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With the continuous maturation of the sharing economy model, the shared 
energy storage station service model emerges as a promising user-side energy 
storage application. This article proposes a bilayer optimal configuration 
method for regional microgrid systems, leveraging shared energy storage 
station services. First, this article introduces and analyzes the new model’s 
operation mechanism and profit model (the financial framework that outlines 
how the shared energy storage station service generates revenue and 
manages costs to achieve profitability), emphasizing its role in energy sharing 
governance to enhance economic and operational efficiency within the 
microgrid system. Second, this service model was applied to a combined 
cooling, heating, and power regional microgrid system. Aiming at the multiple 
goals of the lowest operating cost of the energy storage station and the 
best economic operation of the regional microgrid, a bilayer optimization 
model was established. The outer model aims to solve the configuration 
problem of energy storage stations, while the inner model is responsible for 
optimizing the economic consumption rate (the efficiency with which energy 
is utilized within the regional microgrids, considering the costs of its generation, 
storage, and distribution) and the operation of regional microgrids. Based 
on the Karush–Kuhn–Tucker (KKT) condition of the inner layer optimization 
model, the inner layer model is transformed into the constraint conditions 
of the outer layer model, and the Big-M method is adopted to linearize the 
nonlinear problems in the model. Finally, the rationality and effectiveness 
of the proposed bilayer optimization model were verified through a case 
analysis of three typical scenarios. The research results show that after 
configuring shared energy storage, the operating cost of the regional microgrid 
system decreases by 15.12%, the new energy consumption rate increases 
to 97.44%, and the shared energy storage service provider can recover 
the investment cost within 4.62 years. This indicates that the proposed 
method for constructing a bilayer optimization configuration can effectively 
consider the economic consumption of new energy and significantly improve
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the economic operation of shared energy storage stations and regional 
microgrids.
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regional microgrid, shared energy storage mechanism, energy consumption, bilayer 
optimization model, cost control 

1 Introduction

With the continuous growth of global energy demand and 
the increasingly serious environmental problems, energy storage 
technology, as a crucial means to achieve sustainable energy 
development, has garnered widespread attention (Wang, 2023; 
Hashemizadeh et al., 2024). In recent years, the rapid development 
of energy storage technology and the emergence of the sharing 
economy model have presented new opportunities for user-side 
energy storage applications (Yang et al., 2024; Umar et al., 
2025). An emerging form of energy storage application, the 
shared energy storage station service model can effectively reduce 
the initial investment cost for users, improve the utilization 
rate of energy storage systems, and show broad application 
prospects (Zheng et al., 2025).

However, current regional microgrid systems face numerous 
challenges in terms of energy storage configuration and operational 
optimization (Xia et al., 2024). Traditional energy storage 
configuration methods often overlook the economic and flexibility 
benefits of energy storage systems, making it challenging to meet 
the diverse energy demands and complex operating environments 
of regional microgrids (Shi et al., 2025). Therefore, studying 
an optimization configuration method for regional microgrids 
based on shared energy storage services has significant theoretical 
significance and practical application value (Song et al., 2025).

The optimization of shared energy storage systems in microgrids 
has been a focal point of research, with various optimization 
techniques proposed to address different operational objectives. 
Existing studies can be broadly categorized into three main themes: 
shared mechanism design, optimization algorithms, and evaluation 
metrics and control strategies. Below, we provide a detailed 
analysis and comparison of the techniques used in each category 
(Ng et al., 2024; Krishankumar et al., 2024).

The main aspects of designing shared energy storage 
mechanisms include game-theoretic approaches and decentralized 
frameworks. For the former, Wang Z. et al. (2024) propose a 
multi-strategy sharing model that combines capacity sharing and 
energy property trading. This approach effectively balances cost and 
demand, providing a comprehensive solution for energy storage 
sharing, although it is computationally intensive due to the use 
of an evolutionary game model. In contrast, He et al. (2025) 
introduce a dynamic on-demand renting framework for sharing 
energy storage capacity. The advantage of this approach is its 
adaptability to changing demand, but it is sensitive to the accuracy of 
demand forecasts. For the latter, He et al. (2024) propose a partially 
decentralized P2P transaction framework for shared energy storage, 
aiming to increase the utilization of demand-side resources and 
provide a robust framework for practical applications. However, 
it requires significant coordination among participants. Yan and 
Chen (2023) present an equilibrium model that captures the 

interactions between charging stations, shared energy storage, and 
the distribution network. However, implementing it in real-world 
scenarios may be challenging due to the complexity of interactions.

Existing research in the energy storage mechanism optimization 
configuration algorithm primarily falls into two categories: 
combinatorial auction mechanisms and two-stage optimization 
models. Faramarzi et al. (2025) present a computable combinatorial 
mechanism for energy storage sharing, including a novel auction-
solving algorithm. Although it is efficient and accurate, it 
will be limited in handling highly complex scenarios with 
numerous participants. Hou et al. (2024) propose a two-stage 
scheduling optimization model for optimal scheduling in a 
smart community. However, the two-stage optimization process 
overlooked the issue of real-time energy consumption. He et al. 
(2024) further enhance optimization by proposing a two-stage 
trading optimization strategy, which not only considers supply 
and demand equilibrium but also incorporates safety, stability, 
and efficiency. It requires significant computational resources 
and coordination among multiple stakeholders. Wa et al. (2023) 
present an enhanced version of the multi-objective grasshopper 
optimization algorithm, which incorporates advanced features 
such as Sobol sequence initialization, adaptive social force, cosine 
parameter, and Levy flight mechanism. Despite the enhanced 
capabilities of the method, a notable drawback lies in its potentially 
higher computational demand.

In the control strategy for microgrid energy storage systems, 
Lin et al. (2024) propose a bi-objective model predictive control-
weighted moving average strategy for the operational control 
of hybrid energy storage systems (HESS), which is sensitive to 
parameter settings and requires accurate forecasts of wind power 
generation. Jia et al. (2024) address the challenges of load forecasting 
accuracy by proposing a short-term load forecasting method using 
a spatiotemporal graph convolutional neural network. However, it 
needs significant computational resources and high-quality data for 
training. Li et al. (2024) propose a decentralized power sharing 
and stabilization method for HESSs using active disturbance 
rejection control, which effectively addresses the challenges of 
managing renewable energy fluctuations and maintaining stability 
in microgrids. However, there is a potential for higher costs due 
to the use of specialized components. Taye and Choudhury (2024) 
propose an adaptive filter-based method as an innovative control 
strategy for DC microgrid operation, aiming to ensure stable 
and smooth performance while addressing safety and degradation 
concerns of the storage devices. Real-time calculations are needed 
to manage the charging and discharging of the HESS components 
dynamically.

The technologies discussed in the above-mentioned literature 
examine the application in various microgrid implementations 
across different countries, signaling a growing generalization in 
the research on shared energy storage mechanisms. Advancements 

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1686684
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Ma et al. 10.3389/fenrg.2025.1686684

in renewable energy technologies have sparked interest in energy 
storage solutions to ensure grid stability and facilitate the integration 
of renewable energy. Shared energy storage systems offer benefits 
like reduced peak demand, increased renewable energy utilization, 
and improved grid reliability (Chen et al., 2024). A review of 
international case studies, including a European project that reduced 
peak demand by 20% and increased renewable energy utilization 
by 15% (Faria et al., 2025) and an American project that reduced 
grid congestion by 25% and improved reliability, demonstrates 
the potential of shared energy storage to improve grid stability 
and promote renewable energy integration (Barbosa et al., 2017). 
Additionally, a Chinese project achieved a 30% reduction in energy 
costs for participating microgrid users, further illustrating the 
global significance of shared energy storage systems (Li et al., 
2023). Our research aims to contribute to the understanding of 
the role of shared energy storage in shaping sustainable energy 
systems worldwide, offering insights for its development and 
implementation in diverse contexts.

Although existing research has made progress in energy storage 
technology and shared energy storage models, combining the 
shared energy storage service model with the optimal configuration 
of regional microgrid systems remains an urgent problem. Most 
existing research focuses on single-objective optimization, lacking 
a coordinated approach to the dual objectives of energy storage 
configuration and system operation. Therefore, there is a need for a 
bilayer optimization model that can simultaneously consider energy 
storage configuration and system operation optimization to enhance 
the economy and efficiency of shared energy storage services and 
regional microgrid system operation.

Due to the limitations of existing research, this article proposes 
a bilayer optimal configuration method for regional microgrid 
systems that utilize shared energy storage services. The main 
contributions and innovation points can be summarized as follows:

• Business model for regional microgrids with shared energy 
storage stations: Against the backdrop of new energy 
consumption, this article constructs a business model for 
shared energy storage services in a multiregional micro-
energy network system and conducts an in-depth analysis 
of its profit principle. By integrating the concept of energy 
sharing governance, we aim to provide a framework that not 
only optimizes the economic benefits of shared energy storage 
but also promotes a more sustainable and efficient approach to 
energy management within microgrid systems.

• Energy storage configuration method considering new energy 
consumption: This article examines the impact of new energy 
consumption on the configuration of shared energy storage 
stations and proposes a capacity and power configuration 
method for shared energy storage that accounts for reasonable 
power curtailment.

• Bi-layer optimization configuration method: This article 
constructs a bilayer optimization model. The outer layer model 
is responsible for solving the configuration problem of energy 
storage stations, while the inner layer model optimizes the 
economic consumption rate and the operation of regional 
microgrids.

