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The scope and scale of past human impacts on both historic and current
vegetation is of widespread interest in the historical sciences. In the Atlantic
Forest of southern Brazil (Portuguese: Mata Atlântica), previous work has
identified Amerindian settlement and land-use as a probable driver of the extent
and composition of forest cover, with time-extended legacies that remain
detectable in modern floristic inventories. Previously published investigations
into the ecological history of the southern Atlantic Forest have either eschewed
the role of humans or, where anthropogenic drivers are explicitly examined,
utilized spatially restricted environmental datasets, necessarily limiting the
generalizability their conclusions. This study aims to redress this gap, and
to quantify the impact of past Amerindian Pre-Columbian settlement and
associated land use on the modern-day distribution of several key plant species
across the entire southern Atlantic Forest. We fit Maxent species distribution
models (SDMs) using Indigenous archaeological site locations (Tupi-Guarani and
southern Jê) and modern plant species occurrence data (35 unique species)
in a comparative analytical framework to investigate Indigenous influence on
the likelihood of occurrence of culturally significant or medicinal plant species.
Our results indicate that (i) the inclusion of archaeological settlement location
data and SDM predictions as covariates can improve the performance of
contemporary floristic species distribution modeling and should be incorporated
into ecological models of plant species in landscapes with long-standing
human presence, especially when they are used to inform policy that explicitly
aims to preserve “natural” biomes and; (ii) a synanthropic relationship can be
demonstrated between the southern Jê and Araucaria angustifolia, a finding that
complements previously published phylogeographic and palaeoenvironmental
studies exploring the same link.
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1 Introduction

The historic role of humans in shaping tropical forests, and
their consequences for land use, land cover, and Earth system
change, is a subject of significant current interest across the social
and environmental sciences (Barlow et al., 2012; Malhi et al., 2014;
Roberts P. et al., 2017; Roberts et al., 2023, 2018). In the Neotropics,
emerging evidence has highlighted the degree to which, and
ways in which, Indigenous communities have shaped forest cover,
ecosystem dynamics, and species composition over the long-term,
with lasting legacies for biodiversity and the carbon cycle (Pyles
et al., 2022; Montoya et al., 2020; Levis et al., 2017; Pereira Cruz
et al., 2020; Robinson et al., 2018). Well-known examples from the
lowlands of South America include landscape-level hydrological
engineering infrastructure in southwestern Amazonia (Erickson,
2000; Lombardo and Prümers, 2010; Prümers et al., 2022; Rojas
Mora and Gaitán, 2015) and vast extensions of anthropogenic
dark earths in the central and eastern Amazon basin (Arroyo-
Kalin, 2017; Lombardo et al., 2022; Schmidt et al., 2014). Human-
mediated environmental changes such as long-distance species
translocations (Capriles et al., 2022; Piperno, 2011; Piperno et al.,
2000), influences on plant genetic diversity (Wang et al., 2025;
Lauterjung et al., 2018) modifications to vegetation composition,
and alterations to fire regimes (Iriarte et al., 2020; Nascimento et al.,
2022) have all been documented. In the context of the biosphere,
there is also a growing appreciation of the long-term widespread
and systematic promotion of useful tree species, to the extent
that Indigenous agroforestry practices have left long-lasting legacy
effects still detectable in modern inventories (Balée, 2013; Clement
et al., 2015; Lins et al., 2015; Maezumi et al., 2018; Levis et al., 2017).
However, with some notable exceptions (e.g., Levis et al., 2017),
quantitative, spatial comparisons of human activities and modern
biodiversity have been lacking. This is particularly the case for the
Atlantic Forest, something problematic given drastic reductions in
its extent and the sustainability challenges facing its ecosystems in
the 21st century.

The long-term relationship between the Atlantic Forest biome
and pre-Colonial Indigenous societies has been of longstanding
interest (Azevedo and Scheel-Ybert, 2020; Bitencourt, 2006; Iriarte
and Behling, 2007; Robinson et al., 2018; Pereira Cruz et al., 2020).
By the late Holocene, multiple archaeological cultures with distinct
population structures, settlement patterns, and subsistence bases
coexisted in the southern Atlantic Forest (SAF). Tupi-Guarani
groups were among the most numerous Indigenous peoples at
the time of Conquest, represented archaeologically by the Tupi-
Guarani culture, with a distinctive “Amazonian” land use pattern
centered on horticulture and agroforestry along the margins of
major rivers (Noelli, 2008; Bonomo et al., 2015; Iriarte et al.,
2017b). In the highlands, southern Jê people practiced mixed low-
level food production and agroforestry, focused especially on the
management of moist highland forest dominated by Araucaria
angustifolia (Noelli, 2005; Robinson et al., 2018). There is evidence
for both demographic expansion and land use intensification over
the past 2000 years, including the emergence of social organization
beyond the family unit, which has been linked to an increasing
anthropogenic footprint on environments (De Souza and Riris,
2021; Iriarte et al., 2017a, 2008; Reis et al., 2014, 2018). Cultural

trajectories on the Atlantic coast differ somewhat, with no clear
signs of demographic expansion or land use intensification from
2,000 cal BP (Toso et al., 2021). Southern Jê contact occupations
on the coast likely commence around 1,300 cal BP (Cardoso et al.,
2024), while Tupi-Guarani occupations commence after 1,000 cal
BP (Bonomo et al., 2015). Changes to the extent and, to a lesser
extent, composition of the SAF are broadly coeval with these
cultural trajectories (Behling et al., 2004; Iriarte and Behling, 2007;
Gessert et al., 2011; Iriarte et al., 2017a; Jeske-Pieruschka and
Behling, 2012). However, there is a general lack of systematic
analysis as to how different elements of flora were selected for by
communities over the long-term, how the strength of anthropic
influences varied, and whether legacy effects remain detectable in
modern inventories, with some notable exceptions (Robinson et al.,
2018; Lauterjung et al., 2018).

It is clear that the Atlantic Forest and its resources were
important to human subsistence from the earliest occupations in
the region by humans (Dias, 2012). Quantitative and systematic
analysis of long-term interactions between forests and people need
to be developed in order to better estimate how human societies
and their environments co-evolved (Nascimento et al., 2024),
as well as to better comprehend modern biodiversity contexts,
dynamics, and concerns. Given the complexity of Neotropical
ecological communities, and indeed, socio-ecologies, initiatives
that seek to foster resilience and restoration such as the Pact for the
Restoration of the Atlantic Forest (https://www.pactomataatlantica.
org.br/) can benefit from the integration of such data (Flores et al.,
2024; Witteveen et al., 2025). The deficit of precise knowledge on
the effects of Indigenous activity also has consequences for how
initiatives and roadmaps are defined in the present; restoration
targets are typically set with reference to Colonial-era or 20th
century evidence on past environmental conditions (Carlucci et al.,
2021). As biodiversity outcomes are enhanced by the promotion of
Indigenous land use strategies (Benzeev et al., 2023), the potential
of palaeodata to contribute or even suggest alternatives to modern
land use patterns is clear (Silva et al., 2022). Furthermore, despite
awareness that reliable baselines and consistent estimates of the
strength of legacy effects on forest composition are necessary for
designing impactful policies (Gillson and Marchant, 2014; Ledru
et al., 2016), the exact definition of these terms tends to vary on
a case-by-case basis. For our purposes we define a legacy effect
as a measurable, statistically significant influence of Amerindian
derived data on the performance of a plant species model.

