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Introduction: The accelerated development of renewable energy sources has 
confronted substantial challenges, primarily attributable to their intermittency 
and uncertainty. Consequently, the integration of green electricity has become 
a pressing concern. Hydrogen production from water electrolyzer has emerged 
as a key method for promoting local wind and solar energy consumption. 
However, extant studies tend to neglect the value of hydrogen as a chemical 
feedstock and rely on simplified linear models to describe the characteristics of 
electro-hydrogen coupling devices. This has resulted in discrepancies between 
optimization decisions and actual operational performance.
Methods: To address this gap, the present paper employs a nonlinear semi-
empirical model with a focus on electrolyzer and fuel cell. It describes the 
energy conversion between electricity and hydrogen more accurately based 
on electrochemical mechanisms. On this basis, considering the dual value 
of hydrogen energy as both “energy carrier” and “chemical raw material”, 
the operation optimization model of electric-hydrogen coupling system for 
chemical parks is established. Furthermore, a convexification method for 
coupling device constraints is proposed to enhance solution efficiency.
Results and Discussion: The findings of the study demonstrate that the semi-
empirical model provides a more accurate representation of actual equipment 
performance, thereby preventing deviations between real-world operation 
and outcomes derived from optimization. Furthermore, the collaborative 
optimization strategy that accounts for hydrogen’s dual value has been shown 
to significantly improve the system’s economic benefits.

KEYWORDS

renewable energy, water electrolysis, model convexification, electricity-
hydrogencoupling system, hydrogen utilization 

 1 Introduction

With the depletion of fossil fuels and the intensification of global climate change, large-
scale development and utilization of renewable energy has become the core pathway for 
energy transformation (Li J. et al., 2021). Under the global Paris Agreement targets of 
achieving net-zero emissions by 2050, renewable energy development has been accelerating 
rapidly. However, existing power system flexibility resources cannot meet the consumption
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demand for large-scale renewable energy, leading to frequent wind 
and solar curtailment phenomena.

Electric-hydrogen coupling systems convert renewable energy 
into hydrogen through electrolysis, leveraging hydrogen’s temporal 
and spatial transferability to achieve large-capacity, long-cycle 
energy storage (Nikolaidis and Poullikkas, 2017). This approach 
has been recognized as a key method for solving wind and solar 
curtailment problems and achieving cross-temporal optimization of 
renewable energy allocation (Risco-Bravo et al., 2024). Meanwhile, 
as important nodes in the energy internet, electric-hydrogen 
coupling systems are also effective modes for promoting multi-
energy flow synergistic interaction and improving comprehensive 
system efficiency (Sun et al., 2024). Global low-emissions hydrogen 
production reached less than 1 Mt in 2023, with the sector growing 
rapidly as installed electrolyzer capacity reached 1.4 GW by the 
end of 2023 and is expected to reach 5 GW by 2024 (IEA, 
2024), demonstrating increasingly tight coupling between electricity 
and hydrogen.

Against this background, researchers have conducted extensive 
studies on wind-solar hydrogen production synergy (Gu et al., 
2023), hydrogen flexible energy storage (Li et al., 2025; Su et al., 
2023), and electric-hydrogen multi-energy integration (Li Q. et al., 
2021; Wang et al., 2023; Qiu et al., 2023). Gu et al. (2023) developed 
a photovoltaic-based energy system coupled with energy storage 
to achieve all-day stable PEM electrolytic hydrogen production, 
demonstrating effective mitigation of solar intermittency through 
battery-assisted operation. Su et al. (2023) proposed a capacity 
configuration optimization method for green hydrogen generation 
driven by solar-wind hybrid power, using NSGA-III algorithm 
to optimize system capacity configuration with comprehensive 
performance criteria of economy, environment and energy 
efficiency, achieving remarkable performance with abandoned 
energy power rate reduced to 3.32%. Li Q. et al. (2021) established 
coordinated control strategies for electric-hydrogen hybrid energy 
storage in multi-microgrids, proposing a super-twisting algorithm-
based control method to achieve optimal power distribution 
among photovoltaic panels, batteries, fuel cells, and electrolyzers. 
Wang et al. (2023) integrated the heat generation characteristics 
of alkaline electrolyzers and hydrogen fuel cells to construct 
a hydrogen system heat recovery operation model. Qiu et al. 
(2023) addressed the uncertainties of renewable energy generation 
and electricity prices through a two-stage distributionally robust 
optimization approach, establishing a coordinated scheduling 
model for integrated energy systems with electricity-hydrogen 
hybrid energy storage that considers both day-ahead deterministic 
planning and intraday robust rescheduling under high-order 
uncertainties. However, these studies only focus on hydrogen’s 
terminal energy carrier attributes on the hydrogen side, failing to 
incorporate hydrogen’s chemical feedstock potential into research. 
Globally, a significant portion of hydrogen is used as raw material 
for synthetic ammonia or synthetic methanol production, forming 
numerous and widely distributed chemical parks. These chemical 
parks are not only important consumption terminals for hydrogen, 
but their production process load flexibility can also interact with 
the power grid. With process improvements, chemical production 
processes using hydrogen as feedstock have acquired good load 
regulation flexibility, becoming another effective mode for electric-
hydrogen coupling systems to solve wind and solar curtailment 

problems and improve comprehensive system efficiency (Glenk and 
Reichelstein, 2019).

