
TYPE Original Research
PUBLISHED 19 November 2025
DOI 10.3389/frevc.2025.1681641

OPEN ACCESS

EDITED BY

Wenjie Zou,
Fujian Normal University, China

REVIEWED BY

Linjie Feng,
Macao Polytechnic University,
Macao SAR, China
Hanbing Li,
Nankai University School of Economics, China

*CORRESPONDENCE

Chunwei Liu
liuchunwei@yeah.net

RECEIVED 19 August 2025
ACCEPTED 29 October 2025
PUBLISHED 19 November 2025

CITATION

Zhou J, Duan Y, Ding S, Lu L and Liu C (2025)
Spatial and temporal evolution characteristics
and influencing factors of carbon footprint
pressure in China’s equipment manufacturing
industry. Front. Environ. Econ. 4:1681641.
doi: 10.3389/frevc.2025.1681641

COPYRIGHT

© 2025 Zhou, Duan, Ding, Lu and Liu. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Spatial and temporal evolution
characteristics and influencing
factors of carbon footprint
pressure in China’s equipment
manufacturing industry

Jun Zhou, Yajun Duan, Sicheng Ding, Lifang Lu and
Chunwei Liu*

Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration
(ECSS-CMA), Jiangsu Key Laboratory of Agricultural and Ecological Meteorology, School of Ecology
and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China

Introduction: The equipment manufacturing industry is a key source of industrial
carbon emissions in China. To assess its environmental impact comprehensively,
this study introduces the concept of carbon footprint pressure (ECFP) integrating
both carbon sources and vegetation carbon sinks.
Methods: Based on provincial panel data from 2003 to 2020, the study
combines LMDI decomposition, Tapio decoupling, and extended STIRPAT spatial
econometric models to analyze temporal and spatial evolution patterns and
influencing factors.
Results: The ECFP in China’s equipment manufacturing industry shows an
overall upward trend, spreading from coastal to inland provinces. Employment,
economic expansion, and technological effects are key drivers. Some eastern
regions achieve weak decoupling between economic growth and ECFP, while
central and western regions show unstable coupling.
Discussion: Green technology innovation and industrial upgrading can mitigate
ECFP both locally and across neighboring regions. The results provide a
theoretical basis for regional emission reduction and coordinated low-carbon
development.

KEYWORDS

equipment manufacturing industry, carbon footprint pressure, vegetation carbon
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1 Introduction

Global warming continues to be one of the most urgent environmental issues
confronting the world. A key driver behind this crisis is the large-scale release of
greenhouse gases, especially carbon dioxide. To tackle this, the international community
adopted the Paris Agreement, setting ambitious goals to reduce emissions and keep
global temperature rise well below 2 ◦C, with efforts to limit it to 1.5 ◦C (UNFCCC,
2016; Fan et al., 2022). Within this global push, the industrial sector—particularly the
energy-intensive equipment manufacturing industry—has become a central focus for
national-level mitigation strategies.
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In 2021, China’s energy consumption reached around 5.24
billion tons of standard coal equivalent, with the industrial
sector alone accounting for roughly 65% of that figure (Li
et al., 2021; Zhao et al., 2021). Among these industries,
equipment manufacturing holds a critical position—it contributed
33.7% of the value added by large-scale industrial enterprises
(Wang et al., 2021). The sector spans diverse areas such as
machinery, electronics, and transportation equipment, supplying
essential components that support a wide range of economic
and technological activities. At the same time, however, it
remains a major source of carbon emissions. Although its
carbon intensity is relatively lower than that of some other
manufacturing sectors, equipment manufacturing still contributes
more than 10% of total manufacturing-related emissions (Fan
and Du, 2018). As the sector continues to grow, its overall
emissions are also rising steadily (Lu et al., 2022). This makes
emission reduction in equipment manufacturing not only crucial
for achieving national carbon neutrality targets, but also a
valuable reference point for promoting decarbonization in other
industrial sectors.

In addition to reducing carbon emissions from equipment
manufacturing, consideration could be given to increasing the
capacity of regional terrestrial vegetation to sequester carbon.
Studies have been conducted to quantify the relationship between
carbon emissions and the environment by converting carbon
emissions into the amount of biologically productive land area
needed to absorb those carbon emissions (Xuan and Yue, 2016;
Chen B. et al., 2022). As a result, incorporating terrestrial
vegetation’s ability to sequester carbon into research on reducing
carbon emissions can hasten the process of becoming carbon
neutral (Fan et al., 2022; Gu et al., 2022).

At present, China’s equipment manufacturing industry shows
a spatial distribution of agglomeration, mainly concentrated in
economically developed areas with a strong industrial base (An
et al., 2023; Rong et al., 2020). These regions have high carbon
emissions due to the concentration of equipment manufacturing
companies and the large scale of production. Additionally, the
ability of vegetation to sequester carbon varies depending on
the location. Therefore, this study constructed the Equipment
Manufacturing Carbon Footprint Pressure Index (ECFP) by
comprehensively considering equipment manufacturing carbon
emissions and regional vegetation carbon sequestration capacity.
Through the study of the temporal and spatial evolution of
ECFP and the factors influencing it, we can better understand
the dynamic changes in the development of the equipment
manufacturing industry, and allocate and adjust the specific
carbon emission reduction responsibilities among different regions
according to local conditions.

2 Literature review

A growing body of research has pointed out that carbon
emissions tend to increase during the early phases of economic
development. But interestingly, once a certain level of economic
maturity is reached, emissions begin to decline—an observation
that aligns with the Environmental Kuznets Curve hypothesis

(Dong et al., 2018; Sinha and Shahbaz, 2018). In the manufacturing
sector, Jin and Han (2021) highlighted that the main driver
behind rising emissions is industrial value-added. Building on
this, numerous studies have examined the decoupling of economic
growth from carbon emissions, particularly in the context of China
and other industrialized economies (Ren and Hu, 2012). The
general consensus is clear: the ideal scenario is one where economic
progress continues while emissions are brought under control
(Wang and Zhang, 2021).

Among the many factors at play, energy consumption remains
central (Li et al., 2021; Zhao et al., 2021). Feng et al. (2018) found
that decreasing energy intensity has made a notable difference in
cutting emissions in the metal industry. Technological innovation,
too, has been widely regarded as an effective lever in reducing
industrial carbon output (Wang et al., 2019; Shahbaz et al., 2020).
However, not all innovation leads to greener outcomes. Some
studies have flagged a paradox: certain technological advances
boost the productivity of traditional factors, which can actually
drive up energy and resource use—and with it, emissions (Huang
et al., 2020; Zhang and Liu, 2022). Despite differences in focus
and approach, most of the literature agrees that economic
development, energy use, and innovation are key forces shaping
carbon emissions.