To enhance the accuracy and dimensionality of high-level
synthetic works and to generate new insights into the scope of
pre-Columbian impacts and their legacies in the Atlantic Forest,
the first phase of our research comprised developing two presence-
only species distribution models (SDMs) using Maxent (Phillips
et al., 2017; Kass et al., 2021). These models are trained on
legacy archaeological site location data for the Tupi-Guarani
and southern Jê Amerindian traditions (c. 2,200–500 cal. BP),
compiled from the Sistema Integrado de Conhecimento e Gestão
(https://sicg.iphan.gov.br) operated by the National Institute of
Historic and Artistic Heritage of Brazil (IPHAN) and extant
archaeological site compilations (Bonomo et al., 2015; Riris and
de Souza, 2021). A total of 14 environmental covariates were
used as predictors and Target Group Sampling (TGS) was used
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to generate a distribution of background points that somewhat
mitigated the spatial clustering of presences caused by sampling
bias. Our approach builds significantly on similar previously
published work (Pereira Cruz et al., 2020) by increasing the
number of covariates used as predictors, adopting a finer modeling
resolution, using more sophisticated methods for background
point generation, introducing a more robust, spatially-explicit
cross-validation strategy, and focusing on evaluating models using
metrics appropriate for presence-only models. Next, we used
the same workflow and predictors to develop 35 additional
Maxent SDMs, trained on geolocated plant species occurrence
data obtained from the Global Biodiversity Information Facility
(GBIF), comprising mostly species of known Indigenous cultural
and or medicinal importance. Finally, we explored methods of
reclassifying continuous prediction data from all models into
meaningful categorical classes using Predicted/Expected (P/E)
curve characteristics.

Following evaluation of performance and interpretation of
covariate contribution of phase one models, the second phase of
our research involved introducing reclassified Amerindian SDM
predictions and Euclidean distances from Amerindian sites as
additional covariates (known as Amerindian derived covariates,
ADCs) within additional runs of a subset of 11 plant species models.
To ensure any conclusions around the effects of introducing ADCs
into plant species models were robust, we refitted these phase
two models 50 times using different distributions of background
points. Finally, we compare plant species models incorporating
ADCs with those fitted to purely environmental covariates using
Student’s t-tests on distributions of key evaluators of model
performance, such as Continuous Boyce Index (CBI) and area
under the operating curve (AUCROC). Our results demonstrate
that the introduction of reclassified southern Jê predictions as
additional covariates significantly improves the predictive accuracy
of Araucaria angustifolia and Tillandsia stricta models on unseen
data, although in the latter case the predictions are less robust.
These findings further indicate that prehistoric human populations
left a lasting impact of the vegetation of the southern Atlantic
Forest, and demonstrate that floristic ecological models can be
improved by the explicit inclusion of archaeological data.

2 Materials and equipment

2.1 Data acquisition and pre-processing

2.1.1 Archaeological site location data
This study evaluates the contemporary environmental impact

of two pre-Columbian Amerindian cultures within the Atlantic
Forest of southern Brazil: the Tupi-Guarani and the Southern Jê.
The Area of Interest (hereafter AOI) comprises a 10 km buffer
around the extent of southern Atlantic Forest (AF), where it falls
between −45◦ and −60◦ longitude and −30◦ and −20◦ latitude
(Figure 1) (see discussion around sectorization in Marques et al.,
2021). Amerindian site locations within the AOI were collated from
a variety of sources, including previously published studies (e.g.,
Riris and de Souza, 2021; Riris, 2019) and published databases
(i.e. SICG [https://sicg.iphan.gov.br/], see Figure 1). Site locations

obtained from the SICG database that lacked cultural attribution
data were excluded from the presences data set but retained for
use in target group sampling (TGS) (see Section 3.2). These data
are a valuable approximation of the locations inhabited by pre-
Columbian groups, however–like all archaeological data–they are
subject to systematic recovery biases resulting in specific spatial
patterns that impact the modeling procedure described below. In
particular, the coastal region remains difficult to reliably model both
due to a lack of securely attributed archaeological sites and gaps
within the environmental covariate data arising from the dynamic
nature of coastal zones (see Figure 1, lower).

Archaeological evidence indicates that the Southern Jê were
extant in the southern Brazilian highlands since at least 2200
calendar years before present, and were responsible for the
production of Taquara/Itararé tradition ceramics. Over time,
southern Jê groups developed distinctive forms of domestic and
ceremonial earthen architecture, in the form of pit house dwellings
and enclosed funerary mound complexes (Iriarte et al., 2013).
The former can occur in clusters of more than 100 individual
pits, potentially with defined trackways and terracing spatially
associated to them. Pit houses are more common above ∼800 masl;
other types of settlement sites predominate at lower elevations.
Funerary mounds characteristically occur in pairs of unequal
size, topographical prominence, and degree of elaboration. They
date from approximately ∼1,000 cal BP, and are interpreted
as the architectural expression of emerging political inequalities
centered on the duality of historically documented southern Jê
moieties (Iriarte et al., 2008; Corteletti, 2013). Larger ceremonial
centers may have acted to socially integrate Jê groups on a
regional scale, potentially indexing the development of supra-
kinship levels of organization, with local community leaders
presided over by a paramount chief. Southern Jê groups likely
practiced a mixed form of agroforestry that incorporated both
domesticates and managed forest resources, in particular the seeds
(Portuguese: pinhão) of Araucaria angustifolia where this species
occurs (Bitencourt, 2006; Iriarte and Behling, 2007; Robinson et al.,
2018). Maize pollen is first attested in sedimentary records from
areas occupied by southern Jê at ∼1,800 cal BP (Gessert et al.,
2011). Archaeobotanical data from excavated domestic contexts has
revealed evidence of maize, squash, beans, and manioc from ∼600
cal BP in the highlands (Corteletti et al., 2015), and maize and
sweet potato from ∼1300 cal BP on the Atlantic coast, coeval with
the reoccupation of sambaqui (shell midden) sites by these peoples
(Wesolowski et al., 2010; Toso et al., 2021). Evidence of maize
consumption, likely in the form of chicha (beer), has also been
recovered from contexts associated with funerary mounds dating
from ∼700 cal BP (Iriarte et al., 2008). A demographic transition
has been suggested to coincide with the expansion of Araucaria
forest in the highlands from about ∼1300 cal BP as well, related
to an overall intensification of land use that included fire setting
and forest management, as well as increasing social complexity
(Bonomo et al., 2015; Iriarte et al., 2017a; Robinson et al., 2018; De
Souza and Riris, 2021).

