and
agricultural decline. In contrast, Rinconada de Maipú (RM)
exhibited robust model performance across all IHA groups
except Group 3 (flow timing), reflecting its dynamic urban-
agricultural interplay. Only IHAs with deviation
explained >60% were retained for scenario analysis, ensuring
reliability in projecting future hydrologic impacts.

The influence of LM on IHAs varied markedly by metric type
and land use (Figures 5, 6). Of 116 LM evaluated, only

74 exhibited significant hydrologic relevance. Shape-related
metrics (e.g., SHAPE_MN, SPLIT) dominated across
configurations, underscoring their sensitivity to edge effects
and patch geometry. Urban and agricultural LM
disproportionately influenced IHA Groups 1, 2, and 5 -critical
for mean/extreme flows and flashiness-while vegetation and bare
soil LM impacts correlated with their spatial dominance:
vegetation in RM (higher coverage) and bare soil in
Los Almendros.

Rankings of LM strength, universality, and influence
(Table 10) revealed context-relevant predictors for both
catchments. Urban_SHAPE_MN (mean urban patch shape)
ranked in the top 10 for both catchments, strongly affecting
mean and extreme flows (IHA 1 & 2). Irregular urban
geometries amplified runoff connectivity, particularly in RM’s
sprawling periphery. Agro_SPLIT (agricultural patch
disaggregation) emerged as a top predictor, reflecting
fragmentation’s role in altering infiltration and peak flows. Its
influence was pronounced in Los Almendros, where abandoned
farms transitioned to fragmented bare soil. Veg_SPLIT and
BareSoil_COHESION highlighted vegetation’s stabilizing role
and bare soil’s destabilizing effects, respectively, with Veg_
SPLIT reducing flashiness in RM’s vegetated uplands.

FIGURE 6
Catchment’s landscape metrics influence over Indicators of Hydrologic Alteration (IHA) groups: by land use (a,b) and by category (c,d).
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3.5 Future scenarios

Future hydrologic signatures were projected for both
catchments using LASSO regression models and the eight future
land use scenarios (Table 11). In Los Almendros, median flows
during critical agricultural periods (e.g., September sowing) are
projected to decline by 7%–9% under 2030 scenarios and 5%–9%
by 2050, with Business-as-Usual (BAU) trajectories exacerbating
reductions compared to Strategic Land Use Planning (PROT). For
instance, October flows (Qoct) under PROT show smaller declines
(−4.6% to −5.5%) than BAU (−9.1% to −9.7%), highlighting PROT’s
potential to buffer water scarcity during planting seasons. Similarly,
extreme low flows (IHA Group 2) and flow reversals (IHA Group 5)
are markedly attenuated under PROT, with BAU scenarios driving
severe reversals (−47.2% to −53.9% by 2050), signaling destabilized
flow regimes under unplanned development.

In Rinconada de Maipú (RM), divergent scenario outcomes
underscore the limits of land use planning in highly urbanized
catchments. April median flows decline by 8%–13% under BAU
2050 versus 8%–9% under PROT, reflecting minimal mitigation
efficacy for baseline flows. However, PROT significantly moderates
peak flow impacts: rise rates under PROT increase by 23%–29%
(vs. 5.7%–29.1% under BAU), suggesting controlled stormwater
management. Notably, BAU scenarios project catastrophic
declines in high-flow pulse length (Qmin pulse length: −188.2%
by 2050), indicating near-elimination of ecologically critical flood
events—a trend observed in over-urbanized basins globally (Zhou
et al., 2020).

4 Discussion

The moderate to strong classification accuracy achieved (KIA
0.65–0.78 for major classes) supports reliable detection of land use
changes driving hydrological alterations. While the bare soil class
exhibited lower agreement, this is common in arid environments
with sparse or transient vegetation cover (Zhou et al., 2020). The

divergent land use trajectories observed—dramatic urban expansion
in Rinconada de Maipú (RM) and agricultural collapse coupled with
vegetation consolidation in Los Almendros—reflect distinct socio-
economic drivers such as urban planning policies, demographic
shifts, and water rights governance (Bauer, 2015; Henríquez-Dole
et al., 2018). These changes provide a solid basis for evaluating
hydrological responses linked to landscape transitions.