Taking green hydrogen synthetic ammonia as an example, 
Denmark’s Topsoe company’s DynAMMO flexible synthetic 
ammonia process improves reaction equipment and optimizes 
control processes based on the Haber-Bosch method (Fahr et al., 
2023), capable of operating at minimum 5% of rated capacity 
under low load regulation, with bidirectional response rates 
>3%/minute (Mbatha, et al., 2024; Topsoe, 2023). Italy’s Casale 
company’s solution can achieve rapid load regulation within 
approximately 30 min in the range of 10%–100% (Kong et al., 
2024). These flexible technologies have been validated in multiple 
actual projects. The world’s first green ammonia plant of its 
kind, built through cooperation between Topsoe and Denmark’s 
Skovgaard Energy, has begun production with an annual output 
of 5,000 tons of green ammonia (Topsoe, 2024). The company 
is also collaborating with China’s Mintal Hydrogen to develop a 
390,000 tons/year dynamic renewable ammonia plant in Baotou, 
expected to begin production in 2025 (Julian, 2024). Existing 
research has not fully exploited this production capacity regulation
potential.

For example, although Li et al. (2023) includes synthetic 
ammonia loads, its model only treats chemical production processes 
as static loads, unable to fully utilize the schedulability of chemical 
hydrogen loads to smooth system fluctuations and reduce energy 
costs, thereby limiting the optimization space for overall system 
economic benefits.

Whether hydrogen serves as fuel or chemical feedstock, 
its coupling with the power system relies on the operational 
characteristics of core equipment such as electrolyzers and 
fuel cells. Therefore, precise modeling of electric-hydrogen 
coupling equipment is the foundation for achieving accurate 
system synergistic optimization. The operational characteristics 
of core coupling equipment such as electrolyzers and fuel cells 
are determined by complex electrochemical processes, with 
their voltage-current relationships exhibiting strong non-convex 
nonlinear characteristics. Directly using original semi-empirical 
physical models as constraints would form non-convex nonlinear 
programming problems (Yang et al., 2024) with high solution 
difficulty, making it difficult for planning solvers like Ipopt to obtain 
effective solutions. Existing modeling methods for electrolyzers 
and fuel cells consistently face the trade-off between “accuracy and 
solution efficiency.”

In electrolyzer modeling, Wu et al. (2020) uses fixed efficiency 
to characterize the electric-hydrogen conversion process of 
electrolyzers; Li et al. (2023) performs linear approximation of 
equipment nonlinearity around the electrolyzer’s operating point. 
Such linear models are simple in form and convenient for integration 
into optimization frameworks, but have large errors. Under certain 
operating conditions, electrolysis efficiency errors can reach 
10%–20% (Persson et al., 2020; Xia et al., 2023). Xu and Deng (2025) 
and Akram and Kienberger (2024) use piecewise linearization 
methods to approximate nonlinear constraints, but require one-
hot encoding to select piecewise intervals, inevitably introducing 
large numbers of 0–1 variables, making models strongly non-
convex and prone to local optima. Biswas et al. (2023) uses artificial 
neural networks to capture electrolyzer working characteristics, 
but neural network-based models have poor interpretability and 
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“black box” characteristics, unable to be constructed as constraint 
forms suitable for electric-hydrogen collaborative scheduling
problems.

Research on simplified fuel cell modeling is relatively limited. 
Zhou et al. (2022), Vandenberghe et al. (2025) and other electric-
hydrogen coupling system optimization problems assume fuel 
cells maintain fixed hydrogen-electricity conversion efficiency 
throughout the entire operating range, which has accuracy 
deficiencies. Chavan (2021) and Zhang et al. (2023) use polynomial 
fitting or operating point expansion methods to establish simplified 
models, whose expression coefficients lack actual physical 
significance and cannot reflect the intrinsic electrochemical 
mechanisms of fuel cells. Therefore, there is an urgent need 
to develop a coupling equipment modeling and optimization 
method that can accurately represent complex nonlinear physical 
characteristics of equipment while efficiently embedding into 
optimization frameworks and ensuring reliable solutions.

In response to these problems, this paper proposes to conduct 
collaborative optimization research on electric-hydrogen coupling 
systems considering refined modeling of coupling equipment. 
Based on semi-empirical formulas from the electrochemical field, 
nonlinear models of electrolyzers and fuel cells are established, with 
convexification processing to balance accuracy and optimization 
solution efficiency. Meanwhile, the revenue evaluation of green 
hydrogen production is extended to the chemical industry, 
establishing a collaborative optimization model considering 
hydrogen’s dual value as both “energy carrier” and “chemical 
feedstock.” The research results can provide theoretical support for 
engineering implementation of electric-hydrogen coupling systems 
in chemical parks, helping achieve renewable energy consumption 
and global net-zero emissions goals. 

2 Electric-hydrogen coupling system 
architecture in chemical parks

This paper focuses on electric-hydrogen coupling systems in 
chemical parks as the research object. As shown in Figure 1, the 
park can be divided into three main areas: the power supply 
area, hydrogen production area, and chemical production area. The 
power supply area is equipped with wind turbines, photovoltaic 
panels, and electrical energy storage devices, and is connected 
to the main grid through substations. The hydrogen production 
area is configured with electrolyzers, hydrogen storage tanks, and 
fuel cells. The chemical production area encompasses synthetic 
ammonia/methanol production lines. The power supply area, 
hydrogen production area, and chemical production area are 
interconnected through power transmission lines and hydrogen 
transport pipelines, achieving efficient synergy of electricity, 
hydrogen, and ammonia/methanol through the integration of wind-
solar power generation, electrolytic hydrogen production, and 
chemical synthesis.

According to the response characteristics of chemical equipment 
to electricity price signals and renewable energy output, electric-
hydrogen coupling systems in chemical parks can adopt different 
operating modes. In the fixed capacity operation mode, chemical 
equipment such as synthetic ammonia and methanol plants operate 
stably according to preset capacity, with relatively fixed hydrogen 

FIGURE 1
Architecture of electric-hydrogen coupling system in chemical park.

demand. This mode has clear production schedules and simple 
operation, but cannot exploit the flexibility value of hydrogen 
loads. The system’s optimization dependence is mainly reflected in 
electrolytic hydrogen production and energy storage scheduling.

