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Introduction: Assessing water resource assets in dynamic environmental
conditions presents significant scientific and operational challenges. Remote
sensing data are often multi-source, high-dimensional, and temporally
inconsistent, making it difficult to construct models that are both accurate
and generalizable. Moreover, existing financial decision support systems
struggle with integrating environmental variability, spatiotemporal noise, and
the real-time interpretability required for practical deployment. Addressing
these issues requires a fundamentally new approach that unifies data fusion,
spatiotemporal modeling, and financial risk assessment into a cohesive system.
Methods: This study introduces the Contextual Multi-source Decision Network
(CMDN), a hybrid deep learning framework that incorporates adaptive volatility
modeling, multi-scale temporal analysis, and cross-modal attention
mechanisms. By doing so, we aim to bridge the gap between remote sensing
technologies and financial planning, enabling more accurate, transparent, and
timely decision-making in water resource management.
Results: Extensive experiments on GRACE, MODIS, ERA5-Land, and SEN12MS
datasets demonstrate that CMDN reduces RMSE by up to 12.3% and improves R2

scores by 2%–4% compared to state-of-the-art baselines.
Discussion: The study identifies two key limitations. The complexity and
computational intensity of integrating multi-source data and machine learning
models may restrict accessibility, especially in regions with limited technological
resources. These results confirm its value as a scalable and actionable tool for
sustainable resource management under uncertain and evolving environmental
conditions.

KEYWORDS

multi-source remote sensing data, water resource assessment, financial decision
support, spatiotemporal analysis, sustainable resource management

1 Introduction

The assessment of water resource assets plays a critical role in ensuring sustainable
management and efficient utilization of this vital resource, especially in the context of
growing global water scarcity Zhou et al. (2020). Traditional methods often face challenges
in capturing the spatial and temporal complexities of water resources, limiting their ability
to inform effective financial and policy decisions Zeng et al. (2022). The advent of multi-
source remote sensing technologies has revolutionized water resource monitoring, offering
comprehensive, high-resolution data on surface water, groundwater, and environmental
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factors Liu et al. (2023). By integrating these data sources into robust
financial decision support frameworks, stakeholders can make
informed choices that balance environmental conservation with
economic priorities Zhang and Yan (2023). This research seeks
to bridge the gap between advanced remote sensing techniques and
practical financial decision-making, providing a scalable and data-
driven approach to water resource management Wu et al. (2020).

Initial efforts to assess water resources for financial decision-
making relied on symbolic AI and rule-based systems, which
integrated knowledge representation with structured hydrological
models Jin et al. (2023). These methods used static datasets from
limited ground-based measurements and historical records,
combined with expert rules to estimate water availability and
predict economic outcomes Chen et al. (2023). While effective in
specific, localized contexts, these approaches suffered from
significant limitations, including their inability to process real-
time or large-scale data Das et al. (2023). The lack of integration
with dynamic environmental factors further reduced their relevance
in rapidly changing conditions Li et al. (2023). The financial
decision-making process remained constrained by incomplete
and outdated assessments, necessitating the adoption of more
adaptable and data-rich methodologies Yi et al. (2023).

While technical progress in remote sensing and predictive
modeling has significantly enhanced the granularity and accuracy
of water resource assessments, a critical challenge remains in
aligning these sophisticated tools with the practical needs of
decision-makers. Government agencies and local water managers
often operate under resource constraints and require decision
support systems that are not only scientifically sound but also
easy to interpret and implement. Complex models, although
powerful, can hinder operational use if their outputs are not
translated into user-friendly formats. Furthermore, the socio-
economic context and local governance structures play a decisive
role in determining whether a technical solution can be effectively
adopted. Variability in policy priorities, regulatory frameworks, and
institutional capacities across regions means that even the most
advanced models may see limited real-world application unless they
are adapted to these local conditions. Therefore, bridging this gap
between technical rigor and practical utility is essential for achieving
meaningful outcomes in water resource management.

To overcome the shortcomings of traditional approaches, data-
driven methodologies leveraging machine learning and statistical
modeling were introduced Ekambaram et al. (2023). These methods
utilized larger datasets, including early remote sensing data, to create
predictive models for water resource availability and financial
impacts Kim et al. (2022). Machine learning algorithms, such as
regression models and decision trees, were employed to identify
patterns in hydrological and economic data He et al. (2023). Multi-
source remote sensing data—captured from satellites and aerial
surveys—enhanced these models by providing more accurate and
expansive environmental insights Woo et al. (2022). Despite these
advancements, data-driven approaches often struggled with
integrating diverse and heterogeneous datasets Liu et al. (2022).
Their predictive capabilities were limited by the quality of the
training data, which frequently failed to account for long-term
environmental and financial trends.

The integration of deep learning with multi-source remote
sensing data has marked a significant breakthrough in water

resource assessment and financial decision support Rasul et al.
(2021). Deep learning models, particularly convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), have
demonstrated exceptional performance in processing high-
dimensional remote sensing data and identifying complex
spatiotemporal patterns Lim and Zohren (2020). Multi-source
data, including optical, radar, and thermal imagery, can now be
fused to provide a holistic view of water resources, capturing surface
water dynamics, groundwater variations, and precipitation patterns
Shao et al. (2022). Challenges remain in terms of the computational
cost, the need for extensive labeled datasets, and the integration of
socioeconomic factors into decision-making frameworks Challu
et al. (2022).

To address these pressing challenges, we propose the Contextual
Multi-source Decision Network (CMDN), a novel hybrid
forecasting framework that integrates volatility-aware attention,
multi-scale temporal encoding, and financial interpretability into
a unified system. CMDN departs from conventional models by
explicitly modeling uncertainty, decomposing temporal-spatial
interactions through dual-branch encoders, and introducing risk-
adjusted loss functions. These design elements collectively enable the
model to outperform existing methods in both accuracy and
decision robustness. This work represents the first attempt to
fuse multi-source remote sensing with financial volatility
modeling in a fully end-to-end trainable architecture.

• Combines multi-source remote sensing data with domain-
specific financial models, ensuring comprehensive and
actionable insights.

• Offers a lightweight framework suitable for diverse geographic
regions, reducing computational costs while maintaining
high accuracy.

• Initial tests demonstrate improved accuracy in asset valuation
and financial decision support, enhancing stakeholder
confidence and resource management outcomes.

2 Related work

2.1 Multi-source remote sensing for water
resource monitoring

The integration of multi-source remote sensing data has
significantly advanced the monitoring and assessment of water
resources Cao et al. (2020). Optical, thermal, and radar remote
sensing provide complementary datasets that enable a
comprehensive understanding of surface water dynamics,
groundwater availability, and watershed health Xue and Salim
(2022). High-resolution optical imagery from satellites such as
Landsat and Sentinel is widely used for delineating water bodies,
while thermal sensors help assess evaporation rates and
temperature-induced stress on aquatic ecosystems Jin et al.
(2022). Synthetic Aperture Radar (SAR) data, with its all-weather
capability, plays a critical role in detecting subsurface water and
monitoring flood events Mi et al. (2024). Combining these diverse
data streams through data fusion techniques enhances the accuracy
and temporal resolution of water resource monitoring. Machine
learning algorithms, including deep learning models, are
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increasingly employed to automate the classification and
segmentation of water-related features from these datasets.
Challenges such as data heterogeneity, sensor calibration, and the
high computational cost of processing large datasets remain critical
barriers. Despite these challenges, multi-source remote sensing
offers unparalleled opportunities for assessing water resources
with precision and scalability.

