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Vegetation cover serves as a crucial indicator of surface vegetation health and
ecosystem stability. Using the GEE (Google Earth Engine) platform, kNDVI series
data were generated from Landsat-5/8 remote sensing images for the western
Yili-Tianshan mountainous region spanning 2000 to 2022. The research utilized
Theil-Sen trend analysis, the Mann-Kendall significance test, the Hurst index, and
a geographic detector to investigate spatial and temporal variations in vegetation
cover and their driving factors over the last 2 decades. Results indicated that
between 2000 and 2022, the kNDVI in the western Yili-Tianshan region initially
declined before rising, with a multi-year average of 0.1452, reaching 0.1841 in
2022. The lower cover class consistently exceeded 36%, while the higher and
high cover areas grew by 5.03% and 12.76%, respectively. Vegetation cover was
sparse in the northern region, particularly along the southwest edge of the
northern Junggar Basin, while it was dense in the southern region, especially
on the north slope of the Tianshan Mountains. (2) The vegetation cover in the
western part of the Yili-Tianshan mountainous region has been significantly
improved, with the Yili Autonomous Prefecture in the northern part of the
country being the region of greater improvement, and the trend of future
changes in vegetation cover will continue to be dominated by improvement.
Elevation, vegetation type, and slope are primary factors influencing kNDVI
changes, each with q values exceeding 0.0944. Two-factor interactions
amplify the impact of individual factors, with the interaction between
elevation and mean annual temperature being the predominant interactive
factor affecting vegetation cover changes in the study area.

KEYWORDS

vegetation cover, Google Earth Engine, time and space changes, geodetector,
driving mechanism

OPEN ACCESS

EDITED BY

Shuisen Chen,
Guangzhou Institute of Geography, China

REVIEWED BY

Xinyao Xie,
Chinese Academy of Sciences (CAS), China
Yali Zhu,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Fukai Xiang,
17861510018@163.com

RECEIVED 06 December 2024
ACCEPTED 15 May 2025
PUBLISHED 25 November 2025

CITATION

Dong Z, Gang S, Xiang F and Jun M (2025) Study
on vegetation cover change and its driving
mechanism in the western section of Yili-
Tianshan mountainous ecological functional
reserve from 2000 to 2022.
Front. Environ. Sci. 13:1540789.
doi: 10.3389/fenvs.2025.1540789

COPYRIGHT

© 2025 Dong, Gang, Xiang and Jun. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 25 November 2025
DOI 10.3389/fenvs.2025.1540789

https://www.frontiersin.org/articles/10.3389/fenvs.2025.1540789/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1540789/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1540789/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1540789/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1540789/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1540789/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2025.1540789&domain=pdf&date_stamp=2025-11-25
mailto:17861510018@163.com
mailto:17861510018@163.com
https://doi.org/10.3389/fenvs.2025.1540789
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2025.1540789


1 Introduction

Vegetation is a natural link between biosphere, hydrosphere,
atmosphere and soil sphere, and an important material basis for
maintaining the stability of biodiversity (Forzieri et al., 2020;
Miguez-Macho and Fan, 2021; Wang et al., 2020). It is crucial
for sustaining the global material cycle and surface energy
equilibrium (Duveiller et al., 2017). Changes in vegetation cover
directly influence regional climate regulation (Sha et al., 2022), soil
and water conservation (Zhao et al., 2020; Li et al., 2018), thereby
impacting the overall stability of ecosystems. Vegetation coverage
serves as a fundamental metric for assessing ecosystems (Gitelson
et al., 2002), playing a crucial role in examining interactions within
the Earth’s system layers and ecological changes across various scales
(Cosh and Brutsaert, 2003; Li et al., 2022). Therefore, long-term and
large-scale vegetation dynamic change monitoring and its driving
mechanism analysis have become a hot and difficult topic in
current research.

Satellite remote sensing is a crucial tool for acquiring surface
information due to its extensive temporal and spatial coverage (Xu
et al., 2020), rapid data collection, and repeatable observations.
Recent advancements in remote sensing sensors and earth
observation systems have enabled large-scale monitoring of
vegetation dynamics. This progress has facilitated the
development of various vegetation indices, notably the
Normalized Difference Vegetation Index (NDVI), which is
derived from the infrared and near-infrared spectral bands of
remote sensing images. NDVI is a sensitive and effective measure
for assessing vegetation growth and changes, widely used in
vegetation trend studies. For instance, Jin et al. (2020) employed
trend analysis and multiple regression residual analysis to examine
the characteristics and driving factors of vegetation NDVI changes
in China from 1982 to 2015, using surface air temperature and
precipitation data from 603 meteorological stations and GIMS-
NDVI3G data. Similarly, Gao et al. (2019) explored the complex
relationship between climate change and vegetation activities using
GIMMS-NDVI and meteorological data on temperature and
moisture from 1982 to 2013. The study utilized a pixel-based
geographical weighted regression approach to examine the spatial
patterns and dynamic characteristics of vegetation NDVI responses
to climate change in China. Peng et al. (2019) applied the
geographical detector model to explore the interactive effects of
natural factor changes on vegetation and change in Sichuan,
identifying key natural factors that promote vegetation growth.
Ma et al. (2023) integrated GIMMS-NDVI and SPOT-NDVI to
obtain 1 km NDVI data from 1982 to 2019. Using multi-temporal
land use and meteorological data, the study conducted trend
analysis, partial correlation analysis, and residual trend analysis
to assess the impacts of human activities and climate change on
vegetation dynamics in Southwest China.