In the flexible scheduling operation mode, chemical equipment 
can dynamically adjust capacity within technical constraint ranges, 
optimizing hydrogen consumption timing according to electricity 
price signals and renewable energy output. This mode fully utilizes 
modern flexible chemical technology and can comprehensively 
leverage hydrogen’s dual value as both energy carrier and chemical 
feedstock. 

3 Electric-hydrogen coupling system 
model

3.1 Coupling equipment model

Electrolyzers and fuel cells are important coupling equipment in 
electric-hydrogen coupling systems, serving as the key components 
for realizing electric-hydrogen-electric energy conversion. This 
paper starts from electrochemical principles and introduces 
empirical formulas from the electrochemical field such as the Tafel 
equation and Faraday’s law (Antoniou et al., 2021), establishing 
semi-empirical models that consider the influence of key parameters 
such as voltage efficiency and Faraday efficiency to accurately 
characterize the nonlinear conversion relationship between 
electricity and hydrogen in electrolysis and its reverse process.

Proton exchange membrane electrolyzer (PEMEL) is an 
electrolysis technology that has matured in recent years, with strong 
capability to follow renewable energy generation that has strong 
randomness and volatility (Buttler and Spliethoff, 2018). It can 
follow input power variations to produce hydrogen at varying rates 
without energy storage facilities to smooth power fluctuations, 
autonomously suppressing power fluctuations from renewable 
energy sources (Firtina-Ertis et al., 2020).

The structure and working principle of PEMEL are shown 
in Figure 2a, with its reaction principle based on electrochemical 
processes (O’hayre et al., 2016). The proton exchange membrane 
allows H+ ions to pass through while blocking electrons and gases, 
creating an efficient ionic conduction environment. When powered, 
water oxidation occurs at the anode, generating oxygen and H+; H+
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FIGURE 2
Structure and principle of PEMEL. (a) PEM Operating Principles.
(b) PEM Equivalent Circuit.

migrates through the proton exchange membrane to the cathode, 
where it gains electrons and is reduced to hydrogen gas.

The theoretical minimum voltage required for water 
decomposition in the PEMEL reaction system is called the reversible 
electromotive force Urev

PEM = 1.229 V. To achieve faster reaction rates, 
higher voltages must be applied in actual operation to overcome 
various internal barriers and external resistances in the reaction 
system. As shown in Figure 2b, this additional voltage can be 
categorized as concentration voltage drop Uconc

PEM caused by solution 
concentration changes, ohmic voltage drop Uohm

PEM caused by internal 
cell resistance, and activation polarization voltage Uact

PEM at cathode 
and anode (Antoniou et al., 2021).

The concentration voltage Uconc
PEM is caused by limitations in 

ion diffusion speed and is described through Nernst diffusion 
layer theory (He et al., 2012), with its mathematical model 
considering the influence of reactant concentration gradients on cell 
performance (He et al., 2012):

Uconc
PEM = q ln(

jM

jM − jPEM
) (1)

where q is a temperature-dependent constant; jM is the limiting 
current density; jPEM is the actual input current density.

Uohm
PEM comes from the internal resistance r of PEMEL:

Uohm
PEM = r · jPEM (2)

The activation polarization voltage Uact
PEM follows the 

Tafel equation (Shinagawa et al., 2015):

Uact
PEM = s ln(jPEM · t+ 1) (3)

The total voltage UPEM of PEMEL is the sum of the above 
voltage terms:

UPEM = Urev
PEM +Uohm

PEM +Uact
PEM +Uconc

PEM (4)

Since PEMEL requires rectification of AC power input from 
the grid before it can be applied to the electrolysis process, 
the rectification efficiency ηrect must be considered. Therefore, 
the voltage-current relationship of PEMEL must also satisfy the 
following equation:

Pin
PEM = UPEM · jPEM ·

APEM

ηrect
(5)

where A is the effective area of the reaction interface; Pin
PEM is the 

power input to the electrolyzer.
Faraday’s law states that the amount of electrolysis reaction 

products is proportional to the input charge quantity. Therefore, the 
hydrogen gas flow rate QH2

EL  produced by the electrolyzer has the 
following relationship with the input current density jPEM:

QH2
EL =

η f jPEMAMH2

zF
(6)

where MH2
 = 2e−3 kg/mol is the molar mass of hydrogen gas. The 

electron transfer number z = 2, F is Faraday’s constant, and ηf is the 
Faraday efficiency.

Additionally, due to the presence of bypass current, not all 
current input to PEMEL can be invested in the electrolysis reaction. 
The ratio of current actually participating in the reaction to 
input current is called Faraday efficiency ηf, which is usually 
characterized by a rational function related to current density 
jPEM (Sánchez et al., 2018):

ηf =
j2
PEM

j2
0 + j2

PEM

ηmax (7)

where the coefficients j0 and ηmax need to be determined by 
data fitting.

Fuel cells (FC) perform the reverse reaction of electrolyzers, 
and both have similar physical models. The relationship between 
hydrogen gas flow rate QH2

FC input to FC and output current I is:

QH2
FC =MH2

I
zF

(8)

The output voltage UFC of fuel cells includes the following 
components:

UFC = Uocv
FC −Uact

FC −Uohm
FC −Uconc

FC (9)

where Uocv
FC  is the open-circuit voltage, which is a constant 

independent of output current (Haimerl et al., 2024); Uact
FC is the 

activation polarization voltage loss; Uohm
FC  is the ohmic loss; Uconc

FC  is 
the concentration polarization voltage loss, which are respectively 
consistent in form with Equations 1–3.
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Substituting the variables and coefficients changed to 
corresponding symbols for fuel cells from Equations 1–3 into
Equation 9, we have:

UFC = Uocv
FC − b ln (a · I+ 1) −Rohm · I− c · ln(

Imax

Imax − I
) (10)

where a, b, c are corresponding term coefficients, Rohm is the internal 
resistance of the fuel cell, and Imax is the maximum current of 
the fuel cell. 