A central concern in landscape-hydrology studies is
disentangling correlation from causation. While LASSO
regression identifies landscape metrics statistically linked with
hydrological signatures, causality is inferred cautiously. However,
the metrics highlighted—urban patch shape complexity (SHAPE_
MN), agricultural patch fragmentation (SPLIT), and vegetation
connectivity (COHESION)—have well-established mechanistic
roles in modulating hydrological processes (Poff and
Zimmerman, 2010; McMillan, 2021; Jackisch et al., 2021). For
example, urban imperviousness inherently increases surface
runoff and peak flows by reducing infiltration (Dogan and
Karpuzcu, 2022), while agricultural fragmentation alters
infiltration and peak flow dynamics by disrupting soil continuity
(Alatorre et al., 2019). Vegetation connectivity stabilizes baseflow
through enhanced water retention and groundwater recharge (Bart
and Tague, 2017).

The consistency of these metrics’ predictive strength and
universality across multiple IHAs further strengthens their causal
interpretation (Cushman et al., 2008). Nonetheless, fully establishing
causality requires complementary physically based hydrological
models or experimental studies, particularly to account for
climatic, subsurface, and socio-economic drivers omitted here
(Tian et al., 2024). By using normal water years (years with
normal hydrologic conditions), we minimized confounding
effects from extremes, making landscape-driven hydrological
changes more apparent (Scanlon et al., 2023).

Our findings align closely with global patterns documented in
various climatic and land use contexts. The urban expansion in RM
increased impervious surfaces by 27%, amplifying peak flow rise
rates and flashiness, consistent with patterns noted in

TABLE 10 Ranking of LM strength, universality, and influence over hydrology in catchments.

Rinconada de Maipú Los Almendros

Rank Strength Universality Influence Strength Universality Influence

1 Agro_.CLUMPY Veg_.SPLIT Veg_.SPLIT Agro_.TE Veg_.IJI Veg_.IJI

2 Veg_.SPLIT Agro_.SPLIT BareS_.COHESION Veg_.IJI Agro_.SPLIT Urban_.SHAPE_MN

3 Veg_.SHAPE_CV Urban_.TE Agro_.SPLIT Veg_.SHAPE_SD Urban_.SHAPE_MN Agro_.SPLIT

4 Veg_.NLSI Veg_.CONTIG_MN Veg_.CONTIG_MN Agro_.AI BareS_.CONTIG_MN Agro_.PD

5 BareS_.COHESION Agro_.CONTIG_SD Urban_.SHAPE_MN Urban_.SHAPE_MN BareS_.CONTIG_SD Agro_.MESH

6 Agro_.PAFRAC BareS_.COHESION Agro_.PAFRAC Agro_.PD BareS_.GYRATE_MN BareS_.IJI

7 Agro_.SPLIT Urban_.SHAPE_MN Veg_.SHAPE_CV Agro_.MESH Agro_.CONTIG_SD BareS_.CONTIG_SD

8 Urban_.IJI BareS_.SHAPE_CV Urban_.IJI Urban_.SHAPE_SD Agro_.PD BareS_.CONTIG_MN

9 Urban_.MESH Urban_.ED Agro_.CLUMPY Agro_.SPLIT Agro_.MESH Veg_.SHAPE_SD

10 Veg_.CONTIG_MN Agro_.TE BareS_.SHAPE_CV BareS_.IJI BareS_.IJI Agro_.AI
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Mediterranean drylands (Zuo et al., 2016), for example like in
Turkey’s Terkos Basin (Dogan and Karpuzcu, 2022). The
reduction in baseflow aligns with urban groundwater depletion
documented globally (Scanlon et al., 2023; Bauer, 2015).

Conversely, Los Almendros experienced rural depopulation
and agricultural abandonment leading to vegetation recovery,
which stabilized baseflows (+23%) and reduced hydrological
variability. This is analogous to trends in semi-arid California
chaparral ecosystems and other dryland rewilding contexts (Bart
and Tague, 2017; Frutos et al., 2015). The fragmentation of
vegetation in RM further reduced drought resilience,
highlighting the hydrological significance of spatial
configuration beyond mere land cover extent (Boongaling et al.,
2018; Zhou et al., 2020).

The findings concerning the influence of urban and agricultural
landscape metrics on the Los Almendros catchment require special
attention, particularly given the relatively small proportion of the
catchment area occupied by these land uses. While it may seem
counterintuitive that such small land-use percentages could drive
significant changes, our results are consistent with established
hydrological principles. Research has demonstrated that the
spatial arrangement and connectivity of impervious surfaces, even

if they constitute a small portion of the total catchment, can alter the
hydrological cycle by accelerating stormflow and reducing
groundwater recharge, a phenomenon known as the “urban
stream syndrome” (Walsh et al., 2005). Similarly, small but
highly fragmented agricultural patches can act as
disproportionate sources of runoff and pollutants, as their edge
density and fragmentation increase the speed and volume of water
moving across the landscape. Studies show that landscape metrics
like patch density and shape are significantly correlated with
hydrological outcomes such as runoff (Wei et al., 2023).
Therefore, despite their limited total area, the specific landscape
configuration and spatial metrics of urban and agricultural lands
within the Los Almendros catchment appear to be crucial drivers of
the observed hydrological changes.