The Tupi-Guarani (inclusively comprising the predecessors
of both Guarani and Tupinambá people) appear in our study
area from approximately 2,000 cal BP, somewhat later than the
southern Jê (Bonomo et al., 2015; Iriarte et al., 2017b). Sites with
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FIGURE 1

(Upper) Location of AOI in relation to the coastline of southern Brazil and neighboring countries. Shaded relief and major rivers are depicted. The
Atlantic Forest biome is shown as a shaded area running down the eastern coast of Brazil. (Lower) Archaeological presence data and unattributed
SICG database points used as target group data.
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distinctive Tupi-Guarani tradition brushed, corrugated, and/or
painted ceramics tend to concentrate along major rivers and
their tributaries. Both ethnohistoric and archaeological evidence
indicate intense occupations associated to anthrosol formation
in Tupi-Guarani sites, representative of a period of significant
population expansion originating in Amazonia during the late
Holocene (Brochado, 1984; Noelli, 1998; Iriarte et al., 2017b). Large,
palisaded villages were centered on plazas surrounded by extended
family longhouses, which at a regional scale were organized into
multi-village “confederacies” (Noelli, 1993; Milheira and DeBlasis,
2014). Villages exploited an extensive hinterland of managed forest,
swidden plots, and house gardens, comprising a spatially extensive
agroforestry pattern of land use that was somewhat tethered to
watercourses. Like the southern Jê, Tupi-Guarani groups cultivated
manioc, beans, maize, squash, yams, sweet potato, as well as peanuts
(Noelli, 1993; Behling et al., 2005). The primary mode of expansion
of the Tupi-Guarani archaeological culture is thought to be periodic
fissioning into daughter villages, with each successive settlement
incorporating a similar hinterland. By the European conquest,
Tupi-Guarani groups were present throughout our entire study
area, with extensive settlement along the coast. As such, they were
among the first Indigenous people encountered and impacted by
Portuguese colonization.

Due to variation in the geographical distribution, organization,
land use patterns of these archaeological cultures, and the
affordances of highland vs. riparian environments, we
anticipate concordant differences in associations between
pre-Columbian occupations and plant species, as represented
in our presence datasets. Nevertheless, iconic keystone species
like Araucaria angustifolia notwithstanding (Robinson et al.,
2018; Lauterjung et al., 2018), there is a lack of systematic
evidence on which floristic elements may have been preferentially
interacted with, how the strength of anthropic influences
varied, and whether legacy effects remain detectable in modern
inventories. Beyond the selection of plant presence records
detailed below, we do not presume the presence or absence of
any association.

2.1.2 Floristic occurrence data
All Plantae presence records with a country classification of

“Brazil” with coordinates (∼11.2M) were obtained from the Global
Biodiversity Information Facility (GBIF) database (GBIF.org,
2024). These data were spatially filtered to leave only those
presences falling within the extent of the Atlantic Forest biome
buffered by c. 5 km within the AOI (see Figure 1). Records were
further filtered by attribute to include only those with presences
identified down to species level. Records with invalid coordinates or
missing observation dates were also removed. Remaining records
were checked against the Artificial Hotspot Occurrence Inventory
(AHOI) (Park et al., 2023) and any records matching AHOI values
were removed. Finally, exact duplicates were removed as presences
were reduced to a single record per species, per coordinate pair.
Approximately 800k individual presence records, spanning over
25,000 unique species, remained following pre-processing.

Our initial selection for modeling comprised three sets of
species: (i) the top 20 most abundant species within the processed

GBIF data; (ii) any species recorded as involved in recent Mbyá-
Guarani medicinal plant exchanges in southern Brazil (de Andrade
et al., 2021) and other key culturally-important species, such
as Araucaria angustifolia (see Behling et al., 2004; Iriarte and
Behling, 2007; Lauterjung et al., 2018; Robinson et al., 2018) also
represented in the GBIF data, and finally iii) tree species noted as
being particularly important in Indigenous agroforestry systems:
guabiroba (Campomanesia xanthocarpa), guabiju (Myrcianthes
pungens), araça (Psidium sp.), goiaba (Acca sellowiana), and
comestible palms (Eurtepe sp. and Syagrus romanzoffiana) (Cassino
et al., 2021; Corteletti et al., 2015). 18 species with less than
100 occurrences were removed, though one species (Myrcianthes
pungens) with 77 presences was retained due to its importance
within agroforestry. Records relating to Hedychium coronarium,
Ipomoea cairica, and Rhaphiolepis bibas (the former two introduced
to the Americas from Asia, the latter from Africa) were flagged
as introduced species and not progressed to modeling. Initial
exploratory models also highlighted 9 poorly performing species,
presence data relating to which were also removed. After pre-
processing, ∼33,000 presence records spanning 35 unique plant
species remained. Finally, a number of botanical databases
(POWO, 2024) and relevant published ethnobotanical literature
(Martínez Crovetto, 2012; Keller et al., 2010; Bueno et al., 2005)
were consulted to confirm and/or ascertain traditional medicinal
or cultural uses of all modeled plant species.

An important element that warrants future consideration, but
which we do not explicitly address here, is the time-dependence
of plant occurrences within the GBIF database. The legacies of
more recent land use practices (such as mining, logging, ranching,
especially following industrialization and mechanization) are likely
to have a more dramatic effect on species distribution and forest
composition than Indigenous land use, which in many cases is
removed by several centuries or more. Although biased toward
the present day, especially after 1950, the GBIF database also
contains records from before this, extending in some cases to the
nineteenth century. We have chosen to treat these data as a first-
order approximation of the distribution of the modeled species,
and anticipate that in future work historical observations such as
naturalist accounts of the Atlantic Forest, and other Colonial-era
writings such as land surveys, will be instrumental in closing this
known gap in data. Palaeoecological records may also serve as a
useful point of comparison and potential check on model results. It
must, however, be acknowledged that the overall effect of land use
from the Colonial period onwards likely had a degrading effect on
species distribution, and our use of this data likely underestimates
the historical distribution.

3 Methods

3.1 Feature selection and data
pre-processing

Modeling resolutions of approximately 1 km, 5 km, and 10 km
were adopted and, at each resolution, presence data were spatially
filtered so only a single presence location per modeled pixel
remained (also known as spatial-grid thinning or rarefaction).
Cumulative distance rasters were produced from each set of
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occurrence data for use as model-specific covariates (see Allouche
et al., 2008). Following spatial filtering at 1 km, the number of
archaeological presence data comprised 349 Tupi-Guarani and
1,136 Southern Jê records. Plant species with less than 100
occurrences at 1 km were not progressed to modeling, and the final
number of plant species presences ranged from 77 (Myrcianthes
pungens) to 1,186 (Psidium guajava). Initially, 172 environmental
covariates were obtained as raster data of varying resolutions
from ten open repositories (see Supplementary Table S2). These
covariates described the recent edaphic, bioclimatic, phenological
and hydrotopographic characteristics of the landscape (McDowell
et al., 2023; Johnson et al., 2019; Fischer et al., 2008; Lehner and
Grill, 2013; South et al., 2023; Joint Research Centre, 2022; Wieder
et al., 2014; Poggio et al., 2021; Fick and Hijmans, 2017; Amatulli
et al., 2018).

The use of recent covariate data to fit models of pre-Columbian
archaeological site distributions, which were established under
earlier bioclimatic conditions, risked reducing model performance
but was a necessary compromise that allowed for both the wide
temporal span of the archaeological sites and the relatively recent
provenance of plant occurrence observations (though sub-optimal
from a modeling perspective, correlation between historic and
modern covariates means this approach has proved effective for
e.g. locating new archaeological sites in the Amazon, see Walker
et al., 2023). The use of palaeoclimatic covariates for archaeological
models was also precluded by the necessity to maintain consistency
of covariates between modern plant and archaeological models, so
that the explanatory power of introducing Pre-Columbian presence
probability data into modern plant species distribution models
could be fairly assessed (see Section 4.4).