3.2 Renewable energy generation model

The park utilizes wind turbines and photovoltaic panels as 
renewable energy sources. As shown in Equations 11, 12, the actual 
output of wind turbines and photovoltaic panels is constrained by 
their predicted maximum output to avoid over-generation.

0 ≤ PWT ≤ Ppred
WT (11)

0 ≤ PPV ≤ Ppred
PV (12)

where PWT is the actual output of wind turbines, PPV is the 
actual output of photovoltaic panels, and Ppred

WT  and Ppred
PV  are 

the corresponding predicted outputs, respectively. The difference 
between predicted output and actual output represents the curtailed 
renewable energy Pcurt:

Pcurt = Ppred
WT + Ppred

PV − PWT − PPV (13)

The curtailment of renewable energy is quantified by Equation 13, 
which reflects the difference between predicted and actual output. 

3.3 Energy storage system model

Electrochemical energy storage devices, represented by lithium-
ion batteries, satisfy the continuity equation for energy Ebat:

ηcPc −
Pd

ηd
− σeEbat =

∂Ebat

∂t
(14)

where Ebat is the energy stored in the battery, ηc and ηd are the 
charging and discharging efficiencies, respectively, Pc and Pd are the 
charging and discharging powers, and σe is the self-discharge rate of 
the battery.

The hydrogen storage tank satisfies the continuity equation for 
hydrogen inventory S:

QH2
ST − σhS = ∂S

∂t
(15)

where S is the hydrogen inventory in the storage tank, QH2
ST  is the 

injection or release flow rate, and σh is the leakage rate of the 
hydrogen storage tank (Ghaedi et al., 2023).

All energy storage devices must satisfy corresponding upper and 
lower limit constraints for both storage capacity and flow rates. 

3.4 Hydrogen load model

Ammonia synthesis and methanol synthesis represent the two 
most important hydrogen consumption pathways. The Haber-Bosch 
process and the “one-step method” for methanol production are 
currently the mainstream preparation methods for ammonia and 
methanol, respectively, achieving hydrogen conversion rates of 97% 
and 95%. The electrical energy and hydrogen gas consumed in the 
production processes are:

[

[

Pe
NH3

Pe
MeOH

QH2
NH3

QH2
MeOH

]

]
= [

[

Qp
NH3

0

0 Qp
MeOH

]

]

[

[

ηe
NH3

ηH2
NH3

ηe
MeOH ηH2

MeOH

]

]
(16)

where the hydrogen-to-ammonia mass conversion efficiency is 
ηH2

NH3
= 0.176, and the electrical energy conversion efficiency 

is ηe
NH3
= 1MWh/t; the hydrogen-to-methanol mass conversion 

efficiency is ηH2
MeOH = 0.196, and the electrical energy conversion 

efficiency is ηe
MeOH = 0.72MWh/t.

Within the adjustable range of flexible synthesis processes, the 
fluctuations in mass and energy conversion efficiency between 
hydrogen and products can be neglected. 

3.5 Electric-hydrogen coupling network 
model

The microgrid serves as the backbone network of the chemical 
park’s electric-hydrogen coupling system, responsible for power 
transmission and distribution. The model must consider nodal 
power balance constraints and line capacity constraints. For node 
i, let Lout,i represent the set of outgoing branches and Lin,i represent 
the set of incoming branches. For each node in the microgrid, the 
power balance constraint is defined by Equation 17, considering 
incoming/outgoing branch power and injected power.

∑
l∈Lin,i

Pl − ∑
l∈Lout,i

Pl + Pi = 0 (17)

where Pl is the active power flow on branch l, and Pi is the injected 
power at node i, including electrical loads, renewable generation 
(wind and solar nodes), and grid purchases (grid-connected nodes).

The power flow on each branch l must satisfy its transmission 
capacity limits:

−Pl ≤ Pl ≤ Pl (18)

where Pl is the transmission capacity upper limit of branch l.
Similar to the electrical network, the mathematical model of the 

hydrogen network primarily includes nodal flow balance equations 
and pipeline transport equations. For node j in the hydrogen pipeline 
network, with the set of connected pipelines Gj, the nodal flow 
balance equation is defined by Equation 19:

∑
g∈Gj

Qg +Qp
j −Qc

j = 0 (19)

where Qg is the hydrogen flow rate in pipeline g (positive when 
flowing into node j); Qp

j  is the hydrogen production rate injected 
at node j, and Qc

j  is the hydrogen consumption rate by fuel cells 
and other hydrogen-consuming equipment at node j. The injected 
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flow includes hydrogen output from electrolyzers and external 
hydrogen purchases, as well as hydrogen consumption by fuel 
cells, ammonia production, and methanol production. Equation 19 
describes the hydrogen flow balance at each node of the hydrogen 
pipeline network, including hydrogen production, consumption, 
and pipeline transport.

The magnitude and direction of hydrogen flow in pipeline g
connecting nodes i and j are determined by the nodal pressures pi
and pj, which can be characterized by the Weymouth equation:

Qg = Kij√p2
i − p2

j (20)

where Kij = −Kji is the pipeline gas flow transmission coefficient 
from node i to node j in pipeline g, which is related to the pipeline 
diameter, length, gas temperature, and specific gravity. It is positive 
if and only if pi > pj.