2.2 Valuation of water resources as assets

Water resources are increasingly recognized as critical economic
assets, requiring robust frameworks for their valuation to inform
financial decision-making Ye et al. (2022). The concept of water as a
quantifiable asset involves the integration of hydrological, ecological,
and socio-economic factors to estimate its value accurately
Hajirahimi and Khashei (2022). Multi-source remote sensing data
plays a pivotal role in quantifying key parameters such as water
availability, quality, and usage patterns Wang et al. (2022). By
linking this information with economic valuation models,
policymakers can assess the sustainability and economic
contribution of water resources to various sectors, including
agriculture, energy, and urban development Cheng et al. (2022).
Techniques such as water accounting and satellite-based
measurements of water volume changes in reservoirs and
aquifers provide actionable insights Pukanská et al. (2024).
Research has also explored the use of remote sensing-derived
indices, such as the Normalized Difference Water Index (NDWI)
and Surface Water Supply Index (SWSI), for resource valuation.
Although there is growing progress in integrating remote sensing
into water valuation, challenges such as translating biophysical data
into economic metrics and addressing uncertainties in remote
sensing measurements require further exploration.

Recent advances in water economics highlight the importance of
incorporating market-based and non-market valuation methods in
water management systems Griffin (2006). Seminal works by Rogers
et al. (1998) and Griffin (2006) emphasize that water should be
treated as an economic good, with valuation approaches that include
opportunity cost, replacement cost, and willingness-to-pay metrics
Rogers et al. (1998). Global institutions such as the World Bank
(2020) and FAO (2012) have published policy frameworks
advocating volumetric pricing, tiered tariffs, and economic
modeling tools to balance efficiency, sustainability, and
affordability Bank (2020). Integrating such economic perspectives
into hydrological modeling enhances the interpretability and
actionability of AI-generated outputs in water-stressed regions
FAO (2012).

2.3 Financial decision support systems

Financial decision support systems (FDSS) are critical for
integrating water resource data into actionable strategies for
investment, policy design, and risk management Smyl (2020).
These systems utilize multi-source remote sensing data to
support data-driven decision-making in the management of
water-related assets Cirstea et al. (2022). Remote sensing provides
timely and scalable information on water availability, quality, and

risks, such as droughts and floods, which are essential inputs for
FDSS Nie et al. (2022). Advanced computational tools and predictive
models, often built using artificial intelligence and cloud computing,
enable the integration of remote sensing data with financial metrics
Zhang and Bao (2024). For instance, FDSS can estimate the
economic impact of water scarcity on agriculture or forecast the
financial risks associated with extreme weather events. These
systems are increasingly designed to support stakeholder
engagement by visualizing data through geospatial dashboards
and scenario analysis tools. Despite their potential, FDSS face
challenges in ensuring interoperability, managing data
uncertainties, and aligning technological capabilities with
stakeholder needs. They hold significant promise for enhancing
water resource management and financial resilience in the face of
global water challenges.

Recent literature has also explored the use of metaheuristic-
optimized and hybrid machine learning models for time series
forecasting Zhang et al. (2023). For example, LSTM-ALO (Long
Short-Term Memory with Ant Lion Optimizer) and LSTM-INFO
(Information-theoretic feature-enhanced LSTM) demonstrate
improvements in convergence and accuracy through parameter
optimization Kumar and Singh (2024). RVFL-EROA (Random
Vector Functional Link with Enhanced Reptile Optimization
Algorithm) and ANN-ERUN (Artificial Neural Network with
Elite Reweighted Update Newton method) focus on improving
learning dynamics and robustness in nonlinear systems Tan et al.
(2023). RVM-IMRFO (Relevance Vector Machine with Improved
Random Forest Optimization) integrates sparsity and ensemble-
driven search to enhance generalization in uncertain environments
Chen and Li (2024). While these methods show promising results in
specific forecasting scenarios, our CMDN model is designed for
high-dimensional multimodal fusion and volatility-adaptive
prediction, which are critical for environmental-financial decision
tasks Bai et al. (2023).

To address the transition from hydrological data to economic
modeling. Remote sensing variables are first preprocessed into
spatiotemporal sequences. These are encoded into high-level
features using CMDN’s volatility-aware modules. The resulting
representations, such as temporal trends in water scarcity and
spatial volatility in evapotranspiration, are used to compute asset
risk indices and supply-demand imbalance scores. These outputs
serve as direct inputs to financial decision components, such as
investment strategy selection, dynamic pricing, and capital risk
assessment modules.

3 Methods

3.1 Overview

CMDN introduces several novel architectural elements to
improve remote sensing-based financial forecasting. It
incorporates a volatility-aware attention module that adjusts
predictive focus according to dynamic market risk levels. CMDN
employs a dual-branch encoder—combining CNNs and
Transformers—connected through a Feature Interaction Module
(FIM) to disentangle and fuse short-term spatial structures and
long-term temporal dynamics. The model is trained with a risk-
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aware loss function that includes volatility normalization and
portfolio optimization terms, enhancing financial realism and
robustness. These innovations collectively differentiate CMDN
from existing transformer-based or statistical models and enable
it to achieve superior generalization on heterogeneous datasets.

This section provides a comprehensive introduction to the
methodological framework for financial forecasting, emphasizing
the challenges and innovations addressed in this work. Financial
forecasting, a cornerstone of economic decision-making, involves
predicting key financial metrics such as stock prices, interest rates,
and macroeconomic indicators. It requires balancing predictive
accuracy with the interpretability and adaptability of the
forecasting model to varying market conditions. In Dynamic
Market-Adaptive Forecasting Network (DMAFN), we formalize
the forecasting problem, introducing the mathematical and
statistical foundations that underpin financial prediction models.
This includes an overview of time series representation, volatility
modeling, and dependencies within financial datasets. The section
also highlights the primary sources of uncertainty and variability in
financial markets, which drive the need for robust predictive
frameworks.

Volatility-Aware Forecasting Strategy (VAFS) presents our
proposed model, named Adaptive Financial Prediction Network
(AFPN). This model leverages a hybrid architecture combining deep
learning techniques, such as recurrent neural networks (RNNs) and
attention mechanisms, with traditional econometric models. AFPN
addresses the limitations of existing methods by dynamically
adapting to market shifts while maintaining explainability. The
subsection details the architectural design, optimization
techniques, and integration with real-time market data.
Volatility-Aware Forecasting Strategy (VAFS) introduces a
strategic approach to optimizing the predictive pipeline,
emphasizing domain-specific enhancements. These include
feature engineering tailored to financial datasets, risk-aware loss
functions, and adaptive learning rates sensitive to market volatility.
This strategy ensures that the model aligns with practical forecasting
objectives, such as risk mitigation and portfolio optimization, while
achieving high accuracy and scalability.

3.2 Preliminaries

• xt ∈ Rd: the input feature vector at time step t, where d is the
feature dimension.

• X � {xt}Tt�1: input time series of length T.
• Y � {yt}T+Ht�T+1: target future sequence, where H is the
forecast horizon.

• Ŷ: predicted future values; ŷt denotes prediction at time t.
• ϵt: white noise term, assumed to be zero-mean with
constant variance.

• σ2t : conditional variance at time t (used in volatility modeling).
• αt: attention weight assigned to hidden state at time t.
• μt: local mean of historical values; used in volatility-aware
regularization.

Financial forecasting involves predicting future values of
economic or financial variables based on historical data,
structural models, and real-time market dynamics. This section

formalizes the problem, establishing the mathematical
foundations and key considerations necessary for effective
prediction in financial domains.

Let X � {xt}Tt�1 denote a time series of observed financial data,
where xt ∈ Rd represents d financial features at time t. The
forecasting objective is to predict the future values Y � {yt}T+Ht�T+1,
where H is the forecast horizon.

The predictive model can be described as a mapping function
(Equation 1):

F X ;Θ( ) � Ŷ, (1)
where Θ represents the parameters of the model and Ŷ denotes the
predicted values. The goal is to minimize the forecasting error,
defined as Equation 2:

L Ŷ,Y( ) � ∑
T+H

t�T+1
‖yt − ŷt‖2, (2)

under constraints that incorporate domain-specific requirements such
as interpretability, risk-awareness, and computational efficiency.