As carbon sinks play an increasingly vital role in the path
toward carbon neutrality, a number of researchers have started
to factor vegetation-based carbon sequestration into emission
reduction pressure indicators. Still, it’s not easy to quantify the
link between carbon emissions and vegetation sequestration,
mainly due to pronounced differences in economic development
levels and geographic features across regions (Yang et al., 2020).
To address this complexity, Chen et al. (2020) introduced
a carbon footprint pressure (CFP) index that incorporates
vegetation carbon sequestration, using it to analyze CFP and
its driving forces in 60 major countries. Building on that
foundation, Huang et al. (2020) turned their attention to
China, exploring CFP and its determinants using provincial-
level data. More recently, Fan et al. (2022) applied the Tapio
decoupling model alongside exponential decomposition analysis
to examine the drivers and decoupling patterns of CFP in
Chinese cities.

That said, there are still some blind spots in the literature.
Most existing studies haven’t delved into how carbon emissions
interact with environmental factors across different industries. And
importantly, few have considered the spatial spillover effects—both
direct and indirect—of various drivers on CFP, whether in the
short or long term. Filling these gaps could offer a deeper, more
comprehensive picture of how carbon emission pressures evolve
across sectors and space.

Therefore, the equipment manufacturing industry has been
chosen as the research object for this study, uses the NPP data
acquired by remote sensing satellites with accuracy, objectivity,
and timeliness as the key index to measure the carbon
sequestration capacity of vegetation, and from the perspective
of carbon sources and sinks, incorporates the direct carbon
emissions, indirect carbon emissions and carbon sequestration
by vegetation in the equipment manufacturing industry into
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the framework of the analysis of carbon emission reduction
drivers, constructs the ECFP and analyzes the factors affecting
it. First, the LMDI method is used to decompose ECFP and
quantify the specific contribution of carbon footprint pressure
intensity (CFPI), output value per capita (AGDP), and number
of people employed (EPOP) in equipment manufacturing to the
change of ECFP. Next, using the Tapio model, the decoupling
relationship between ECFP and the equipment manufacturing
industry’s economic development is examined. Finally, the
extended STIRPAT model is constructed based on the LMDI
decomposition results, and the spatial econometric model is
applied to explore the role mechanisms of industrial output
value (EGDP), scientific research investment (RD), industrial
structure (IS), and energy intensity (EI) factors on the pressure
of carbon footprint of equipment manufacturing. Examine each
driver’s direct and indirect effects on ECFP from a temporal and
spatial perspective. The analysis will provide a theoretical basis
for decision-makers to help better plan the regional ecological
balance and the sustainable development of the equipment
manufacturing industry.

3 Methods and data

This study constructs a comprehensive analytical framework
comprising a sequential progression of the LMDI, Tapio decoupling
model, and extended STIRPAT model. The LMDI model is first
employed to factorize the ECFP, quantitatively identifying the
contribution levels of key drivers such as technological progress,
economic development, and employment changes during historical
periods. This provides theoretical and empirical foundations for
subsequent model variable selection and mechanism construction
(Chen et al., 2020).

Building upon this foundation, the study extends its analysis
along two dimensions: firstly, by integrating the core economic
drivers identified by LMDI with ECFP, the Tapio decoupling model
is applied to determine the state of coupling or decoupling between
economic growth and environmental pressures, revealing their
dynamic evolution patterns over time; Secondly, using the LMDI
decomposition results as theoretical support, an extended STIRPAT
model is constructed. Corresponding proxy variables (such as green
patent counts representing technological effects) are selected to
quantify the elastic impact of different factors on ECFP (Wolfram
et al., 2016).

Furthermore, the extended STIRPAT model incorporates
spatial econometric methods beyond traditional regression
frameworks. This enables the simultaneous examination of both
the direct effects of regional drivers and the spatial spillover
effects from neighboring areas, thereby advancing the analysis
from single-factor decomposition to a spatial interaction
perspective. In summary, the methodological framework of
this study follows a progressive logic encompassing factor
identification, state diagnosis, and mechanism analysis. The
LMDI model identifies the core driving factors, the Tapio
model characterizes the coordination between economic and
environmental outcomes, and the extended STIRPAT model
provides a comprehensive analysis of the elasticity and spatial
effects of each driver. As illustrated in Figure 1, these three

components are interconnected, forming a layered and internally
coherent analytical framework.

3.1 ECFP index construction

The ECFP is an index that uses the ratio of carbon sources
to carbon sinks to represent the impact that local ecosystems are
under from carbon emissions from equipment manufactured in the
region (Su et al., 2013). According to Chen et al. (2020), the specific
formula can be constructed as follows:

ECFP = ECE
NPPE

(1)

NPPE =
(

NPP
0.45

)
× 1.62 (2)

Where ECE is the carbon emissions from energy consumption
of the regional equipment manufacturing industry in a certain
period, including direct carbon emissions and indirect carbon
emissions from electricity and heat, etc.; NPPE is the amount of
carbon sequestered by the regional vegetation in a certain period
calculated according to NPP. From an economic perspective,
the ECFP indicator reflects the relative environmental pressure
exerted by industrial carbon emissions on regional ecological
carbon sink capacity. The numerator ECE denotes the carbon
emission flow generated by the equipment manufacturing sector
within economic activities; the denominator NPPE represents the
carbon absorption capacity of regional ecosystems, manifested
through carbon sequestration in agricultural and forest lands.
Although NPPE encompasses both flow and stock characteristics,
it comprehensively reflects the natural system’s potential and
dynamic equilibrium capacity to offset anthropogenic carbon
emissions over a given period. Consequently, ECE/NPPE is not
a simple physical ratio but an ecological efficiency indicator
measuring the extent to which an economic system’s carbon output
utilizes the carbon absorption potential of ecosystems. A ratio
exceeding 1 indicates industrial carbon emissions surpassing the
regional ecosystem’s carbon sink capacity, signaling unsustainable
environmental pressure. Conversely, a lower ratio suggests
relative equilibrium between economic activity and ecological
carrying capacity.

3.2 Tapio decoupling model

The Tapio model is widely utilized in many industries because it
can precisely estimate the decoupling state of a particular industry
in a region at a given moment (Tapio, 2005). The relationship
between ECFP and economic development is examined in this
study using the Tapio model; the decoupling model is as follows:

EV = �P/P
�D/D

(3)

where EV is the decoupling elasticity value, �P is the difference
between the current ECFP and the previous ECFP, and P is the
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FIGURE 1

Analytical framework integrating the LMDI, Tapio, and extended STIRPAT models.

current ECFP; �D is the difference between the current EGDP and
the previous EGDP, and D is the current EGDP.

3.3 LMDI model

The LMDI model is easy to use and has a wide range of
applicability, and it is used in this study for the decomposition of
factors affecting ECFP.

ECFPi = ECFPi

EGDPi
× EGDPi

EPOPi
× EPOPi

= CFPIi × AGDPi × EPOPi (4)

In Equation 4, CFPI is the carbon footprint pressure intensity
of equipment manufacturing, which represents the technology
effect; AGDP denotes the per capita output value of equipment
manufacturing, which represents the economic effect; and EPOP
denotes the effect of the number of people employed (Zhao et al.,
2014; Wolfram et al., 2016).