Additionally, the transport flow rate of each hydrogen pipeline g 
must satisfy its design pressure and flow limitations:

Qg ≤ Qg ≤ Qg (21)

pmin < pj ≤ pmax (22)

where Qg  and Qg are the lower and upper limits of pipeline flow 
rate, respectively, and pmin and pmax are the lower and upper limits 
of nodal pressure. 

4 Electric-hydrogen coordination 
optimization model

In electric-hydrogen coordination scheduling, the objective is 
typically to minimize the total operating cost while satisfying the 
safe operation constraints of electrical and hydrogen networks 
(Equations 18, 21 and 22), the characteristics of electrolytic 
hydrogen production (Equation 6) and fuel cell power generation 
(Equation 10), hydrogen storage (Equation 15), electrical storage 
(Equation 14), ammonia/methanol production (Equation 16), and 
their respective power and flow rate variation constraints for safe 
operation. 

4.1 Objective function

The operating cost of the electric-hydrogen coupling system 
includes the cost of purchasing electricity from the main grid 
Cgrid, the cost of purchasing external hydrogen CH2

, and considers 
the product revenues from ammonia/methanol CMeOH and CNH3

. 
Additionally, the objective function includes penalty terms for 
renewable energy curtailment Ccurt and slack variables Cslack, with 
the total cost function mathematically expressed in Equation 23:

Ctotal = Cgrid +CH2
+Ccurt +Cslack −CMeOH −CNH3

=∑
t
[λ(t)Pgrid

buy (t) + μQH2
buy(t) + σPcurt(t)]

+ ρ∑
t
(∑

i
(εe

i (t))
2 + q2

H2
∑

j
(εH2

j (t))
2
)

− πMeOHQMeOH − πNH3
QNH3

(23)

where:
Pgrid

buy (t): Power purchased from grid in period t, MW
λ(t): Electricity price in period t, USD/MWh
QH2

buy(t): Hydrogen purchased in period t, kg/h
μ: Hydrogen purchase price, USD/kg
σ : Renewable curtailment penalty coefficient, USD/MWh
ρ: Slack penalty coefficient, USD/MWh2

qH2
: Lower heating value of hydrogen, MWh/kg

εe
i (t): Slack variable at electrical node i in period t, MW

εH2
j (t): Slack variable at hydrogen node j in period t, kg/h

QMeOH: Total methanol production, kg
QNH3

: Total ammonia production, kg
πMeOH: Methanol price, USD/kg
πNH3

: Ammonia price, USD/kg 

4.2 Equipment constraint convexification

Key components of the electric-hydrogen coupling system, 
such as electrolyzers and fuel cells, exhibit significant non-convex 
characteristics in their original physical models, making them 
difficult to solve directly as optimization constraints. Therefore, 
convexification should be applied in the electric-hydrogen 
coordination optimization model.

The behavior of PEMEL is characterized by Equations 4–7. Both 
the input electrical energy Pin

PEM (Figure 3d) and output hydrogen 
flow rate QH2

EL (Figure 3a) can be described by the input current 
density to the electrolyzer. The logarithmic form of the polarization 
voltage Tafel equation and the rational fraction form of Faraday 
efficiency introduce strong nonlinearity to the model:

{{{{
{{{{
{

Pin
PEM =

jPEMA
ηrect
{qln(

jM
jM − jPEM

)− sln(jPEMt+ 1) − jPEMr+Urev
PEM}

QH2
EL =

jPEMMH2
A

zF
·

j2PEM

j20 + j2PEM
ηmax

(24)

Due to the complex form of Equation 24 and the inclusion 
of empirical formulas without strict physical meaning, obtaining 
an analytical expression for Pin

PEM(Q
H2
EL) by elimination is neither 

straightforward nor an ideal approach for describing its physical 
relationships. In contrast, parametric equations using current 
density jPEM as an intermediate variable can effectively characterize 
the Pin

PEM - QH2
EL  physical relationship.

Using fitting parameters for PEMEL under typical operating 
conditions (temperature 65 °C, current density 0.15–3.3 A/cm2), 
substituting into the parametric Equation 24 yields the partial 
curves shown in Figure 3 for lower current densities.

If following the approach of literature using fixed efficiency to 
fit the Pin

PEM - QH2
EL  relationship, the electrolyzer constraint becomes 

a proportional function as shown in Equation 25:

QH2
EL(t) =

ηave

qH2

Pin
PEM(t) (25)

where ηave = 0.45, and the lower heating value of hydrogen qH2
=

33.3kWh/kg.
For the expression QH2

EL(jPEM) containing only Faraday efficiency 
ηf, this linearization is reasonable, as experimental data indeed 
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FIGURE 3
PEMEL performance characteristics and model fitting comparison.

shows a clear proportional relationship, indicating weak nonlinear 
influence of ηf. However, experimental data for UPEM, IPEM, and 
Pin

PEM all exhibit obvious nonlinear characteristics that cannot be 
described by constant proportions.

Table 1 provides a comprehensive comparison of different 
electrolyzer modeling approaches in terms of computational 
complexity and problem characteristics. The parametric equation 
model, while most accurate in representing the underlying 
electrochemical processes, results in a nonlinear programming 
(NLP) problem that is computationally intractable for large-scale 
optimization. The constant efficiency model offers the simplest 
linear programming (LP) formulation but sacrifices accuracy 
significantly.

Piecewise linearization methods achieve better accuracy than 
constant efficiency models but introduce binary variables that result 
in mixed-integer linear programming (MILP) problems. These 
approaches require 3 kT constraints (where k is the number of 
segments), making them computationally expensive and prone to 
local optima due to their NP-complete nature.

The proposed quadratic fitting model strikes an optimal 
balance between accuracy and computational efficiency. It maintains 
the same number of constraints (T) as the constant efficiency 

TABLE 1  Comparison of electrolyzer modeling approaches.

