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Urban- or large-scale building energy modeling is essential to understand 
how climate change may affect energy demand in urban or populated 
areas. Past research, however, is generally small-scale, of low spatial 
resolution, or not highly transferable to future climate conditions. In this 
research, an automated high-performance computing (HPC) workflow is 
created and implemented to simulate energy use in 346,827 buildings 
in Nassau County, New York, under present and future 2099 climate 
scenarios (RCP8.5). The simulation platform combines large-scale physics-
based modeling with morphed Typical Meteorological Year data in order 
to compute site and source energy use, heating and cooling loads, and 
correlated carbon emissions. Results for Nassau County show that while 
mean site energy use decreases by 20.1% due to lower heating loads 
during milder winters, source energy use increases by 5.36% due to 
increased electrical demand for cooling. Non-residential buildings, although 
constituting only 10% of the building stock, are the source for over 50% of 
future total source energy consumption in the scenario considered. These 
outcomes underscore the importance of grid decarbonization as well as 
such focused efficiency measures, particularly for electricity-reliant types 
of buildings. The proposed workflow is applicable in other fields, scalable, 
and can potentially inform long-term urban energy and climate resilience
planning.
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GRAPHICAL ABSTRACT

Highlights

• High-definition simulations conducted on over 346,000 
buildings via an HPC-enabled automated process.

• Future climate (RCP8.5, 2099) reduces site energy use but 
increases source energy due to rising cooling and electricity 
loads.

• Cooling loads nearly double as a result of rising temperatures, 
offsetting reductions in heating demand.

• Only 10% of the stock, non-residential buildings, consume 
more than 50% of future source energy.

• Results underscore the importance of grid decarbonization 
and concentrated energy policies for non-residential buildings.

1 Introduction

According to the U.S. Energy Information Administration 
(EIA), buildings are the main energy consumers in the 
US, responsible for 38% of the total primary energy 
consumption and 35% of the total emissions in the US 
(U.S. Energy Information Administration, 2023). Understanding 
and improving the energy behavior of these buildings is 
very important for creating a sustainable and resilient urban 
environment, especially in terms of current and future climate 
change scenarios (Chen et al., 2024).

There are mainly two approaches to assessing the energy 
behavior of buildings in an urban area: top-down and bottom-
up. While top-down methodologies are useful for comprehensive 

and generalized large-scale analysis (van Vuuren et al., 2009), 
bottom-up approaches are necessary for finding potential efficiency 
improvements in the urban building sector (Ali et al., 2021) 
and they are more feasible options since accessibility to sufficient 
data on a large scale is limited. To come up with optimized 
and cost-efficient energy improvement strategies, especially on 
an urban scale, quantification of these savings, not only for 
the current weather conditions but also under different climate 
change scenarios, is necessary. This can be done by a proper 
bottom-up approach considering the current and future probable 
meteorological conditions as a result of climate change (Reyna and 
Chester, 2017).

Availability and accuracy of meteorological data can be a 
challenge for building energy models and can have a substantial 
impact on their calibration and estimation of the energy needs 
in urban buildings (Bhandari et al., 2012). Since the standard 
weather data files, e.g., Typical Meteorological Year (TMY) files, 
which are used in building performance simulations, cannot be 
used for future climate change scenarios, the “Morphing” technique 
that combines existing hourly weather data with predicted climate 
change information could be a suitable alternative (Jentsch et al., 
2013). In this way, the potential future weather conditions, and 
especially their effect on the energy performance of the buildings 
in a specific urban area, can be assessed.

There exists a significant knowledge gap in large-scale or 
Urban Building Energy Modeling (UBEM), especially when dealing 
with the challenges and complexities of modeling numerous 
buildings within urban areas (Ali et al., 2021). UBEM helps in 
estimating energy needs, assessing design or upgrade choices, and 
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measuring the effects of severe weather or climate change; however, 
it's important to correctly combine urban data (geometric and 
non-geometric) with proper modeling tools (Ang et al., 2020). 
While such integration is computationally feasible in a microscale, 
it can be quite challenging to conduct studies in meso- or 
macroscales (Oraiopoulos and Howard, 2022).