Despite its widespread use, NDVI has notable limitations: a non-
linear, saturated correlation with green biomass and a focus solely on
green leaf presence rather than photosynthesis. Although indices
like the Enhanced Vegetation Index (EVI) have attempted to address
the saturation issue by incorporating additional spectral data, the
problem persists. To improve NDVI’s effectiveness, researchers have
applied kernel density estimation within machine learning’s kernel
method framework to enhance smoothing, reduce noise, and

improve spatial continuity and accuracy in remote sensing data.
The Kernel Normalized Difference Vegetation Index (kNDVI) has
been developed to assess vegetation coverage and growth, leveraging
spectral information more effectively and offering greater stability
and robustness than traditional NDVI across various environments,
such as dense forests, grasslands, and mixed forests.

This study utilizes the GEE platform to analyze the western
Yili-Tianshan Mountains using Landsat-5/8 remote sensing
images from 2000 to 2022. By constructing kNDVI sequence
data, the research investigates the spatio-temporal
characteristics and driving mechanisms of vegetation cover
changes over the past 2 decades. The analysis employs Theil-
Sen trend analysis, the Mann-Kendall significance test, the Hurst
index, and geographical detectors to address the question: What
are the characteristics of vegetation coverage change in the western
Yili-Tianshan Mountains from 2000 to 2022? (2) What are the
temporal and spatial trends of vegetation coverage in the western
section of the Yili and Tianshan Mountains from 2000 to 2022?
What factors drive the spatio-temporal variations in vegetation
cover in the western Yili and TianshanMountains? The study seeks
to provide a scientific foundation for the monitoring, management,
and conservation of vegetation cover changes in the
Tianshan Mountains.

2 Material and methods

2.1 Study area

The western section of the Yili Tianshan mountain is situated
in the Xinjiang Uyghur Autonomous Region of northwest China
(42°15’~45°28′N, 80°18’~88°40′E), covering approximately
110,000 km2. Elevations range from 182 to 6,161 m (Figure 1).
The area includes 11 county-level administrative divisions:
3 county-level cities, 7 counties, and 1 autonomous county. In
2022, the region had a population of 2.84 million and a GDP of
280.14 billion yuan. It features a temperate continental arid climate
with varied topography, lower in the north and higher in the south.
The central and southern areas are dominated by the Tianshan
Mountain range, stretching from northwest to southeast. The
region receives an average annual precipitation of 48.2 mm and
an evaporation rate of 2,821.7 mm. The average annual
temperature is 9°C, with January averaging −17°C and July 29°C
(Figure 2). The area enjoys an average annual sunshine duration
of 2,866.8 h.

2.2 Data sources and processing

Table 1 outlines the data used in this study, including Landsat 5/
8 remote sensing images, elevation, slope, average annual
precipitation and temperature, soil type, erosion intensity,
organic matter content, pH value, vegetation type, and land use
mode. The image data is sourced from the T1 level surface
reflectance dataset provided by the GEE platform. To avoid the
banding effect of Landsat-7, Landsat-5 TM data was used from
2000 to 2012, and Landsat-8 OLI data from 2013 to 2020. After
geometric, radiometric, and atmospheric corrections, the spatial
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resolution is 30 m with a temporal resolution of 16 days. Remote
sensing images with less than 60% cloud cover during the vegetation
growing season (June to October) of the target year were selected.
The CFMASK algorithm was applied to remove cloud pixels (An
Algorithm Used to De-Cloud on GEE Platforms), and the kNDVI

maximum sequence for each year was derived using the maximum
synthesis method. To quantitatively assess kNDVI variations in the
study area, kNDVI is categorized into five grades based on
established standards and literature. very low coverage
(kNDVI ≤0.1), low coverage (0.1 < kNDVI ≤0.3), medium

FIGURE 1
Schematic location of the study area.

FIGURE 2
The multi-year average precipitation and temperature map for the study area.
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coverage (0.3 < kNDVI ≤0.5), high coverage (0.5 < kNDVI ≤0.7), and
very high coverage (kNDVI >0.7) (Camps-Valls et al., 2021;Wang et
al., 2023; Wang et al., 2022; Ministry of Water Resources of the
People’s Republic of China, 2007; Jiang et al., 2021). The study
utilized the target year kNDVI as the dependent variable and
established a 5000 m × 5000 m grid across the study area using
ArcGIS10.3. All control factor data were extracted to the
corresponding kNDVI and outliers were removed, totaling
4,125 sample points. Finally, the data was imported into the
geographic detector based on RStudio for single-factor and
double-factor interactive detection, and the driving force
interpretation strength of each factor on kNDVI changes
was explored.

2.3 Methodology

2.3.1 Theil-Sen trend analysis and Mann-Kendal
significance test

The Theil-Sen method (He et al., 2024) is a non-parametric
approach for estimating slopes, offering robustness against outliers
and noise in time series analysis without assuming a specific data
distribution, thus effectively capturing trends. In recent years, it has
gained extensive application in meteorology, hydrology, and
ecological research (Gu et al., 2023; Thakur et al., 2021). A
positive change slope (θ > 0) signifies an upward trend in the
time series data over the study period, whereas a negative slope
indicates a downward trend. Mann-Kendal significance test is based

on statistical theory, and the results are scientific and credible. Theil-
Sen’s calculation formula is:

θkNDVI � Median
KNDVIj − KNDVIi

j − i
[ ] (1)

where, θkNDVI is the kNDVI change slope of vegetation. The
median function calculates the median value, where i and j
represent time series years ranging from 2000 to 2022. kNDVIi
and kNDVIj denote the annual maximum vegetation kNDVI values
for years i and j, respectively. By combining the results of θkNDVI
and Mann-Kendall significance tests, four kinds of kNDVI changes
of vegetation can be obtained (Table 2).

2.3.2 Hurst
The Hurst index from R/S analysis is a predictive tool for kNDVI

trends, widely used in hydrology, economics, climatology, and
related fields. The Hurst exponent (H) ranges from 0 to 1. An H
value between 0.5 and 1 indicates continuity in the time series,
suggesting future trends will follow past patterns, with values closer
to 1 showing stronger persistence. An H value of 0.5 denotes a
random sequence, while 0 < H < 0.5 indicates anti-persistence,
where future trends are likely to oppose past trends.