From the initial collection of 172 covariates, a subset of 14
generically-performant candidate covariates (see Figure 2) were
identified by first selecting 60–70 covariates showing suitable
variance across presence and background points, per species.
Collinearity between regression model predictors can cause
increases in the variance of the regression coefficients, making
them unstable and difficult to interpret (Akinwande et al., 2015).
Accordingly, pairs of covariates were assessed for high collinearity
(see Figure 3) using Pearson’s correlation coefficients and pairs
with values over 0.6 were addressed by removing whichever
covariate ranked lower on a preference list comprising covariates
already established as important to modeling key plant species
and Amerindian groups within the Atlantic Forest, or subtropics
more widely (see Iriarte and Behling, 2007; Rafuse, 2021; Walker
et al., 2023), such as median elevation, distance to coastline
(Pereira Cruz et al., 2020), aspect (Robinson et al., 2018) and
height above nearest drainage (Levis et al., 2017). Further feature
processing was undertaken (see Supplementary Data Sheet 1 for
additional details).

3.2 Generating background points

In addition to presence points, Maxent models also require
‘background points’, which–distinct from absence or pseudo-
absence points–are generated locations positioned to capture the
environmental conditions available to the species being modeled.

The model then uses presences and background points to
distinguish between suitable and less suitable habitats, respectively
(Sillero and Barbosa, 2021: 214-5). It is important to mitigate
the spatial bias within presence records when designing SDMs
(see Valavi et al., 2022; Boria et al., 2014; Phillips et al., 2009;
Steen et al., 2021; Kramer-Schadt et al., 2013). Target Group
Sampling (TGS) was used as this has been shown to be effective
for ecological modeling (Baker et al., 2022; Barber et al., 2022).
For archaeological presence data, the target points comprised 7,412
unattributed sites locations obtained from the SICG database. For
GBIF species presence data, the target points comprised presences
for all other species to those being modeled, which ranged from
21,354 to 22,682 points. For each archaeological tradition or plant
species, the number of background points generated was 10,000,
an arbitrary threshold which has been shown to perform well in
a number of contexts (Whitford et al., 2024; Valavi et al., 2022).
Preliminary models performed better when background points
were not sampled from presence pixels or pixels immediately
adjacent to presence pixels, so these pixels were removed from
KDEs prior to background point sampling (see Figure 4).

3.3 Model specification (Maxent) and
cross-validation

Maxent is a good choice for an initial exploration of the
relationship between Amerindian land-use and modern floristic
composition as it is an accessible (Phillips et al., 2017), well-
tested, generically-applicable (i.e. suitable for both human and
plant species data) modeling technique (Júnior and Nóbrega,
2018; Whitford et al., 2024) that consistently benchmarks above
many other techniques when used for presence-only (presence-
background) data (Valavi et al., 2022). It is also less sensitive to the
number and prevalence of presences relative to other techniques
e.g., random forests (Grimmett et al., 2020) and has been more
widely used within archaeology and palaeoecology relative to other
modeling approaches (McMichael et al., 2014; Pereira Cruz et al.,
2020; Rafuse, 2021; Howey et al., 2016; Demján et al., 2022;
Wachtel et al., 2018). To maximize the independence of test and
training partitions and reduce the chance of overly optimistic
evaluation scores (Roberts D. R. et al., 2017), a 7-fold spatial
cross-validation routine was adopted using a partition block size
determined using the R package {blockCV} (Valavi et al., 2019) (see
Supplementary Data Sheet 1 for further information). Relatively
simple parameter sweeps using feature classes and regularization
values were specified and aimed to provide enough flexibility
to effectively capture and model individual species’ distributions
whilst reducing the chance of overfitting, which can be especially
problematic when comparing predictions from many models
(Morales et al., 2017; Merow et al., 2013).

4 Results

The Amerindian model predictions produced by this study
represent, to our knowledge, the most comprehensive predicted
relative likelihood of occurrence maps for Southern Jê and
Tupi-Guarani settlement (c. 2,200–500 cal. BP) in the southern
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FIGURE 2

Pre-processed covariates obtained for the AOI from various sources. Elevation (Median): GMTED; Euclidean distance from coast (m): Natural Earth Hi
Res; Topsoil bulk density (kg dm-3): Regridded Harmonized World Soil Database v 1.2; Peak (Percent prevalence): GMTED; Mean Temperature of
Wettest Quarter (degrees Celsius * 10): WorldClim version 2; Cumulative distance from occurrences (Southern Jê): User generated.
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FIGURE 3

Correlation matrix for selected covariates. phos = Global topsoil Olsen phosphorus concentration (mg kg−1), wc2.1_30s_bio_13 = Precipitation of
Wettest Month (mm), euclidean_distance_coast = Euclidean distance from coast (m), t_bulk_den = Topsoil bulk density (kg dm-3), awt_t_soc =
Area weighted topsoil carbon content (kg C m-2), wc2.1_30s_bio_7 = Temperature Annual Range, wc2.1_30s_bio_8 = Mean Temperature of
Wettest Quarter (degrees Celsius * 10), phenoe1 = Phenology: end of the season, first season (dekads over three years), phent1 = Phenology: time of
first season (season end minus season start, dekads over three years), hyrivers_type2_distance = Euclidean distance from river classic type 2 (m),
elevation_1KMmd_GMTEDmd = Elevation (Median), geompeak_1KMperc_GMTEDmd = Peak (Percent prevalence), geomshoulder_1KMperc_
GMTEDmd = Shoulder (Percent prevalence), hand = Height above nearest drainage, cml = Cumulative distance raster.

Atlantic Forest to date. These models build on and improve
previously published models (Pereira Cruz et al., 2020) both
in terms of spatial resolution and performance across multiple
evaluators (see Figure 5 below). In terms of model performance,
AUC (discussed further below) assesses the ability of models to
discriminate presences from absences by expressing the ratio of
wrongly predicted absences (false negatives) to correctly predicted
presences (true positives). It ranges from 0–1, with 1 representing
perfect discrimination and 0.5 indicating a rate no better than
random. The 10 km-resolution Southern Jê and Tupi-Guarani
models produced by this study achieved average AUCTest values
of 0.81 and 0.88, when tuned to maximize this evaluator (see
Supplementary Table S4). These values represent improvements of
0.10 and 0.03, respectively, when compared to previously published
Maxent models of the same Amerindian traditions (i.e., Pereira
Cruz et al., 2020). However, using AUC for presence-background
data is problematic (see Barbet-Massin et al., 2012; Liu et al., 2013;

Jiménez and Soberón, 2020) and a more appropriate evaluator–the
Continuous Boyce Index (CBI)–is therefore reported (see Boyce
et al., 2002; Li and Guo, 2013, p. 795; Jiménez-Valverde, 2012;
Sillero and Barbosa, 2021; Lobo et al., 2008; Yackulic et al., 2013;
Leroy, 2023). CBI measures the correlation between predicted and
expected frequencies of presence points based on area, ranging
from ±1, with 0 describing a model that correctly predicts
presences at a rate no better than chance (see Hirzel et al., 2006;
Whitford et al., 2024). 1 km-resolution Southern Jê and Tupi-
Guarani models achieved impressive average CBITest values of 0.9
and 0.81, respectively and exhibited P/E curves indicating their
predictions were robust and of high-resolution.