ECFP changes can be expressed as follows:

�ECFPi = ECFPt
i − ECFPb

i

= �CFPIi + �AGDPi + �EPOPi (5)

�ECFPi in the above equation represents the change in ECFP
from year t to year b. In addition, �CFPIi, �AGDPi, and �EPOPi,
represent the contribution of the above three factors to the change
in ECFP.

Each effect can be expressed as follows:

�CFPIi =
ECFPt

i − ECFPb
i

lnECFPt
i − lnECFPb

i
ln

(
CFPIt

i

CFPIb
i

)
(6)

�AGDPi =
ECFPt

i − ECFPb
i

lnECFPt
i − lnECFPb

i
ln

(
AGDPt

i

AGDPb
i

)
(7)

�EPOPi =
ECFPt

i − ECFPb
i

lnECFPt
i − lnECFPb

i
ln

(
EPOPt

i

EPOPb
i

)
(8)
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3.4 STIRPAT model

STIRPAT was developed by Dietz and Rosa by improving the
IPAT model proposed by Ehrlich and Holdren (York et al., 2003),
which not only solves the shortcoming of IPAT model’s single
elasticity, but also has better scalability, and the constant term and
error term further improve the reliability (Wang and Zhang, 2021).
Its specific expression is as follows:

I = aPbAcTdε (9)

where I denotes people’s impact on the environment, P is the
population size; A is the level of affluence; T denotes the level of
technology; a is a constant term, b, c, and d are the parameter
coefficients of P, A, and T, and ε is the error term.

For ease of analysis, Equation 9 is taken logarithmically to
obtain Equation 10 as follows:

ln (I) = ln (a) + bln
(
p
) + cln (A) + dln (T) + ln (ω) (10)

Due to the better extensibility of the model, based on the
decomposition of the LMDI model, five factors, namely, the
number of employees (EPOP), industrial structure (IS), energy
intensity (EI), and research investment (RD), are selected to
construct the extended STIRPAT model. The expressions are
as follows:

ln (ECFP) = ln (a) + b1 ln (EPOP) + b2 ln (IS) + b3 ln (EI)

+ b4 ln (RD) + ln (ε) (11)

Where ECFP is the carbon footprint pressure of China’s
equipment manufacturing; a denotes the model coefficient; ε

denotes the error; b1, b2, b3, and b4 are the elasticity coefficients,
which indicate that under the premise of the other variables
remaining unchanged, every 1% change in EPOP, IS, EI, and RD
will cause b1%, b2%, b3%, and b4% changes in ECFP, respectively.

3.5 Construction of spatial weight matrices

Based on the provinces’ latitude and longitude, a geographic
distance matrix was created for this study W1. The provinces’
connection is influenced by economic growth in addition to
distance. Therefore, an economic matrix based on economic
development, W2, and two geo-economic spatial matrices, W3 and
W4, were constructed, and the general form of these four matrices
is as follows:

W1 = 1
dij

(12)

W2 = 1∣∣ei − ej
∣∣ (13)

W3 = 1
dij

∗ wij (14)

W4 = 1
dij

∗ √
wij (15)

3.6 Exploratory spatial data analysis

3.6.1 Global Moran’s I index
The global Moran’s I index is a widely used metric for assessing

spatial autocorrelation, offering a broad view of how values relate
to one another across the entire study area. Rather than focusing
on local patterns, it captures the overall spatial structure. The
index ranges from −1 to 1: a positive value suggests that similar
values tend to cluster together (positive spatial autocorrelation),
while a negative value points to spatial clustering of dissimilar
values (negative spatial autocorrelation). When the value is close
to zero, it generally indicates a lack of spatial correlation, implying
a more random distribution. The formula for Moran’s I is defined
as follows:

Moran′s I =
∑n

i=1
∑n

j=1 wij (xi − x)

s2 ∑n
i=1

∑n
j=1 wij

(16)

s2 =
∑n

i=1 (xi − x)

n
(17)

3.6.2 Local Moran’s I index
The local Moran’s I index, which breaks down the global

Moran’s I into local components, helps measure how much a given
region correlates spatially with its neighbors. It’s useful for spotting
local clusters as well as spatial outliers across the study area. The
formula for calculating this index is as follows:

Ii =
[

(xi − x)

S2

]
×

⎡
⎣ n∑

j=1

Wij × (xi − x)

⎤
⎦ (18)

3.7 Spatial econometric models

The Spatial Lag Model (SLM), Spatial Error Model (SEM),
and Spatial Durbin Model (SDM) have become standard tools
in the econometric analysis of spatial data. Among them, the
Spatial Autoregressive (SAR) model—mainly designed to capture
the effects of spatially lagged dependent variables—is essentially
a simplified form of the SLM (Elhorst, 2014). The SEM, on the
other hand, shifts attention to spatial autocorrelation in the error
terms, making it particularly useful when spatial dependence arises
from factors that are unobserved or omitted. The SDM goes a
step further by introducing spatial lags for both dependent and
explanatory variables. Simply put, it doesn’t just account for the
influence of neighboring outcomes; it also allows explanatory
variables from surrounding units to shape the dependent variable
(Lee and Yu, 2010). These relationships are typically represented
using the following model equations:

y = ρWy + Xβ + ε (19)
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y = Xβ + u

u = λWu + ε (20)

y = ρWy + Xβ + WXθ + ε (21)

ρ is the spatial autoregressive coefficient, W is the spatial weight
matrix, y is the dependent variable, X is the explanatory variable, β

is the coefficient of the explanatory variable, and ε is the error term.
λ is the coefficient of the spatial error, and θ is the coefficient of the
spatial lag term of the explanatory variable.

The static Spatial Durbin Model (SDM), while useful for
capturing spatial dependencies, falls short when it comes to
evaluating short-term effects over time. Specifically, it does not
account for the time-lagged influence that independent variables
might have on the dependent variable (Anselin, 2001). To overcome
this limitation, the Dynamic Spatial Durbin Model (DSDM) builds
on the static version by introducing a temporal component. This
addition enables the model to track both spatial and temporal
spillover effects, offering a more complete view of dynamic spatial
processes. The general form of the model is given below:

Yt = αYt−1 + ψWYt−1 + ρWYt + Xtβ + WXtθ + εt (22)

Yt−1 is the time lag term of the dependent variable, α is the
coefficient of the time lag term, and the other signs are the same
as in the SDM model

3.8 Data sources

In accordance with the Industrial Classification for National
Economic Activities (GB/T 4754-2017) issued by the National
Bureau of Statistics of China (2017), the equipment manufacturing
industry comprises the following major subsectors: metal
products, general equipment manufacturing, special equipment
manufacturing, automobile manufacturing, railway, shipbuilding,
aerospace and other transportation equipment manufacturing,
electrical machinery and equipment manufacturing, computer,
communication and other electronic equipment manufacturing,
and instrumentation manufacturing.