2.3.3 Geodetector
Utilizing factor and interactive detection within the geographical

detector framework, a higher q value from the factor detector

TABLE 1 Ecological factors main information and sources.

Data name Resolution/m Data source

Altitude 30 Geospatial data cloud (http://www.gscloud.cn)

Slope gradient 30 Geospatial data cloud

Slope direction 30 Geospatial data cloud

Precipitation 1,000 Google Earth Engine (GEE)

Temperature 1,000 Google Earth Engine (GEE)

Soil type 250 National Earth System Science Data Center (http://www.geodata.cn)

Soil erosion intensity 500 National Earth System Science Data Center

Soil organic matter content 250 Data Center for Resources and Environment, Chinese Academy of Sciences (http://www.resdc.cn)

Soil PH value 250 Data Center for Resources and Environment, Chinese Academy of Sciences

Vegetation type 1,000 Data Center for Resources and Environment, Chinese Academy of Sciences

Land use 30 Data Center for Resources and Environment, Chinese Academy of Sciences

TABLE 2 Classification of kNDVI change trends.

Scope of delimitation Hierarchy

θkNDVI < 0,0.01 < P < 0.05 Significant degradation

θkNDVI < 0, P > 0.05 Inconspicuous degeneration

θkNDVI > 0, P > 0.05 Insignificant improvement

θkNDVI > 0,0.01 < P < 0.05 Significant improvement

TABLE 3 Factor interaction detection results.

Interaction Judgment model

Nonlinearity attenuation q (X1∩X2) < min (q (X1), q (X2))

Unilinear attenuation min (q (X1), q (X2)) < q (X1∩X2) < max (q (X1), q (X2))

Bilinear enhancement q (X1∩X2) > max (q (X1), q (X2))

Mutually independent q (X1∩X2) = q (X1) + q (X2)

Nonlinear enhancement q (X1∩X2) > q (X1) + q (X2)
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indicates a stronger impact of the control factor on the ecological
environment (Shi et al., 2018). Factor detector calculation formula
and multi-factor interaction types are:

q � 1 − 1

Nδ2
∑L
h�1

Nhδ
2
h (2)

In this context, q signifies the effect of an influencing factor on
kNDVI, with h varying from one to L, where L represents the
number of classifications for kNDVI and its independent variables.
Nh and N refer to the sample sizes in various graded regions and the
entire region, respectively. δh2 and δ2 are the variances of kNDVI in
different regions and whole regions, respectively.

The detector evaluates the interaction between factors
X1 and X2 by assessing q (X1 ∩ X2) to determine if their
combined effect amplifies or diminishes their impact on the
dependent variable Y (Shi et al., 2018). This value is compared
with q (X1) and q (X2), with Table 3 providing the basis for
establishing the effect relationship on Y.

3 Results and analysis

3.1 Characteristics of spatial and temporal
changes in vegetation cover in the
study area

Figure 3 illustrates the temporal changes in kNDVI in the western
Yili-Tianshan Mountains from 2000 to 2022. Overall, the vegetation

cover in the region was inadequate, with kNDVI exhibiting a
“fluctuating upward” trend. Notably, between 2000 and 2007, the
annual average kNDVI declined from 0.1636 to 0.1088, marking a
33.49% decrease. kNDVI increased rapidly from 0.1131 in 2008 to
0.1811 in 2015 due to a number of forestry projects being put into use
in Tianshan Mountains from 2008 to 2015. kNDVI decreased slightly
in 2016, whichmay be related to local extreme climate change and the
restoration of some forest and grass land. Since 2017, kNDVI has
steadily increased with the age of plantations in related forestry
ecological projects. From the perspective of vegetation cover grade,
the proportion of lower cover grade has been dominant in all study
years (no less than 36%). In recent years, the proportion of higher
coverage and high coverage classes has increased, rising to 20.09% and
19.13% respectively in 2022.

On the spatial scale (Figure 4). The kNDVI in the western Yili
Tianshan Mountains shows distinct geographical variation, decreasing
from south to north. The northern area, at the southwest edge of the
Junggar Basin, has limited precipitation and poor soil, resulting in
sparse vegetation and lower kNDVI. In contrast, the southern region,
near the north slope of Tianshan Mountain, benefits from blocked
westerly and Arctic airflows, leading to abundant precipitation, a mild
climate, and diverse vegetation, contributing to higher kNDVI.

3.2 Trends in spatial and temporal evolution
of vegetation cover in the study area

Figure 5 illustrates that from 2000 to 2022, the western Yili and
Tianshan Mountains exhibited a kNDVI trend where areas with

FIGURE 3
Changes in kNDVI in the study area from 2000 to 2022 with linear fitting results.
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θkNDVI > 0 covered 51,123.55 km2, representing 44.92% of the total
study area. Vegetation coverage notably improved in the western Yili-
Tianshan Mountains, with the most significant enhancement observed
in the YIli Autonomous Prefecture in the study area’s northern region.

On the spatial scale, 19.40% (22,077.09 km2) of the area passed
the significance test. Non-significant degradation covered 35.04%
(39,877.35 km2), while significant degradation accounted for 7.57%
(8,613.17 km2). Areas with significant and non-significant
improvement totaled 44.92% (13,463.92 km2 and 37,659.63 km2,
respectively). Significant changes, including both improvement and
degradation, were most prominent in Yili Autonomous Prefecture
in the north, the southwest margin of Junggar Basin, and the north
slope of Tianshan Mountain in the south of the study area.