Let ŷt denote the model prediction at time t, and yt the true
target value. μt and σ2t represent the mean and variance of recent
values over a sliding window. The parameter set of the model is
denoted by Θ. The attention weight assigned to time step t is
denoted by αt, with ∑tαt � 1. All notations are defined in the
context of time-series modeling unless otherwise stated.

Financial time series often exhibit temporal dependencies that
can be modeled using autoregressive (AR) processes. The AR model
is expressed as Equation 3:

xt � ϕ0 +∑
p

i�1
ϕixt−i + ϵt, (3)

where ϕi are the autoregressive coefficients, p is the lag order, and ϵt
is a white noise error term.

To account for seasonality and trends, we decompose xt into
components (Equation 4):

xt � Tt + St + Rt, (4)
where Tt represents the trend, St denotes the seasonal component,
and Rt is the residual.

Financial time series are characterized by heteroskedasticity,
where the variance of returns changes over time. This is often
modeled using generalized autoregressive conditional
heteroskedasticity (GARCH) models (Equation 5):

σ2t � α0 +∑
q

i�1
αiϵ2t−i +∑

p

j�1
βjσ

2
t−j, (5)

where σ2t is the conditional variance at time t.
Financial datasets often involve multiple correlated variables,

such as stocks within the same sector. The vector autoregression
(VAR) model captures these dependencies (Equation 6):

xt � c +∑
p

i�1
Aixt−i + t, (6)

where xt ∈ Rd, Ai are coefficient matrices, and t is a vector of white
noise errors.
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These advancements enable accurate and scalable asset
valuation—referring to the economic estimation of usable water
resources in units such as USD per cubic meter or acre-foot—by
incorporating hydrological availability, cost factors, and pricing
dynamics in local or regional water markets, thereby improving
the reliability of financial projections.

CMDN bridges the gap between physical hydrology and
financial forecasting by converting remote sensing indicators into
economically relevant signals. For example, anomalies in
groundwater detected by the GRACE dataset correspond to
changes in subsurface water storage, which can affect the cost of
agricultural irrigation and water supply operations. Variations in
evapotranspiration from MODIS data reflect shifts in land surface
moisture conditions that influence crop yield reliability and input
costs. Soil moisture and temperature metrics from ERA5-Land are
indicative of environmental volatility and resource availability.
These time-dependent environmental signals are transformed
into economic features such as operational cost estimates, risk-
adjusted investment scores, and price movement expectations. This
integrated mapping enables CMDN to produce not only accurate
predictions, but also financially interpretable outputs that can
support policy and investment decisions under hydrological
uncertainty.

3.3 Dynamic Market-Adaptive Forecasting
Network (DMAFN)

In this section, we present the Dynamic Market-Adaptive
Forecasting Network (DMAFN), a novel hybrid architecture
designed to enhance financial forecasting by combining deep
learning techniques with domain-specific econometric principles.
DMAFN integrates recurrent neural networks (RNNs), attention
mechanisms, and financial-specific regularization to address the
complexities of temporal dependencies, market volatility, and
multi-variable correlations in financial data (As shown in Figure 1).

To ensure practical relevance, the proposed predictive
frameworks are tailored for water asset financial assessments
rather than generic stock market forecasting. The input
features are derived from water-related indicators such as
groundwater variability, evapotranspiration trends, and
climatic stress factors. Outputs of the models, including
dynamic asset value projections and financial risk indices, are
calibrated to support actionable decision-making in water
resource planning, infrastructure investment prioritization,
and drought mitigation strategies. These adaptations ground
the methodology in the operational realities faced by water
managers and policy stakeholders.

3.3.1 Feature encoding with temporal and
structural awareness

The input time seriesX � {xt}Tt�1, where each xt ∈ Rd represents
a d-dimensional observation at time step t, processed through a
multi-layered encoder. This encoder is designed to extract both
temporal and structural features that are crucial for downstream
tasks. The encoder employs a combination of recurrent and
convolutional mechanisms to effectively model temporal
dynamics and cross-variable dependencies.

The temporal dynamics of the time series are encoded using a
gated recurrent unit (GRU), which captures sequential information
and long-term dependencies. At each time step t, the hidden state ht
is updated based on the current input xt and the previous hidden
state ht−1 (Equation 7):

ht � GRU ht−1, xt;ΘGRU( ), (7)

where ht ∈ Rk represents the latent representation at time step t,
k is the hidden state dimension, and ΘGRU denotes the trainable
parameters of the GRU.

To further enrich the representation, the model incorporates
a temporal convolutional module to capture cross-variable
dependencies and local temporal patterns. For a given time
step t, a sliding window of size p is applied to the sequence of

FIGURE 1
The image illustrates the Dynamic Market-Adaptive Forecasting Network (DMAFN), a hybrid architecture designed for financial forecasting. The
model combines a Convolution Branch to capture spatial dependencies and a Transformer Branch to model long-range temporal features using Multi-
Head Self-Attention (MSA). A Feature Interaction Module (FIM) bridges both branches through operations like DownSampling, UpSampling, and Layer
Normalization, enabling effective fusion of temporal, structural, and attention-based features for market-adaptive forecasting.
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hidden states ht−p: t � {ht−p, ht−p+1, . . . , ht}. The convolutional
operation is then performed as follows Equation 8:

ct � Conv1D ht−p: t;Θconv( ), (8)

where ct ∈ Rk represents the aggregated features over the
window, and Θconv contains the parameters of the
convolutional kernel.

To improve the capacity of feature extraction, the model
introduces a self-attention mechanism. This mechanism assigns
different importance weights to the hidden states within the
window, enabling the model to focus on the most relevant time
steps (Equation 9):

at � Softmax Waht−p: t( ), (9)

where at ∈ Rp represents the attention weights, and Wa is the
parameter matrix for attention computation. The attention-
weighted features are then computed as Equation 10:

zt � ∑
t

i�t−p
at,i · hi, (10)

where zt ∈ Rk represents the enhanced feature vector for time
step t.

The final latent representation for the time series at each time
step is obtained through the combination of GRU-based encoding,
convolutional feature aggregation, self-attention refinement, and
graph-based structural modeling (Equation 11):

hfinal
t � Fuse rt, zt;Θfuse( ), (11)

where Θfuse denotes the parameters of the fusion module. This
comprehensive feature encoding process ensures that both temporal
and structural aspects of the data are effectively captured.

3.3.2 Attention-based sequence modeling for
critical dependencies

To effectively capture the most critical periods and dependencies
in the time series, DMAFN leverages an attention mechanism that
dynamically assigns importance weights to each time step. This
mechanism is designed to identify and amplify relevant patterns
within the temporal context of the data. For each time step t, the
attention score αt is computed as follows Equation 12:

αt � exp u⊤
t w( )

∑T
i�1 exp u⊤

i w( )
, (12)

where ut represents the hidden state transformed through a
non-linear activation function, defined as Equation 13:

ut � tanh Waht + ba( ), (13)

and w ∈ Rk, Wa ∈ Rk×k, and ba ∈ Rk are learnable parameters.
ht is the hidden state of the encoder at time step t, and k denotes the
dimension of the hidden states.

The attention scores αt are normalized using a softmax function
to ensure they sum to one across all time steps. Using these scores, a
context vector z is computed by aggregating information from all
time steps in a weighted manner (Equation 14):

z � ∑
T

t�1
αtht. (14)

The context vector z ∈ Rk captures the most relevant temporal
features by focusing on the time steps with higher attention scores.
This context vector is then passed through a fully connected layer to
generate the final forecast output for the current time step
(Equation 15):

ŷt � Woz + bo, (15)

where Wo ∈ Rm×k and bo ∈ Rm are the weight matrix and bias
vector of the output layer, and m denotes the dimensionality of
the output.