• Multi-scenario microgrid case analysis: Through the case 
analysis of three typical scenarios, the rationality and 

effectiveness of the proposed bilayer optimization model for 
regional microgrids with shared energy storage stations have 
been verified.

The structure of the remaining part of this article is organized as 
follows: Section 2 provides a detailed description of the definition, 
operation mechanism, and profit model of the shared energy 
storage station service model and constructs an energy consumption 
model. Section 3 presents a shared energy storage configuration 
strategy that takes economic consumption into account, analyzes the 
impact of new energy consumption on energy storage configuration, 
and determines a reasonable power curtailment rate. Section 4 
constructs a bi-layer optimization model. Section 5 elaborates in 
detail the solution methods of the model, including the application 
of Karush–Kuhn–Tucker (KKT) conditions and the linearization 
processing of the Big-M method. Section 6 verifies the rationality 
and effectiveness of the proposed method through typical scenario 
examples. Section 7 summarizes the research results. 

2 Energy consumption model based 
on the shared energy storage 
mechanism

Shared energy storage is a commercial application model that 
integrates traditional energy storage technology with the sharing 
economy model. Energy storage stations are invested in and 
constructed by shared energy storage station service providers, and 
energy storage services are provided to users at a certain price. 
This mode enables users to utilize energy storage systems without 
incurring high investment, while leveraging the flexibility of the 
sharing economy to ensure the efficient utilization of energy storage 
systems, thereby achieving rapid cost recovery of shared energy 
storage stations.

The regional microgrid users analyzed in this article are 
the combined cooling, heating, and power regional microgrids, 
which incorporate various forms of power flow and can meet 
diverse energy needs, including cooling, heating, and electricity 
consumption (Huylo et al., 2025; Verdugo et al., 2025). The 
internal equipment of a regional microgrid includes distributed 
wind turbines, PVs, gas turbines (GTs), boilers, heat exchangers, 
refrigeration units, etc. The microgrid achieves coordinated 
operation of multiple energy sources and efficient energy 
management through an intelligent control system. Additionally, 
regional microgrids can enhance system efficiency and reliability 
by optimizing operational strategies, thereby providing users 
with stable and economical combined cooling, heating, and 
power services. The shared energy storage station optimization 
configuration strategy studied in this article is analyzed based on 
a combined cooling, heating, and power type regional microgrid 
system. A typical combined cooling, heating, and power type 
regional microgrid topology structure participating in the energy 
storage station service is shown in Figure 1.

The connection between the shared energy storage station 
and the regional microgrid is shown in Figure 2. The shared 
energy storage station consists of energy storage batteries, power 
station scheduling modules, inverter modules, and support platform 
systems. Among them, the energy storage battery is responsible 
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FIGURE 1
The regional microgrid structure of the combined cooling, heating, and power type participating in the energy storage station.

for the storage and release of energy, the inverter module is used 
to achieve the conversion of AC and DC electrical energy, and 
the power station scheduling module is responsible for real-time 
response to user electricity demand, managing the charging and 
discharging behavior of the energy storage station, and providing 
energy metering services. The support platform system provides 
data support and management functions for the operation of 
the entire power station. In Figure 2, Psel and Ppur, respectively, 
represent the power of selling and purchasing electricity from the 
n-regional microgrid to the energy storage station; Pcha and Pdis
are the charging and discharging power of energy storage stations,
respectively.

In Figure 2a, the power station scheduling module is the core 
of the entire system, which can dynamically adjust the charging 
and discharging strategies of the energy storage station based on 
the user’s electricity demand, grid electricity price, state of charge 
(SOC) of the energy storage station, and the operating status of the 
regional microgrid. For example, during periods of low electricity 
consumption, the scheduling module will prioritize absorbing 
excess electrical energy (Psel) from the regional microgrid and 
storing it in energy storage batteries. During peak hours of electricity 
consumption, the stored energy will be released (Pcha) to meet the 
electricity demand (Ppur) of the regional microgrid. Additionally, 
the scheduling module can optimize the energy flow between the 
energy storage station and the regional microgrid using intelligent 
algorithms, thereby increasing the overall system efficiency. The 

flowchart in Figure 2B provides a visual representation of the 
operational steps and decision-making process for the shared energy 
storage power station within a regional microgrid, highlighting 
key considerations such as energy generation assessment, demand 
forecasting, and optimization strategies.

As shown in Figure 2, the shared energy storage station acts as a 
central hub for energy management within the regional microgrid. 
Excess energy generated by PV panels and wind turbines during 
peak production times is stored in the energy storage system. 
When energy demand exceeds supply or during times of low 
renewable energy generation, the stored energy is released to meet 
the microgrid’s needs. This process helps balance the supply and 
demand of energy, reducing reliance on fossil fuels and increasing 
the utilization of renewable energy sources. Additionally, the model 
incorporates load shifting mechanisms, where energy is stored 
during off-peak hours and used during peak demand periods. This 
helps to flatten the load curve and reduce peak demand, leading to 
cost savings and increased system reliability. The model facilitates 
energy arbitrage by exploiting price differences in the energy market. 
The shared energy storage station can purchase energy from the grid 
during low-price periods and sell it back during high-price periods, 
generating additional revenue for the microgrid system.

Compared to traditional energy storage stations, the buses of 
shared energy storage stations are directly connected to regional 
microgrid users, enabling bidirectional energy exchange through 
the power station’s buses. This connection method not only 
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FIGURE 2
Schematic diagram of a regional microgrid shared energy storage station. (a) A regional microgrid with a shared energy storage station. (b) The 
operation mechanism of a local microgrid.

enables flexible transfer of electrical energy at the spatial level 
in multiregional microgrid systems but also fully utilizes the 
complementarity between each regional microgrid, improving the 
energy utilization efficiency of the entire system. For example, when 
the power generation of a regional microgrid exceeds its demand, 
the excess electricity can be transmitted to other regional microgrids 
through the power station bus, thereby avoiding energy waste.

In terms of energy measurement and service fees, shared energy 
storage stations accurately measure the charging and discharging 
energy as well as the energy exchanged between regional microgrids, 
and charge corresponding service fees. Specifically, the charging and 
discharging power of energy storage stations (Pcha and Pdis) and the 
power exchanged between regional microgrids (Psel and Ppur) will 
be included in the metering system. It is worth noting that although 
the power exchanged between regional microgrids (Psel and Ppur) 
does not directly flow through the energy storage battery, it is still 
regarded as the process of charging and discharging energy storage 
stations in terms of metering. This measurement method ensures 
unified management of all energy flows in energy storage stations 
and provides a basis for calculating service fees.

The service fees of shared energy storage stations include the 
following three parts:

The cost of purchasing electricity from regional microgrids, that 
is, the fee paid by energy storage power stations when absorbing 
electricity (Pabs) from regional microgrids; Selling electricity fees 
to regional microgrids, which refers to the fees charged by 
energy storage stations when releasing electricity (Prel) to regional 
microgrids; Additional service fees include maintenance costs, 
management costs, and fees for optimizing operational strategies of 
energy storage power plants.

The calculation of these costs is dynamically determined by 
the power station scheduling module based on parameters such as 

grid electricity prices, regional microgrid electricity consumption 
status, and the SOC of the energy storage power station to ensure 
the economic benefits of the energy storage power station and the 
efficient operation of the system.

Through this shared energy storage model, not only can the 
initial investment cost of users be reduced, but the flexibility of 
the sharing economy can also be fully utilized to achieve efficient 
utilization and rapid cost recovery of the energy storage system. At 
the same time, this mode can also improve the energy utilization 
efficiency and reliability of regional microgrid systems, providing 
users with more stable and economical combined cooling, heating, 
and power services. 

3 Principles for power configuration 
of shared energy storage stations

When energy storage power stations serve multi-regional 
microgrid systems, it is necessary to configure their power capacity 
to fully utilize the technical characteristics of energy storage systems 
and leverage the advantages of shared energy storage business 
models. The construction of shared energy storage stations in user-
intensive areas requires considering interconnection with multi-
regional microgrid systems during site selection, thereby fully 
utilizing cluster effects and the complementarity of user loads 
simultaneously. Compared to users separately configuring energy 
storage, the cost is lower, and the energy utilization rate is higher.

As shown in Figure 3, this article makes decision configurations 
for the power capacity of energy storage based on the bilayer 
optimization technology and at the same time optimizes and 
analyzes the operation mode of users under shared energy storage 
services. The decision making on the configuration capacity and 
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FIGURE 3
Schematic diagram of capacity and power configuration principles for shared energy storage stations.

power of shared energy storage stations must be comprehensively 
considered based on the predicted output values of wind power and 
PV power in the region, as well as the estimated loads of various 
users, to obtain the optimal energy storage capacity and power 
under the annual operating cost target of the energy storage power 
station. At the same time, it is necessary to address optimization 
operation problems, such as energy exchange between the multi-
regional microgrid system and the energy storage power station 
under a shared energy storage service.

Given the substantial uncertainty of the output of new energy, 
it is not easy to ensure the complete consumption of new energy 
in the actual operation of power stations. Under the condition 
of considering the complete consumption of new energy, the 
configuration of energy storage has little guiding significance for 
the actual operation of power stations. To fully leverage the role of 
energy storage systems in absorbing new energy and guide users to 
consume the output of wind and solar power sources economically, 
it is not advisable to unthinkingly configure energy storage power 
stations with the goal of complete consumption of new energy. 
Under the premise of ensuring that most of the new energy is 
consumed, a specific economic power curtailment rate can be set, 
allowing distributed new energy power sources to be reasonably 
curtailed within a specific range. The economic consumption rate 

is defined as the annual comprehensive consumption rate of new 
energy in a regional microgrid that minimizes the total annual 
operating cost of the power station-regional microgrid system after 
considering shared energy storage services. The annual operating 
cost of the power station-regional microgrid includes the annual 
value of the initial investment cost of the power station converted 
to the investment cost of each year based on the design service life, 
as well as the cost of purchasing electricity from the grid and the cost 
of purchasing fuel for the regional microgrid.