Numerous studies have assessed the effects of climate change 
on the future energy behavior of buildings, often focusing on 
archetypes such as commercial offices (Jafarpur and Berardi, 2021; 
Nguyen et al., 2021), (Bamdad et al., 2021) or residential buildings 
(Tomrukcu and Ashrafian, 2024; Xiong et al., 2023). While valuable, 
these analyses are generally region-specific or rely on varied 
methodological approaches (Tootkaboni et al., 2021), limiting their 
generalizability to other contexts. Moreover, a few studies have been 
done in meso- or macroscales with high resolution, which can 
consider the effectiveness of any Energy Conservation Measures 
(ECMs) on a large scale, as well as the potential opportunities 
to shift the peak loads. However, prior UBEM studies often 
face challenges with computational cost, archetype definition, and 
transferability, limiting their use in regional planning applications. 
The contribution of this paper is not the development of a new 
simulation engine but the demonstration of an automated, scalable 
workflow that enables county-wide analysis. By integrating existing 
building models from the Model America dataset with downscaled 
climate scenarios and executing simulations on high-performance 
computing, we show how UBEM can be applied to over 346,000 
buildings in Nassau County. This approach provides a transferable 
pathway for high-resolution, climate-aware energy analysis to 
support urban planners and policymakers.

As a case study, this workflow is utilized to assess the energy 
behavior of more than 346 thousand buildings, in terms of heating 
and cooling energy needs, in the mixed-humid area of Nassau 
County in New York state, under current and future weather 
conditions. The goal is to assess how cooling and heating loads, 
in residential and non-residential buildings, will be affected as a 
result of climate change in 2099. Although RCP8.5 is increasingly 
seen as an unlikely scenario due to the global trend towards cleaner 
energy, it remains valuable for assessing potential high-risk futures  
(Hausfather and Peters, 2020). Accordingly, we use RCP8.5 as a high-
end stress-test scenario to bound impacts under severe warming; 
results should therefore be interpreted as upper-bound estimates. 
This is especially relevant given the global all-time high coal use 
in 2022, which the International Energy Agency (IEA) projects 
will continue to increase until the end of the decade  (IEA, 2023). 
Therefore, we employed RCP8.5 in this case study to explore its 
implications on urban building energy demand under extreme 
conditions . In addition, the corresponding emissions for different 
energy sources (e.g., electricity or gas) and source and site energies 
will be studied. Furthermore, the analysis helps to identify building 
groups with disproportionately high energy use, which can be 
prioritized for potential energy retrofit incentives.

This study is the first step of the proposed multi-step research 
roadmap. Subsequent steps include the development of new 
archetypes, calibration of simulation models, sensitivity analysis, 
exploration of different climate change scenarios, and policy and 
scenario analysis. These steps build on the findings of this study, 
aiming to refine the models, incorporate more detailed and varied 
building archetypes, and explore the broader implications and policy 

responses to the projected changes in building energy use due to 
climate change.

Subsequent sections include a background discussion 
(Section 2) on Large-scale and Urban Building Energy Modeling 
(UBEM) and its challenges, followed by a detailed methodology 
(Section 3) outlining the study’s execution using High-Performance 
Computing (HPC). Results and analysis (Section 3.4) are presented 
in detail for current and future scenarios regarding energy use, 
heating and cooling loads, and emissions, followed by a discussion 
section (Section 5) highlighting insights for policy-making and 
future research directions. Finally, the conclusion (Section 7) 
summarizes key findings, underlining the urgency of transitioning 
to cleaner energy sources and suggesting further exploration in 
addressing the challenges caused by climate change on building 
energy consumption on a large scale. 

2 Background

2.1 Large-scale and Urban Building Energy 
Modeling

Building Energy Modeling (BEM) is a computational tool 
for optimizing a building’s energy efficiency through virtual 
simulations, which originated back in the 1970s (Mills, 2004). 
Urban-scale BEM (UBEM) extends these methods by combining 
BEM with regional data to analyze energy use across thousands of 
buildings (Reinhart and Cerezo Davila, 2016).

For the assessment of the energy behavior of buildings on an 
urban scale, there are two methods available: top-down and bottom-
up. Top-down methodologies are used to analyze the overall energy 
performance of the entire urban/district area by using aggregated 
data and generalized parameters for large-scale usage, while 
bottom-up approaches are used for identifying potential efficiency 
improvements in the urban building sector (Ali et al., 2021). 
Furthermore, the modeling approaches can be also categorized as 
Physics-based models (white box), reduced-ordered (grey box), and 
Data-driven models (black box) (Hong et al., 2020), each of which 
has some benefits like computational simplicity and speed in data-
driven approaches, and detailed assessment and interpretability in 
physics-based models, and can even be combined to use the benefits 
of both methods (Nutkiewicz et al., 2018).