To maintain data consistency and avoid missing values, this
study excludes Hong Kong, Macao, Taiwan, and Tibet. The analysis
is based on panel data from 30 provinces in mainland China,
spanning 2003 to 2020, with a particular focus on the equipment
manufacturing industry. Economic development is represented
by the industrial output value of the equipment manufacturing
sector in each region. The level of green technological innovation
is gauged by the number of green patents granted per province.
Energy intensity is calculated as the amount of energy consumed
for each unit of industrial output produced by the sector. As
for industrial structure, it’s reflected in the share of equipment
manufacturing output relative to the total manufacturing output
within the region. The intensity of scientific and technological
input is captured by the ratio of R&D and testing investment to
provincial GDP.

Carbon emissions data come from the China Carbon Emission
Accounts and Datasets (CEADs; Shan et al., 2018, 2020), while

the remaining indicators are drawn from various editions of the
China Statistical Yearbook. To improve comparability across time,
all monetary data are adjusted to constant 2002 prices. Moreover,
logarithmic transformation is applied to all variables to help address
potential heteroscedasticity.

4 Results and discussion

4.1 Characterization of the spatial and
temporal evolution of the ECFP

As shown in Figure 2, the national ECFP is trending upward
generally, rising from 0.0109 in 2003 to 0.0256 in 2020, with a
3.38% yearly average growth rate. It has mostly grown rapidly in
the early stages and then leveled off gradually in the latter stages,
which is in line with the trajectory of China’s general pressure
on its carbon footprint (Xia et al., 2024). From 2003 to 2011,
ECFP grew by 95.98%; from 2011 to 2020, ECFP growth slowed
down, mainly showing a fluctuating upward trend, peaking in 2020
(CFP = 0.0256) with a growth rate of only 19.50%. The annual
growth of the national ECFP is mainly attributed to the growth
of developed provinces such as Tianjin, Shanghai, and Jiangsu.
In contrast, developing regions such as Jiangxi and Guizhou had
smaller changes in ECFP, slowing down the growth rate. This
finding is similar to that of Chen et al. Differences in ECFP growth
among provinces and cities reflect differences in the degree of
economic development and industrialization in each region.

Due to the differences in natural resource endowment and
development policies in each province, the spatial and temporal
characteristics of ECFP also differ. The spatial distribution
characteristics of ECFP in each province in 2003, 2005, 2010, 2015,
and 2020 are shown in Figure 3. As illustrated in Figure 3, provinces
with high ECFP are mainly concentrated in the southeastern coastal
region, and gradually tend to radiate to the central part of the
country. The provinces with the largest cumulative ECFP from
2003 to 2020 are Beijing, Tianjin, Shanghai, Jiangsu, and Shandong,
which are mainly manufacturing industries and have a higher
proportion of equipment manufacturing industries. Most of the
provinces with ECFP values lower than the national average are
located in the southwest and northwest regions, such as Guizhou,
Gansu, Qinghai, and Yunnan. The economic growth of these
regions is mainly dominated by primary industry and service
industry, so the carbon emission from equipment manufacturing
is less than in other provinces, at the same time, these regions are
rich in forests and other resources, and their carbon sequestration
capacity is stronger than that of other provinces, so the ECFP in
these regions is small.

To get a better grasp of how equipment manufacturing
carbon footprint pressure (ECFP) clusters across space, this study
calculates Moran’s I index for 30 Chinese provinces and constructs
Moran scatter plots across multiple years. As shown in Figure 4,
most provinces fall into the first and third quadrants of the
scatterplots—pointing to a distinct spatial clustering pattern. The
first quadrant highlights provinces like Shandong, Jiangsu, and
Shanghai, where high ECFP levels tend to be surrounded by
similarly high levels in neighboring regions. Meanwhile, the third
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FIGURE 2

Carbon footprint pressure of national exzaquipment manufacturing industry 2003–2020.

quadrant captures areas such as Yunnan, Qinghai, and Gansu,
which exhibit relatively low ECFP values and are also bordered by
provinces with similarly low emissions.

As illustrated in Figure 5, this study charts the trajectory of
the carbon footprint center of gravity within China’s equipment
manufacturing sector, visually presenting the evolution of the
industry’s carbon footprint pressure space across five representative
years: 2003, 2005, 2010, 2015, and 2020. Based on ArcGIS
spatial analysis, the geographical coordinates for each phase of
the ECFP were calculated, and the migration distance between
consecutive years was determined. Results indicate that between
2003 and 2020, the ECFP’s center of gravity migrated approximately
235.7 kilometers, with an average annual migration rate of 13.9
kilometers per year. Its trajectory exhibited a phased pattern
of eastward, southward, and westward shifts. From 2003 to
2010, the center of gravity shifted approximately 128.4 kilometers
southeastward from southern Shandong to northern Jiangsu,
reflecting the rapid expansion of equipment manufacturing in
eastern coastal provinces. Between 2010 and 2015, it moved
southward by roughly 64.3 kilometers, primarily driven by
industrial upgrading and energy efficiency improvements in the
Yangtze River Delta region. From 2015 to 2020, the center of gravity
exhibited a slight westward shift of approximately 43.0 kilometers,
corresponding to the accelerated rise of central provinces such
as Anhui and Henan under industrial transfer and regional
coordination policies. Overall, the migration of the equipment
manufacturing industry’s center of gravity reflects a dynamic spatial
rebalancing process shaped by industrial structural disparities,
technological progress, and policy orientation. This indicates that
China’s equipment manufacturing sector is transitioning from
coastal concentration toward regional diversification.

4.2 Decomposition analysis of ECFP
influencing factors

As illustrated in Figure 6, between 2003 and 2020, variations
in economic growth rates exceeding the national average
were predominantly concentrated in the developed eastern

coastal provinces such as Jiangsu, Shanghai, Shandong, and
Zhejiang, with relatively minor fluctuations observed in other
regions. This pattern reflects China’s early implementation of
an eastern-region priority development strategy, which propelled
rapid industrialization in the economically advanced coastal
areas. Figure 6 presents representative provinces rather than
all 30 provinces because these selected regions exhibit distinct
differences in economic development level, industrial structure,
and technological progress, allowing for a clearer comparison of the
driving mechanisms behind ECFP changes. Including all provinces
would make the figure overly complex and reduce the clarity of
interprovincial differences.

Number of Practitioners Effect (�EPOP): The contribution
of EPOP to ECFP is generally high. For example, in 2003–
2004 (125.21%) and 2006–2007 (165.25%). However, from 2003
to 2020, the overall EPOP contribution to the change in ECFP
fluctuated and decreased, mainly contributing to ECFP. China’s
industrial reform, which outlawed high-polluting industries and
vigorously developed equipment manufacturing and other high-
tech enterprises, led to the expansion of the industry’s scale and the
expansion of the size of the number of employees, which is the main
reason for the larger contribution to ECFP.