3.3 Future trends in vegetation cover in the
study area

Figure 6 presents the spatial trend of theHurst index and predicts the
future trend of kNDVI in the study area. The Hurst index values range
from 0.1164 to 0.9429, with areas where H > 0.5 covering 37,895.53 km2,

representing only 33.30%of the total area. This suggests significant short-
term changes in kNDVI in the western section of the Yili-Tianshan
Mountains. Combinedwith the θkNDVI values, it is evident that kNDVI
in this region is expected to improve in the future.

Table 4 reveals that future trends aremainly characterized by anti-
continuous improvement, where trends shift from degradation to
improvement, and by continuous degradation. The anti-continuous
improvement area constitutes 60.64%, the highest among all trend
types, and is distributed throughout the region. Continuous
improvement accounts for 16.50%, primarily in the western and
northern parts of the study area. Continuous degradation
represents 16.79%, mainly in the western and southern regions.
Anti-continuous degradation covers 6.07% of the entire region.

3.4 Driving factors of spatial differentiation
of vegetation cover in the study area

3.4.1 Single factor detection results
Utilizing RStudio’s geographic detector, ten driving factors were

identified through single-factor analysis to examine their influence

FIGURE 4
Spatial distribution pattern of kNDVI from 2000 to 2022.
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on the spatial differentiation of kNDVI in vegetation cover. The
findings are presented in Table 5, highlighting the average driving
force from 2000 to 2020. Elevation > vegetation type > Slope > soil
erosion intensity > Average annual temperature > soil PH > average
annual precipitation > soil type > slope direction > soil organic

matter content. q values of elevation, vegetation type and slope are
all greater than 0.0944, which are the main control factors driving
the change of vegetation cover kNDVI in the study area.

The study indicates that, except for soil erosion intensity and
vegetation type, the relative influence of driving factors has

FIGURE 6
The hust index and future trends in kndvi in the Study Area.

FIGURE 5
Trends in spatial and temporal evolution of kNDVI in the study area.
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remained relatively stable over the years. Since 2000, the impact
of driving forces on soil erosion intensity has increased, with the
q value rising from 0.0840 in 2000 to 0.1060 in 2020. Similarly,
the q value for vegetation type has grown significantly from
0.0827 in 2000 to 0.1192 in 2020. Since the early 21st century,
especially after 2010, the state has focused on ecological
protection in the Tianshan region by implementing
policies that established the Yili Species Resource Ecological
Function Protection Area and the Tianshan Water Conservation
Ecological Function Protection Area. These measures
have effectively mitigated issues such as excessive reclamation
and unregulated grazing. The study concludes that changes in
the q value reflect an increasing influence of soil erosion
intensity and vegetation type on vegetation cover kNDVI in
the region.

3.4.2 Two factor interaction detection results
Figure 7 illustrates that the interaction results from the

geographic detector indicate a stronger response of kNDVI
vegetation cover changes to any two-factor interaction compared
to single factors. All interaction detection results fall into two
categories: two-factor and nonlinear enhancement. The strongest
driving force of the interaction in the four study years is elevation
and average annual temperature. Elevation, vegetation type, and
slope significantly impact the interaction of various factors,
confirming their dominant role in driving kNDVI spatial
differentiation of vegetation cover in the western Yili-Tianshan
Mountain ecological function reserve, as supported by previous
single-factor analyses.

kNDVI in the study area is influenced by multiple factors rather
than a single factor independently. Elevation and average annual
temperature significantly impact kNDVI in the study area, with
elevation being crucial for the restoration and protection of
vegetation cover. Therefore, different methods should be adopted
for vegetation restoration and protection according to different
elevation conditions in the study area. In addition, slope annual
temperature and slope vegetation type show a synergistic effect of
nonlinear enhancement in all study years, indicating that terrain
conditions represented by slope have a more obvious driving force
on kNDVI change under different environmental conditions,
especially under different climatic conditions and different
vegetation types.

3.4.3 Land use transfer
Table 6; Figure 8 show that from 2000 to 2022, the most

notable land class changes in the study area were the conversion of
unused land to grassland (7,432.08 km2) and cultivated land to

forest land (5,118.97 km2), accounting for 6.53% and 4.49% of the
total area, respectively. These changes, driven by effective forestry
ecological projects and the farmland-to-forest policy in the
Tianshan Mountains, have led to an increase in kNDVI in
the region.

4 Discussion

4.1 Temporal variation and spatial
distribution pattern of kNDVI

Between 2005 and 2022, kNDVI in the study area
initially declined before rising, influenced by both individual
and combined factors, aligning with previous research (Wang
et al., 2021). The stable average annual temperature and
precipitation, along with the ecosystem’s self-healing ability,
indicate potential for kNDVI recovery in the western Yili
Tianshan Mountains (Sun et al., 2023). This recovery is also
linked to recent forestry ecological projects. Historically,
indiscriminate land use reduced forest and grass areas. Since
2010, initiatives such as the Ecological Protection and
Restoration of Tianshan Ecological Area, Tianshan
Natural Forest Protection Project, and Forest Vegetation
Protection and Restoration Project of Tianshan North Slope
Valley have promoted vegetation and ecosystem restoration,
enhancing kNDVI, consistent with earlier studies (Shi et al.,
2021). However, kNDVI experienced a sharp decline in
2016 due to extreme weather events during the super-strong
El Niño, corroborating Huang Jian’s findings (Huang and
Yao, 2022).

The study area’s vegetation coverage, represented by kNDVI,
shows a spatial trend of lower values in the north and higher in the
south. The northern region, part of the southwest margin of the
Junggar Basin, is characterized by the widespread Gobi Desert,
limited vegetation types, poor soil conditions, and a challenging
ecological environment, making forestry projects difficult and
minimally effective (Zhang, 2023; Han et al., 2022; Wang J. G.
et al., 2022). In contrast, the southern region benefits from its
proximity to the north slope of the Tianshan Mountains, which
block westerly air currents, capturing moisture from the Atlantic
and Arctic Oceans and cold air from Siberia. The climate, marked
by warmth, coolness, and abundant precipitation, supports
extensive forests that play a crucial role in ecological regulation
(Yao et al., 2022; Li et al., 2021; Wang et al., 2023). kNDVI analysis
reveals an increase in vegetation cover from north to south in
the study area.