Ferrando et al. (2020), did a comprehensive review of the 
bottom-up UBEM tools available, highlighting their abilities to 
be used for energy assessment in different spatial and temporal 
scales, their ability to implement retrofit strategies and measuring 
consequent energy and emission savings, and comparing them 
based on the inputs, outputs, workflow, applicability and potential 
users. As mentioned in this review, one of the major trends in 
UBEM could be computational optimization of these tools, coupled 
with parallel or high-performance computing, to be able to run 
the analysis over a larger number of buildings, for comparison of 
different policies at larger scales.

One of the main uncertainties that must be addressed is the 
definition of appropriate archetypes to be a decent representative 
of the current building stock in large-scale studies, since access to 
energy use data and thermal properties of the selected buildings 
is very limited (Reinhart and Cerezo Davila, 2016). In this 
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regard, some research has been done and showed promising 
results in archetype definition at district scales, characterizing 
each type, and validating the model by comparing them to 
the measured energy data (Sokol et al., 2017; Cerezo et al., 
2017). A widely used reference is the U.S. Department of 
Energy prototype database (Office of Energy Efficiency and 
Renewable Energy, 2022), which combines national consumption 
surveys with ASHRAE standards to define residential and 
commercial building types across climate zones.

Even with archetypes, simulating entire urban areas with 
hundreds of thousands of buildings remains computationally 
intensive and costly. While assessing ECM effectiveness at scale 
is a core goal of bottom-up UBEM, relatively few studies attempt 
it because of these demands (Kamel, 2022). As computational 
optimization becomes a deciding factor in UBEM, it necessitates 
the use of advanced computing technologies like Cloud or HPC. 
As an example, Zhang et al. developed a surrogate modeling 
framework for physics-based large-scale building stock modeling 
that employs HPC (Zhang et al., 2021). It produces high-resolution 
hourly energy outputs for large scales, like cities and regions, that 
can be useful for understanding building demand profiles and 
grid impacts while preparing large datasets and performing feature 
engineering for training the surrogate models. 

2.2 Climate change and large-scale BEM

The connection between Large-Scale or UBEM and climate 
change is an important area of research to be focused on and 
is useful for different stakeholders, including policymakers, urban 
planners, and designers. To be able to downscale the long-term 
climate neutrality plans from countrywide goals to cities, districts, 
and even buildings, it is crucial to quantify the effects of different 
climate change scenarios on the existing building stock, their 
energy consumption, and carbon emissions, in different spatial and 
temporal scales. To successfully perform such analysis on that scale 
and level of detail, a calibrated, well-defined urban building energy 
model is needed, along with a realistic projection of the different 
climate change scenarios on the weather conditions in the future.

To address these needs, a web-based framework developed at 
MIT automates UBEM creation from GIS data and archetypes, 
supporting multiple climate pathways and retrofit comparisons 
(Ang et al., 2022). Similarly, de Rubeis et al. (2021). introduced a 
tool that models individual buildings, recommends improvements, 
and generates neighborhood- or city-scale energy ratings (UBER), 
demonstrated in Italian case studies. There are many other powerful 
and integrated tools, each of which has some benefits over the others, 
which are comprehensively reviewed in (Ferrando et al., 2020).

Large-scale and UBEM help to quantify the impact of climate 
change on energy consumption patterns in urban areas and their 
influence on heating and cooling demands. This allows researchers 
to assess how climate change may cause shifts in energy usage 
in urban buildings. One study in Baghdad applied a degree-day 
methodology and found that summer cooling accounted for nearly 
40% of total city energy use under future warming, with associated 
increases in pollution (Abed Hassan and Ismail Husain, 2022). A 
large-scale U.S. analysis combining climate change, population 
growth, and power sector decarbonization showed that while 