Modeling 
method

Number of 
constraints

Problem 
type

Theoretical 
solution 
complexity

Parametric 
equation model

2T NLP NP-hard

Constant 
efficiency model

T LP O (n3)

Piecewise 
linearization 
model

3 kT MILP NP-complete

Proposed 
quadratic fitting 
model

T SOCP O (n3.5)

T is the number of time periods, k is the number of piecewise segments.

model while formulating the problem as a second-order cone 
programming (SOCP) problem, which can be solved efficiently with 
polynomial-time complexity O (n3·5). This approach preserves the 
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convex nature of the optimization problem while capturing the 
essential nonlinear characteristics of electrolyzer operation, making 
it suitable for practical implementation in large-scale electric-
hydrogen coupling systems.

Observing UPEM, IPEM data, the distribution generally shows 
linear function characteristics, with most data points lying on 
a main trend line with positive slope, indicating that ohmic 
voltage drop Uohm

PEM and reverse electromotive force Urev
PEM dominate 

PEMEL total voltage within the operating range. In fact, nonlinear 
concentration polarization voltage mainly plays a dominant role 
in high current regions exceeding rated working current, while 
activation polarization voltage dominates in extremely small current 
regions, causing experimental data in small current regions to 
be significantly below the main trend line. Corresponding to the 
linear UPEM- IPEM relationship, Pin

PEM(jPEM) should therefore have an 
approximate quadratic relationship:

Pin
PEM(t) ≥ k1QH2

EL(t) + k2[Q
H2
EL(t)]

2
(26)

where:

{{{{{
{{{{{
{

k1 =
Urev

PEMzF+ s ln t
ηrectMH2

ηmax

k2 =
z2F2

ηrectAM2
H2

η2
max
(r+

q
jM
)

The quadratic approximation in Equation 26 is derived from first 
principles using Taylor expansions of the logarithmic terms in the 
electrochemical model. The detailed mathematical derivation and 
validity analysis are provided in Supplementary Appendix SA.

The quadratic approximation parameters require periodic 
recalibration to maintain model accuracy as equipment 
characteristics evolve over extended operation periods. Recent 
electrolyzer performance degradation studies have provided 
comprehensive data on the degradation mechanisms affecting 
the core parameters underlying our quadratic model. Phan et al. 
(2024) conducted a 144-h degradation analysis of PEM electrolyzers 
with different membrane thicknesses under constant current 
density of 3.0 A/cm2, demonstrating that the thinnest membrane 
(NR212) suffered from severe ohmic degradation attributed to 
pinhole formation and resulting decrease in electrical conductivity 
of the iridium catalyst layer due to reduction of iridium oxide 
catalyst. More extensive industrial-scale studies indicate that 
PEM electrolyzers typically experience operational lifetimes 
of approximately 40,000 h compared to 90,000 h for alkaline 
electrolyzers, primarily due to the fragile nature of polymer 
membranes and the inherently acidic environment created by 
H+ ions (Thunder Said Energy, 2023).

The degradation mechanisms primarily affect membrane 
conductivity, catalyst activity, and internal resistance—parameters 
that directly influence our derived coefficients k1 and k2 in the 
quadratic approximation. Schwieters et al. (2023) investigated 
membrane failure mechanisms due to hydrogen crossover in 
catalyst-coated PFSA membranes, revealing that membrane 
degradation accelerates at higher temperatures (80 °C vs. 60 °C) 
through the formation of hydrogen peroxide and radical species 
that cause membrane thinning and pinhole formation. Large-
scale industrial studies have documented even more substantial 
degradation rates, with Wang et al. (2024) and comprehensive 

FIGURE 4
Fuel cell voltage-current and power characteristics.

reviews by Alia et al. (2024) showing that 70% of initial 
iridium catalyst can be lost after 4,500 h of operation under 
industrially relevant conditions (1.8 A cm−2, ∼30 bar pressure), 
with the dissolved iridium migrating through the membrane and 
re-depositing as metallic particles.

Modern electrolyzer systems incorporate sophisticated 
monitoring capabilities that facilitate parameter updating protocols. 
Contemporary cell voltage monitoring (CVM) systems enable real-
time surveillance of individual cell performance within electrolyzer 
stacks, allowing detection of performance anomalies and enabling 
predictive maintenance strategies (Smart Testsolutions, 2023). These 
systems provide continuous monitoring of voltage, current, and 
temperature parameters while offering high electrical isolation and 
long-term stability without requiring recalibration of the monitoring 
equipment itself. The computational requirements for parameter 
recalibration involve solving constrained nonlinear regression 
problems with the fitted coefficients, typically completing within 
minutes on standard industrial computing hardware. The optimization 
framework itself requires no structural modifications—only coefficient 
updates—making the recalibration process relatively straightforward 
from an implementation perspective. While recalibration involves 
operational costs, maintaining model accuracy prevents optimization 
errors that could result in efficiency losses exceeding the 
maintenance investment, providing clear economic justification for 
regular updating protocols. 

Within the typical operating condition range, quadratic fitting 
achieves residuals close to 5–10 segment piecewise linear fitting and 
is significantly better than overall linear fitting under fixed efficiency 
assumptions.

The non-convexity of the FC model stems from activation 
polarization voltage Uact and concentration polarization 
voltage Uconc, with Equation 10 corresponding to the 
curves shown in Figure 4. In small current regions, activation 
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FIGURE 5
Model accuracy comparison for PEMEL hydrogen production prediction.

polarization dominates; in large current regions, reduced reactant 
concentration leads to sharp efficiency decline, with concentration 
polarization effects dominating.