TABLE 4 Statistics on the results of the zoning of future trends in kNDVI in the study area.

θkNDVI Persistence Future change trend Area/km2

θkNDVI > 0 (enhancement) continue (0.5 < H < 1) Continuous improvement 18,776.37

dispersistence (0 < H < 0.5) Anticontinuous improvement 69,002.57

θkNDVI < 0 (degradation) continue (0.5 < H < 1) Persistent degradation 19,119.16

dispersistence (0 < H < 0.5) Antipersistent degradation 6,913.96
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4.2 Spatio-temporal evolution of vegetation
cover and its future change trend

From 2000 to 2020, the kNDVI of vegetation cover in the study
area showed a generally increasing trend with fluctuations,
consistent with Aizizi et al. (2023) and Yan et al. (2021).
Between 2000 and 2007, significant ecological degradation
occurred, with low-grade vegetation coverage expanding from
12,519.33 km2 to 22,762.41 km2, an 8.86% increase. This aligns
with studies (Liu et al., 2023; Zhang et al., 2024; Gao et al., 2024;
Wang J. et al., 2022) indicating that major projects like the West-
East gas transmission second-line project and the Yili River Bridge
negatively impacted the ecosystem during construction. Since
2008, kNDVI in the western Yili-Tianshan Mountains has risen,
with a decrease in low and middle-grade regions and an increase in
middle and high-grade regions, reflecting vegetation improvement
over degradation. This is consistent with previous research (Zhang
et al., 2021; Qiu et al., 2023; Zhou et al., 2024) and is likely due to
efforts in converting farmland to forest and ecological
conservation in critical Tianshan areas. Since 2017, the
integrated protection and restoration project in the West
Tianshan region has further enhanced vegetation protection and
restoration in the western Yili-Tianshan Mountains.
Consequently, the high-grade vegetation coverage area
expanded from 9,252.92 km2 to 21,635.67 km2, increasing from
8.13% to 19.01%. Analysis of the current vegetation cover and
Hurst index in the study area indicates that future improvements
in vegetation cover are likely. Future efforts in vegetation
protection and restoration in the western Yili Tianshan
Mountain should focus on preserving favorable climatic
conditions, advancing the farmland-to-forest policy, and strictly
regulating land use.

4.3 Effects of different control factors on
kNDVI change of vegetation cover

The geographical detector’s single factor analysis identifies
elevation, vegetation type, and slope as the primary drivers of
kNDVI spatial differentiation in vegetation cover in the western
Yili and Tianshan Mountains, aligning with prior research findings
(Sun et al., 2021). Elevation is closely related to vegetation types and
vegetation growth conditions, and affects temperature and
precipitation, thus affecting vegetation cover. Therefore, elevation
has the highest influence on vegetation cover kNDVI in the western
section of the Yili and Tianshan Mountains. Vegetation cover status
is directly related to vegetation type, with significant variations
observed among different types. Slope is a key indicator of
regional topography, directly influencing the types of
vegetation present.

The detection of two-factor interactions indicates that the
combined influence of factors surpasses individual effects,
highlighting mutual enhancement as the driving force behind
kNDVI spatial differentiation. Consequently, vegetation cover
change in the western Yili-Tianshan Mountains results from the
interplay of multiple factors. Thus, vegetation protection and
restoration strategies should be tailored to local conditions,
considering variations in elevation, slope zones, vegetation coverT
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FIGURE 7
Interactive detection results in different years. x1:Altitude x2:Slope gradient; x3:Slope direction; x4:Precipitation; x5:Temperature; x6:Soil type; x7:
Soil erosion intensity; x8:Soil organic matter content; x9:Soil PH value; x10:Vegetation type; The color column from blue to red indicates that the
interpretation intensity of the driving force of the interaction on vegetation cover is gradually increasing.

TABLE 6 Land use transfers in the study area from 2000 to 2022.

2000 2022

Cultivated land Forest land Grass land Water land Built-up land bare land

Land use transfer/km2 cultivated land 2,668.06 5,118.97 3,421.01 80.14 365.76 24.59

forest land 283.65 3,614.97 4,804.22 68.65 24.48 270.89

Grass land 2,926.54 1,313.49 57,631.71 298.89 177.30 4,346.32

water land 55.86 56.76 3,122.08 3,475.69 12.91 3,786.41

built-up land 182.79 3.44 53.11 8.39 431.59 5.73

bare land 1,023.94 53.12 7,432.08 622.09 94.05 19,112.16
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types, and climate characteristics. Various strategies have been
implemented to improve vegetation coverage in this region.

5 Conclusion

(1) From 2000 to 2022, kNDVI in the western section of the Yili -
Tianshan Mountains first decreased and then increased,
reaching a maximum value of 0.1841 in 2022. The
proportion of lower coverage grade has always dominated,
and the proportion of higher coverage and high coverage area
increased by 5.03% and 12.76%, respectively.

(2) The vegetation coverage of the study area is low in the north
and high in the south. The vegetation coverage of the
southwest margin of the Junggar Basin in the north is
mostly low-low clustering, and the area with high
vegetation coverage is mainly concentrated in the north
slope of the Tianshan Mountains in the south. The overall
vegetation cover improved significantly, and the largest area
of improvement was the northern Yili Autonomous
Prefecture, and the change trend of vegetation cover would
still be mainly improved in the future.