Plant species model performance was more mixed, depending
on the extent to which the chosen environmental covariates
captured occurrence distribution and the frequency and
distribution of occurrence data available (i.e., CBITest increased
broadly in line with the number of presences available). At 1
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FIGURE 4

(Upper) KDE produced from unattributed SICG sites shown in Figure 1. (Lower) Tupigurani presences and background points drawn from KDE.
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FIGURE 5

Median Test AUC and CBI values for best-performing models per species. Species with more occurrences are shown toward the top of the plot.
Note: certain species (e.g., Syagrus romanzoffiana) were only modeled at 1 km.

km-resolution, the Araucaria angustifolia model performed
strongly (average AUCTest and CBI∼Test of 0.78 and 0.85,
respectively) and its spatial predictions broadly match and
enhance those previously published (i.e., Marchioro et al., 2020).

Particularly performant plant species models also included
Sphagneticola trilobata (average AUCTest and CBITest of 0.8 and
0.91, respectively) and Psidium guajava (average AUCTest and
CBITest of 0.77 and 0.93, respectively). Disregarding AUC as
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a reliable indicator (see Whitford et al., 2024), several other
models performed exceptionally well according to average CBITest
alone, including Eugenia uniflora (0.86) and Anemia phyllitidis
(0.86) and Psychotria carthagenensis (0.85). Covariate importance
plots (Figure 6) and partial response plots (Figure 7) elucidate
the similarities and differences between habitats favored by
Pre-Columbian Amerindian traditions and a number of key,
culturally- and medicinally-important plant species, helping to
better characterize and quantify the extent of environmental niche
overlap often cited as a limiting factor in understanding the impact
of archaeological settlement on modern vegetation patterns in
South America (Robinson et al., 2018; Pereira Cruz et al., 2020;
Levis et al., 2017).

Several trends are discernible from the evaluation data shown
in Figure 5: (i) finer model resolution (i.e., 1 km) generally
improved model performance (see Manzoor et al., 2018) but only
when measured according to median CBITest. The relationship
between resolution and performance was more heterogeneous
when measured according AUCTest, with models produced at
10 km frequently ranking as the best performing per species
(though this was not the case for either Amerindian model); (ii) the
1 km Amerindian models were some of the best performing models
overall, with Tupi-Guarani and Southern Jê models achieving
median AUCTest scores of ∼0.9 and ∼0.85 and median CBITest
scores of ∼0.89 and > 0.9, respectively; iii) A number of plant
species models fall below the commonly-cited acceptable AUCTest
threshold of > 0.75, suggested by Elith et al. (2006): 137 as a
“useful” amount of discrimination [though 0.7 is another threshold
suggested as meaningful by Pereira Cruz et al. (2020): 13]. Several
of these models are from species with high numbers of initial
occurrences (e.g. Eugenia uniflora, Talinum paniculatum, Casearia
sylvestris). Overall, far fewer models fall below 0.75 when measured
using CBITest, a threshold suggested by Hirzel et al. (2006: Figure
5) as representative of a “good” model, though there has been far
less discussion around what constitutes an acceptable threshold for
CBITest in comparison to AUCTest.

4.1 Covariate importance

The model with the highest median CBITest value–as the
most reliable evaluator of predictive performance–per species
was selected to examine covariate importance at each modeling
resolution. Covariate importance was assessed using both
percentage contribution and permutation importance, though a
greater focus is placed on permutation importance as a more stable
measurement. Median elevation ranked as the most important
covariate for the Tupi-Guarani model at resolutions of 1 km
and 5 km, with permutation importance scores of ∼52% and
∼41%, respectively (Figure 6). At 10 km resolution, elevation still
remained important (∼23%) though was second to the climatic
covariate of Precipitation of the wettest month (∼44%). The high
importance of elevation likely reflected the near universal position
of Tupi-Guarani sites within low-lying river valleys, a well-known,
archaeologically-resolved pattern (Bonomo et al., 2015; Noelli,
2004) (see Figure 7). For the Tupi-Guarani model, Precipitation
of the wettest month remained an important covariate across all

resolutions, though steadily decreased in importance from coarser
to finer modeling resolutions. Euclidean distance from coast was
also an important covariate for the Tupi-Guarani model, ranking
as the second or third most importance covariate depending
on resolution, scoring ∼22%, ∼28% and ∼10% for modeling
resolutions of 1 km, 5 km, and 10 km respectively. This accords
well with Pereira Cruz et al. (2020): 6, who also identified this
covariate as relatively important to the Tupi-Guarani model. In
contrast to the Southern Jê model (see below), the cumulative
distance to all sites covariate score for the Tupi-Guarani model
was comparatively low (∼3%, < 1%, 10% at 1 km, 5 km, 10 km
resolutions, respectively). This could be due to the uneven spatial
distribution of Tupi-Guarani sites in relation to latitude, with one
cluster north of 24◦S and another south of 27◦S, with little between.
The impact of this spatial segregation may have lessened as the
modeling resolution coarsened.

For the Southern Jê model, the most important covariate at all
modeling resolutions (c. 43%−54%) was the cumulative distance
to all other Southern Jê sites, indicating that Southern Jê presences
were clustered and spatially-constrained in their distribution. In
contrast to the Tupi-Guarani model, median elevation ranked
as the second or fifth most important covariate depending on
modeling resolution (∼6%, ∼14%, ∼9% at 1 km, 5 km, 10 km
resolutions, respectively). Euclidean distance from coast was
consistently the second or third most important covariate (∼21%,
∼14%, ∼14% at 1 km, 5 km, 10 km resolutions, respectively) and
followed a comparable pattern some other topographic covariates
in terms of losing importance as modeling resolution coarsened.
These findings differ somewhat from the results of Pereira Cruz
et al. (2020), who found that elevation was the highest contributing
covariate to the Southern Jê model but was relatively low-ranking
within the Tupi-Guarani model. This discrepancy may be because
the models in this study were trained using a higher number
of covariates, some of which (e.g. cumulative distance, Mean
temperature of Wettest quarter, distance from coast etc.) could
have acted as proxies for median elevation. The relatively low
importance of Euclidean distance to rivers for either Tupi-Guarani
or Southern Jê models reported in this study remains one of
most marked difference with previous studies (e.g. Pereira Cruz
et al., 2020). Though this may be due to differences in the river
related covariates themselves [this study grouped rivers using the
“classical ordering system” (Lehner and Grill, 2013) rather than
Otto Pfafstetter’s hierarchy], it is again likely due to the model
obtaining similar information from a different covariate(s), such as
height above nearest drainage (abbrv. hand).