efficiency and location shape local outcomes, population growth 
could raise energy use by over 50%, while decarbonization could 
reduce it by about 17%, with climate change itself contributing a 
modest further reduction (Wang et al., 2023). In another study, Bass 
and his colleagues conducted research to quantify the impact of 
future IPCC climate scenarios on US commercial buildings' energy 
use (Bass and New, 2023). Their results show a significant increase 
in total energy use in future scenarios, for the warmest parts of 
the US, as a result of an increase in cooling loads, and a substantial 
reduction in coldest areas, due to a decrease in gas needs and heating 
loads. Across these studies, including (Deng et al., 2023), the results 
show a significant reduction in heating loads and a considerable 
increase in cooling loads, as a result of climate change, but the overall 
energy use in the future primarily depends on the climate zone 
in which the study is conducted, and can be positive or negative. 
City-scale analyses for New York City project substantial rises in 
summer cooling under future warming (Ortiz et al., 2018), and 
validated simulations for Beijing indicate that the urban heat island 
increases cooling while reducing heating (Xu et al., 2018), together 
framing our expectation of cooling increases and heating decreases 
in dense urban areas. In parallel, grid-level forecasts such as the 
2025 NYISO Gold Book project rising electricity demand in Zone 
K (Long Island) through 2055, reflecting regional electrification and 
load growth (New York Independent System Operator (NYISO), 
2025). While broader in scope than UBEM, such studies share the 
goal of anticipating future energy needs under changing climate 
conditions.

Using UBEM, and by simulation and comparison of different 
building designs, materials, energy systems, etc., researchers and 
designers can recommend measures and strategies that reduce 
energy consumption and carbon emissions and enhance the 
resilience of urban areas to a changing climate. In a comprehensive 
study, Kamel reviewed physics-based modeling techniques, focusing 
on ECMs, and examined different case studies based on various 
criteria like building systems, archetypes, calibration methods, etc. 
(Kamel, 2022). The study shows that while existing tools and 
techniques can successfully simulate and assess different ECMs at 
larger scales, there are still some challenges, like standardization in 
UEBM, high-resolution energy data for calibration, and occupancy 
schedules that have to be addressed. In a study of a single building, 
researchers optimized energy-saving measures and operation 
parameters for a retrofitted office building in future climate 
conditions (Gao et al., 2023). They used a detailed simulation 
model, coupled with multi-objective optimization, and achieved 
significant energy savings while maintaining thermal comfort. 
Extended to an urban scale, Mayrhofer et al. assessed the energy-
saving potential of passive cooling measures in Austrian buildings 
in 2050. They found a potential for up to 73% energy savings by 
measures like shading, night cooling, and sufficiency measures. The 
study suggests the need for further research to validate passive 
strategies by applying them to other regions and climate conditions 
(Mayrhofer et al., 2023). Similarly, city-scale studies in tropical 
coastal climates have applied UBEM to evaluate mitigation strategies 
such as reflective roofs, thermostat adjustments, and efficient 
cooling systems, showing that these measures can reduce cooling 
demand and alleviate peak loads (Pokhrel et al., 2019; Pokhrel 
and González-Cruz, 2021). At the national scale, ResStock and 
ComStock modeling identifies building typologies with the highest 
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energy intensities and maps engineering pathways toward zero-
carbon building stock by 2050 (Reyna et al., 2023).

The results gained by UBEM, considering climate change 
scenarios, can help policymakers and urban planners to develop 
regulations and incentives that help reduce carbon footprints and 
increase sustainable building practices to adapt to climate change. 
However, UBEM may still not be able to fully consider technological 
advancement, different policies’ implementation, and behavioral 
assumptions that affect energy usage. Broader modeling studies also 
highlight pathways: the EMF 37 study identified electrification and 
efficiency as primary levers for net-zero buildings in North America 
(Browning et al., 2023), while analyses in China stressed aligning 
building efficiency policies with long-term climate goals (Li and 
Shui, 2015).

As an important tool, Large-Scale BEM can help in designing 
and implementing low-carbon urban development strategies. Cities 
can reduce their emissions and align with climate goals by utilizing 
Large-Scale BEM to integrate renewable energy sources, green 
building technologies, and energy-efficient design principles. For 
example, studies of future London scenarios highlight that certain 
compact geometries improve efficiency, though overall demand may 
still rise with added cooling and EV loads (Ahmadian et al., 2022). 
In Dallas, UBEM-based analyses of transit-oriented development 
showed that densification and compactness can increase energy use 
intensity across building types (Trepci et al., 2020).