Economic effect (�AGDP): The contribution of AGDP
to ECFP fluctuates considerably. AGDP contributed up to
297.71% to ECFP in 2010–2011, while in 2008–2009 it was
−1896.85%. However, from 2003 to 2020, economic development
mainly contributed positively to ECFP changes, i.e., economic
development led to the increase of ECFP. Among the provinces
and cities, the economically developed provinces such as Jiangsu,
Shanghai, and Shandong, AGDP promotes the decline of ECFP,
which is in line with the environmental Kuznets hypothesis
(Brajer et al., 2011), i.e., as AGDP increases, ECFP rises first
and then falls. For most provinces with developing economies,
the development of equipment manufacturing destroys the local
ecological environment due to backward technology and other
reasons, leading to a continuous rise in ECFP.

Technology effect (�CFPI): changes in CFPI contributed
more to ECFP in most of the years. For example, in 2015–
2016 and 2016–2017, CFPI contributed 120.45% and 145.44%
to ECFP, respectively. In most provinces and cities, CFPI has a
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FIGURE 3

Spatial distribution characteristics of carbon footprint pressure on equipment manufacturing industry in 30 provinces and regions of China,
2003–2020.
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FIGURE 4

Moran scatter plot of carbon footprint pressure of equipment manufacturing industry in Chinese regions, 2003–2020.

significant positive contribution to ECFP changes. For example,
Shanghai (95.68%), Shandong (83.50%), Jiangsu (52.13%), and
other provinces and cities have very high CFPI contribution rates.
In some provinces and cities, CFPI contributes negatively to ECFP
changes, but the absolute value is large. For example, Hubei
(−123.73%), Gansu (−100%), and so on. This is mainly because
the equipment manufacturing industry, as a high-tech industry,
gives priority to the optimization of processes and the selection
of materials in the process of technological innovation, and the
implementation and popularization of new technologies may lead
to a rise in the pressure of carbon emissions in the short term.

As summarized in Table 1, the quantitative contribution of each
factor to ECFP varies considerably among provinces.

4.3 ECFP decoupling analysis

It’s widely accepted that the growth in the equipment
manufacturing industry’s economic output largely drives the
increase in equipment manufacturing carbon footprint pressure
(ECFP). To dig deeper into how this relationship has changed over
time, this study uses the Tapio decoupling method to examine the
decoupling patterns between ECFP and economic development
in China’s equipment manufacturing sector from 2003 to 2020.
Detailed elasticity results and corresponding decoupling states for
all provinces are listed in Table 2.

Table 3 outlines eight decoupling states identified in the
analysis: strong decoupling, weak decoupling, implicit decoupling,
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FIGURE 5

Evolutionary trend of carbon footprint pressure on equipment manufacturing industry in China, 2003–2020.

FIGURE 6

Contributions of driving factors to ECFP change in sample provinces from 2003 to 2020.

expansive coupling, implicit coupling, weak negative decoupling,
strong negative decoupling, and expansive negative decoupling—
coded 1 through 8, respectively. Over the years, weak decoupling
showed up five times, negative decoupling appeared eight times,
and coupling states were recorded four times. Interestingly, weak
decoupling mostly happened before 2013, while from 2013 to 2020,
negative decoupling dominated, implying a tighter link between
economic growth and ECFP in that period.

As shown in Figure 7, between 2003 and 2010, most regions
were in a good state of decoupling between ECFP and economic

development in equipment manufacturing. For example, the
eastern regions of Beijing, Shanghai, Jiangsu, and Zhejiang had
a strong decoupling between ECFP and economic development
during the initial 2003–2004 period. During this period, China’s
equipment manufacturing industry was in its infancy, and the
speed of the industry’s economic development was greater than the
change in ECFP. Between 2010 and 2015, the scale of the equipment
manufacturing industry in some regions expanded, the amount of
energy consumed increased, and the change in the pressure on the
environment was greater than the speed of economic development,
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TABLE 1 Contributions of driving factors to provincial ECFP change from 2003 to 2020.

Province �ECFP �CFPI �AGDP �EPOP Province �ECFP �CFPI �AGDP �EPOP

Jiangsu 0.1714 0.0893 −0.0665 0.1486 Beijing 0.0124 −0.0020 0.0101 0.0043

Shanghai 0.1621 0.1551 −0.0196 0.0266 China 0.0119 0.0045 –0.0032 0.0107

Shandong 0.1030 0.0860 −0.0122 0.0292 Inner Mongolia 0.0065 0.0059 0.0020 −0.0015

Zhejiang 0.0622 0.0347 −0.0904 0.1178 Hubei 0.0059 −0.0073 0.0026 0.0107

Anhui 0.0471 0.0090 −0.0042 0.0422 Sichuan 0.0052 −0.0025 0.0025 0.0052

Liaoning 0.0408 0.0193 −0.0152 0.0367 Guangxi 0.0028 0.0008 0.0002 0.0018

Guangdong 0.0313 0.0026 0.0032 0.0255 Shaanxi 0.0026 −0.0003 0.0017 0.0012

Jiangxi 0.0296 −0.0085 0.0223 0.0158 Gansu 0.0014 0.0014 −0.0012 0.0012

Hebei 0.0273 −0.0072 0.0060 0.0285 Jilin 0.0009 0.0021 −0.0015 0.0003

Henan 0.0273 −0.0072 0.0060 0.0285 Hainan 0.0009 0.0025 −0.0010 −0.0006

Ningxia 0.0272 0.0016 0.0242 0.0014 Xinjiang 0.0005 −0.0012 0.0014 0.0003

Shanxi 0.0251 −0.0069 0.0261 0.0059 Yunnan 0.0004 0.0000 0.0004 0.0001

Chongqing 0.0187 0.0024 −0.0017 0.0180 Guizhou 0.0003 −0.0002 0.0004 0.0001

Tianjin −0.0187 −0.0194 −0.0239 0.0246 Heilongjiang 0.0000 0.0000 0.0003 −0.0003

Fujian 0.0182 0.0144 −0.0091 0.0129 Qinghai 0.0000 −0.0001 0.0001 0.0000

Hunan 0.0138 −0.0005 0.0030 0.0114

Provinces are arranged in a descending order according to the absolute value of �ECFP. Bold value represents the national average (China overall) �ECFP. Provinces listed above the bold
value have �ECFP higher than the national average, while those listed below have �ECFP lower than the national average.

resulting in a negative decoupling status between ECFP and
economic development. For example, in 2012–2013, the value
of Shandong was 8, indicating a very weak negative decoupling.
Between 2015 and 2020, the equipment manufacturing industry
developed at a high speed, and many regions are in a negative
decoupling state between ECFP and economic development.
However, in 2020, eastern regions such as Beijing, Shanghai,
Jiangsu, and Zhejiang become weakly decoupled or strongly
decoupled. The development of the equipment manufacturing
industry in these regions has changed from an initial decoupling
state to a strong negative decoupling state over time, and then to a
weak decoupling state. The main reason is that the development
of equipment manufacturing from the initial dependence on
fossil energy consumption, which has generated greater pressure
on the environment. But with the improvement of economic
level, technological innovation, reducing carbon emissions, and
focusing on the protection of the environment, the pressure on the
environment is reduced (Amri, 2017).