Remark 1: The proposed model is designed to optimize economic 
benefits and promote sustainable energy management within 
regional microgrid systems, incorporating advanced optimization 
techniques that consider the dynamic interplay between energy 
generation, storage, and consumption. One key innovation is the 
integration of energy sharing governance principles, which ensures 
that the shared energy storage station operates in a manner 
that maximizes economic benefits while promoting sustainable 
energy practices. This approach contrasts with traditional models, 
which often lack a comprehensive framework for energy sharing 
governance. 
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FIGURE 4
Schematic diagram of the double-layer optimization model configuration.

4 Optimize the configuration of the 
bilayer optimization modeling

Bilevel optimization is a method that involves two levels of 
optimization problems, with two optimization objectives: the outer 
layer and the inner layer. The problem structure is shown in Figure 4. 
The bilayer problems are coupled, and the decision results influence 
each other. Under the condition that decisions are made first in 
the outer layer, the optimal value of the inner layer problem can 
be sought (Zhao et al., 2022).

The proposed algorithm utilizes an outer model to determine the 
optimal consumption rate of new energy and solve the configuration 
problem of shared energy storage stations. The inner model, based 
on the outer model, uses the consumption rate and energy storage 
power station configuration scheme decided by the outer model to 
solve the optimal operation problem of the regional microgrid.

Through this bi-level optimization method, coordinated 
optimization can be achieved between the outer and inner layers, 
thereby increasing the overall system’s efficiency and economy. 

4.1 Outer layer model

The outer model is used to address the issues of economic 
consumption rates and shared energy storage station configurations. 
The optimization objective is to minimize the comprehensive cost 
of the shared energy storage station-regional microgrid system. The 
decision variables are the economic consumption rate of new energy 
and the power capacity of the shared energy storage station. 

4.1.1 Optimize the objective function
The total cost of a shared energy storage station-regional 

microgrid system consists of three parts: the investment cost 

of the shared energy storage station, the cost of purchasing 
electricity from the grid for the regional microgrid, and the cost 
of purchasing fuel for the regional microgrid. The objective of 
the outer layer optimization is to minimize the comprehensive 
cost of the shared energy storage station-regional microgrid 
system. The objective function of optimization can be expressed
as Equation 1 below:

min C = Cinv +Cgrid +Cflue (1)

where Cinv is the equal annual value of the investment cost of the 
shared energy storage station; Cgrid is the annual cost of electricity 
purchased by the regional microgrid from the power grid; Cflue is the 
annual cost of fuel purchased for the regional microgrid. 

4.1.1.1 Investment cost of shared energy storage stations
The investment in shared energy storage stations includes 

the annual value of the one-time investment for power station 
construction and the fixed investment cost for maintenance each 
year. When calculating the investment cost of shared energy 
storage stations, the time value of funds should be taken into 
account. Therefore, the annual value of the investment cost can be 
expressed as Equation 2 below:

Cinv =
r(1+ r)γ

(1+ r)γ − 1
(δPPess + δEEess) + δMPess (2)

where r represents the annual interest rate of funds; γ represents 
the life cycle of the device; δP represents the single-bit power 
investment cost; δE represents the investment cost per unit 
capacity; δM represents the maintenance cost of single-bit 
power; Pess and Eess are the rated charge and discharge 
power and rated capacity of the shared energy storage station,
respectively. 
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4.1.1.2 The cost of purchasing electricity from the power 
grid

The cost for a regional microgrid to purchase electricity from the 
large power grid as Equation 3 below:

{{{
{{{
{

CM,N
grid = δ0(P

M,N
grid )

T

Cgrid =
n

∑
M=1

m

∑
N=1

CM,N
grid

(3)

where Cgrid
M,N  represents the cost of purchasing electricity from 

the grid for the Nth regional microgrid on the Mth typical day; δ0
represents the unit electricity price matrix of the power grid for each 
dispatching period; Pgrid

M,N  is the power consumption matrix of the 
Nth regional microgrid in each scheduling period on the Mth typical 
day; m and n represent the typical number of days and the number 
of regional microgrids, respectively. 

4.1.1.3 The cost of purchasing fuel
The cost of purchasing fuel for a regional microgrid as

Equation 4 below:

{{{{{
{{{{{
{

CM,N
flue = c0(

PM,N
GT

ηGTQ0
+

QM,N
GB

ηGBQ0
)

Cflue =
n

∑
M=1

m

∑
N=1

CM,N
flue

(4)

where Cflue
M,N  represents the cost of purchasing fuel for the Nth 

regional microgrid on the Mth typical day; c0 is the matrix of natural 
gas cost per unit volume; PGT

M,N , QGB
M,N  represents the power 

matrix of the GT and gas boiler of the Nth regional microgrid 
during each dispatching period on the Mth typical day; ηGT and 
ηGB represent the efficiencies of GTs and gas boilers, respectively; 
Q0 represents the calorific value of the gas. 

4.1.2 Constraint conditions
The constraints of the outer model are considered from several 

aspects, including the energy ratio of the shared energy storage 
station, the charging and discharging constraints, and the SOC of 
the energy storage battery. 

4.1.2.1 Energy ratio constraints
There is an energy ratio constraint between the capacity of 

energy storage batteries and their rated power, which is expressed 
explicitly as Equation 5 below:

Eess = βPess (5)

where β represents the energy rate of the energy storage battery. 

4.1.2.2 Charge and discharge constraints
During the same dispatching period, the charging and 

discharging status of the power station is determined by the total 
energy demand after energy exchange is completed at the power 
station busbar of each regional microgrid user. At the same time, 
the shared energy storage station is restricted from charging and 
discharging simultaneously during the same dispatching period. 
The constraint as Equation 6 below:

{{{{{
{{{{{
{

m

∑
M=1
(PM,N

ess,s(t) − PM,N
ess,b(t)) = PM

abs(t) − PM
rel(t)

0 ≤ PM
abs(t) ≤ UM

abs(t)Pess

0 ≤ PM
rel(t) ≤ UM

rel(t)Pess

(6)

where Pess,s
M,N (t) and Pess,b

M,N (t) represent the power of the Nth 
regional microgrid in selling electricity to and purchasing electricity 
from the energy storage power station during the Mth typical day t
dispatch period, respectively; Pabs(t) and Pral(t) are, respectively, the 
charging and discharging powers of the energy storage power station 
during the t dispatch period on the Mth typical day; Uabs

M(t) and 
U rel

M(t) are the charging and discharging marking positions of the 
energy storage power station during the typical day t dispatch period 
of the Mth typical day, respectively

Remark 2: Above, (6) enshrines the charge and discharge 
constraints, reflecting the regulatory influence on the energy storage 
system. This ensures operational compliance with energy market 
policies, aligning the power station’s charging and discharging 
activities with the aggregated energy demand of microgrid users, 
while respecting the regulatory ban on simultaneous charging and 
discharging (Lin et al., 2025). 

4.1.2.3 Energy storage batteries SOC constraints
The SOC constraints for energy storage batteries as

Equation 7 below:

{{{{{
{{{{{
{

EM
ess(t) = EM

ess(t− 1) + ηabsP
M
abs(t) −

1
ηrel

PM
rel(t)

kminEess ≤ EM
ess(t) ≤ kmaxEess

UM
abs(t) +UM

rel(t) ≤ 1

(7)

where Eess
M(t) represents the SOC of the energy storage battery 

during the typical day t dispatch period on the Mth typical day; 
ηabs and ηrel represent the charging and discharging efficiency of 
the power station, respectively; Pabs

M(t) and Prel
M(t) represent the 

charging power and discharging power of the energy storage power 
station during the typical day t dispatch period on the Mth typical 
day; kmin and kmax are respectively the lower and upper limits of the 
SOC of the power station.

Remark 3: Above, (7) sets the SOC constraint for energy storage 
batteries, adhering to battery management guidelines prescribed 
by energy authorities. Maintaining the SOC within a safe range 
prevents deep discharge and overcharging, ensuring battery 
longevity and economic performance, and highlights the model’s 
regulatory compliance (Bae and Kim, 2025). 

4.2 Inner layer model

The inner model is used to solve the economic operation 
problem of the regional microgrid. The optimization objective is 
to minimize the annual operating cost of the regional microgrid. 
The decision variables include the operational status of each device 
within the regional microgrid, the regional microgrid’s situation 
regarding electricity purchases from the power grid, the power 
exchange situation between the regional microgrid and the shared 
energy storage station, and the economic consumption rate of new 
energy. The energy requirements of the regional microgrid can 
be met while minimizing its operating costs by optimizing these 
decision variables. This optimization method can not only enhance 
the economic efficiency of regional microgrids but also improve the 
utilization efficiency of new energy and promote the realization of 
sustainable development goals. 
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4.2.1 Optimize the objective function
The optimization objective of the inner model is to minimize 

the annual operating cost of the regional microgrid, which can be 
expressed as Equation 8 below:

min CMG = Cgrid +Cflue −Cess,s +Cess,b +Cserve (8)

where Cess,s represents the annual revenue from electricity sales by 
the regional microgrid to shared energy storage; Cess,b represents the 
annual cost for the regional microgrid to purchase electricity from a 
shared energy storage station; Cserve is the annual cost of service fees 
for regional microgrids to shared energy storage stations. 