The nonlinear relationships in Figure 4 curves are more 
pronounced than those in Figure 5. Fixed efficiency models 
cannot accurately reflect FC’s dynamic efficiency characteristics 
varying with operating conditions, resulting in significant errors at 
most power points. However, within FC’s main operating range, 
the nonlinear effects of activation polarization voltage Uact

FC and 
concentration polarization voltage Uconc

FC  rapidly decay, making 
internal cell resistance the dominant factor in voltage variation. 
Therefore, the model is not sensitive to specific parameters of 
activation losses and concentration losses, and can accurately 
represent FC voltage-current relationships by only adjusting 
internal cell resistance settings. Ignoring activation loss and 
concentration loss terms in Equation 10, substituting Equation 8 
and relaxing to inequality constraints, the relationship between 
fuel cell output power Pout

FC  and input hydrogen QH2
FC becomes

Equation 27:

Pout
FC (t) ≤ Uocv

FC
zF

MH2

QH2
FC(t) −Rohm[

zF
MH2

QH2
FC(t)]

2
(27)

This constraint is also a convex quadratic constraint.
To assess the accuracy of the proposed convexification approach, 

we employ benchmark validation against the original nonlinear 
semi-empirical model. The validation process involves: (1) obtaining 
optimization results using simplified models (constant efficiency, 
quadratic fitting, or piecewise linearization); (2) substituting these 
optimization decisions back into the original nonlinear constraints 
(Equations 4–7 for PEMEL and Equation 10 for fuel cells) to 
perform benchmark calculations; (3) comparing predicted values 
from simplified models with benchmark calculations to quantify 
modeling accuracy. 

4.3 Energy storage constraint 
discretization

Differential equations (Equations 14 and 15) provide 
continuous-time storage state changes for energy storage devices. 
In optimization models, these must be converted to discrete-time 
models suitable for numerical solution.

Using forward Euler method to discretize both equations, 
resulting in the discrete-time models for battery energy storage and 
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hydrogen tank inventory shown in Equations 28, 29, respectively:

Ebat(t+ 1) = Ebat(t) + ηcPc(t) −
Pd(t)

ηd
− σeEbat(t) (28)

S(t+ 1) = S(t) +QH2
ST(t) − σhS(t) (29)

 

4.4 Coupling network constraint 
convexification

Hydrogen network pipeline flow constraint (Equation 20) is 
relaxed using second-order cone relaxation, with the relaxed form 
given in Equation 30:

‖‖‖‖

‖

2Q+g (t)

2Q−g (t)

K2
ijχij(t) − 1

‖‖‖‖

‖2

≤ K2
ijχij(t) + 1 (30)

where the squared pressure difference χij = p2
i − p2

j ; Q+g  and 
Q−g  are the positive and negative parts of pipeline flow Qg, 
respectively. Therefore, the decomposition of Qg satisfies the 
constraints in Equation 31:

{{{{{{{{{{
{{{{{{{{{{
{

Qg(t) = Q+g (t) −Q−g (t)

Q+g (t) ≥ 0

Q−g (t) ≥ 0

Q+g (t) +Q−g (t) ≤ Qg

Q+g (t) ·Q−g (t) ≤ 0

(31)

 

4.5 Optimization models for different 
operation modes

This paper establishes optimization models for both fixed 
capacity and flexible scheduling operation modes. In fixed capacity 
operation mode, chemical plants operate at predetermined capacity 
levels without responding to electricity price fluctuations and 
renewable energy output changes. Ammonia and methanol 
production are fixed as specified in Equation 32:

{
{
{

pNH3
(t) = pfixed

NH3

pMeOH(t) = pfixed
MeOH

(32)

The corresponding optimization problem for the fixed capacity 
operation mode is formulated in Equation 33:

min Ctotal

s.t.(17), (18), (19),

(21), (22), (24),

(27), (28), (29),

(30), (31), (32).

(33)

The flexible scheduling operation mode fully utilizes 
the advantages of flexible chemical technology, allowing 

chemical plants to dynamically adjust capacity within technical 
constraints. Ammonia and methanol production satisfy inequality 
constraints in Equation 34:

{{{{{{{
{{{{{{{
{

pmin
NH3
≤ pNH3
(t) ≤ pmax

NH3

pmin
MeOH ≤ pMeOH(t) ≤ pmax

MeOH

Δpmin
NH3
≤ pNH3
(t+ 1) − pNH3

(t) ≤ Δpmax
NH3

Δpmin
MeOH ≤ pMeOH(t+ 1) − pMeOH(t) ≤ Δp

max
MeOH

(34)

The corresponding optimization problem for the flexible 
scheduling operation mode is given in Equation 35:

min Ctotal

s.t.(17), (18), (19),

(21), (22), (24),

(27), (28), (29),

(30), (31), (34).

(35)

 

5 Case study analysis

To verify the effectiveness of the proposed electric-hydrogen 
coupling system coordination optimization model, this study 
designs multi-dimensional comparative case studies for simulation 
analysis. Since optimization problems constructed using non-
convex nonlinear electrolyzer parametric equation models and fuel 
cell models cannot be directly solved, this paper compares four 
cases: constant efficiency, quadratic fitting, 5-segment piecewise 
linearization, and 20-segment piecewise linearization models. The 
results from 20 linear segments are approximately regarded as the 
accurate results of the nonlinear model to evaluate the accuracy and 
applicability of different modeling methods.

The case study is based on a typical chemical park test 
system that integrates wind and solar power generation, electrolytic 
hydrogen production, and chemical production functional modules. 
The system includes centralized photovoltaic power stations, wind 
farms, electrolyzers, hydrogen storage facilities, ammonia synthesis 
plants, and methanol synthesis plants as hydrogen-consuming 
enterprises. The topological connection of these components 
is shown in Figure 6. The optimization period is 24 h with 1-h 
time steps, using time-of-use electricity pricing with a peak-valley 
price difference of 0.13 USD/kWh. The case study is developed 
using Python 3.8 and solved using the Gurobi 11.0.3 solver. The 
computational performance analysis is conducted on a standard 
computing platform (12th Gen Intel®Core™ i7-12700H) to evaluate 
the practical scalability of the proposed optimization framework.