The choice of appropriate and adequate weather data can 
largely affect the buildings' energy results, especially for future 
scenarios (Erba et al., 2017). For creating future weather data, 
scientists use climate models to make projections based on different 
scenarios of future greenhouse gas emissions. Although there is no 
single perfect pathway to reach long-term climate goals, there are 
numerous possible approaches to reach the 1.5 C target, but clearly, 
all of them need rapid cuts in GHG emissions and need to be 
started immediately (Mitigation Pathways Compatible with Long-
term Goals, 2023). The “Morphing” technique, by combining 
existing hourly weather data with predicted climate change 
information, showed promising results (Jentsch et al., 2013). To 
address the challenge of creating future weather files for UBEM, 
Manapragada et al. proposed an effective and affordable tool, the 
Future Weather File Generator (Manapragada et al., 2022). The tool 
uses geo-filtering and machine learning for accurate predictions, and 
it was tested in India as a case study.

The background highlights the challenges associated with Large-
Scale and UBEM, like the need for accurate meteorological data, 
high computational cost and optimization, archetype definition, 
and the integration of climate change scenarios. Considering these 
challenges, this paper aims to implement an automated workflow 
using HPC to assess the energy behavior of over 340 thousand 
buildings in Nassau County, New York, under current and future 
climate conditions. The focus is to evaluate the impact of climate 
change on heating and cooling loads, and emissions from different 
energy carriers, and possibly identify the buildings that have priority 
for targeted energy retrofit incentives. In this paper, we execute 
Stage 1 of the roadmap, an automated, building-resolved UBEM 
under current and morphed future TMY, to quantify heating and 
cooling end uses and site/source energy and emissions. Subsequent 
stages (development of new archetypes, meter-based calibration, 

sensitivity analysis, exploration of additional climate scenarios, and 
policy/scenario analysis) are reserved for future work. 

3 Methodology

This study utilizes a comprehensive simulation workflow to 
assess urban buildings’ energy performance under current and 
future climate conditions. The workflow encompasses several 
key stages, including the preparation of building models, the 
configuration and execution of simulations on an HPC cluster, and 
the post-processing of simulation results to analyze energy use and 
emissions. This can be easily customized with region-specific data 
and climate scenarios, making it suitable for modeling urban energy 
use in diverse geographic and climate contexts.

Initially, building models are prepared based on the dataset 
from the Model America project (New et al., 2025), including 
details on building geometry, materials, occupancy, and HVAC 
systems. These models are then configured in the EnergyPlus 
simulation engine, which is executed on an HPC cluster to efficiently 
process large datasets across thousands of buildings within a 
manageable timeframe. The computational resources of the HPC 
enable the parallelization of simulations, making large-scale urban 
modeling feasible.

Post-simulation, Python scripts are employed to automate the 
extraction and processing of results from the EnergyPlus output files. 
These scripts parse HTML files to retrieve the desired metrics such 
as total energy use, heating loads, and cooling loads. Simulations 
were executed separately with two climate files, the historical TMY 
and the morphed future TMY representing RCP8.5. Then with 
post-processing, building-level outputs were extracted (e.g., total 
energy use, heating, and cooling loads), allowing direct comparison 
between the current and future scenarios. Also, source energy 
was calculated at the building level by applying the source-to-
site conversion factors to each building’s site energy use, then 
aggregating to county totals. The present paper reports results from 
Stage 1 only; later stages (new archetypes, calibration, sensitivity, 
additional scenarios, and policy analysis) are deferred to future 
work. The final scope of this study is shown in Table 1, and the overall 
workflow is illustrated in Figure 1.

3.1 Description of the study location and 
building dataset

This Nassau County (Figure 2) case study involves 346,827 
building energy models simulated with EnergyPlus. The Google 
Map image (Web Mercator map projection) shows the outline of 
Nassau County and the buildings’ outlines are shown in a map 
with equal-area projection. Derived from the Model America dataset 
(New et al., 2025), the subset represents a mix of residential 
and commercial buildings in the county’s mixed-humid climate 
zone. The study focuses on individual buildings, providing a 
foundation for exploring urban-scale building energy modeling and 
its implications for global warming impacts in Nassau County. A 
preliminary version of this case study was presented at the ASHRAE 
Annual Conference (Jalilian and Kamel, 2025), and the present 
paper extends that work with a comprehensive county-wide UBEM 
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TABLE 1  summarizes the scope of this case study, following the UBEM workflow categories discussed in (Kamel, 2022).

Location Scale Tools and file 
Schemas

Input sources Scope

Nassau County, New York, USA Meso (346,827 Buildings) Simulation Engine: EnergyPlus DOE-Prototype
Model America
NSRDB

Large-scale carbon/energy 
reduction

FIGURE 1
Overview of the simulation workflow and data processing.