4.2.1.1 Regional microgrid sales revenue to shared energy 
storage stations

The electricity sales revenue from the regional microgrid to the 
shared energy storage station can be described as Equation 9 below:

{{{
{{{
{

CM,N
ess,s = δs(P

M,N
ess,s)

T

Cess,s =
n

∑
M=1

m

∑
N=1

CM,N
ess,s

(9)

where Cess,s
M,N  represents the electricity sales revenue of the 

Nth microgrid at the Mth typical daily energy storage power 
station; δs represents the unit electricity price matrix for selling 
electricity to energy storage power stations during each dispatching 
period; Pess,s

M,N  represents the power matrix of the Nth microgrid 
selling electricity to the energy storage power station during each 
dispatching period on the Mth typical day. 

4.2.1.2 Regional microgrid purchases cost from shared 
energy storage stations

The electricity purchase cost of a regional microgrid from a 
shared energy storage station can be described as Equation 10 below:

{{{
{{{
{

CM,N
ess,b = δb(P

M,N
ess,b)

T

Cess,b =
n

∑
M=1

m

∑
N=1

CM,N
ess,b

(10)

where Cessb
M,N  represents the electricity purchase cost of the Nth 

regional microgrid from the energy storage power station on the 
Mth typical day; δb represents the electricity price matrix per unit 
of electricity purchased from energy storage power stations during 
each dispatching period; Pessb

M,N  represents the power matrix of the 
Nth regional microgrid purchased from the energy storage power 
station during each dispatching period on the Mth typical day. 

4.2.1.3 Regional microgrids pay costs to shared energy 
storage stations

The service cost paid by the regional microgrid to the shared 
energy storage station can be described as Equation 11 below:

{{{
{{{
{

CM,N
serve = δs(P

M,N
ess,s +PM,N

ess,b)
T

Cserve =
n

∑
M=1

m

∑
N=1

CM,N
serve

(11)

where Cserve
M,N  represents the service fee paid by the Nth regional 

microgrid to the energy storage power station on the Mth 
typical day. 

4.2.2 Constraint conditions
The constraint conditions of the inner model include 

several aspects, such as the regional microgrid power supply 
system constraint, the regional microgrid cooling/heating system 
constraint, the regional microgrid new energy consumption 
constraint, and the boiler waste heat balance constraint. 

4.2.2.1 Constraints of the regional microgrid power 
supply system

The internal power of the regional microgrid must meet the 
balance of power generation and consumption, and the constraint 
conditions are shown in Equation 12 below:

PM,N
GT +PM,N

WD +PM,N
PV +PM,N

grid +PM,N
ess,b = PM,N

ess,s +PM,N
EC +PM,N

LD (12)

where PPV
M,N , PWD

M,N  and N represent the PV and wind power 
output power matrices of the Nth regional microgrid at different 
dispatching periods on the Mth typical day, respectively; PEC

M,N , 
and PLD

M,N , respectively, represent the power consumption of the 
electric refrigeration machine and the power matrix of the electric 
load of the Nth microgrid at different dispatching periods on the 
Mth typical day.

Regional microgrids can exchange energy with shared 
energy storage stations, and they cannot charge and discharge 
simultaneously during the same dispatching period. The energy 
exchange constraint is shown as Equation 13:

{{{{
{{{{
{

0 ≤ PM,N
ess,s(t) ≤ UM,N

ess,s(t) · Pess,max

0 ≤ PM,N
ess,b(t) ≤ UM,N

ess,b(t) · Pess,max

UM,N
ess,s(t) +UM,N

ess,b(t) ≤ 1

(13)

where Pess,max represents the maximum exchange power between 
the microgrid and the shared energy storage station; Pess,s

M,N (t) 
and Pess,b

M,N (t) are, respectively, the power sold to the power 
station and the power purchased from the power station by the 
Nth regional microgrid during the dispatching period t on the Mth 
typical day; Uess,s

M,N (t), Uess,b
M,N (t) are respectively the charge and 

discharge identification bits of the Nth regional microgrid during 
the t scheduling period on the Mth typical day.

The output of electrical equipment within a microgrid 
and the power purchased by the regional microgrid from the 
large power grid must meet certain limitations. The constraint 
conditions as Equation 14 below:

{{{{
{{{{
{

PGT,min ≤ PM,N
GT (t) ≤ PGT,max

PEC,min ≤ PM,N
EC (t) ≤ PEC,max

0 ≤ PM,N
grid (t) ≤ Pgrid,max

(14)

where PGT,max, PGT,min are, respectively, the upper and lower 
limits of the power generation capacity of the GT; PEC,max, 
PEC,min respectively represent the upper and lower limits of 
the power consumption of the electric refrigeration machine; 
Pgrid,max represents the maximum power that the regional microgrid 
can purchase from the power grid; PGT

M,N (t), PEC
M,N (t) are, 

respectively, the output power of the GT and the power consumption 
of the electric refrigeration machine of the Nth regional microgrid 
during the t dispatch period on the Mth typical day; Pgrid

M,N (t) 
represents the power purchased by the Nth regional microgrid from 
the power grid during the t dispatch period on the Mth typical day. 
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4.2.2.2 Constraints of regional microgrid cooling and 
heating systems

The regional microgrid cooling and heating system must achieve 
a balance between cooling and heating power, as well as a balance of 
waste heat. The constraint conditions are shown in Equation 15:

{{{{{{
{{{{{{
{

PM,N
HX

ηHX
+

QM,N
AC

ηAC
= PM,N

GT γGTηWH

QM,N
GB +PM,N

HX = PM,N
heat

PM,N
EC ηEC +QM,N

AC = PM,N
cool

(15)

where PHX
M,N  and QAC

M,N  are, respectively, the thermal power 
matrix of the heat exchanger and the refrigeration power matrix of 
the absorption chiller of the Nth regional microgrid on the Mth 
typical day; Pheat

M,N  and Pcool
M,N  are, respectively, the heat load 

and cold power matrices of the Nth regional microgrid on the Mth 
typical day; ηHX, ηAC, ηWH, and ηEC are, respectively, the efficiency 
of the heat exchanger, the energy efficiency ratio of the absorption 
chiller, and the efficiency ratio of the waste heat boiler to the energy 
efficiency ratio of the chiller; γGT represents the thermoelectric 
ratio of the GT.

The constraint conditions determined by (15) ensure the 
balance of cooling and heating power, as well as the balance of 
waste heat, within the regional microgrid’s cooling and heating 
systems. They consider the efficiencies of the heat exchanger, 
absorption chiller, waste heat boiler, and energy conversion 
to optimize system performance, aligning the power outputs 
with the waste heat from the gas turbine and the heat and
cooling demands.

The output of the cooling and heating system equipment within 
the regional microgrid must meet certain limits, and the constraint 
conditions are shown in Equation 16:

{{{{
{{{{
{

PHX,min ≤ PM,N
HX (t) ≤ PHX,max

QAC,min ≤ QM,N
AC (t) ≤ QAC,max

QGB,min ≤ QM,N
GB (t) ≤ QGB,max

(16)

where PHX,max, PHX,min are the upper and lower limits of the heat 
exchanger power, respectively; QAC,max and QAC,min are respectively 
the upper and lower limits of the power of the absorption chiller; 
QGB,min, QGB,min, respectively, represent the upper and lower limits 
of the power efficiency of the gas boiler; PHX

M,N (t), QAC
M,N (t) and 

QGB
M,N (t) are, respectively, the power of the heat exchanger, the 

power of the absorption chiller, and the power of the gas boiler of 
the Nth regional microgrid during the t dispatch period on the Mth 
typical day.

The constraint conditions determined in (16) set operational 
limits for the cooling and heating equipment, defining the minimum 
and maximum power outputs during each dispatch period. They 
prevent overloading or underutilization, maintaining the efficiency 
and reliability of the systems and ensuring the overall stability and 
performance of the regional microgrid. 

4.2.2.3 Constraints of regional microgrid new energy 
consumption

The constraint conditions for the consumption of 
new energy in regional microgrids can be described 

as shown in Equation 17 below:

{{{{{{
{{{{{{
{

n

∑
M=1

m

∑
N=1

t0

∑
t=1
(PM,N

PV (t) + PM,N
WD (t)) = α

n

∑
M=1

m

∑
N=1

t0

∑
t=1
(PM,N

PV0(t) + PM,N
WD0(t))

0 ≤ PM,N
WD ≤ PM,N

WD0

0 ≤ PM,N
PV ≤ PM,N

PV0
(17)

where PPV
M,N (t) and PWD

M,N (t) are, respectively, the output power 
of PV and wind power of the Nth regional microgrid during 
the dispatching period t on the Mth typical day; PPV0

M,N(t) and 
PWD0

M,N(t), respectively, represent the maximum available PV and 
wind power resources of the Nth regional microgrid during the t
dispatch period on the Mth typical day; α represents the annual 
comprehensive consumption rate of new energy in the regional 
microgrid; t0 represents the number of scheduling periods per 
typical day. 