4.2 Response plots

Response plots illustrate model prediction values produced
over a range of values for each covariate of interest, whilst
holding all other covariates at median. The influence of individual
covariates on model scores for each Amerindian tradition model
and two culturally important species and/or those with similar
environmental niche overlap is shown in Figures 6, 7 (1 km model
resolution only). For the Southern Jê, Figure 7 shows that elevation
values of between 500-1000 yield the highest prediction values,
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FIGURE 6

Covariate permutation importance for each Amerindian tradition model. For clarity, only covariates with >= 4% permutation importance within at
least one modeling resolution for either Amerindian tradition are displayed. Missing bars indicate that specific covariates had a permutation score of 0.
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FIGURE 7

Covariate response plots. Only covariates with > 1% permutation importance to each Amerindian model are shown. Where responses are missing for
plant species, this either indicates that this covariate was not included in the plant species model (e.g., eliminated due to no variation across training
data) or that it had < 1% importance.
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which agrees well with previously published results (Pereira Cruz
et al., 2020: Figure 3), though this study indicates that elevation
contributes less than 10% to the overall model at 1 km resolution.
Elevation is more important for both comparator plant species
shown (Ilex paraguariensis and Araucaria angustifolia) which both
also favor higher elevations, with predictions increasing in line
with elevation values from 500 up to 1,500 and beyond. The
Cumulative distance method plot shows that the Southern Jê
predictions increased with very low values (i.e. predictions were
strongest close to existing sites), a pattern shared to a lesser extent
by both comparator species. Mean Temperature of Wettest Month
ranked as important to the Araucaria angustifolia model, with
predictions highest at low values and steadily decreasing to zero
by ∼25. This accords with existing studies showing that Araucaria
angustifolia distribution shows a preference for colder winters
(Souza, 2021). The Southern Jê model diverged in this respect, with
predictions increasing with higher values, though this covariate was
less important to the model overall (∼7%).

The response plots for the Tupi-Guarani model (Figure 5)
feature responses from two plant species models that share
similar environmental niches with Tupi-Guarani settlement
sites (see Supplementary Figure S1): Psychotria carthagenensis and
Tabernaemontana catharinensis. The greatest similarity across all
models is the response to elevation (around 20–30% importance
for all models), which is highest at the lowest values and gradually
decreases up to 1,000, though a low-level of prediction strength for
Psychotria carthagenensis persists at higher elevations, in contrast to
the other models. Obvious differences include Euclidean distance
from coast, which ranks as an important covariate (∼20%) for all
three models–Tupi-Guarani prediction strength increases from 0
up to around 4 before dropping off and bottoming out at around
6, whilst both plant species show a broadly linear increase in
prediction strength from 0 up to 4 (Psychotria carthagenensis) and
7 (Tabernaemontana catharinensis), the maximum value within the
training data.

4.3 Predictions and reclassification

There remains some debate over exactly what SDM prediction
values produced by presence-only models conceptually represent
(see e.g., Fithian and Hastie, 2013), though Maxent model
predictions (ranging from 0–1) continue to be reasonably
interpreted as the “predicted relative likelihood of occurrence” of
the modeled phenomena (Valavi et al., 2021: 1737). An example
of the mapped continuous predictions (defaulting to cloglog scale
in the version of Maxent used here) for the Southern Jê model
can be seen on the lower left-hand side map in Figure 8. These
continuous data can be analyzed directly to e.g., establish whether
different modeling algorithms/covariate sets produce significantly
different predictions using pairwise correlation coefficients (e.g.
Bucklin et al., 2015: 22), as long as the underlying models share the
same training/test data (i.e. model the same species) and geographic
areas (Lobo et al., 2008; Merow et al., 2013: 10). Alternatively,
continuous prediction data can be usefully be reclassified into
categorical data (usually binary presence-absence maps) to facilitate
interpretation. Here, the predicted to expected occurrence ratio
(P/E ratio) at varying value ranges of predicted relative likelihood

of occurrence was calculated across all spatial folds used for model
cross-validation to create a P/E curve, which was used to reclassify
the predictions into “Unlikely,” “Marginal,” “Likely” and “Very
likely” (Hirzel et al., 2006; Yu et al., 2024; also see Figure 9).
Inspection of P/E curves facilitated greater insight into model
performance, such as model robustness at varying varying values of
relative likelihood of occurrence, which can be defined by the width
of the 90% CI of P/E ratios of all cross-validation folds. A narrower
CI indicates a more spatially-robust model that yields similar P/E
ratios across all spatial folds. As with the Southern Jê model shown
in Figure 8, upper, model robustness can vary along the predicted
likelihood of occurrence curve and help identify models that can
more reliably predict absences than presences (indicated by the
narrower CI on on the left side of Figure 8, upper).

4.4 Amerindian-derived covariates (ADCs)

For the final phase of the study two sets of Amerindian-
derived covariates (ADCs) were introduced into plant species
models as predictors: (i) reclassified Amerindian SDM predictions
for Southern Jê and Tupi-Guarani and; (ii) rasters describing the
Euclidean distance from both Southern Jê and Tupi-Guarani sites
(see Figure 10). To investigate the impact of ADCs, model runs
both including and excluding them were bootstrapped 50 times
on a subset of 11 plant species. These species included known
cultural keystone species, such as Araucaria angustifolia, as well
as tree species considered important in Indigenous agroforestry
systems such as Euterpe edulis (Corteletti et al., 2015), and
epiphytic species such as Tillandsia stricta. The number of available
training presences relating to selected species ranged from 130–
932. For each of the bootstrap runs, a different set of 10,000
background points sampled using weights from the plant species’
target group KDE (see Section 3.0.2) were generated and used to
train a model using; (i) just the environmental covariates described
above; (ii) the same environmental covariates plus Euclidean
distances from Tupi-Guarani and Southern Jê sites and; (iii)
the same environmental covariates plus reclassified Amerindian
SDM predictions for Southern Jê and Tupi-Guarani. All of the
ADCs were screened for high VIF and collinearity with existing
environmental covariates and plant species cumulative distance
rasters. All ADCs exhibited VIF scores of below 5 and both
reclassified SDM predictions exhibited collinearity scores of less
than ±0.6, with the exception of Tupi-Guarani and median
elevation (−0.66). Euclidean distances from Amerindian sites were
more frequently highly correlated with environmental covariates,
with the Southern Jê data exhibiting positive correlations of
between 0.6-0.74 with various plant species cumulative distance
rasters. There is some debate around the impact of covariate
collinearity on model performance (see Feng et al., 2019;
Elith et al., 2011), however collinearity can impact reported
covariate importance scores, so caution must be exercised when
interpreting these data from models using Euclidean distances from
Amerindian sites.