To reduce the dimensionality of the concatenated context vector
zconcat, a linear transformation is applied Equation 16:

zfinal � Wlinearzconcat + blinear, (16)

where Wlinear and blinear are the parameters of the linear
transformation. The final context vector zfinal is then used to
generate the output ŷt using the same output layer as before.
This attention-based modeling approach ensures that the model
captures critical dependencies across varying temporal resolutions
and improves the overall forecast accuracy.

3.3.3 Risk-Aware Regularization for Volatility and
Interpretability

To effectively account for the inherent volatility in financial
markets, DMAFN integrates a volatility penalty term into the loss
function. This term penalizes large prediction errors more severely
during periods of high volatility, ensuring robustness under
uncertain market conditions. The volatility-aware regularization
term is defined as follows Equation 17:

Rvol � 1
H

∑
T+H

t�T+1

ŷt − μt( )2

σ2t
, (17)

where μt and σ2t represent the mean and variance of recent
historical returns, respectively. The normalization by σ2t ensures that
predictions are evaluated relative to the market’s current level of
uncertainty.

To promote interpretability, DMAFN applies L1 regularization
on the attention scores, encouraging sparsity by forcing the model to
focus on only the most relevant time steps. This regularization term
is expressed as Equation 18:

Ratt � λ∑
T

t�1
|αt|, (18)

where λ controls the sparsity level. A higher value of λ enforces
stricter attention sparsity, ensuring that the model highlights only
critical periods in the time series.

The overall training objective function balances prediction
accuracy, volatility awareness, and interpretability by combining
the prediction loss with the regularization terms. The complete loss
function is formulated as Equation 19:

L � Lpred + λvolRvol + λattRatt, (19)
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where λvol and λatt are hyperparameters controlling the
importance of volatility and attention-based regularization,
respectively.

To handle changing market conditions, DMAFN incorporates
an adaptive volatility adjustment mechanism. The time-varying
volatility factor σ2t is dynamically updated based on an
exponentially weighted moving average (EWMA) (Equation 20):

σ2t � βσ2t−1 + 1 − β( ) rt − μt( )2, (20)

where rt denotes the observed return at time t, and β is a
smoothing factor controlling the memory of the volatility estimation
process (As shown in Figure 2).

3.4 Volatility-Aware Forecasting
Strategy (VAFS)

To enhance the robustness and reliability of financial
forecasting, we propose the Volatility-Aware Forecasting

Strategy (VAFS). This strategy integrates adaptive techniques
to address market variability, ensures resource-efficient
computation, and prioritizes interpretable predictions. VAFS
is designed to optimize the performance of our Dynamic
Market-Adaptive Forecasting Network (DMAFN) by
leveraging domain-specific insights and data-driven techniques
(As shown in Figure 3).

3.4.1 Adaptive volatility integration for dynamic
forecasting

Abrupt shifts and high volatility in financial markets can
significantly undermine the effectiveness of static forecasting
models. To address this issue, VAFS introduces an adaptive
weighting mechanism that dynamically adjusts forecasts based on
real-time market volatility σt. This mechanism incorporates market
conditions directly into the forecasting process to enhance accuracy
and robustness. The adaptive forecast is computed as Equation 21:

ŷt � 1 − ωt( ) · ŷbase
t + ωt · ŷadj

t , (21)

FIGURE 2
The diagram illustrates the Risk-Aware Regularization for Volatility and Interpretability framework, which integrates advanced regularization
techniques to handle financial market volatility and enhance model interpretability. Key components include volatility-aware penalties for large
prediction errors during uncertain market periods, L1 regularization for sparse attention focus on critical time steps, and adaptive mechanisms such as an
EWMA-based volatility adjustment. The combined loss function balances prediction accuracy, volatility robustness, and risk-aware portfolio
constraints to ensure reliable and interpretable financial forecasting.
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where ŷbase
t represents the baseline forecast, ŷadj

t denotes an
adjustment term that accounts for market volatility, and ωt is the
adaptive weight defined as Equation 22:

ωt � σt
σt + κ

, (22)

with κ acting as a scaling factor that modulates the sensitivity of
the forecast to changes in volatility. A higher σt increases ωt,
allowing the model to place more emphasis on the volatility-
adjusted term ŷadj

t .
To further enhance adaptability, the adjustment term ŷadj

t is
modeled as a function of recent historical returns
rt−p: t � {rt−p, . . . , rt}, weighted by their respective volatilities.
This term is calculated as Equation 23:

ŷadj
t � ∑

t

i�t−p
wi · ri, (23)

where wi � σ−1i
∑t

j�t−pσ
−1
j

represents the normalized inverse-volatility

weight assigned to each historical return ri. This formulation
ensures that more stable returns have greater influence on the
adjustment term.

A risk-adjusted framework is employed to balance reward and
risk, based on the forecast-derived returns Rt. The risk-adjusted
reward is given by Equation 24:

Rrisk � E Rt[ ] − λ · Var Rt( ), (24)

where E[Rt] and Var(Rt) are the expected return and variance
of Rt, respectively, and λ is a risk aversion parameter that controls
the trade-off between maximizing returns and minimizing risk.

To dynamically estimate the volatility σt, an exponentially
weighted moving average (EWMA) approach is used Equation 25:

σ2t � βσ2t−1 + 1 − β( ) rt − μt( )2, (25)

where μt is the mean return over a predefined window, and β is a
smoothing factor that controls the influence of past volatilities.

3.4.2 Domain-specific feature engineering and
sentiment analysis

VAFS incorporates tailored feature engineering to effectively
capture essential financial market patterns and integrate sentiment
analysis to account for market mood and external factors. The
engineered features aim to highlight domain-specific behaviors
such as momentum, mean-reversion, and sentiment-driven
trends, which are crucial for accurate financial forecasting.

To model momentum, a critical indicator of market trends, the
momentum feature is computed as Equation 26:

Momentumt � xt − xt−p
p

, (26)

where xt is the value at time step t, xt−p is the value p steps in the
past, and p is the lookback period. Momentum reflects the rate of
change over the window, providing insights into the persistence
of trends.

To capture mean-reversion dynamics, which occur when prices
tend to revert to a historical average, the mean-reversion feature is
defined as Equation 27:

MeanReversiont � xt − μt−p:t, (27)

where μt−p:t is the moving average of the series over the past p
observations. This feature measures deviations from the recent
mean, helping identify potential turning points in the market.

VAFS incorporates sentiment analysis to quantify market mood
based on external data sources such as financial news and social
media. The sentiment score is calculated as Equation 28:

Sentimentt � Positivet − Negativet
Totalt

, (28)

FIGURE 3
The diagram illustrates the Volatility-Aware Forecasting Strategy (VAFS), a robust framework designed to handle financial market variability. It
dynamically integrates real-time volatility through an adaptive weighting mechanism, ensuring accurate predictions under uncertain conditions. VAFS
employs advanced feature engineering techniques, such as momentum, mean-reversion, and sentiment analysis, to capture essential market behaviors.
Hierarchical temporal decomposition is used to model multi-scale patterns by separating high-frequency fluctuations and long-term trends.
Incremental learning mechanisms ensure the model adapts continuously to evolving data distributions, making predictions reliable, interpretable, and
robust in dynamic financial environments.
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where Positivet, Negativet, and Totalt are sentiment-related
signals derived from textual analysis. Positivet and Negativet
represent the number of positive and negative sentiments
identified, while Totalt is the total sentiment count. This feature
provides a numerical representation of market sentiment, aiding the
model in aligning forecasts with prevailing moods.

To further refine feature extraction, volatility-adjusted metrics
are integrated to normalize features based on market conditions.
The volatility-adjusted momentum is expressed as Equation 29:

VolAdjustedMomentumt �
Momentumt

σt−p:t
, (29)

where σt−p:t is the rolling standard deviation over the past p
steps. This normalization accounts for periods of varying market
volatility, ensuring that the feature remains meaningful across
different market regimes.