4.2.2.4 Constraints on the charging and discharging 
power of energy storage stations

The power constraints for the purchase and sale of 
electricity between regional microgrids and energy storage power 
stations as Equation 18 below:

{{{{
{{{{
{

0 ≤ Pess,s,w,i(t) ≤ Pmax
ess,mg ·Usale,w,i(t):umin

7,i,t,w,u
max
7,i,t,w

0 ≤ Pess,b,w,i(t) ≤ Pmax
ess,mg ·Ubuy,w,i(t):u

min
8,i,t,w,u

max
8,i,t,w

Ubuy,w,i(t) +Usale,w,i(t) ≤ 1:umax
9,i,t,w

(18)

where Pess, mg
max represents the maximum interaction power 

between the microgrid and the energy storage power station; 
Ubuy,w,i(t) and U sale,w,i(t) represent the power purchase and sale 
status bits between the ith regional microgrid and the energy storage 
power station on each typical day; λ1,i,t,w, λ2,i,t,w, λ3,i,t,w, λ4,i,t,w, 
and λ5,i,t,w are equality constraints corresponding to the Lagrange 
multiplier; u1,i,t,w

min, u1,i,t,w
max, u2,i,t,w

min, u2,i,t,w
max, u3,i,t,w

min, 
u3,i,t,w

max, u4,i,t,w
min, u4,i,t,w

max, u5,i,t,w
min, u5,i,t,w

max, u6,i,t,w
min, 

u6,i,t,w
max, u7,i,t,w

min, u7,i,t,w
max, u8,i,t,w

min, u8,i,t,w
max, u9,i,t,w

min, 
and u9,i,t,w

max are the Lagrange multipliers corresponding to the 
inequality constraints.

Remark 4: The bi-level optimization model described in Section 4 
can be designed with a high degree of flexibility, allowing for 
its application across a variety of energy systems. The model’s 
modular structure and adaptable constraints enable it to be 
tailored to different scenarios, including hydrogen energy storage, 
district heating, and electric vehicle energy storage applications. 
By expanding the structure in Figure 4 to the flexible design, the 
bilevel optimization model can be effectively utilized in diverse 
energy management contexts, addressing the unique challenges and 
requirements of each system. 

Remark 5: The modeling approach aims to strike a balance 
between complexity and practicality, focusing on precision sufficient 
for a bilevel optimization framework in regional microgrids 
that utilizes shared energy storage. This article recognizes the 
benefits of more detailed models but emphasizes the need for 
simplifications due to computational constraints. Assumptions 
such as fixed charging/discharging efficiencies and deterministic 
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forecasts are used to streamline the optimization process. These 
simplifications enable efficient analysis of various scenarios and 
configurations. The model’s limitations are acknowledged and 
discussed in the Supplementary Material, ensuring transparency 
and aiding stakeholders’ decision making. 

5 Solving process of the designed 
bilayer model

There are nonlinear constraints in the bilevel optimization 
model constructed in this article, and the bi-layer models are 
coupled with each other, making it difficult to solve directly. 
The KKT method can be used to transform and solve it. This 
method, under the premise of convex continuous differentiability 
of the inner layer model, can convert the inner layer model into 
additional constraints of the outer layer model by utilizing the 
complementary relaxation conditions of the inner layer model, 
thereby forming a single-layer model. The optimization objective 
of the transformed model only includes the original outer layer 
model optimization objective, while the original inner layer model 
optimization objective and constraint conditions exist in the form 
of constraints (Wang and Febri, 2024; Wang T. et al., 2024). The 
transformation and solution process of the bi-level optimization 
model is shown in Figure 5. The inner layer model is transformed 
into additional constraints of the outer layer model, forming a single-
layer mixed integer linear optimization model. Then, the nonlinear 
terms in the transformed single-layer nonlinear model are linearized 
using the Big-M method to form a single-layer mixed integer linear 
optimization problem (Luo et al., 2021). Subsequently, the solver 
CPLEX12.8 can be used to solve it.

The specific model solution process corresponding to Figure 5
follows. 

5.1 Standardization of the inner layer 
model

To construct the Lagrange function, it is necessary to convert 
the inner model equations and inequality constraints into the 
following Equation 19 forms,

{
{
{

gi(Pi,Qi) = 0

hj(Pj,Qj,Uj) ≤ 0
(19)

where g i and hj represent equality constraints and inequality 
constraints, respectively; Pi and Qi represent the variations of 
electric power and cold and hot power in the equation constraint 
conditions, respectively; Pj, Qj, and U j represent the electric power, 
cold and hot power, and identification bit variable in the inequality 
constraint, respectively.

Then, the Lagrange function is constructed in the 
following form as Equation 20:

L(Pn,Qn,Un,λi,μj) = CMG +
x

∑
i=1

λigi(Pi,Qi) +
y

∑
j=1

μjhj(Pj,Qj,Uj)

(20)

where λi and μj are Lagrange multipliers for equality constraints and 
inequality constraints, respectively; x and y represent the number 
of constraints of equality and inequality, respectively. Among them, 
the Lagrange multiplier is a decision variable. To ensure the equation 
holds, its dimension should match that of the variable in the 
constraint conditions. 

5.2 The inner layer model transformation

For the constructed Lagrange function, partial derivatives are 
taken for each decision variable. By combining the Lagrange 
function with the KKT conditions of the inner model, the inner 
model can be transformed into additional constraints for the outer 
model, as shown in Equation 21 below:

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

x

∑
i=1

λi∇kgi(Pi,Qi) +
y

∑
j=1

μj∇khj(Pj,Qj,Uj) = 0,k = Pi,Qi,Pj,Qj,Uj

gi(Pi,Qi) = 0

hj(Pj,Qj,Uj) ≤ 0

μj ≥ 0

μjhj(Pj,Qj,Uj) = 0
(21)

where k represents the complete set of all decision variables 
under the constraints of equality and inequality. It should be 
noted that after the Lagrange function in the formula is partially 
differentiated with respect to all decision variables, the number 
of additional conditions obtained is the same as that of the
decision variables.

Remark 6: In the lower-level optimization problem, the presence 
of binary buy/sell variables necessitates the application of the 
KKT conditions to transform the problem into a form suitable 
for integration into the outer-level model. This transformation is 
crucial for maintaining the coherence and efficiency of the overall 
optimization process. To address the potential non-convexity or 
discontinuity introduced by the binary variables, we have employed 
relaxation techniques and the Big-M method to linearize the model. 
The relaxation techniques involve replacing the binary variables 
with continuous variables, allowing for optimization using linear 
programming solvers. The Big-M method enforces the logical 
relationships between the binary and continuous variables, ensuring 
consistency with the original problem’s constraints. This approach 
maintains the integrity of the optimization problem while making 
it solvable using linear programming techniques. The relaxation 
techniques provide a lower bound on the original problem’s solution, 
and the Big-M method ensures consistency between the relaxed 
problem’s solution and the original problem’s constraints, resulting 
in a valid and reliable solution to the optimization problem. 
This approach optimizes the shared energy storage power station’s 
configuration and operation within the regional microgrid system, 
maximizing renewable energy utilization and improving economic 
and operational efficiency. 
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FIGURE 5
Schematic diagram of the transformation and solution process for bi-level optimization.

5.3 Model linearization

The transformed single-layer model is a mixed integer nonlinear 
optimization problem. Among them, the inequality constraints in 
(6) and the nonlinear constraints in the multiplication of decision 
variables in (21) require a linearization transformation. The Big-M 
method can be used to transform the above conditions.

The inequality constraints of (6) are transformed as 
following Equation 22:

{{{{{{{
{{{{{{{
{

0 ≤ PM
abs(t) ≤ Pess

0 ≤ PM
abs(t) ≤ UM

abs(t) ·M

0 ≤ PM
relea(t) ≤ Pess

0 ≤ PM
relea(t) ≤ UM

relea(t) ·M

(22)

where M is a sufficiently large integer.
The linearization of the multiplication of decision variables in 

(21) is shown as following Equation 23:

{
{
{

0 ≤ μj ≤M · uj

0 ≤ hj ≤M · (1− uj)
(23)

where uj is a Boolean variable. It should be noted that to 
ensure the non-equation holds true, the Boolean dimension should 
match the dimension of the variable in the original constraint
condition. 

6 Analysis of calculation examples

A calculation example is set up to analyze the configuration of 
the shared energy storage station. The calculation example sets up 
three regional microgrid systems, namely, MG1, MG2, and MG3. 
Each microgrid user is directly connected to the shared energy 
storage station, while the microgrid users are not connected to 
each other. A year is divided into four typical days by season, 
and 24 dispatching periods are taken for each typical day, with 
each dispatching period lasting for 1 h. The typical days were 
selected using a clustering analysis based on historical weather 
and energy demand data. From each cluster, the day with the 
most representative characteristics was identified, which was then 
designated as the typical day for each season (Ma et al., 2024).

Among the regional systems, MG1 is a multi-power microgrid, 
MG2 is a general microgrid without wind power, and MG3 is a 
low-power microgrid. The number of days corresponding to each 
typical day is 91, and the dispatching time for each typical day is 
24 h (Zhao et al., 2024). The relevant parameters of the equipment 
are shown in Table 1 below. Detailed data of MG1, MG2, and MG3 
are listed in detail in the Supplementary Material.

Taking the natural gas price of 2.3 yuan/m3 in Heilongjiang 
Province, China, as the reference, the grid purchase electricity price 
adopts the time-of-use electricity price for ordinary industrial users 
under 1 kV in Heilongjiang Province. The purchase and sale of 
electricity prices between the regional microgrid and the energy 
storage power station are shown in Figure 6. The unit price for 
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TABLE 1  Parameters of regional microgrid equipment.