The impact of introducing ADCs on plant species model
performance varied over different bootstrap runs (see below)
but in some cases provided a considerable boost compared
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FIGURE 8

(Upper) Ratio of predicted to expected presences (P/E ratio) for the best performing Southern Jê model showing reclassification boundaries
according to deviation from a ratio of 1; (Lower) Prediction data from the best performing Southern Jê model before (Left) and after (Right)
reclassification using P/E curve.
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FIGURE 9

Training presence data and reclassified Maxent model predictions at 1 km resolution showing relative likelihood of occurrence for both Amerindian
traditions and two plant species.

to environment only models. The strength and nature of the
relationship between ADCs and a single performance-boosted
plant species model is shown in Figure 11. In the case of Araucaria

angustifolia (top row), there is a clear and important (permutation
importance of ∼30%), positive relationship between reclassified
Southern Jê predictions and predicted Araucaria angustifolia
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FIGURE 10

Tupi-Guarani reclassified predictions and Euclidean distances from sites. These data (and the equivalent for Southern Jê) were introduced as
additional covariates in a second set of plant species models.

likelihood of occurrence, which increases in step with predicted
Southern Jê occurrence as it progresses from “Unlikely” to
“Marginal” to “Likely,” before it plateaus in response to the
highest value of “Very Likely.” A similar though less important
relationship also exists between reclassified Southern Jê predictions
and Ilex paraguariensis and Palicourea sessilis prediction responses.
Positive relationships are observed between reclassified Tupi-
Guarani predictions and Tabernaemontana catharinensis (∼30%
permutation importance) and reclassified Southern Jê predictions
and Tillandsia stricta (∼30% permutation importance). In
the latter case, increasing reclassified Tupi-Guarani prediction
values also translates into higher prediction scores. Overall,
Euclidean distances from Southern Jê sites were almost universally
unimportant across all the plant species models tested and
as a result do not feature on Figure 11. Euclidean distances
from Tupi-Guarani sites feature as marginally important (<
10% permutation importance) across most plant species models.
Araucaria angustifolia prediction values are high near to these sites
and increase in strength up to a certain threshold (0.75) before
they decrease rapidly, a pattern also shared with Ilex paraguariensis
and Palicourea sessilis. The positive impact of ADCs on model
P/E curves can also be observed and is discussed further in
Supplementary Data Sheet 1.

The above results indicate that the introduction of ADCs
can frequently lead to substantial model improvement and
therefore should be considered by analysts seeking to maximize

ecological model performance. However, introducing ADCs does
not guarantee improvement for all species and in some bootstrap
runs can be seen to degrade model performance across various
evaluators. The variable benefit of introducing ADCs observed
over different bootstrap runs likely occurs as a result of the
weighted random sampling of background points used to train
the model, the distribution of which are known to heavily impact
Maxent model performance (Barber et al., 2022; Merow et al., 2013;
Valavi et al., 2022). Observed improvements to model performance
by the introduction of ADCs may be specific to one particular
distribution of randomly sampled background points, making it
difficult to ascertain whether ADCs will offer performance boosts
more generally. To address this, two-sided Student’s t-tests were
undertaken comparing all evaluation statistics from models, both
with and without ADCs, across all bootstrapped runs. Of the
11 plant species models subjected to the phase two modeling
routine, six showed a statistically significant difference across at
least one of the performance evaluators measured (e.g., median
CBITest). Figure 12 shows the overall distribution of evaluators
across all bootstrapped runs as well as the significance of the
t-test’s p values for these six species. In terms of CBI∼Test,
statistically significant increases can be observed when introducing
in reclassified Amerindian predictions as ADCs in models of
Araucaria angustifolia (median, +0.01), Myrcianthes pungens
(average, +0.04) and Tillandsia stricta (average, +0.001). For
Araucaria angustifolia a statistically significant negative impact
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FIGURE 11

Response plots from plant species models showing model responses to ADCs. Responses are taken from the model with the highest permutation
importance scores for ADC, with a minimum importance of 10%. Note, the ADC of euclidean distances from Amerindian sites did not acheive a
permutation importance score of > 10% across any iterations and so no responses are shown.
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on CBITrain is also observed (though the size of this effect is
practically negligible at −0.001). The standard deviation of CBITest
for models of Myrcianthes pungens and Tillandsia stricta using
reclassified Amerindian predictions were also degraded compared
to environment only models, though the magnitude of this
effect was only notable for the former (+0.01). This indicates
that whilst ADCs increased the predictive performance of these
models, they also reduced their overall stability–meaning they
better predicted some spatial folds at the expense of others.
Reclassified Amerindian predictions negatively impacted CBITrain
for Araucaria angustifolia (though the magnitude was marginal
at−0.003), whilst they marginally increased CBITrain alone for
Tabernaemontana catharinensis (+0.003) and Campomanesia
xanthocarpa (+0.009), indicating that introducing ADCs caused
slight overfitting of these models.

5 Discussion

5.1 Amerindian predictions

We preface our discussion by acknowledging that our models
are based on partial presence data of pre-Colonial Indigenous
people in southern Brazil. We made the affirmative methodological
decision to make use of dated sites with known cultural
affiliations, the assessment of which is based on expert judgement.
Nevertheless, our study area encompasses regions, in particular
the coastal strip between Florianópolis and São Paulo, as well as
inland on the São Paulo plateau and in the Paraiba Valley, which
had documented Tupi-Guarani presences in the sixteenth century
(Fausto, 1992; Monteiro, 1992), but for which we lack presence data
of the kind outlined above. The models–based as they are on partial
and largely archaeological data that target pre-Columbian legacy
effects–do not imply that there was no Guarani or Tupinambá
history of occupation in these regions. Despite ambiguities in
our dataset, we affirm that historical accounts indicate dense
Colonial-era occupation along the coastal strip by Indigenous
people. The following discussion is based on the areas for which
we can analytically discern the clearest associations between pre-
Columbian cultures and specific plants, and our interpretations
are applicable to these areas alone except where explicitly stated.
We anticipate that improvements in data coverage and quality will
refine the propositions we tentatively advance here.

Insights about the importance of modeled environmental
predictors–and the difference in terms of these between Tupi-
Guarani and Southern Jê Amerindian groups–help to further
characterize the kinds of environments favored by these traditions.
Metrics from two commonly used evaluators (AUC and CBI) were
compared against differing model resolutions and across plant
species with a range of prevalence values. As other studies have
demonstrated (Meynard et al., 2019), per species, median AUCTest
was seen to increase in line with coarsening resolution, further
emphasizing the issues with this as an evaluator for presence-only
models. Reclassification of continuous model predictions using the
shape and CI intervals of the P/E curve is an effective way to
visualize prediction data from presence-only models. As would
be expected, niche overlap calculations indicate that plant species

with more established cultural or medical uses tend to share
similar niches to either of the two Amerindian traditions modeled
(see Supplementary Figure S1)– though further modeling of non-
medicinal plant species is needed to establish the veracity of this
relationship as well as the existence of possible causal, as opposed
to correlative, links.

Most importantly, the results of this study indicate that
the inclusion of archaeological data in ecological modeling
frameworks can significantly increase model performance, both
according to summary evaluation statistics such as CBITest and
through examination of P/E curves. More widely, this research
contributes methodologically to the wider emergent subdiscipline
of archaeoecology (Crabtree and Dunne, 2022). Our results indicate
that reclassified predictions of Amerindian likelihood of occurrence
improved model performance more than using distances from
known Amerindian sites alone. Response plots from Araucaria
angustifolia models showed increased prediction strength in step
with high and/or very high likelihood of occurrence for the
Southern Jê. Though the impact of ADCs varied according to the
distribution of the background points used to train Maxent models,
on average, ADCs significantly increased the median CBITest
value of models for a number of plant species of documented
indigenous value, a reliable indicator of the predictive ability
of a presence-only model on unseen data. The performance
improvement and relative importance of reclassified Amerindian
SDMs across all model covariates compared to simple Euclidean
distances to Amerindian sites (see Figure 11 above) accords with
previously published archaeoecological studies utilizing a similar
a methodology (Tulowiecki and Larsen, 2015; Tulowiecki et al.,
2022). The disparity is likely due to the reclassified SDM predictions
better capturing the geographical extent of zones of probable
Amerindian environmental impact, including at locales containing
as yet undetected Amerindian sites. The paucity of confirmed
archaeological sites at locations that appear to show environmental
impacts elsewhere associated with proximity to archaeological sites
was highlighted by Levis et al. (2017): 927 as a probable contributor
to the relatively modest explanatory power of models based on
Euclidean distances from archaeological sites in the Amazon basin.
Models that incorporate (reclassified) SDM predictions, or other
non-Euclidean distance based predictors [e.g. “accessibility” maps
based on least-cost paths from archaeological sites, see Tulowiecki
and Larsen (2015)], could usefully be applied in such regions to
better characterize the impact of archaeological land management
practices on modern day vegetation composition.