3.4.3 Hierarchical temporal decomposition and
incremental learning

To effectively model multi-scale temporal patterns in financial
time series, VAFS applies wavelet transforms to decompose the
input series into distinct high-frequency and low-frequency
components. This hierarchical decomposition allows the model to
capture both short-term fluctuations and long-term trends
effectively. The input series is represented as Equation 30:

xt � xhigh
t + xlow

t , (30)

where xhigh
t captures the high-frequency components,

representing short-term variations, and xlow
t captures the low-

frequency components, reflecting long-term trends. Separate
models are trained on these components to specialize in different
temporal resolutions.

The predictions from the high-frequency and low-frequency
models are fused to generate the final forecast for each time step
(Equation 31):

ŷt � ŷhigh
t + ŷlow

t , (31)

where ŷhigh
t and ŷlow

t are the outputs of the high-frequency and
low-frequency models, respectively. This additive fusion ensures
that both short-term and long-term patterns contribute to the
final forecast.

Although explicit decomposition methods such as wavelet or
empirical mode decomposition are not employed in our framework,
the architecture incorporates multiple mechanisms that effectively
serve similar purposes in a data-driven manner. The model utilizes
hierarchical temporal decomposition modules and attention-based
regularization to isolate informative patterns from noise. These
components, including multi-scale feature extraction and
volatility-aware adaptation, implicitly disentangle short-term
fluctuations from long-term trends. The omission of traditional
decomposition techniques was a deliberate design choice to avoid
potential information loss or feature distortion, particularly when
handling heterogeneous multi-source remote sensing datasets that
vary in temporal resolution and noise characteristics. Nonetheless,
the absence of a formal decomposition stage may lead to limited
suppression of certain high-frequency anomalies, especially in
scenarios with extreme volatility. Despite this, our empirical

results show strong generalization performance and low
forecasting error across diverse datasets, suggesting that the
model is sufficiently robust without manual signal segmentation.
Future work will explore the integration of lightweight
decomposition strategies as preprocessing steps, evaluating their
effect on model interpretability and denoising capacity in highly
dynamic environments.

To ensure stability and reduce overfitting, an L2 regularization
term is applied to the model parameters (Equation 32):

Rreg � λreg‖Θ‖2, (32)

where λreg is the regularization coefficient. This penalty term
prevents the parameters from growing excessively large, thereby
promoting generalization (As shown in Figure 4).

4 Experimental setup

4.1 Dataset

The GRACE Yazdian et al. (2023) (Gravity Recovery and
Climate Experiment) provides data on Earth’s gravity field
changes, enabling insights into water storage variations at global,
regional, and local scales. This dataset is particularly useful for
hydrological, climatological, and environmental studies, offering
monthly measurements of mass redistribution across Earth’s
surface. The GRACE dataset is critical for understanding
groundwater depletion, glacier melting, and other climate-
related phenomena.

For the GRACE dataset, the analysis spans the period from
2002 to 2022, focusing on two representative regions: the North
China Plain, a region with critical groundwater stress, and the
Mississippi River Basin in the United States, known for its large-
scale hydrological variability. These regions were selected due to
their contrasting climatic conditions and availability of supporting
ground-truth data. Groundwater anomaly predictions from the
CMDN model were validated against in-situ measurements from
hydrological monitoring stations managed by the China
Meteorological Administration and the U.S. Geological Survey.
Validation metrics, including Pearson correlation coefficients
exceeding 0.85 in both regions, confirm the model’s effectiveness
in capturing real-world water storage fluctuations. This empirical
grounding supports the practical value of the proposed system for
regional water asset assessment and planning.

The MODIS de Andrade et al. (2024) contains remote sensing
data captured by the MODIS instruments aboard NASA’s Terra and
Aqua satellites. This dataset includes high-resolution images of land
cover, vegetation indices, surface temperature, and cloud cover,
collected on a near-daily basis. MODIS is widely used for
environmental monitoring, including land use classification,
deforestation analysis, and climate impact assessment. The
ERA5-Land Yilmaz (2023) is a high-resolution reanalysis dataset
offering hourly data on various meteorological and land-surface
parameters. Produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF), ERA5-Land provides detailed
information on precipitation, temperature, soil moisture, and
evaporation, among other variables. It is extensively utilized in
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weather forecasting, hydrological modeling, and agricultural
planning due to its high temporal and spatial resolution. The
SEN12MS Sawant et al. (2023) is a large-scale multimodal dataset
for semantic segmentation and remote sensing tasks. It combines
optical imagery from Sentinel-2 satellites with corresponding
synthetic aperture radar (SAR) data from Sentinel-1. The dataset
covers diverse land cover types, such as forests, urban areas, and
agricultural fields, across varying climates and geographic regions.
SEN12MS is widely used in the development of machine learning
models for land cover classification and disaster monitoring. These
datasets collectively provide valuable resources for addressing
challenges in environmental science, climate studies, and remote
sensing, offering diverse data types and applications for analyzing
global and regional-scale phenomena.

The datasets chosen for this research—GRACE, MODIS, ERA5-
Land, and SEN12MS—are not only widely recognized benchmarks
in the environmental and geospatial science communities, but they
also collectively represent the heterogeneity, temporal complexity,
and multimodal structure typical of real-world water resource
management challenges. GRACE captures large-scale
groundwater and mass redistribution patterns through gravity
anomalies, ideal for testing long-range predictive capacity.
MODIS provides high-resolution optical imagery relevant to
vegetation and land surface monitoring, which is essential for
understanding surface-level interactions. ERA5-Land offers fine-

grained meteorological and land-surface variables, allowing for
spatiotemporal forecasting under climate variability. SEN12MS,
with its combination of SAR and optical data, presents a
challenging semantic segmentation task across multiple land
cover types and climatic zones. By combining these datasets, our
framework is exposed to diverse data types—temporal, spatial,
spectral—and prediction tasks, including regression, classification,
and time series forecasting. This diversity serves as a robust
validation environment for testing the adaptability, scalability,
and generalizability of the proposed CMDN model. In contrast,
using a single-domain or narrowly defined dataset would fail to
capture the multimodal complexity and noise structures present in
practical scenarios. While other case studies might focus on localized
or homogeneous datasets, our selection ensures that the model is
stress-tested across multiple representative domains, improving
confidence in its real-world applicability.

4.2 Experimental details

CMDN was trained on an NVIDIA A100 GPU (40GB RAM)
with an average epoch time of 1.5 min and peak memory usage of
8.2 GB for the ERA5-Land dataset. The model contains
approximately 21 million parameters. Inference time per sample
is 38 milliseconds. For deployment in resource-constrained

FIGURE 4
The diagram illustrates the Hierarchical Temporal Decomposition and Incremental Learning framework, which processes input data through multi-
scale feature extraction mechanisms. It utilizes hierarchical decomposition to separate high-frequency and low-frequency components, enabling the
model to capture short-term variations and long-term trends effectively. The Channel Attention (C–A) and Spatial Attention (S–A) modules enhance
feature importance across dimensions, leveraging pooling (max and average), MLP, and sigmoid activations to highlight relevant patterns.
Incremental learning ensures the model adapts dynamically to evolving data distributions, maintaining robust and efficient performance across
temporal scales.
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environments, we propose a cloud-edge hybrid strategy: model
training and tuning are executed in the cloud, while optimized
inference models are deployed to edge devices using quantization
and attention pruning. Preliminary tests on Jetson Xavier show
inference speeds of 125 m/sample with negligible loss in accuracy
(RMSE increased <0.07). This approach ensures the scalability of
CMDN in low-resource applications such as rural water
management or municipal pricing systems.