Overall, the decoupling status of China’s regions has gradually
changed from strong decoupling to weak or negative decoupling
over time. Eastern coastal regions (e.g., Beijing, Shanghai, Jiangsu,
etc.) show stronger decoupling effects in the early years, while
central and western regions (e.g., Gansu, Shaanxi, etc.) show greater
volatility. The analysis of specific years and regions reveals changes
in decoupling status, which are closely related to economic policies,
environmental policies, and regional development strategies.

4.4 ECFP spatial effects

To clarify the analytical framework and ensure transparency,
Table 4 reports the definitions and descriptive statistics of all

variables used in the spatial effects analysis. The dependent
variable, ECFP, represents the carbon footprint pressure of the
equipment manufacturing industry, reflecting the environmental
load per unit of industrial output. EPOP denotes the employment
level in the equipment manufacturing sector and captures the
scale of production activities. RD measures the research and
development investment intensity, indicating innovation input
and potential for industrial upgrading. IS denotes the share of
equipment manufacturing in the total manufacturing output,
representing the degree of industrial specialization and structural
adjustment. EI measures the energy intensity of equipment
manufacturing, indicating the energy consumption per unit of
industrial value added. These variables collectively describe the
economic, technological, and structural drivers of ECFP and
are widely applied in spatial econometric analyses based on the
STIRPAT model framework (Elhorst, 2014; Zhou et al., 2023).

4.4.1 Decomposition of spatial effects
We built an extended STIRPAT model by integrating results

from the LMDI decomposition and ran spatial regression analyses
on equipment manufacturing carbon footprint pressure (ECFP)
over the period 2003 to 2020. The Moran’s I plot clearly shows
significant spatial autocorrelation in ECFP. To figure out which
spatial econometric model fits best, we conducted LM tests. As
Table 5 shows, LM-error, LM-lag, Robust LM-error, and Robust
LM-lag tests all came out significant, which means traditional
regression models just don’t cut it here—spatial models like the
Spatial Lag Model (SLM) or Spatial Error Model (SEM) are needed
to properly account for spatial dependence (Flores-Lagunes and
Schnier, 2012).
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TABLE 2 Contributions of driving factors to ECFP change in China.

Time interval Results Effects Contribution ratios (%)

�ECFP �CFPI �AGDP �EPOP RCFPI RAGDP REPOP

2003–2004 3.64E-04 −1.42E-03 1.33E-03 4.56E-04 −3.91E+00 3.66E+00 1.25E+00

2004–2005 1.87E-03 6.80E-04 −6.24E-04 1.81E-03 3.64E-01 −3.34E-01 9.70E-01

2005–2006 1.73E-03 8.74E-05 9.92E-05 1.55E-03 5.04E-02 5.73E-02 8.92E-01

2006–2007 1.42E-03 −4.03E-04 −5.26E-04 2.35E-03 −2.83E-01 −3.70E-01 1.65E+00

2007–2008 1.40E-03 −3.98E-04 5.89E-04 1.21E-03 −2.85E-01 4.22E-01 8.63E-01

2008–2009 1.17E-04 4.15E-05 −2.21E-03 2.29E-03 3.55E-01 −1.90E+01 1.96E+01

2009–2010 2.76E-03 2.06E-04 4.64E-04 2.09E-03 7.47E-02 1.68E-01 7.57E-01

2010–2011 8.33E-04 −2.66E-04 2.48E-03 −1.38E-03 −3.19E-01 2.98E+00 −1.66E+00

2011–2012 −8.13E-04 4.27E-07 −2.66E-03 1.85E-03 −5.25E-04 3.27E+00 −2.27E+00

2012–2013 5.44E-05 −6.44E-04 1.39E-03 −6.96E-04 −1.18E+01 2.56E+01 −1.28E+01

2013–2014 5.76E-04 2.15E-04 −1.18E-03 1.54E-03 3.73E-01 −2.05E+00 2.68E+00

2014–2015 −8.77E-05 6.47E-04 −6.36E-04 −9.88E-05 −7.38E+00 7.25E+00 1.13E+00

2015–2016 6.86E-04 8.26E-04 −4.13E-04 2.73E-04 1.20E+00 −6.02E-01 3.97E-01

2016–2017 1.28E-03 1.86E-03 5.63E-03 −6.21E-03 1.45E+00 4.41E+00 −4.86E+00

2017–2018 −4.45E-04 4.03E-03 −1.67E-02 1.23E-02 −9.07E+00 3.77E+01 −2.76E+01

2018–2019 1.86E-03 3.04E-03 6.81E-03 −7.99E-03 1.64E+00 3.67E+00 −4.30E+00

2019–2020 1.08E-03 −2.68E-05 7.55E-04 3.55E-04 −2.47E-02 6.97E-01 3.27E-01

2003–2020 1.19E-02 4.46E-03 −3.24E-03 1.07E-02 3.76E-01 −2.73E-01 8.98E-01

Looking further, the Wald and likelihood ratio (LR) tests (also
in Table 5) are significant at the 1% level, suggesting the Spatial
Durbin Model (SDM) fits the data better than either SAR or SEM.
Then, to decide between fixed and random effects, we ran the
Hausman test, which favored fixed effects at the 1% significance
level. Plus, LR tests for spatial and temporal fixed effects also turned
out significant, pointing to the spatio-temporal double fixed effects
model as the best choice. So, we settled on the spatio-temporal
double fixed effects SDM to dig into the spillover effects of carbon
footprint pressure in equipment manufacturing.

Since the impact factor coefficients in the SDM do not fully
capture the indirect effects of all variables on ECFP (Elhorst, 2014).
Therefore, the spatial effects are decomposed and the results are
shown in the Table 6. The direct effect indicates the effect of
changes in regional drivers on ECFP in the local region, and the
indirect effect indicates the effect of changes in drivers on ECFP in
neighboring regions.

The rise of EPOP expands production activities and scale,
which leads to more energy consumption and carbon emissions,
thus increasing ECFP. Meanwhile, the indirect effect of EPOP is
significant and positive in the W2 matrix and W3 matrix. The
main reason is that the equipment manufacturing industry usually
has a long industrial chain involving the supply, processing, and
transportation of raw materials from multiple regions. An increase
in the number of employees may lead to an increase in the
production activities of the upstream and downstream enterprises
of these industrial chains, which not only affects the region but also
drives the development of related industries in neighboring regions,

TABLE 3 Classification of the decoupling states of the Tapio decoupling
index.

State Level Description �P/P �D/D EV

Decoupling 1 Strong <0 >0 <0

2 Weak >0 >0 0–0.8

3 Very weak <0 <0 >1.2

Connection 4 Growth >0 >0 0.8–1.2

5 Weak <0 <0 0.8–1.2

Negative
decoupling

6 Weak <0 <0 0–0.8

7 Strong >0 <0 <0

8 Very weak >0 >0 >1.2

thus increasing the carbon footprint of these regions and leading to
a rise in ECFP (Jin and Han, 2021).