Notwithstanding the apparent differences in environmental
preference between Southern Jê settlement sites and Araucaria
angustifolia habitat (see Figure 7), improvements to the latter
model following the introduction of ADCs may reflect the fact
that particular archaeological traditions and particular plant species
shared (and continue to share) similar ecological niches, with the
ADCs providing enough useful information to the model to enable
it to increase/decrease predictions at locations that contain/do not
contain species presences but are otherwise difficult to account
for using the remaining environmental covariates. An obvious
next step to confirm these findings would involve diversifying the
modeling methods deployed here (to include e.g. random forests,
SVM, GAM, GLM etc.) and/or working with more systematically
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FIGURE 12

Distributions of CBITrain and CBITest model evaluators across all 50 bootstrapped runs for six out of the 11 plant species modeled using ADCs. Results
of Student’s t-test comparing the mean values of each evaluator from models using each set of ADCs (reclassified predictions and Euclidean
distances from sites) with models using only environmental covariates are shown using different colors. Note statistically significant increases in
median CBITest for Araucaria angustifolia, Myrcianthes pungens, and Tillandsia stricta for models including reclassified Amerindian predictions as
ADCs. Introducing Euclidean distance from sites into models produced no statistically significant effects. The five plant species that showed no
statistically significant differences across any evaluators for either ADCs are not shown. Standard deviation values have been inverted.

collected plant species occurrence and ideally absence data (see
Tulowiecki and Larsen, 2015). Further experimentation with
background point generation would also be advisable, as a lack

of background points around the northernmost Tupi-Guarani
presences available–due to a relative dearth of unattributed sites
here–likely meant the available environmental conditions in this
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area were not adequately sampled (see Figure 4). Model prediction
data are freely available to facilitate further research into Pre-
Columbian human-environmental interactions in the southern
Atlantic Forest (https://doi.org/10.5281/zenodo.14955744). High
likelihood zones within Amerindian model predictions may also
usefully warrant further archaeological survey or desk-based
assessments, where previously published studies adopting a similar
approach have located hitherto undetected archaeological sites via
examination of available LiDAR (e.g., Walker et al., 2023).

5.2 Implications

Our use of Amerindian-derived covariates (ADCs) underscores
some important features of pre-Columbian legacy effects
in the southern Atlantic Forest. While improvements were
detected among several culturally important species (see
Supplementary Table S1 and Supplementary Figure S2), ADCs
consistently enhanced model predictive power for three species:
Araucaria angustifolia, Tillandsia stricta and Myrcianthes pungens
(Figure 12). First, our models’ detection of significant niche overlap
between pre-Columbian southern Jê sites and Araucaria accords
well with previous archaeological and palaeoecological findings
in the study region (Behling, 2002; Bitencourt, 2006; Iriarte and
Behling, 2007; Robinson et al., 2018; Lauterjung et al., 2018;
Azevedo and Scheel-Ybert, 2020; Pereira Cruz et al., 2020). Beyond
the evident dietary importance of Araucaria seeds to these groups
(Métraux, 1946; Beber, 2004; Schmitz et al., 2013; Iriarte et al.,
2017a), Araucaria also played an important role in the wider
economy through provisioning of firewood and construction
materials (Azevedo and Scheel-Ybert, 2020). Ethnohistoric sources
note that among the Kaingang, access to these coveted resources
were centrally controlled by community leaders (Mabilde, 1988).
While the direction of causality remains challenging to infer (i.e.,
did Late Holocene Araucaria forest expansion encourage highland
population growth, or did expanding populations promote forest
growth to enhance food supply?), the fact that the relationship
between these phenomena are salient features of our models
indicates that our inferences are robust. No improvement in model
performance upon incorporating ADCs might demonstrate the
limitations of our presence-only based modeling approach and/or
gaps within the underlying training data, or even call into question
long-held assumptions about the socio-ecology of southern Brazil.

Second, the relationship between the epiphytic Tillandsia stricta
(Family: Bromeliaceae) and human presence is illustrative of the
potential contribution of macroecological modeling against the
backdrop of increasing focus on and reclamation of traditional
ecological knowledge (de Andrade et al., 2021; Klein et al., 2022;
Pavão et al., 2021). In general, this genus has numerous medicinal
uses among Guarani groups of southern Brazil, including as a
topical cosmetic, anti-inflammatory, and diuretic agent (Estrella-
Parra et al., 2019). Bromeliads, including Tillandsia spp., are
frequently traded as ornamentals and may have commercial
value to traditional communities as part of sustainable forest
management practices (Peralta-Kulik et al., 2023). Although they
are recognized for their cultural importance, Bromeliaceae in
general are rarely, if ever, reported in regional palaeoecological
records, possibly due to comprising a very small percentage

of overall pollen rain. In contrast to the imposing and iconic
Araucaria tree, a keystone species of the southern Atlantic Forest,
Tillandsia spp. are relatively unobtrusive. The nutritious fruit of
Myrcianthes pungens is well-documented as a food source for
both contemporary Indigenous groups in east Paraguay (Edeb
Piragi, 2011) and historically amongst the Guarani in southern
Brazil (Pereira et al., 2016), and the species is therefore an
obvious candidate for propagation and dispersal by Indigenous
populations in the region within extant and past agroforestry
systems. In summary, our use of modern plant inventories
cross-referenced to Indigenous Amerindian taxonomic knowledge
enabled an inclusive approach that we argue complements other
sources of information on human-environmental interaction. It
has generated models with enhanced dimensionality and scope
that incorporated best practices in species distribution modeling
methodologies. In the process, we have improved our knowledge
of potential pre-Columbian legacy effects on contemporary forest
composition. Our results argue the case for ecological modelers
to more routinely consider including archaeological data within
contemporary floristic SDMs, especially in landscapes with a
long-standing human presence. Robust predictions, incorporating
human presence as an important component of tropical ecosystems
(Montoya et al., 2020; Scerri et al., 2022), may also be used
to facilitate or strengthen further downstream analyses involving
recent or contemporary floristic inventories to characterize pre-
Columbian environmental legacy effects (e.g., Levis et al., 2017),
with important implications for conservation and policy-making
more broadly. As biodiversity outcomes are enhanced by the
promotion of Indigenous land use strategies (Benzeev et al.,
2023) the potential of palaeodata to contribute or even suggest
alternatives to modern land use patterns is clear (Silva et al., 2022).
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