Photovoltaic power stations, wind farms, and fixed electrical 
loads use typical daily data. The maximum output and total load 
curves are shown in Figure 7.

5.1 Equipment refined modeling accuracy 
verification

Under the same production strategy, using quadratic fitting 
models in the case study yields optimization results close to 
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FIGURE 6
Topology of the electric-hydrogen coupling system in chemical park.

FIGURE 7
Renewable energy output and load profiles in chemical park.

piecewise linear models, indicating that quadratic fitting models 
are equivalent to piecewise linear models in equipment modeling 
accuracy and sufficient to reflect actual equipment operating 
characteristics.

To evaluate model accuracy, we employ a benchmark validation 
approach: optimization decisions from each simplified model are 
substituted into the original nonlinear semi-empirical model for 
benchmark calculation. In fixed capacity mode, the quadratic fitting 
model predicts total hydrogen production of 3,118.76 kg, while 
the benchmark calculation yields 3,100.16 kg, with an error of 
0.6%. In flexible scheduling mode, quadratic fitting predictions and 
benchmark calculations yield hydrogen production of 3,478.66 kg 
and 3,510.25 kg respectively, (Table 2) with a relative error of 0.9%, 
both demonstrating high accuracy.

However, constant efficiency models exhibit poor accuracy 
when validated against benchmark calculations. In fixed capacity 
mode, constant efficiency model predictions show significant 
deviations from benchmark results, with errors exceeding 29%. 
Such substantial discrepancies would severely affect optimization 
decision reliability if implemented in actual operations. 

5.2 Computational performance analysis

The computational efficiency of different modeling approaches 
demonstrates significant variations in solve times and memory 
consumption. Table 3 presents comprehensive performance metrics 
across fixed capacity and flexible scheduling scenarios.

Beyond accuracy considerations, computational efficiency 
analysis reveals significant performance advantages of the 
quadratic fitting approach. Solution times of 0.04–0.06 s represent 
substantial improvements over piecewise methods, particularly 
in flexible scheduling scenarios where 5-segment linearization 
requires 0.42 seconds—seven times slower than the quadratic
approach. 

5.3 Economic benefits of flexible 
scheduling strategy

Optimization results demonstrate that flexible scheduling 
strategies have significant revenue advantages over fixed capacity 
strategies. Fixed capacity strategies show slight losses, while 
flexible scheduling strategies achieve daily average revenue of
3,622 USD.

The shift in energy cost structure explains the substantial 
revenue differences observed between operating modes. Fixed 
capacity operations incur considerable external energy procurement 
costs - daily electricity purchases reach approximately 3,186 
USD while hydrogen procurement adds another 286 USD. 
In contrast, flexible scheduling enables the system to achieve 
energy independence by strategically timing production 
activities, thereby eliminating these external procurement
expenses.

The renewable energy utilization patterns further illustrate 
this advantage. Fixed capacity operations result in wind 
curtailment of roughly 4% and solar curtailment exceeding 10%, 
indicating underutilized renewable resources. Flexible scheduling 
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TABLE 3  Computational performance comparison across modeling 
approaches.

Scenario Model 
type

Solve 
time (s)

Peak 
memory 
(kB)

Solving 
overhead 
(kB)

Fixed 
capacity

Constant 
efficiency

0.14 218,512 1848

Quadratic 
fitting

0.04 230,044 428

5-segment 
linear

0.08 232,604 2,440

20-segment 
linear

0.08 234,524 2084

Flexible 
dispatch

Constant 
efficiency

0.15 236,416 1896

Quadratic 
fitting

0.06 233,596 5,988

5-segment 
linear

0.42 238,644 5,136

20-segment 
linear

0.18 237,980 7,020

Bold values represent the computational performance indicators of the quadratic fitting 
model proposed in this study, reflecting its advantages in solve time and resource 
consumption.

demonstrates markedly improved performance, with both wind and 
solar curtailment dropping below 1%. This enhanced energy capture 
not only minimizes waste but also increases electrolyzer operational 
efficiency and strengthens the park’s hydrogen autonomy, ultimately 
driving improved profitability. 

6 Conclusion

This paper addresses electric-hydrogen coupling systems 
in chemical parks and proposes a coordination optimization 
method based on refined equipment modeling. It employs 
nonlinear models consistent with actual physical characteristics 
of equipment to more accurately describe electrolyzer and 
fuel cell characteristics, ensures optimization problem solution 
efficiency through convexification and linearization techniques, and 
introduces product price marginal effects to evaluate the economics 
of hydrogen chemical products. The study reaches the following
conclusions. 

1. Refined equipment modeling with adaptive parameter 
maintenance is of significant importance. Traditional 
constant efficiency models cannot account for equipment 
efficiency variations across different power levels, resulting 
in often infeasible optimal solutions. Adopting quadratic 
function fitting of nonlinear models can reflect actual 
equipment operating characteristics across broader power 
ranges, avoiding deviations between actual operation and 

optimization decisions. However, maintaining model accuracy 
requires periodic parameter updates based on operational 
data to account for equipment degradation mechanisms 
such as membrane thinning, catalyst dissolution, and 
internal resistance changes documented in recent industrial
studies.

2. Flexible scheduling of chemical capacity can promote 
chemical production. Compared to fixed chemical capacity, 
flexible capacity scheduling can significantly improve 
economic benefits and enhance wind and solar utilization
rates.
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