The experiments are conducted to evaluate the performance of
the proposed approach on the GRACE, MODIS, ERA5-Land, and
SEN12MS datasets. Each dataset is preprocessed according to its
specific characteristics and use cases. For the GRACE dataset,
gravity anomaly values are converted into equivalent water
thickness, and data gaps are interpolated using standard
geostatistical techniques. For the MODIS dataset, images are
reprojected to a uniform spatial resolution, and atmospheric
corrections are applied to ensure consistency. The ERA5-Land
dataset is downscaled to match the spatial resolution of the other
datasets, and temporal aggregations are performed to align data
intervals. For the SEN12MS dataset, Sentinel-1 SAR and Sentinel-2
optical imagery are co-registered and normalized, ensuring
multimodal compatibility.

The model leverages a hybrid architecture that combines
convolutional layers for feature extraction with transformer-
based attention mechanisms for capturing spatial and
temporal dependencies. Training is performed using a batch
size of 16, the Adam optimizer, and an initial learning rate of
0.001, which is decayed using a cosine annealing schedule. Early
stopping is employed with a patience of 10 epochs based on
validation loss. For the GRACE dataset, experiments focus on
groundwater anomaly detection and mass redistribution analysis.
Loss functions include mean squared error (MSE) for regression
tasks, and metrics such as root mean squared error (RMSE) and
correlation coefficient (R) are used for evaluation. For the
MODIS dataset, land cover classification is performed using
categorical cross-entropy loss, with accuracy, F1-score, and
precision-recall metrics as performance indicators. The ERA5-
Land dataset is used for spatiotemporal prediction tasks such as
soil moisture and temperature forecasting. Models are trained to
minimize MSE, and metrics such as RMSE and temporal
correlation are used to assess predictive performance. For the
SEN12MS dataset, experiments involve semantic segmentation of
land cover types using a combination of cross-entropy loss and
Intersection over Union (IoU) as the primary evaluation metric.
Data augmentation techniques, including random cropping,
flipping, and rotation, are applied to image-based datasets to
enhance robustness. For GRACE and ERA5-Land datasets,
random noise and temporal jittering are introduced to prevent
overfitting. Ablation studies are conducted to assess the
contribution of individual components of the proposed model,
including the attention module and multimodal fusion layers.
Experiments are repeated using five different random seeds, and
average results are reported to ensure reproducibility. Results are
benchmarked against state-of-the-art methods across all datasets.
Statistical tests, such as paired t-tests, are used to confirm the
significance of the observed performance gains. To ensure
reproducibility, all code, trained models, and preprocessed
datasets are made publicly available (Algorithm 1).

Algorithm 1. Trainingprocess ofDMAFNonmultiple datasets.
To assess the robustness of CMDN with respect to

hyperparameter selection, we varied three critical parameters:
learning rate η, attention heads h, and temporal window size w.
The following configurations were tested: η ∈ {0.0001, 0.001, 0.01},
h ∈ {2, 4, 8}, w ∈ {16, 32, 64}. Results on the GRACE and ERA5-
Land datasets are shown in Table 10. CMDN achieved stable
convergence and lowest RMSE with η � 0.001, h � 4, and w � 32.
Higher values of h increased computational cost with marginal
gains, while larger window sizes led to over-smoothing. This
analysis justifies our selected configuration and confirms the
model’s resilience to moderate parameter variation.

4.3 Comparison with SOTA methods

The proposed model (CMDN) is compared with state-of-the-art
(SOTA) methods across the GRACE, MODIS, ERA5-Land, and
SEN12MS datasets for time series forecasting tasks. Tables 1, 2
present a detailed quantitative evaluation, demonstrating the
superiority of CMDN across all key metrics, including RMSE,
MAE, R2 Score, and MAPE. On the GRACE dataset, CMDN
achieves an RMSE of 3.56±0.03 and an R2 Score of 0.93±0.03,
outperforming the next-best model, Seq2Seq with Attention Zhang
et al. (2024), which records an RMSE of 3.98±0.02 and an R2 Score
of 0.91±0.02. The significant reduction in MAE (from 2.89±0.03 to
2.45±0.02) demonstrates CMDN’s ability to provide more accurate
predictions of groundwater anomalies. These improvements are
attributed to CMDN’s attention-based temporal modeling, which
captures long-term dependencies in the GRACE data. For the
MODIS dataset, CMDN achieves the best performance with an
RMSE of 4.01±0.02 and an R2 Score of 0.89±0.02. The MAPE
improvement from 8.78±0.03 (Seq2Seq with Attention) to
8.34±0.03 indicates that CMDN offers enhanced robustness
against variations in land cover and environmental conditions.
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The proposed hybrid architecture effectively integrates spatial
features from MODIS images with temporal patterns, enabling
CMDN to generalize across diverse land types.

Beyond numerical superiority, the performance trends reveal the
model’s capacity to maintain low error variance across
heterogeneous datasets. In the GRACE dataset, the low RMSE
variance across five different random seeds indicates the model’s
robustness under hydrological noise. On the MODIS dataset, the
model’s improved F1-score across different land types demonstrates
its adaptability to spatial heterogeneity. SHAP-based analysis further
confirms that in arid zones, temperature anomalies had a stronger
impact on asset predictions than in temperate regions, underlining
the model’s context-awareness. These findings suggest that CMDN
not only outperforms baseline models quantitatively but also offers
stable and interpretable results, which are critical for risk-sensitive
water resource decision-making.

To strengthen the evaluation, we further compare our CMDN
model with three recently proposed hybrid forecasting models:
Autoformer, FEDformer, and DLinear. These models represent
advanced architectures that integrate signal decomposition,
frequency-domain learning, and linear forecasting strategies,
respectively. As shown in Table 3, CMDN consistently
outperforms all three across GRACE and MODIS datasets. While
FEDformer shows strong performance due to its frequency-
enhanced structure, CMDN delivers better RMSE and MAE
scores owing to its multimodal fusion and volatility-aware design.
The performance gap is particularly significant on MODIS data,

where CMDN better captures spatial-temporal dependencies from
remote sensing imagery. These results confirm that CMDN not only
competes with but surpasses newer hybrid models, validating our
architecture’s adaptability and effectiveness in dynamic
environmental-financial scenarios.

We have incorporated the Combined Accuracy (CA) index, a
recently proposed performance metric, into our assessment
framework. Unlike conventional metrics such as RMSE, MAE, or
R2 which evaluate models from a single perspective, CA provides a
composite score that integrates model accuracy, correlation, and
deviation in a unified scale from 0 to 1, where higher values denote
better overall performance Adnan et al. (2019). As shown in the
updated Tables 1, 3, the proposed CMDN model consistently
achieves the highest CA scores across all datasets, ranging from
0.85 to 0.87. These scores are significantly higher than those of other
baselines such as Seq2Seq with Attention (0.82–0.85), Transformer-
based models (0.76–0.79), and DeepAR (0.75–0.77). This suggests
that CMDN not only reduces prediction errors (RMSE/MAE) and
improves correlation (R2), but also provides balanced and stable
outputs under varying spatiotemporal and multimodal conditions.
The adoption of the CA index has further confirmed CMDN’s
robustness and superior generalization across tasks such as
groundwater anomaly detection (GRACE), land cover forecasting
(MODIS), and climatic prediction (ERA5-Land, SEN12MS). We
believe this holistic evaluation reinforces the reliability and practical
applicability of the proposed framework in real-world
environmental-financial forecasting scenarios Adnan et al. (2024).

TABLE 1 Performance comparison of CMDN and baseline models on GRACE and MODIS datasets using conventional metrics and the Combined Accuracy
(CA) index. The CA index jointly considers RMSE, standard deviation, and correlation, and provides a holistic performance evaluation. Higher CA values
indicate more balanced and accurate models.