(3) Elevation is the strongest single driving force for kNDVI change
in the western section of the Yili - Tianshan Mountains, and
elevation ∩ annual temperature is the strongest interactive
driving force. The driving force strength of annual
temperature has an obvious upward trend, indicating that
kNDVI has a closer relationship with slope in the study area.
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FIGURE 8
Land use transfer distribution pattern and transfer values in the study area from 2000 to 2022.1: cultivated land; 2: forest land; 3: grassland; 4: water
land; 5: built-up land; 6: bare land; 11: the transfer of cultivated land to cultivated land; 12:the transfer of cultivated land to forests.

Frontiers in Environmental Science frontiersin.org11

Dong et al. 10.3389/fenvs.2025.1540789

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1540789


References

Aizizi, Y., Kasimu, A., Liang, H., Zhang, X., and Zhao, Y. (2023). Evaluation of
ecological space and ecological quality changes in urban agglomeration on the northern
slope of the Tianshan Mountains. Ecol. Indic. 146, 109896. doi:10.1016/j.ecolind.2023.
109896

Camps-Valls, G., Campos-Tabemner, M., Moreno-Martinez, Á., Walther, S.,
Duveiller, G., Cescatti, A., et al. (2021). A unified vegetation index for quantifying
the terrestrial biosphere. Sci. Adv. 7 (9), eabc7447. doi:10.1126/sciadvabc7447

Cosh, M. H., and Brutsaert, W. (2003). Microscale structural aspects of vegetation
density variability. J. Hydrology 276 (1-4), 128–136. doi:10.1016/s0022-1694(03)00068-4

Duveiller, G., Hooker, J., and Cescatti, A. (2017). The mark of vegetation change on
earth’s surface energy balance. Nat. Commun. 9, 679. doi:10.1038/s41467-017-02810-8

Forzieri, G., Miralles, D. G., Ciais, P., Alkama, R., Ryu, Y., Duveiller, G., et al. (2020).
Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Change 10
(4), 356–362. doi:10.1038/s41558-020-0717-0

Gao, J., Jiao, K., andWu, S. (2019). Climate impact analysis of spatial heterogeneity of
vegetation NDVI in China from 1982 to 2013. J. Geogr. 74 (3), 534–543. doi:10.11821/
dlxb201903010

Gao, Y. J., Tariq, A., Zeng, F. J., Sardans, J., Al-Bakre, D. A., and Peñuelas, J. (2024).
Drying and rewetting affect the chemical speciation and bioavailability of soil phosphorus
in a hyper-arid desert ecosystem. Pedosphere. doi:10.1016/j.pedsph.2024.08.004

Gitelson, A. A., Kaufman, Y. J., Stark, R., and Rundquist, D. (2002). Novel algorithms
for remote estimation of vegetation fraction. Remote Sens. Environ. 80 (1), 76–87.
doi:10.1016/s0034-4257(01)00289-9

Gu, Z., Chen, J., Chen, Y., Qiu, Y., Zhu, X., and Chen, X. (2023). Agri-Fuse: a novel
spatiotemporal fusion method designed for agricultural scenarios with diverse
phenological changes. Remote Sens. Environ. 299, 113874. doi:10.1016/j.rse.2023.
113874

Han, C. Q., Zheng, J. H., Guan, J. Y., Du, J., and Zhang, Q. (2022). Evaluating and
simulating resource and environmental carrying capacity in arid and semiarid regions: a
case study of Xinjiang, China. J. Clean. Prod. 338, 130646. doi:10.1016/j.jclepro.2022.
130646

He, X., Guan, D., Yang, X., Zhou, L., and Gao, W. (2024). Quantifying the trends and
affecting factors of CO2 emissions under different urban development patterns: an
econometric study on the yangtze river economic belt in China. Sustain. Cities and
Society 107, 105443. doi:10.1016/j.scs.2024.105443

Huang, J., and Yao, F. L. (2022). Vegetation and climate change on the northern slope
of the Western Tien Shan over the past millennium. J. Stratigr. 46 (3), 306–315. (in
Chinese).

Jiang, L., Liu, Y., Wu, S., and Yang, C. (2021). Analyzing ecological environment
change and associated driving factors in China based on NDVI time series data. Ecol.
Indic. 129, 107933. doi:10.1016/j.ecolind.2021.107933

Jin, K., Wang, F., Han, J., Shi, S., and Ding, J. (2020). Impacts of climate change and
human activities on vegetation NDVI changes in China from 1982 to 2015. J. Geogr. 75
(5), 961–974. doi:10.11821/dlxb202005009

Li, J., Gao, Y., and Wang, Q. (2021). Anisotropic zoning in the upper crust of the
tianshan tectonic belt. Sci. China Earth Sci. 64 (4), 651–666. doi:10.1007/s11430-020-
9709-0

Li, J., Wang, J., and Zhang, J. (2022). Growing-season vegetation coverage patterns
and driving factors in the China-Myanmar Economic Corridor based on Google Earth
Engine and geographic detector. Ecol. Indic. 136, 108620. doi:10.1016/j.ecolind.2022.
108620

Li, Y., Piao, S. L., Li, L. Z. X., Chen, A. P., Wang, X. H., Ciais, P., et al. (2018). Divergent
hydrological response to large-scale afforestation and vegetation greening in China.
Science Advances 4 (5), eaar4182. doi:10.1126/sciadv.aar4182

Liu, Y., Yuan, X., Li, J., Qian, K., Yan, W., Yang, X., et al. (2023). Trade-offs and
synergistic relationships of ecosystem services under land use change in Xinjiang from
1990 to 2020: a Bayesian network analysis. Sci. Total Environ. 858, 160015. doi:10.1016/
j.scitotenv.2022.160015

Ma, B. X., He, C. X., Jing, C. X., Wang, J. L., Li, J., Liu, B., et al. (2023). Attribution of
vegetation change in Southwest China, 1982-2019. J. Geogr. 78 (3), 714–728. doi:10.
11821/dlxb202303010

Miguez-Macho, G., and Fan, Y. (2021). Spatiotemporal origin of soil water taken up
by vegetation. Nature 598 (7882), 624–628. doi:10.1038/s41586-021-03958-6

Ministry of Water Resources of the People’s Republic of China (2007). Soil erosion
classification and grading standards (SL190-2007). (Standard).