Equipment parameters Values Equipment parameters Values

GT power generation efficiency/% 0.32 Maximum power of the electric refrigeration machine/kW 4000

Thermoelectric ratio of GT 1.48 Efficiency of the heat exchange device 0.92

Maximum power of GT/kW 3,000 Maximum power of the heat exchange device/kW 4000

Efficiency of waste heat boilers 0.82 Efficiency of the gas boiler 0.91

Energy efficiency ratio of absorption refrigerators 1.3 Maximum power of the gas boiler/kW 4000

Maximum power of absorption chiller/kW 4000 Maximum power purchased by the power grid/kW 4000

Energy efficiency ratio of electric refrigerators 4.1 The maximum purchased and sold power of the energy storage power station/kW 4000

regional microgrid payment of energy storage power station service 
fees is 0.06 yuan/(kW·h). The charging and discharging efficiency 
of the energy storage power station is assumed to be 0.96. The 
operating range of stored energy is taken as 0.12 to 0.91, and 
the initial stored energy is taken as 0.2. The capacity cost of the 
energy storage power station is based on the average winning 
bid price of lithium iron phosphate batteries in a certain energy 
storage project, which is 1,895 yuan/(kW·h), the power cost is 990 
yuan/kW, the operation and maintenance cost is 74 yuan/(year·kW), 
and the life cycle of the energy storage power station is 10 years. 
Other algorithm parameters can be found in the open-source 
program in the Supplementary Material. In addition, the natural 
gas selling price and the transaction price of the shared energy 
storage system set here in this article are both based on the actual 
prices in the case area. The discussion on the model optimization 
performance caused by the fluctuation of price parameters is further 
supplemented in the Supplementary Material.

The typical calculation case scenarios in this article are 
set as follows: 

1. Scenario 1: The combined cooling, heating, and power regional 
microgrid system does not have energy storage and operates 
independently. Any excess electricity is directly discarded, 
and electricity is purchased from the power grid to meet any 
insufficiencies.

2. Scenario 2: Configuring energy storage devices for a combined 
cooling, heating, and power regional microgrid system, 
considering the economic absorption of the regional microgrid 
and the energy storage power station, parameters such as the 
charging and discharging efficiency of the electrical energy 
storage are the same as those of the shared energy storage 
station.

3. Scenario 3: The combined cooling, heating, and power 
regional microgrid system participates in the shared energy 
storage station service, using the energy storage charging 
and discharging service of the energy storage power station, 
without considering additional economic consumption.

In the calculation example, the parameters of the regional 
microgrid equipment are known quantities. In Scenario 2, the bi-
layer optimization method described in Section 4 is employed to 

address the configuration issues of energy storage power stations 
and optimize the operation of regional microgrids. Scenario 1 does 
not consider energy storage services. The optimization objective is 
to minimize the operating cost of the regional microgrid, and the 
constraints are similar to those of the inner layer model. The solution 
model of Scenario 3 is similar to that of Scenario 2, but it does 
not consider the constraint of renewable energy consumption in 
regional microgrids. 

6.1 Scenario 1: analysis of regional 
microgrids without shared energy storage 
stations

Here, an analysis based on the regional microgrid data presents 
the power prediction analysis results of MG1, MG2, and MG3 on 
typical days of the four seasons in Figures 7–9, respectively. In the 
figures, a positive power represents the power provided by the power 
sources inside and outside the regional microgrid, while a negative 
power represents the power consumed by all the electrical loads 
within the regional microgrid. The maximum output of wind power 
and PV power represents the maximum available wind and solar 
energy during that period.

In Figure 7, the predicted energy value of the PV processing of 
MG1 without a shared energy storage device is generally lower, and 
the actual output power of the PV is also lower. The output power of 
the GT is higher, the thermal power of the gas boiler is lower, and 
the cooling power of the absorption chiller and the cooling power of 
the electric chiller are higher.

In Figure 8, the predicted energy value of the PV processing of 
MG2 without the configuration of shared energy storage devices 
is generally higher, while the actual output power of the PV 
is lower, the output power of the GT is lower, the thermal 
power of the gas boiler is higher, the cooling power of the 
electric chiller is higher, and the cooling power of the absorption
chiller is lower.

In Figure 9, the predicted energy value of the PV processing of 
MG3 without shared energy storage devices is generally lower, and 
the actual output power of the PV is also lower. The overall output 
of the GT is higher, the thermal power of the gas boiler is lower, the 
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FIGURE 6
Schematic diagram of the transformation and solution process for bi-level optimization.

cooling power of the electric chiller is lower, and the cooling power 
of the absorption chiller is higher.

Under the condition of Scenario 1, the operation mode of the 
regional microgrid was solved. The natural consumption rate of 
new energy was 66.47%, and the consumption situation of new 
energy was not ideal. Taking a typical day in spring as an example 
for analysis, the power balance of the three regional microgrids is 
shown in Figures 7a, 8a, 9a. On typical spring days, only MG3 can 
ensure the full consumption of new energy, while both MG1 and 
MG2 have varying degrees of power curtailment. The situation of 
power curtailment is relatively serious for 10–15 h. Among them, 
MG2 must purchase electricity from the power grid or use GTs 
to supplement when the PV output is insufficient, and power 
curtailment will occur when the PV output is excessive. There 
is an imbalance in the time distribution between the load and 
the power source. MG3 can fully consume its new energy, but 
it still needs to purchase a large amount of electricity from the 
power grid. This highlights the importance of the proposed strategy, 
which aims to address these inefficiencies and improve the overall 
performance of the regional microgrid system by optimizing the 
use of renewable energy sources through a shared energy storage 
mechanism, thereby increasing the consumption rate of new energy 
and reducing reliance on traditional power sources.

Remark 7: To ensure accurate metering of the exchanged energy 
within our shared energy storage power station service model, 
the algorithm incorporates specific parameters that track energy 
transactions between the shared storage and the regional microgrid 
users. These parameters are designed to capture the energy flow 
in real-time, providing a clear and transparent record of the 
energy exchanged between the shared storage and the microgrid 
users. The metering process is integrated into the algorithm’s 

structure, ensuring that all energy transactions are accounted for 
and that the economic analysis reflects the actual energy exchanges 
taking place within the microgrid system. By embedding these 
metering capabilities into the algorithm itself, we aim to enhance 
the transparency and reliability of our economic analysis, offering 
valuable insights for stakeholders seeking to implement shared 
energy storage solutions within regional microgrid systems. 

6.2 Scenario 2: analysis of regional 
microgrids with economic absorption and 
shared energy storage stations

Here, a shared energy storage station is configured for 
the regional microgrid, and further analysis is conducted in 
combination with the energy consumption model of the local 
microgrid. The power prediction analysis results of MG1, MG2, and 
MG3 on typical days in the four seasons are respectively presented 
in Figures 10–12.

In Figure 10, when configuring the shared energy storage device, 
the predicted energy value of the PV processing of MG1 is generally 
low, and the actual output power of the PV is also low. The electricity 
purchased from the energy storage power station is high, while the 
electricity sold to the energy storage power station is very low. The 
thermal power of the gas boiler is low, the output of GTs is high, 
the cooling power of the absorption chiller is high, and the cooling 
power of the electric chiller is low.

In Figure 11, after configuring the shared energy storage device, 
the predicted energy value of the PV processing of MG2 is generally 
high, and the corresponding actual output power of the PV is also 
high. However, the electricity purchased from the energy storage 
power station is low, and the electricity sold to the energy storage 
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FIGURE 7
The cold, heat, and electric load power and the predicted generation power curve of PV and wind power of MG1 under Scenario 1: (a) spring forecast;
(b) summer forecast; (c) autumn forecast; (d) winter forecast.

power station is high. The thermal power of the gas boiler and the 
output power of the GT are both high, and the cooling power of 
the absorption chiller and the cooling power of the electric chiller 
are both high.

In Figure 12, after configuring the shared energy storage device, 
the predicted energy value of the PV processing of MG3 is generally 
low, and the actual output power of the PV is also low. Meanwhile, 

the electricity purchased from the energy storage power station is 
high, the electricity sold to the energy storage power station is low, 
the thermal power of the gas boiler is low, and the output of the GT 
is high. Additionally, the cooling power of the absorption chiller and 
the electric chiller is relatively high.

In Scenario 2, the regional microgrid is configured with 
shared energy storage services under the premise of considering 
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FIGURE 8
The cold, heat, and electric load power and the predicted generation power curve of PV and wind power of MG2 under Scenario 1: (a) spring forecast;
(b) summer forecast; (c) autumn forecast; (d) winter forecast.

economic consumption. The optimized shared energy storage 
station configuration power was 1,442.6 kW, and the configuration 
capacity was 3,837.4 kW h. The optimized economic consumption 
rate was 97.44%, and the cost recovery period was 4.62 years. 
These results underscore the critical role of the proposed strategy in 
significantly improving the efficiency and economic benefits of the 
regional microgrid. The optimized configuration of shared energy 
storage power stations maximizes the utilization of renewable 
energy. It ensures a swift return on investment, underscoring the 
importance of this strategy for sustainable and economically viable 

microgrid infrastructure. The costs of regional microgrids and the 
annual revenue of shared energy storage stations in Scenario 1 and 
Scenario 2 are shown in Table 2.