The increase of RD significantly increases the ECFP of local
and neighboring regions. The main reason may be that the
increase of RD leads to more R&D activities, which requires a
large number of experiments and tests, and these will generate
a large amount of carbon emissions in a short period, which
will indirectly increase the ECFP of the local region. Meanwhile,
through the inter-regional technological diffusion, cooperation,
and industrial chain linkage, it affects the carbon emissions of
the neighboring regions, which increase the energy consumption
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FIGURE 7

Hot spot map of ECFP decoupling state in each province, 2003–2020.

and carbon emissions, indirectly increasing ECFP (Zhou et al.,
2023).

The increase of IS will significantly increase the local ECFP
but will reduce the ECFP of neighboring regions, mainly because
the equipment manufacturing industry has increased its share
in the manufacturing industry, and the scale of production has
expanded, which leads to the increase of energy demand and carbon
emissions, and increases the ECFP in the short term. Meanwhile,
the equipment manufacturing industry has an agglomeration
effect, and through the division of labor and cooperation with
neighboring regions, it diffuses the technology and industrial model
to neighboring regions, which promotes industrial upgrading and
carbon emission reduction in these regions indirectly. At the same
time, the equipment manufacturing industry has an agglomeration
effect, spreading technologies and industrial models to neighboring
regions through the division of labor and cooperation with
neighboring regions, which promotes the industrial upgrading of
these regions and reduces carbon emissions, and indirectly reduces
ECFP (Zhao et al., 2022).

An increase in EI leads to a rise in local ECFP. Equipment
manufacturing energy consumption is mainly coal-based primary

energy consumption and secondary energy consumption of
electricity and heat, and the rise in energy intensity leads to the rise
in carbon emissions from energy consumption, which indirectly
leads to the rise in ECFP. However, due to the clustering of the
equipment manufacturing industry, the industrial transfer leads to
a decrease in carbon emissions in neighboring regions, and the
increase in EI indirectly contributes to the decrease in ECFP (Chen
Y. et al., 2022).

4.4.2 Dynamic spatial Durbin models
W3 was further used in the analysis of the dynamic spatial

Durbin model as the W3 matrix takes into account geographic
and economic factors and has an R2 of 0.619, which is the highest
among the four matrices, as shown in the Table 7, variables marked
with “∗∗” are statistically significant at the 1% level, indicating a
strong correlation between these factors and the carbon footprint
pressure of the equipment manufacturing industry.

Table 8 summarizes the long- and short-term direct and
indirect effects of the various factors. In the dynamic spatial
Durbin model, rising energy intensity clearly drives up equipment
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TABLE 4 Variable definitions and descriptive statistics.

Variable Symbol Definition Unit Theoretical rationale

Equipment manufacturing carbon
footprint pressure

Equipment manufacturing carbon
footprint pressure

Equipment manufacturing carbon
footprint pressure

- Dependent variable representing
carbon emission intensity and
environmental pressure

Employment in equipment
manufacturing

Employment in equipment
manufacturing

Employment in equipment
manufacturing

104 persons Captures scale effect of production
and labor-driven emission growth

Green technology innovation Green technology innovation Green technology innovation Items Reflects technological innovation
capacity and its potential
emission-reduction impact

R&D investment intensity R&D investment intensity R&D investment intensity % Indicates innovation input
intensity and resource use during
R&D activities

Industrial structure Industrial structure Industrial structure % Reflects industrial specialization
and regional structural
transformation

Energy intensity Energy intensity Energy intensity tce/104 yuan Represents efficiency of energy use
and direct driver of carbon
emissions

TABLE 5 Results of the spatial econometric model detection under the
four weight matrices.

Description W1 W2 W3 W4

LM test no spatial
error

1,638.306∗∗∗ 545.404∗∗∗ 608.169∗∗∗ 1,222.224∗∗∗

Robust LM test no
spatial error

1,246.811∗∗∗ 336.238∗∗∗ 342.006∗∗∗ 853.954∗∗∗

LM test no spatial
lag

409.464∗∗∗ 236.833∗∗∗ 286.072∗∗∗ 391.108∗∗∗

Robust LM test no
spatial lag

17.969∗∗ 27.667∗∗∗ 19.908∗∗∗ 22.839∗∗∗

Hausman 28.70∗∗∗ 22.84∗∗∗ 22.09∗∗∗ 23.58∗∗∗

Wald Lag 26.99∗ 27.17∗∗∗ 27.78∗∗∗ 25.95∗∗∗

Wald Err 12.31∗∗∗ 10.70∗∗∗ 11.13∗∗∗ 9.02∗∗

LR Lag 154.91∗∗∗ 185.93∗∗∗ 123.41∗∗∗ 116.54∗∗∗

LR Err 214.69∗∗∗ 227.88∗∗∗ 220.92∗∗∗ 237.74∗∗∗

∗ , ∗∗ , and ∗∗∗ represent 1%, 5%, and 10% significance levels respectively.

manufacturing carbon footprint pressure (ECFP) in both the short
and long term. This basically means that as advanced technologies
become more widespread, ECFP tends to decline gradually. To
put numbers on it, every 1% increase in technological innovation
corresponds to about a 0.113% drop in carbon footprint pressure in
the short term and a 0.188% drop in the long term.

5 Conclusion

This study examined the regional and temporal evolution
characteristics of China’s ECFP from 2003 to 2020, based on
vegetation carbon sequestration, and it selected 30 provinces as
research objects. The contributions of the employed population,
economic development, and technological effects to the changes
in ECFP are explored, followed by a quantitative analysis of the

decoupling state between ECFP and economic development. On
this basis, the spatial effects of the number of employed people,
green technology innovation, research investment, proportion
of equipment manufacturing, and energy intensity on ECFP in
different provinces are analyzed using spatial econometric models
in combination with the extended STIRPAT model. The main
conclusions of this study are as follows:

(1) From 2003 to 2020, ECFP increased gradually, especially
in the eastern coastal regions, where it rose significantly.
Over time, ECFP spreads inland from the eastern coastal
regions, and this spreading trend becomes more obvious,
especially during 2005–2010. After 2010, the ECFP in the
central area grew progressively, which could be connected to
economic growth and industrial transfer. From 2003 to 2020,
the center of gravity of ECFP gradually moves southward,
with the center of gravity shifting from Shandong to Jiangsu
and Anhui.

(2) The increase in industrial output value is one of the main
reasons for the rise in ECFP. Over time, there has been a shift
in the link between the growth of the equipment manufacturing
industry and ECFP in the developed eastern coast regions. Initially,
there was a strong negative decoupling, which was followed
by a mild decoupling that exists now. The development of
equipment manufacturing in the previous period mainly relied on
fossil energy consumption, which exerted greater pressure on the
environment. With technological innovation, industrial transfer,
etc., the development of equipment manufacturing in these regions
has maintained high growth while reducing the pressure on
the environment.