Model GRACE dataset MODIS dataset CA

RMSE MAE R2 MAPE RMSE MAE R2 MAPE

Transformer-based Models Ilias et al. (2023) 4.56 3.12 0.87 9.45 5.23 4.12 0.83 10.12 0.79

N-BEATS Motavali et al. (2023) 4.34 3.45 0.88 8.78 4.89 3.78 0.84 9.78 0.81

DeepAR Schaduangrat et al. (2023) 4.89 3.67 0.86 9.12 5.45 4.23 0.81 10.45 0.77

TFT Li et al. (2024) 4.12 3.23 0.89 8.45 4.78 3.56 0.85 9.45 0.83

Seq2Seq with Attention Zhang et al. (2024) 3.98 2.89 0.91 7.89 4.34 3.23 0.86 8.78 0.85

CMDN (Ours) 3.56 2.45 0.93 7.34 4.01 2.89 0.89 8.34 0.87

TABLE 2 Extended performance comparison including Combined Accuracy (CA) index for ERA5-Land and SEN12MS datasets. CMDN achieves the highest
CA scores, demonstrating superior generalization across environmental forecasting domains.

Model ERA5-land dataset SEN12MS dataset CA

RMSE MAE R2 MAPE RMSE MAE R2 MAPE

Transformer-based Models Ilias et al. (2023) 6.12 4.56 0.85 11.34 5.89 4.34 0.84 12.12 0.76

N-BEATS Motavali et al. (2023) 6.45 4.78 0.86 11.12 6.01 4.56 0.85 11.78 0.77

DeepAR Schaduangrat et al. (2023) 5.89 4.23 0.87 10.78 6.45 4.67 0.83 11.45 0.75

TFT Li et al. (2024) 5.67 4.01 0.88 10.45 5.78 4.12 0.85 11.12 0.80

Seq2Seq with Attention Zhang et al. (2024) 5.34 3.89 0.89 9.89 5.45 4.01 0.86 10.89 0.82

CMDN (Ours) 5.12 3.45 0.91 9.45 5.01 3.67 0.88 10.45 0.85
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4.4 Ablation study

To understand the contributions of individual components in
the proposed model (CMDN), we conducted an ablation study on
the GRACE, MODIS, ERA5-Land, and SEN12MS datasets. Tables 4,
5 summarize the results of this analysis. The ablations are performed
by selectively removing key components, denoted as Temporal
Structural Awareness, Critical Dependencies, and Adaptive
Volatility, and comparing the results to the full CMDN
architecture. For the GRACE dataset, the exclusion of Temporal
Structural Awareness, which is responsible for attention-based
temporal modeling, results in an increase in RMSE from
3.56±0.03 to 4.78±0.03 and MAPE from 7.34±0.02 to 8.78±0.02.
Removing Critical Dependencies, the domain-specific preprocessing
module, leads to a decline in R2 Score from 0.93±0.03 to 0.90±0.02,
underscoring its importance in improving signal quality. Adaptive
Volatility, the multi-scale feature extraction module, also
contributes significantly, as its absence results in a performance
degradation across all metrics, including an RMSE increase to
4.34±0.03. For the MODIS dataset, Temporal Structural
Awareness again proves critical, as its exclusion increases RMSE
to 5.12±0.03 and MAPE to 9.67±0.02. Critical Dependencies’s

removal results in an MAE increase from 2.89±0.03 to 3.67±0.03,
reflecting its role in stabilizing model predictions under varying land
cover conditions. Adaptive Volatility contributes to geometric and
spatial feature alignment, as evidenced by an R2 Score drop from
0.89±0.02 to 0.89±0.03 without it.

In Figures 5, 6, on the ERA5-Land dataset, removing Temporal
Structural Awareness causes RMSE to rise from 5.12±0.03 to
6.34±0.03 and MAPE from 9.45±0.02 to 11.67±0.02. This
highlights its role in modeling temporal dependencies critical for
meteorological predictions. Excluding Critical Dependencies results
in a performance drop in MAE and RMSE, emphasizing its
importance in handling high-dimensional weather parameters.
Adaptive Volatility’s removal also adversely affects performance,
with MAPE increasing to 11.01±0.02. On the SEN12MS dataset, the
full CMDN model achieves the best results, with an RMSE of
5.01±0.03 and MAPE of 10.45±0.02. Removing Temporal
Structural Awareness leads to RMSE rising to 6.12±0.03,
highlighting the necessity of temporal modeling for integrating
SAR and optical data. Critical Dependencies contributes to
feature alignment across modalities, while C’s multi-scale features
play a crucial role in precise land cover segmentation, as
demonstrated by an R2 Score drop to 0.85±0.03 without it. These

TABLE 3 Comparison of CMDN with newly introduced hybrid models on GRACE and MODIS datasets.

Model GRACE dataset MODIS dataset

RMSE MAE R2 Score MAPE RMSE MAE R2 Score MAPE

Autoformer Helmy et al. (2024) 3.89 2.81 0.91 7.85 4.23 3.12 0.87 8.78

FEDformer Zhou et al. (2022) 3.76 2.73 0.92 7.61 4.12 3.01 0.88 8.41

DLinear Zhou et al. (2024) 3.91 2.94 0.90 8.01 4.31 3.25 0.86 9.12

CMDN (Ours) 3.56 2.45 0.93 7.34 4.01 2.89 0.89 8.34

TABLE 4 Ablation study results on ours model across GRACE and MODIS datasets for time series forecasting.

Model GRACE dataset MODIS dataset

RMSE MAE R2 Score MAPE RMSE MAE R2 Score MAPE

w./o. Temporal Structural Awareness 4.78±0.03 3.45±0.02 0.89±0.03 8.78±0.02 5.12±0.03 3.98±0.02 0.87±0.03 9.67±0.02

w./o. Critical Dependencies 4.45±0.02 3.23±0.03 0.90±0.02 8.45±0.03 4.78±0.02 3.67±0.03 0.88±0.02 9.34±0.03

w./o. Adaptive Volatility 4.34±0.03 3.01±0.02 0.91±0.03 8.12±0.02 4.56±0.03 3.45±0.02 0.89±0.03 9.01±0.02

Ours 3.56±0.03 2.45±0.02 0.93±0.03 7.34±0.02 4.01±0.02 2.89±0.03 0.89±0.02 8.34±0.03

TABLE 5 Ablation study results on ours model across ERA5-Land and SEN12MS datasets for time series forecasting.

Model ERA5-land dataset SEN12MS dataset

RMSE MAE R2 Score MAPE RMSE MAE R2 Score MAPE

w./o. Temporal Structural Awareness 6.34±0.03 4.89±0.02 0.84±0.03 11.67±0.02 6.12±0.03 4.45±0.02 0.83±0.03 12.34±0.02

w./o. Critical Dependencies 6.01±0.02 4.67±0.03 0.85±0.02 11.34±0.03 5.89±0.02 4.34±0.03 0.84±0.02 12.01±0.03

w./o. Adaptive Volatility 5.78±0.03 4.45±0.02 0.86±0.03 11.01±0.02 5.67±0.03 4.12±0.02 0.85±0.03 11.78±0.02

Ours 5.12±0.03 3.45±0.02 0.91±0.03 9.45±0.02 5.01±0.03 3.67±0.02 0.88±0.03 10.45±0.02
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findings validate the synergistic contributions of CMDN’s
components, particularly the attention mechanism, domain-
specific preprocessing, and multi-scale feature extraction. The
ablation study underscores the importance of each module in
achieving state-of-the-art performance across diverse datasets.

To demonstrate the practical utility of our framework, we
conducted a case study in the North China Plain (NCP), a
typical water-stressed region in China characterized by significant
groundwater depletion and agricultural risk. Table 6 summarizes the
performance of our CMDN model compared to state-of-the-art
baselines, using real GRACE-based groundwater anomaly data and
financial metrics relevant to regional water planning. CMDN
achieved the lowest RMSE and MAE values (3.62 mm and
2.48 mm respectively), outperforming other models by a
significant margin. The R2 score of 0.92 confirms that CMDN
captures groundwater variability effectively. Moreover, when
linking predictions to a simulated financial loss model in

agricultural water allocation, CMDN produced the lowest
expected losses and risk scores, emphasizing its ability to support
cost-effective and risk-aware financial decision-making. This case
study confirms the framework’s ability to transition from theoretical
constructs to real-world impact in water-scarce environments.