Peng, W., Zhang, D., Luo, Y., Wang, Z., and Hu, Y. (2019). Geodetection of NDVI
changes of vegetation in Sichuan by natural factors. J. Geogr. 74 (9), 1758–1776. doi:10.
11821/dlxb201909008

Qiu, H., Zhang, J., Han, H., and Cheng, X. (2023). Study on the impact of vegetation
change on ecosystem services in the Loess Plateau, China. Ecol. Indic. 154, 110812.
doi:10.1016/j.ecolind.2023.110812

Sha, Z. Y., Bai, Y. F., Li, R. R., Xie, Y., Ji, W., Li, F., et al. (2022). The global carbon sink
potential of terrestrial vegetation can be increased substantially byoptimal land
management. Commun. Earth&Environment 3 (1). doi:10.1038/s43247-021-00333-1

Shi, M., Wu, H., Fan, X., Jia, H., Dong, T., He, P., et al. (2021). Trade-Offs and
Synergies of multiple ecosystem services for different land Use Scenarios inthe Yili River
valley, China. Sustainability 13, 1577. doi:10.3390/su13031577

Shi, T., Hu, Z., Shi, Z., Guo, L., Chen, Y., Li, W., and Wu, G. (2018). Geo-detection of
factors controlling spatial patterns of heavy metals in urban topsoil using multi-source
data. Sci. Total Environ. 643, 451–459. doi:10.1016/j.scitotenv.2018.06.224

Sun, C., Ma, Y., and Gong, L. (2021). Response of ecosystem service value to land use/
cover change in the northern slope economic belt of the Tianshan Mountains, Xinjiang,
China. J. Arid Land 13 (10), 1026–1040. doi:10.1007/s40333-021-0082-5

Sun, F. H., Wang, Y. G., Sun, J. J., Zhang, Y., Chen, Y. P., and Li, Z. Q. (2023). Spatial
and temporal dynamics of vegetation carbon utilization efficiency and its influencing
factors in mountain ecosystems on the northern slope of Tianshan Mountain. J. Ecol.
1-13. doi:10.13292/j.1000-4890.202305.004

Thakur, S., Mondal, l., Bar, S., Das, P., and Ghosh, P. B. (2021). Shoreline changes
and its impact on the mangrove ecosystems of some islands of Indian Sundarbans,
North-East coast of India. Journal Clean. Prod. 284, 124764. doi:10.1016/j.jclepro.
2020.124764

Wang, J., Ding, J., Ge, X., Qin, S., and Zhang, Z. (2022b). Assessment of ecological
quality in Northwest China (2000–2020) using the Google Earth Engine platform:
climate factors and land use/land cover contribute to ecological quality. J. Arid Land 14,
1196–1211. doi:10.1007/s40333-022-0085-x

Wang, J. F., and Xu, C. D. (2017). Geoprobes: Principles and prospects. J. Geogr. 72
(1), 116–134. doi:10.11821/dlxb201701010

Wang, J. G., Zhang, F., Jim, C. Y., He, H., and Wang, H. (2022a). Spatio-temporal
variations and drivers of ecological carrying capacity in a typical mountain-oasis-desert
area, Xinjiang. China. Ecol. Eng. 180, 106672. doi:10.1016/j.ecoleng.2022.106672

Wang, Q., Moreno-Martínez, Á., Muñoz-Marí, J., Campos-Taberner, M., and Camps-
Valls, G. (2023). Estimation of vegetation traits with kernel NDVI. ISPRS
J. Photogrammetry Remote Sens. 195, 408–423. doi:10.1016/jisprsjprs.2022.12.019

Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., et al. (2020). Recent
global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370
(6522), 1295–1300. doi:10.1126/science.abb7772

Wang, X., Meng, Q., Zhang, L., and Hu, D. (2021). Evaluation of urban green space
interms of thermal environmental benefits using geographical detector analysis. Int.
J. Appl. Earth Observation Geoinformation 105, 102610. doi:10.1016/j.jag.2021.102610

Wang, Y. N., Zhang, J., Huang, X., and Wang, Z. J. (2023). Cenozoic exhumation of
the Tianshan as constrained by regional low-temperature thermochronology. Earth-
Science Rev. 237, 104325. doi:10.1016/j.earscirev.2023.104325

Wang, X., Biederman, J. A., Knowles, J. F., Scott, R. L., Turner, A. J., Berry, J. A., et al.
(2022). Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance
capture complementary aspects of dryland vegetation on productivity dynamics.
Remote Sens. Environ. 270, 112858. doi:10.1016/j.rse.2021.112858

Xu, Z., Cao, L., Zhong, S., He, H., Wang, L., and Liu, X. (2020). Trends in global
vegetative drought from long-term satellite remote sensing data. IEEE J. Selected Top.
Appl. Earth Observations and Remote Sens (13), 815–826. doi:10.1109/JSTARS.2020.
2970113

Yan, Y. B., Chai, Z. Y., Yang, X. D., Chen, Y., and Wang, X. Y. (2021). The temporal
and spatial changes of the ecological environment quality of the urban agglomeration on
the northern slope of Tianshan Mountain and the influencing factors. Ecol. Indic. 33.
doi:10.1016/jecolind.2021.108380

Yao, J., Chen, Y., Guan, X., Zhao, Y., Chen, J., andMao,W. (2022). Recent climate and
hydrological changes in a mountain-basin system in Xinjiang, China. Earth-Sci. Rev.
226, 103957. doi:10.1016/j.earscirev.2022.103957

Zhang, J., Hao, X., Li, X., Fan, X., and Zhang, S. (2024). Evaluation and regulation
strategy for ecological security in the Tarim River Basin based on the ecological
footprint. J. Clean. Prod. 435 (2024), 140488. doi:10.1016/j.jclepro.2023.140488

Zhang, L., Yang, H., Qiao, L., Wang, Z., and Li, F. (2021). Spatial and temporal
analyses of vegetation changes at multiple time scales in the qilian mountains. Remote
Sens. 13 (24), 5046. doi:10.3390/rs13245046

Zhang, Y. (2023). “Vertical vegetation zone variation and soil carbon stock in
Tianshan Mountain since 1980s under the background of climate change,” Lanzhou
University. doi:10.27204/d.cnki.glzhu.2023.000008 (in Chinese).