The role of patch shape and aggregation metrics emphasized
here underscores the mechanistic pathways by which landscape
structure controls hydrological connectivity, runoff generation, and
sediment transport (Alatorre et al., 2019; Cushman et al., 2008).
Such spatial pattern measures provide actionable insights beyond
traditional percent land cover metrics (PLAND), advancing the
understudied class-level landscape-hydrology dynamics
particularly in dryland environments.

TABLE 11 Hydrologic signature scenarios based on significative LASSO regressions.

IHA group Indicator Los Almendros

2030 2050

BAU PROT BAU PROT

HUD LUD HUD LUD HUD LUD HUD LUD

1 Qsep −7.6% −7.4% −7.7% −9.2% −9.1% −5.5% −4.6% −5.5%

Qoct −9.4% −8.8% −9.7% −13.5% −11.1% −5.0% −2.1% −4.7%

Qfeb −3.2% −3.2% −3.6% −3.6% 7.7% −2.5% 6.7% 1.1%

2 Q90 day min −20.7% −19.8% −18.7% −23.6% −21.4% −12.8% −8.1% −10.5%

Qbase flow 39.9% 40.1% 41.4% 46.8% 47.2% 37.6% 31.3% 36.6%

5 Qdown rate 19.1% 19.8% 21.3% 22.7% 24.2% 21.8% 19.1% 22.1%

Reverses −14.4% −18.8% −28.7% −27.4% −40.4% −47.2% −33.8% −53.9%

Rinconada de Maipú

1 Qapr −9.4% −14.4% −7.5% −5.8% −8.1% −12.6% −8.4% −9.3%

Qmar −21.4% −41.6% −21.7% −9.3% −30.9% −18.8% −44.5% −29.0%

2 Q3 day min 29.4% −27.2% 11.3% 6.3% 40.4% −21.1% 13.2% 18.4%

Q7 day min 67.5% −67.4% 23.8% 12.8% 92.5% −43.4% 21.1% 48.0%

Q90 day min 44.2% −55.2% −0.5% −4.5% 54.7% −42.4% −3.6% 16.3%

Q1 day max −9.7% −81.4% −24.4% −22.8% −18.6% −70.6% −24.6% −23.5%

Q3 days max 31.0% 14.8% 28.8% 26.1% 35.0% 11.9% 26.0% 28.7%

4 Qhigh pulses length −35.0% −111.1% −46.2% −41.7% −41.5% −188.2% −51.5% −50.8%

5 Qrise rate −1.1% −69.2% −40.5% −32.3% −3.1% −78.5% −52.8% −23.2%

Reverses −26.0% −3.6% −33.3% −25.9% −35.8% −3.8% −34.1% −28.5%

6 Qpeak rise 22.9% 8.2% 26.5% 20.6% 28.9% 5.7% 29.1% 23.3%
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The use of LASSO regression allowed effective variable selection
amid a high-dimensional, collinear landscape metric dataset,
isolating the 64% of metrics most relevant to hydrological
signatures. This parsimonious approach (Cushman et al., 2008;
Tibshirani, 1996) provides a data-driven methodology free of
redundancy and context-dependency, such as the “diversity-
centric approach” for selecting training data in streamflow
forecasting, where statistical analysis are performed to select
useful data instead of location or similarity in conditions
(Snieder and Khan, 2025). Moreover, it enhances interpretability
and model robustness compared to traditional regression. The high
explained deviation (>60%) for critical IHAs (mean flows, extremes,
flashiness) demonstrates the approach’s strength.

However, limitations include potential omission of nonlinear
and interaction effects among predictors, and its correlative nature
precluding definitive causal inference without physically based
hydrological process integration (Tian et al., 2024; McMillan,
2021; McMillan, 2020). The lower model performance for
timing-related IHAs suggests that subsurface processes, climatic
variability, and management interventions likely influence these
components beyond landscape metrics alone.