To evaluate the robustness of CMDNunder data quality challenges,
we performed a sensitivity analysis by injecting Gaussian noise (μ � 0,
σ � 0.1) into selected spectral bands of MODIS and randomly masking
20% of pixels in SEN12MS to simulate missing data. Table 7 shows the
degradation in model performance as a function of noise intensity.
Compared to the baseline RMSE of 4.01 (MODIS), the performance
dropped modestly to 4.38 under noise injection, and from 5.01 to 5.44
(SEN12MS) under missing data simulation. The model maintained an
R2 above 0.85 in both cases, demonstrating resilience against moderate
data corruption. These results indicate that CMDN is suitable for
deployment in operational environments where data gaps and
sensor noise are common.

FIGURE 5
Ablation study of our method on GRACE dataset and MODIS dataset datasets.

FIGURE 6
Ablation study of our method on ERA5-Land dataset and SEN12MS dataset datasets.
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4.5 Practical implications

The proposed framework provides a systematic methodology for
integrating multi-source remote sensing data and adaptive
forecasting into financial decision-making for water resource
management. In practice, local governments and water agencies
could utilize the dynamic asset valuation outputs to inform
infrastructure investment planning, prioritize budget allocations
for drought-prone regions, and evaluate the financial risks of
water scarcity. Decision support dashboards built upon the
model’s projections could enable scenario analysis for water
allocation, subsidy design, or risk communication. For
operational deployment, the framework can be embedded in
web-based tools with simplified interfaces, enabling non-technical
stakeholders to interact with the outputs through intuitive
visualizations and decision workflows. To address
implementation barriers, modularization and cloud-based
inference can reduce computational overhead, while training
modules for local staff can ensure proper model interpretation
and application. Establishing a feedback loop from real-world
usage to model refinement would further improve reliability and
trust in the system. By translating high-dimensional analysis into
actionable recommendations, the proposed approach bridges the
gap between technical capability and decision-making need in
sustainable water governance.

5 Discussion

The CMDN model is designed not only for predictive accuracy
but also for decision utility. Its outputs—including predicted water
storage levels, volatility-normalized forecasts, and feature attention
maps—can be interpreted in concrete financial terms. For example,
in agricultural investment planning, a persistent drop in CMDN’s
groundwater projections in a region may signal increased irrigation

costs or yield volatility, influencing whether to invest or hedge. In
water utility pricing, short-term spatiotemporal surges in CMDN’s
surface water volatility forecast can inform dynamic pricing or
subsidy adjustment. The model’s built-in risk-aware loss function
(Equation 29) also outputs penalty-weighted residuals that quantify
exposure to systemic uncertainty, which can directly feed into
portfolio rebalancing or insurance modeling. These
interpretations are essential for translating CMDN’s modeling
capability into real-world economic value.

To assess the robustness and trustworthiness of the proposed
model, we conducted a comprehensive uncertainty quantification
analysis. We generated prediction intervals by evaluating the
ensemble spread from multiple stochastic runs of the CMDN
model with different initialization seeds. The average 95%
confidence intervals across test samples provide an estimate of
the expected prediction dispersion, especially under high-
variability conditions in the GRACE and ERA5-Land datasets.
We employed SHAP (SHapley Additive exPlanations) to assess
the relative contribution of each input feature—such as
precipitation anomalies, groundwater storage, evapotranspiration,
and land surface temperature—toward the final output. The SHAP
summary plots reveal that groundwater variability and recent
rainfall trends are dominant predictors in most cases, affirming
the model’s ability to prioritize physically meaningful inputs. These
analyses complement RMSE and MAE metrics by offering insights
into predictive reliability and decision risk, thus supporting more
informed applications in policy and resource planning.

6 Conclusions and future work

To better understand the impact of each component in CMDN,
we analyze the results of the ablation studies across all datasets. The
temporal structural awareness module contributed significantly to
capturing long-range dependencies in GRACE and ERA5-Land,

TABLE 6 Case study results in the north China plain (NCP).

Metric CMDN Seq2Seq + attention DeepAR TFT

RMSE Hodson, (2022) 3.62 4.07 4.38 4.10

MAE Singh et al. (2023) 2.48 2.93 3.10 2.87

R2 Score Momin et al. (2023) 0.92 0.89 0.87 0.88

MAPE (%) Al-Khowarizmi et al. (2021) 7.22 8.65 9.34 8.57

Forecasted Financial Loss (¥M) Prabakaran et al. (2021) 21.4 27.8 31.2 28.3

Decision Risk Score (0–1) Riddle et al. (2023) 0.84 0.71 0.66 0.73

TABLE 7 Sensitivity of CMDN to noisy and incomplete data.

Dataset Condition RMSE R2 score MAPE (%)

MODIS (Clean) de Andrade et al. (2024) Baseline 4.01 0.89 8.34

MODIS (Noisy) Yilmaz, (2023) σ � 0.1 Gaussian 4.38 0.86 9.01

SEN12MS (Clean) Sawant et al. (2023) Baseline 5.01 0.88 10.45

SEN12MS (Masked) Ye et al. (2022) 20% Dropout 5.44 0.85 11.21
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with RMSE increasing by 23%–28% upon its removal. This
highlights the necessity of modeling complex temporal sequences
in remote sensing data. Critical dependencies, including
preprocessing and multimodal alignment, played a pivotal role in
stabilizing performance across MODIS and SEN12MS, suggesting
that CMDN’s architecture is well-suited for heterogeneous data. The
adaptive volatility module also proved essential, particularly in the
ERA5-Land dataset, where environmental variability is high.
Furthermore, CMDN consistently yielded 2%–4% improvements
in R2 Score across all tasks compared to Transformer-based and
Seq2Seq models, confirming its enhanced ability to generalize across
spatial-temporal scales. These findings demonstrate that CMDN’s
hybrid design is not only architecturally innovative but also
functionally impactful in modeling uncertainty, fusing modalities,
and producing interpretable forecasts in resource and climate-
sensitive domains.

This study explores the integration of multi-source remote
sensing data with advanced methodologies for water resource
asset assessment and financial decision support, addressing
critical gaps in traditional evaluation methods. Conventional
approaches often depend on single data sources and static
models, which are inadequate for capturing the dynamic spatial
and temporal variability of water resources and their economic
implications. To overcome these challenges, the research proposes a
novel framework that combines spatiotemporal data analytics,
feature engineering, and machine learning to provide accurate
and actionable assessments. The framework employs advanced
data fusion techniques to integrate satellite imagery with ground-
based observations, and adaptive predictive models to quantify
water resource value under changing environmental and
economic conditions.

The proposed CMDN framework not only improves predictive
accuracy but also introduces a unique integration of risk-adjusted
learning, multi-scale spatiotemporal modeling, and multimodal data
fusion. These contributions advance the field of environmental-
financial forecasting and offer a scalable solution to dynamic
resource valuation under uncertainty.

While our results demonstrate strong predictive performance
and model robustness, there are several limitations to acknowledge.
The integration of multi-source remote sensing data introduces
significant computational overhead, which may limit real-time
deployment in resource-constrained settings. CMDN’s reliance
on large labeled datasets could restrict its applicability in regions
with limited data availability. While the volatility-aware mechanism
enhances interpretability in financial forecasting, it may need
adaptation for other domains with different uncertainty profiles.
To address these issues, future work will focus on three directions.
One, we will explore lightweight model compression and inference
acceleration techniques to improve real-time applicability. Two, we
plan to incorporate semi-supervised or self-supervised learning
strategies to mitigate the dependence on large labeled datasets.
Three, the generalizability of CMDN to non-financial decision-
making tasks—such as disaster response or ecological
monitoring—will be investigated through cross-domain validation
and transfer learning approaches.
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