Zhao, Y., Tzedakis, P. C., Li, Q., Qin, F., Cui, Q., Liang, C., et al. (2020). Evolution of
vegetation and climate variability on the Tibetan Plateau over the past 1.74 million
years. Sci. Adv. 6 (19), eaay6193. doi:10.1126/sciadv.aay6193

Zhou, Q., Chen, W., Wang, H., and Wang, D. (2024). Spatiotemporal evolution and
driving factors analysis of fractional vegetation coverage in the arid region of northwest
China. Sci. Total Environ. 954 (2024), 176271. doi:10.1016/j.scitotenv.2024.176271

Frontiers in Environmental Science frontiersin.org12

Dong et al. 10.3389/fenvs.2025.1540789

https://doi.org/10.1016/j.ecolind.2023.109896
https://doi.org/10.1016/j.ecolind.2023.109896
https://doi.org/10.1126/sciadvabc7447
https://doi.org/10.1016/s0022-1694(03)00068-4
https://doi.org/10.1038/s41467-017-02810-8
https://doi.org/10.1038/s41558-020-0717-0
https://doi.org/10.11821/dlxb201903010
https://doi.org/10.11821/dlxb201903010
https://doi.org/10.1016/j.pedsph.2024.08.004
https://doi.org/10.1016/s0034-4257(01)00289-9
https://doi.org/10.1016/j.rse.2023.113874
https://doi.org/10.1016/j.rse.2023.113874
https://doi.org/10.1016/j.jclepro.2022.130646
https://doi.org/10.1016/j.jclepro.2022.130646
https://doi.org/10.1016/j.scs.2024.105443
https://doi.org/10.1016/j.ecolind.2021.107933
https://doi.org/10.11821/dlxb202005009
https://doi.org/10.1007/s11430-020-9709-0
https://doi.org/10.1007/s11430-020-9709-0
https://doi.org/10.1016/j.ecolind.2022.108620
https://doi.org/10.1016/j.ecolind.2022.108620
https://doi.org/10.1126/sciadv.aar4182
https://doi.org/10.1016/j.scitotenv.2022.160015
https://doi.org/10.1016/j.scitotenv.2022.160015
https://doi.org/10.11821/dlxb202303010
https://doi.org/10.11821/dlxb202303010
https://doi.org/10.1038/s41586-021-03958-6
https://doi.org/10.11821/dlxb201909008
https://doi.org/10.11821/dlxb201909008
https://doi.org/10.1016/j.ecolind.2023.110812
https://doi.org/10.1038/s43247-021-00333-1
https://doi.org/10.3390/su13031577
https://doi.org/10.1016/j.scitotenv.2018.06.224
https://doi.org/10.1007/s40333-021-0082-5
https://doi.org/10.13292/j.1000-4890.202305.004
https://doi.org/10.1016/j.jclepro.2020.124764
https://doi.org/10.1016/j.jclepro.2020.124764
https://doi.org/10.1007/s40333-022-0085-x
https://doi.org/10.11821/dlxb201701010
https://doi.org/10.1016/j.ecoleng.2022.106672
https://doi.org/10.1016/jisprsjprs.2022.12.019
https://doi.org/10.1126/science.abb7772
https://doi.org/10.1016/j.jag.2021.102610
https://doi.org/10.1016/j.earscirev.2023.104325
https://doi.org/10.1016/j.rse.2021.112858
https://doi.org/10.1109/JSTARS.2020.2970113
https://doi.org/10.1109/JSTARS.2020.2970113
https://doi.org/10.1016/jecolind.2021.108380
https://doi.org/10.1016/j.earscirev.2022.103957
https://doi.org/10.1016/j.jclepro.2023.140488
https://doi.org/10.3390/rs13245046
https://doi.org/10.27204/d.cnki.glzhu.2023.000008
https://doi.org/10.1126/sciadv.aay6193
https://doi.org/10.1016/j.scitotenv.2024.176271
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1540789

	Study on vegetation cover change and its driving mechanism in the western section of Yili-Tianshan mountainous ecological f ...
	1 Introduction
	2 Material and methods
	2.1 Study area
	2.2 Data sources and processing
	2.3 Methodology
	2.3.1 Theil-Sen trend analysis and Mann-Kendal significance test
	2.3.2 Hurst
	2.3.3 Geodetector


	3 Results and analysis
	3.1 Characteristics of spatial and temporal changes in vegetation cover in the study area
	3.2 Trends in spatial and temporal evolution of vegetation cover in the study area
	3.3 Future trends in vegetation cover in the study area
	3.4 Driving factors of spatial differentiation of vegetation cover in the study area
	3.4.1 Single factor detection results
	3.4.2 Two factor interaction detection results
	3.4.3 Land use transfer


	4 Discussion
	4.1 Temporal variation and spatial distribution pattern of kNDVI
	4.2 Spatio-temporal evolution of vegetation cover and its future change trend
	4.3 Effects of different control factors on kNDVI change of vegetation cover

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