(3) The key drivers behind equipment manufacturing carbon
footprint pressure (ECFP) include the number of employees,
green technology innovation, research investment, the share of
equipment manufacturing in the industrial structure, and energy
intensity. Notably, the spatial spillover effects of these factors
shouldn’t be ignored. The results show that more employees
lead to a significant increase in ECFP, especially over the long
term. Green technology innovation, on the other hand, helps
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TABLE 6 Direct and indirect effects under four weighting matrices.

Independent variable Dependent variable: lnECFP

W1 W2 W3 W4

Direct effects

lnEPOP 0.1107961∗∗∗ 0.1115598 0.1095687 0.1107409∗∗∗

(1.44) (1.40) (1.49) (1.47)

lnRD 0.1038913∗∗ 0.1426685 0.0787506 0.0759602∗

(0.87) (1.39) (0.83) (0.72)

lnIS 0.6679734∗∗∗ 0.6533082∗∗∗ 0.6502837∗∗∗ 0.6785328∗∗∗

(6.26) (6.18) (5.97) (6.01)

lnEI 0.6897257∗∗∗ 0.6769419∗∗∗ 0.6717072∗∗∗ 0.689494∗∗∗

(8.30) (8.57) (8.49) (8.36)

Indirect effects

lnEPOP −0.0409722 0.2134237 0.2545932 0.220048

(−0.25) (1.06) (1.15) (0.74)

lnRD 0.7772356∗∗∗ 0.2410185 0.2917495 0.390217∗∗

(2.44) (0.98) (1.02) (1.00)

lnIS −0.9978515∗∗∗ −0.4703114 −0.4750858 −0.5713902∗∗

(−2.35) (−1.19) (−1.23) (−1.07)

lnEI −0.4625317∗∗∗ −0.3491297∗∗∗ −0.3001919∗∗∗ −0.4242302∗∗∗

(−2.42) (−2.29) (−1.88) (−1.86)

∗ , ∗∗ , and ∗∗∗ represent 1%, 5%, and 10% significance levels respectively.

curb carbon emissions noticeably in the short run, with its
effect becoming even clearer in the long run, effectively driving
emissions down. When the share of equipment manufacturing in
the industrial structure rises, it tends to boost local ECFP but
interestingly, it reduces ECFP in neighboring areas. Investment
in research exhibits a lagged effect over time. Meanwhile,
higher energy intensity works against emission reductions,
particularly in the short term, pushing carbon emissions up
quite a bit. Overall, these factors tend to have stronger short-
term than long-term impacts. So, when crafting policies, it’s
crucial for decision-makers to take into account these spatial
interactions and cross-regional dynamics to achieve more effective
carbon reduction.

On this basis, the following policy recommendations are made:
Given the pronounced spatial clustering characteristics of the

equipment manufacturing sector, environmental policies should be
formulated with due consideration for each province’s economic
development level, industrial structure, and resource endowment,
implementing differentiated emission reduction strategies. Policy
direction should focus on optimizing energy structures, reducing
energy intensity, and enhancing energy utilization efficiency.
This entails accelerating the substitution of clean energy sources
(such as renewables, hydrogen, and electrification), promoting
the application of high-efficiency energy-saving technologies and
low-carbon alternative processes, and achieving coordinated green
growth across regions.

Furthermore, cross-regional coordination and collaborative
governance must be strengthened. As equipment manufacturing

TABLE 7 Model regression results under the four weight matrices.

Independent
variable

Dependent variable: lnECFP

W1 W2 W3 W4

lnEPOP 0.111∗∗∗ 0.112∗∗∗ 0.098∗∗∗ 0.106∗∗∗

(5.71) (5.99) (5.33) (5.71)

lnRD 0.098∗ 0.148∗∗∗ 0.085 0.068

(1.73) (2.68) (1.61) (1.25)

lnIS 0.644∗∗∗ 0.691∗∗∗ 0.669∗∗∗ 0.661∗∗∗

(14.13) (15.13) (15.36) (14.82)

lnEI 0.676∗∗∗ 0.701∗∗∗ 0.682∗∗∗ 0.680∗∗∗

(25.49) (26.82) (26.82) (26.16)

Spatial rho 0.014 0.248∗∗∗ 0.400∗∗∗ 0.378∗∗∗

(0.09) (2.79) (5.46) (3.64)

N 540 540 540 540

R2 0.522 0.605 0.621 0.599

∗ , ∗∗ , and ∗∗∗ represent 1%, 5%, and 10% significance levels respectively.

supply chains often span multiple provinces, unilateral actions by
individual regions may lead to carbon leakage or uneven emissions
reductions. Enhanced inter-provincial cooperation, improved
information sharing, and coordinated oversight can establish
a unified low-carbon manufacturing ecosystem. Establishing
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TABLE 8 Results of the short-term and long-term effects of the dynamic
spatial Durbin model under the W3 matrix.

Independent
variable

Dependent variable: lnECFP

Short-term effects Long-term effects

Direct
effects

Indirect
effects

Direct
effects

Indirect
effects

lnEPOP 0.054∗∗∗ 0.091 0.087∗∗∗ 0.271

(3.39) (1.19) (3.34) (1.34)

lnRD 0.085∗ 0.342∗ 0.155∗∗ 0.923

(1.78) (1.79) (2.08) (1.64)

lnIS 0.586∗∗∗ −0.045 0.867∗∗∗ 0.477

(15.29) (−0.27) (13.82) (0.93)

lnEI 0.577∗∗∗ −0.099 0.849∗∗∗ 0.335

(24.17) (−1.11) (22.17) (1.12)

∗ , ∗∗ , and ∗∗∗ represent 1%, 5%, and 10% significance levels respectively.

regional green technology demonstration centers and shared
innovation platforms will accelerate the dissemination of green
technologies and energy-saving practices.

To fully unlock the emission reduction potential of green
technological innovation, mechanisms for incentivizing
innovation and policy support must be refined. Governments
should encourage increased corporate investment in low-carbon
R&D through tax incentives, green credit schemes, and emission
reduction subsidies. Concurrently, integrating innovation
outcomes into industrial upgrading strategies ensures scientific
and technological advancements directly translate into emission
reduction benefits.

Concurrently, researchers and developers should prioritize
environmental protection as a core objective of innovation.
Promoting interdisciplinary integration across environmental
science, materials engineering, and manufacturing technologies
facilitates the conversion of research outcomes into practical
industrial solutions. Refining technology transfer systems,
strengthening intellectual property protection, and establishing
research-to-application incubation mechanisms will further
shorten innovation conversion cycles.

Finally, policy design should incorporate social and
market mechanisms to sustain long-term emissions reduction
momentum. Enhancing transparency and accountability through
carbon trading and disclosure mechanisms, while stimulating
public engagement via awareness campaigns and voluntary
reduction initiatives, will achieve balanced development across
technological advancement, economic competitiveness, and
environmental sustainability.
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