One notable limitation of our study lies in the sample size used
for the LASSO regression analyses. Although LASSO is designed to
handle high-dimensional datasets effectively by performing variable
selection and regularization, the relatively small number of
observations may reduce the robustness of the estimated models.
Limited sample sizes can increase the variability of coefficient
estimates and potentially compromise the stability and
generalizability of the results. Consequently, while our findings
provide valuable insights, they should be interpreted with
caution, and future work should aim to validate these results
with larger datasets to enhance confidence in the model robustness.

The scenario analysis further illustrates the complex interplay
between land use planning and hydrological response. Strategic land
use planning (PROT) could mitigate hydrological degradation in
less urbanized Los Almendros by preserving connectivity and
buffering vegetation, so there is a critical need to prioritize
agroecological zoning and the establishment of riparian buffers to
safeguard baseflow essential for smallholder agricultural operations.
These measures will help maintain hydrological stability amid
ongoing land cover transformations. In RM enforcing compact
urban development combined with the incorporation of green
infrastructure solutions, such as permeable pavements and
stormwater management facilities, is imperative to mitigate the
increasing risk of flash floods and hydrological fragmentation.
(Kim et al., 2013; Zhou et al., 2020). Finally, at the regional scale,
integrating strategic land use planning frameworks (e.g., PROT)
with adaptive water allocation policies is essential for balancing
competing water demands and enhancing resilience. This integrated
approach has been successfully implemented in neighboring basins
such as Chile’s Aconcagua, providing a useful model for coordinated
governance to address urbanization pressures and water scarcity
challenges (Webb et al., 2021).

From an environmental perspective, urban-driven hydrological
flashiness elevates flood risks, sediment transport, and ecosystem
stress, necessitating integrated stormwater management and green
infrastructure (Dogan and Karpuzcu, 2022; Kim et al., 2013).
Vegetation recovery in rural catchments enhances aquifer recharge

but may pose wildfire risks, illustrating trade-offs inherent in land use
transitions (Bart and Tague, 2017).

Socio-economically, this study underlines the importance of
incorporating spatial configuration metrics into land and water
policy decisions to balance development with ecological resilience
and water security in vulnerable drylands (Henríquez-Dole et al.,
2018; Bauer, 2015). Encouraging compact urban growth and
preserving connected vegetation corridors can enhance
hydrological stability and reduce conflicts over scarce water resources.

5 Conclusion

The study reconstructed land use changes in two contrasting
catchments of the Maipo River Basin, Chile, revealing divergent
trajectories: Rinconada de Maipú (RM) experienced extensive
urbanization with impervious surface expansion intensifying peak
flows and flash floods, whereas Los Almendros showed rural
depopulation and vegetation consolidation stabilizing baseflow
despite agricultural decline. Using LASSO regression, we
identified key class-level landscape metrics—especially shape and
aggregation indices such as mean urban patch shape (SHAPE_MN)
and agricultural patch fragmentation (SPLIT)—that significantly
influence hydrological signatures related to monthly flows, extreme
events, and flow flashiness. These findings emphasize the
importance of spatial configuration, beyond mere land cover
composition, in modulating hydrological regimes in drylands.

Analysis based on future land use scenarios which combine political
frameworks—Business-as-Usual (BAU) and Strategic Land Use
Planning (PROT)— and urban population pressures—High Urban
Demand (HUD and Low Urban Demanda (LUD)— illustrate context-
dependent outcomes. In Los Almendros, characterized by low
anthropogenic intervention, PROT scenarios mitigated hydrological
degradationmore effectively than BAUby promoting vegetation buffers
and preserving riparian connectivity. However, in the highly urbanized
RM catchment, PROT’s benefits were limited in offsetting median flow
declines, despite moderating peak flow rise rates. This suggests that in
catchments with entrenched urbanization, achieving water security and
flow regulation likely requires not only strategic land use planning but
also the incorporation of hybrid green-grey infrastructure
measures—such as permeable pavements and stormwater
management systems—that were not encompassed in the PROT
scenarios analyzed. This proposition highlights a critical area for
future planning interventions aimed at addressing complex urban
hydrological challenges.

Overall, this research offers a transferable analytical framework
that integrates class-level landscape metrics and hydrological
alteration indicators to inform water resource management and
land use decision-making. While the scenario outcomes
demonstrated are specific to the case studies examined, they
underscore the necessity for adaptive, multi-scale planning
approaches tailored to the intensity of catchment intervention.
Integrating dynamic climate projections, socio-economic factors,
and advanced hydrological modeling will further enhance the
applicability of such frameworks. Policymakers and stakeholders
can leverage these insights to design spatial policies and
infrastructure investments that balance development pressures with
ecological resilience and water security in dryland environments.
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