Table 2 illustrates the economic impact of incorporating a shared 
energy storage station in Scenario 2 compared to Scenario 1. The 
shared energy storage model reduces the microgrid’s total annual 
operating cost by 377.2 ten thousand yuan, with the shared energy 
storage station generating a revenue of 255.81 ten thousand yuan. 
This results in a net system integrated operation cost of 1884.23 
ten thousand yuan, demonstrating the financial benefits of shared 
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FIGURE 9
The cold, heat, and electric load power and the predicted generation power curve of PV and wind power of MG3 under Scenario 1: (a) spring forecast;
(b) summer forecast; (c) autumn forecast; (d) winter forecast.

energy storage. Additionally, the new energy consumption rate 
increases from 66.47% to 97.44%, indicating a significant boost in 
renewable energy utilization.

After considering the economic consumption and configuration 
of shared energy storage station services, the typical daily 
power balances of the regional microgrid in spring are shown 
in Figures 10–12. The consumption rate of new energy has 

increased from 66.47% under natural conditions to 97.44%. 
The annual total operating cost of regional microgrids has 
decreased by 15.12%, shared energy storage stations have 
achieved profitability, and the comprehensive operating cost of the 
regional microgrid power station system has dropped by 25.32% 
compared with that of regional microgrids without energy storage
configuration.

Frontiers in Energy Research 17 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1686684
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Ma et al. 10.3389/fenrg.2025.1686684

FIGURE 10
The cold, heat, and electric load power and the predicted generation power curve of PV and wind power of MG1 under Scenario 2: (a) spring forecast;
(b) summer forecast; (c) autumn forecast; (d) winter forecast.

Frontiers in Energy Research 18 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1686684
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Ma et al. 10.3389/fenrg.2025.1686684

FIGURE 11
The cold, heat, and electric load power and the predicted generation power curve of PV and wind power of MG2 under Scenario 2: (a) spring forecast;
(b) summer forecast; (c) autumn forecast; (d) winter forecast.

By comparing the power balance diagrams of the regional 
microgrid before and after configuring energy storage, it can be seen 
that the consumption of new energy in the regional microgrid has 
improved after configuring energy storage. When the load of MG1 is 
relatively low, it sells the excess electricity to the shared energy storage 

station, and there are only a few periods of power curtailment. MG2 
and MG3 purchase electricity from energy storage power stations 
when the energy is insufficient, achieving the transfer of energy in 
time and space, which has a certain improvement on the uncertainty 
and uncontrollability of the output of new energy. 
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FIGURE 12
The cold, heat, and electric load power and the predicted generation power curve of PV and wind power of MG3 under Scenario 2: (a) spring forecast;
(b) summer forecast; (c) autumn forecast; (d) winter forecast.

Figure 13 presents the charging and discharging power 
dynamics and the SOC of the shared energy storage station 
on a typical spring day, showcasing the bi-level optimization 
model’s impact on the microgrid’s energy management. The 

power station operates with a net negative annual operating cost, 
indicating profitability, which is a direct result of the model’s 
strategic configuration and operational planning. During specific 
time intervals, the power station’s net charging and discharging 
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TABLE 2  The economic benefits of the systems in Scenario 1 and Scenario 2.

Scenario Total annual 
operating cost of 

microgrids/ten 
thousand yuan

Share energy 
storage power 

station revenue/ten 
thousand yuan

System integrated 
operation cost/ten 

thousand yuan

New energy 
consumption rate/%

Scenario 1 2516.3 - 2516.12 66.47

Scenario 2 2139.1 255.81 1884.23 97.44

FIGURE 13
Electricity transaction data prediction between regional microgrids and shared energy storage stations under Scenario 2: (a) spring forecast, (b)
summer forecast, (c) autumn forecast, and (d) winter forecast.

power is zero in the periods of 0–1 h, 2–10 h, 11–12 h, 14–15 h, 
19–20 h, and 22–23 h, allowing regional microgrids to exchange 
power through the shared busbar, demonstrating the model’s 
effectiveness in coordinating energy flows across spatial dimensions. 
During other periods, the power station actively charges and 
discharges, engaging in energy transfer on a temporal scale, 
reflecting the lower-level optimization model’s ability to fine-
tune the power station’s operational strategy to match fluctuating 
energy demands. The model’s adaptability and responsiveness 
to real-time energy needs are evident in its seamless transition 

between charging and discharging modes, while maintaining
a balanced SOC.

Remark 8: To elaborate on the practical implications for microgrid 
operators, policymakers, and investors, the following provides 
a more in-depth analysis based on the findings presented in 
Figures 10, 11, 12.

• Microgrid operators: Operators can use Figures 10, 11, 12 
to understand how shared energy storage enhances their 
microgrid’s power balance and increases renewable energy 
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FIGURE 14
The cold, heat, and electric load power and the predicted generation power curve of PV and wind power of MG1 under Scenario 3: (a) spring forecast,
(b) summer forecast, (c) autumn forecast, and (d) winter forecast.
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FIGURE 15
The cold, heat, and electric load power and the predicted generation power curve of PV and wind power of MG2 under Scenario 3: (a) spring forecast,
(b) summer forecast, (c) autumn forecast, and (d) winter forecast.

consumption from 66.47% to 97.44%. This rise indicates 
the model’s effectiveness in integrating renewable energy. 
Operators can utilize these insights to inform future energy 
storage investments and enhance energy management for 
increased renewable integration.

• Policymakers: Policymakers can reference the figures to see the 
benefits of shared energy storage, including a 15.12% decrease 
in the annual total operating cost of regional microgrids and 
the profitability of the shared energy storage station. These 
findings can inform policies that encourage the deployment 
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FIGURE 16
The cold, heat, and electric load power and the predicted generation power curve of PV and wind power of MG3 under Scenario 3: (a) spring forecast,
(b) summer forecast, (c) autumn forecast, and (d) winter forecast.
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FIGURE 17
Electricity transaction data prediction between regional microgrids and shared energy storage stations under Scenario 3: (a) spring forecast, (b)
summer forecast, (c) autumn forecast, and (d) winter forecast.

TABLE 3  The shared energy storage configuration of Scenario 2 and Scenario 3.

Scenario Power station 
configuration 

capacity/(kW·h)

Power station 
configuration 

power/kW

Power station 
configuration 

cost/ten thousand 
yuan

Annual operating 
cost of the power 

station/ten 
thousand yuan

Scenario 2 3,835.2 1439.2 872.23 −253.69

Scenario 3 27,185.2 10,198.4 6177.4 67.42

of energy storage, leading to a more sustainable energy
infrastructure.

• Investors: Investors can analyze the figures to assess the 
financial viability of shared energy storage projects. The 
25.32% operating cost reduction and profitability of the 
shared energy storage station provide evidence of the 
investment potential. This information can help investors make 
informed decisions, supporting the growth of the renewable
energy sector.

6.3 Scenario 3: analysis of regional 
microgrids with shared energy storage 
stations without economic absorption

In this scenario, a shared energy storage station is configured for 
regional microgrids without considering the energy consumption 
of the regional microgrid for analysis. The power prediction and 
analysis results of MG1 to MG3 on typical days of the four seasons 
are presented in Figures 14–16 below.
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FIGURE 18
Renewable energy uncertainty management and optimization 
flowchart.

In Figure 14, after configuring the shared energy storage device, 
the predicted energy value of the PV processing of MG1 is generally 
high, and the actual output power of the PV is also high. The 
electricity purchased from the energy storage power station is 
low, and the electricity sold to the energy storage power station 
is high. The thermal power of the gas boiler and the output 
power of the GT are both high, and the cooling power of the 
absorption chiller and the cooling power of the electric chiller
are also high.

In Figure 15, after configuring the shared energy storage 
device, the predicted energy value of the PV processing of 
MG2 and the actual output power of the PV are both relatively 
high. The electricity purchased from the energy storage power 
station is relatively low, and the electricity sold to the energy 
storage power station is relatively high. The thermal power 
of the gas boiler and the output power of the GT are both 
relatively high, and the cooling power of the absorption 
chiller and the cooling power of the electric chiller are also
relatively high.

In Figure 16, after configuring the shared energy storage device, 
both the predicted energy value of the PV processing of MG3 
and the actual output power of the PV are relatively low. The 
electricity purchased from the energy storage power station is 
relatively high, the electricity sold to the energy storage power 
station is relatively low, the thermal power of the gas boiler is 

relatively high, the output of the GT is relatively low, and the 
cooling power of the absorption chiller and the electric chiller is also
relatively high.

Figure 17 shows the variation of the operating costs of regional 
microgrids and shared energy storage stations with the consumption 
rate. It can be seen from the profit change curve that as the 
consumption rate decreases, the cost of shared energy storage 
stations shows a decreasing trend, while the cost of regional 
microgrids increases with the decline in the consumption rate. 
The overall combined cost of the first two decreases and then 
increases with the decline in the consumption rate. In this example, 
the economically optimal consumption rate of the energy storage 
shared power station-regional microgrid system is 97.44%. When 
the consumption rate approaches 100%, the annual operating cost of 
shared energy storage stations increases significantly, turning from 
a profit to a loss. When the consumption rate reaches 100%, the cost 
of the power station rises to a positive value, and it is impossible to 
achieve profitability.

Table 3 shows the configuration of the shared energy storage 
station in Scenario 2 and Scenario 3. After taking economic 
consumption into account, the configured capacity of the power 
station decreased by 86.2% compared to the situation without 
considering economic consumption. Moreover, the shared energy 
storage station service provider of the power station can achieve 
profitability. However, in Scenario 3, without considering economic 
consumption, the power station service provider makes a loss 
during the operation cycle of the power station and cannot achieve 
profitability.

Table 3 compares the shared energy storage configurations for 
Scenario 2 and Scenario 3. Scenario 2, with a power station 
configuration capacity of 3,835.2 kW h and configuration power 
of 1439.2 kW, achieves a profitable operation with a configuration 
cost of 872.23 ten thousand yuan and an annual operating cost of 
−253.69 ten thousand yuan. Scenario 3, with a larger configuration, 
has a higher configuration cost and a lower annual operating 
cost. This comparison highlights the importance of an optimal 
configuration for achieving economic viability and operational 
efficiency. The profitability of the shared energy storage model in 
Scenario 2 underscores its potential for practical application in 
regional microgrid systems.

The SOC and power balance curves of the power station 
on a typical winter day, as depicted in Figures 13d, 17d, reveal 
the nuanced operational strategies resulting from the bi-level 
optimization model. Scenario 3 demonstrates a peak charging 
power significantly higher than Scenario 2, with multiple charging 
power peaks representing the full consumption of new energy. 
This approach, while maximizing new energy utilization, leads 
to a lower overall utilization rate of the energy storage capacity, 
with resources being utilized primarily during a few periods. 
Additionally, to maintain a daily charge and discharge balance, 
the regional microgrid is forced to purchase electricity from the 
energy storage power station during off-peak hours, potentially 
reducing the system’s overall economic benefits. These observations 
underscore the importance of striking a balance between new energy 
consumption and the efficient use of energy storage resources, as 
well as the need to refine the model to optimize both economic 
benefits and technical performance. This ensures that the shared 
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TABLE 4  Comparison table of optimization methods.

Optimization 
model

Optimization 
goals

Algorithm type Application 
scenario

Complexity and 
computational 

efficiency

Economic 
comparison

Lautert et al. (2024) Cost minimization Linear programming 
(LP)

Microgrids Low complexity, low 
efficiency

Focuses solely on cost 
minimization without 
considering revenue 

generation

Guo et al. (2025) Energy efficiency 
maximization

Dynamic programming 
(DP)

Renewable energy 
integration

Moderate complexity, 
moderate efficiency

Prioritizes energy 
efficiency but lacks a 
detailed economic 

analysis

Brandon et al. (2025) Reliability improvement Genetic algorithm (GA) Energy storage systems High complexity, high 
efficiency

Emphasizes system 
reliability without 
explicit economic 

benefits

Mohamed et al. (2024) Cost minimization and 
energy efficiency 

maximization

Particle swarm 
optimization (PSO)

Microgrids and energy 
storage systems

Moderate complexity, 
moderate efficiency

Combines cost and 
efficiency optimization 
but does not explicitly 

address revenue or profit 
maximization

Liu et al. (2024) Reliability and cost 
optimization

Mixed integer linear 
programming (MILP)

Renewable energy 
integration

High complexity, high 
efficiency

Focuses on cost and 
reliability without a 

comprehensive 
economic evaluation

Si et al. (2024) Energy efficiency and 
reliability optimization

Model predictive control 
(MPC)

Microgrids Moderate complexity, 
moderate efficiency

Potential economic 
benefits through 

efficiency improvements 
but lacks a detailed 

analysis

Proposed optimization 
model

Cost minimization and 
renewable energy 

consumption 
maximization

Bi-level optimization 
(outer: MILP; inner: 

linearization)

Shared energy storage 
stations and regional 

microgrids

Moderate complexity, 
high efficiency

Integrates 
comprehensive 

economic analysis, 
achieving a 15.12% 

reduction in operating 
costs and a 97.44% 
renewable energy 

utilization rate, 
demonstrating strong 

economic benefits

energy storage station operates at peak efficiency while providing 
cost-effective energy services to the regional microgrid.

Remark 9: In Scenario 3, the shared energy storage power station 
is configured without considering the economic absorption of 
the regional microgrid, focusing on maximizing storage capacity. 
This leads to a significant increase in capacity (approximately 7×) 
but also to reduced profitability due to higher initial investment 
and potentially suboptimal operational efficiency. To provide 
a more detailed understanding of the operational dynamics in 
Scenario 3, we have included a comprehensive analysis of state 
of charge (SOC), charge/discharge patterns, and congestion profiles 
within the Supplementary Material. The source code accompanying 
the manuscript allows readers to replicate and visualize these 
profiles, ensuring transparency and accessibility to the underlying 
data. The results underscore the importance of aligning shared 
energy storage with the microgrid’s energy consumption 

patterns to optimize economic performance and operational
efficiency.

The above results show that the selection of the new energy 
consumption target for regional microgrids has a significant 
impact on the configuration cost of shared energy storage 
stations. Considering economic consumption can maintain a 
high new energy consumption rate while significantly reducing 
the configuration cost of shared energy storage stations and 
the operating cost of regional microgrids, making the annual 
comprehensive operating cost of the power station-regional 
microgrid system lower than the cost when the regional 
microgrid operates independently, promoting the full utilization 
of renewable energy. 

Remark 10: In Scenarios 1, 2, and 3, it can be recognized that the 
inherent variability of PV and wind power output is influenced 
by natural characteristics such as weather conditions and time of 
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day. To address this variability and its impact on grid stability and 
energy management, a shared energy storage system is proposed as 
a key component of the microgrid. This storage solution improves 
the reliability of the power supply and optimizes the use of 
renewable energy resources. The process for managing renewable 
energy uncertainty, as depicted in the flowchart in Figure 18, 
involves several steps, including data collection, PV/wind generation 
prediction, determination of fluctuation ranges, setting of economic 
abandonment rates, scenario generation, optimization modeling, 
result analysis, and strategy adjustment. This structured approach 
is designed to improve the resilience and economic viability of the 
microgrid system, providing a framework for managing PV and 
wind power variability and sustainably integrating renewable energy 
resources. 

6.4 Comparison between the proposed 
method and the existing methods

To further validate the effectiveness and superiority of the 
proposed bi-level optimization method, we compare it with 
typical existing optimization methods in the field of energy 
storage and microgrid systems, as shown in Table 4 below. This 
comparison highlights the unique advantages of the bi-level 
optimization method in terms of optimization goals, algorithm 
types, application scenarios, computational efficiency, and economic
comparison.

Observing from Table 4, it can be easily seen that the proposed 
bi-level optimization method demonstrates significant advantages 
over existing approaches in terms of optimization goals, algorithm 
efficiency, and economic benefits. By incorporating both cost 
minimization and renewable energy consumption maximization, 
our method provides a more holistic solution to the challenges 
of shared energy storage systems and regional microgrids. The 
integration of comprehensive economic analysis has achieved a 
15.12% reduction in operating costs and a 97.44% renewable energy 
utilization rate, underscoring our commitment to sustainable and 
economically viable energy practices. This comparison validates the 
effectiveness and innovation of our proposed method, making it a 
valuable contribution to the field of energy storage and microgrid 
optimization. 

7 Conclusion

This article focuses on the combined cooling, heating, and 
power regional microgrid system, introducing a shared energy 
storage station service model. We propose a bi-layer optimization 
configuration method based on a bi-layer optimization model, 
which incorporates the concept of energy sharing governance to 
increase the economic and operational efficiency of the microgrid 
system. Among them, the outer model solves the problem of 
power station configuration, while the inner model solves the 
problems of economic consumption rate and the optimal operation 
of micro-energy networks. Based on the KKT conditions, the 
outer layer model is transformed into the constraint conditions 
of the inner-level model, and the Big-M linearization method is 
adopted to convert the nonlinear model into a mixed integer linear 

optimization problem. By analyzing and calculating the overall 
configuration of energy storage in three scenarios, the annual 
operating cost of the combined cooling, heating, and power regional 
microgrid system, the consumption rate of renewable energy, and 
the annual revenue of the shared energy storage station were verified. 
This analysis confirmed the economy and effectiveness of the 
proposed model. The conclusions drawn from the case study analysis
are as follows:

• The combined cooling, heating, and power regional microgrid 
system participates in the shared energy storage station service. 
By paying service fees to the energy storage power station 
operator in exchange for the charging and discharging services 
of energy storage, it can significantly reduce the annual 
operating cost of users, increase the regional microgrid’s new 
energy consumption rate to over 97%, and lower the annual 
operating cost of the regional microgrid by approximately 
15.12%, demonstrating the model’s effectiveness in promoting 
renewable energy utilization. These findings highlight the 
model’s potential to improve both the financial viability and 
sustainability of microgrid systems, thereby contributing to 
the global transition toward renewable energy and sustainable 
energy practices.

• Compared with the complete consumption of new energy, 
considering economic consumption can reduce the configured 
capacity of shared energy storage stations by 86.2%, 
significantly improving the economic benefits of shared energy 
storage stations, enabling shared energy storage station service 
providers to turn losses into profits and recover costs within 
4.62 years.

• The proposed bi-level optimization model algorithm is 
suitable for solving multi-objective optimization problems. 
It can effectively identify the power capacity configuration 
scheme that minimizes the operating cost of the shared 
energy storage station-regional microgrid integrated system, 
and solve the corresponding new energy consumption
target.

In future work, we plan to explore additional visualization 
techniques to provide a more detailed and comprehensive 
description of the algorithm’s performance, enhancing the 
understanding and applicability of our proposed bi-level 
optimization model for shared energy storage stations in regional 
microgrids. We will highlight the universality of the proposed bi-
level optimization mode and explore its application in other energy 
systems, such as hydrogen energy storage, district heating, and 
electric vehicle energy storage applications. The verification of the 
sensitivity analysis of key model variables and the application of 
the algorithm to electricity prices in different regions will also 
be included.
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