FIGURE 2
Nassau County, Long Island, New York. (Left) Study area shown on Google Maps (data source: Google Maps; Map data ©2025 Google). (Right) Outlines 
of simulated buildings generated in QGIS using building layout coordinates from Model America EnergyPlus files. North is up; the scale bar shown in 
the left panel applies to both panels.

workflow and expanded analyses, including residential vs. non-
residential contributions and carbon emissions.

The building archetypes used in this study are based on those 
already assigned in the Model America project (New et al., 2025), 
which applies DOE prototype models to individual buildings based 
on their building type, construction year, and size. These archetypes 
include characteristics, such as building envelope, HVAC systems, 
and occupancy schedules appropriate for ASHRAE climate zone 4A. 

3.2 High-performance computing (HPC) 
for large-scale simulations

To process these large-scale simulations, the study leverages 
an HPC cluster, equipped with 24 cores, 192 GB of RAM, 
and four Nvidia V100 GPUs, which supports parallel CPU-
based computations. Each building simulation is treated as an 
independent task, enabling the system to run thousands of 

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1683787
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Jalilian and Kamel 10.3389/fenrg.2025.1683787

simulations concurrently, significantly reducing processing time. 
This parallelization is critical for conducting high-resolution 
simulations across an urban area of 346,827 buildings, a task that 
would be infeasible using traditional serial processing methods.

Post-simulation Python scripts automate the extraction and 
processing of results from EnergyPlus output files. These scripts 
retrieve metrics such as total energy use, heating and cooling 
loads, and emissions, ensuring an efficient workflow from model 
generation to data analysis. 

3.3 Current weather files vs. future climate 
data for 2099

In this study, TMY weather files, based on typical weather 
conditions rather than extreme events, were used due to their 
simplicity, representativeness, and acceptance as a standardized 
input. While in some cases TMY may lead to some inaccuracies in 
urban energy systems’ design (Perera et al., 2018), or building energy 
models (Ma and Yu, 2020), it would be aligned with the purpose 
of this study, which is to assess the effects of climate change on 
buildings’ energy behavior in a large scale, and previously showed 
valuable insights (Bass et al., 2022).

Despite the global trend towards cleaner energy, assessing 
Representative Concentration Pathway (RCP) 8.5 remains crucial 
for several reasons. First, it serves as a valuable benchmark for 
understanding potential high-risk futures (Riahi et al., 2011), 
providing a critical reference point for extreme climate impact 
scenarios. Additionally, significant feedback mechanisms, such as 
the release of greenhouse gases from thawing permafrost, could 
align with RCP8.5 outcomes (Schuur et al., 2022). Furthermore, 
recent trends, such as the record-high coal use in 2022 and 
projections from the IEA indicating continued increases until 
the end of the decade, underscore the possibility that RCP8.5 
could still occur (IEA, 2023). Therefore, by using RCP8.5 in 
this study, we aim for the worst-case scenario, highlighting the 
importance of robust climate modeling and policy planning to 
mitigate severe impacts. We therefore treat RCP8.5 as an explicit 
stress test of building performance under severe warming. In future 
work, we will also run RCP4.5 as a sensitivity to cover a more
moderate future.

For future weather data in this study, we used the WeatherShift 
tool (Dickinson and Brannon, 2016), which generates future 
TMY files by applying the Morphing technique (Jentsch et al., 
2013) to standard historical TMY datasets. WeatherShift combines 
downscaled and bias-corrected outputs from multiple global climate 
models (GCMs) to modify key meteorological variables, such as 
temperature, solar irradiance, and humidity, ensuring consistency 
with projected climate conditions under RCP8.5. Thus, the baseline 
(current) TMY is based on observed historical weather data, while 
the future TMY represents a morphing-based projection of these 
data under a high-emission scenario.

One limitation is that the morphed data retains the 
characteristics of TMY data, meaning that extreme weather events 
are not fully captured. The baseline climate, derived from a Long 
Island weather station, may not fully represent all areas in Nassau 
County, but it is within the mixed-humid (4-A) climate zone. 
Figures 3, 4 compare current and future climate scenarios for average 

FIGURE 3
Hourly dry-bulb temperature for current TMY vs. fTMY for 
the year 2099.

FIGURE 4
Monthly insolation for current TMY vs. fTMY for the year 2099.

daily temperatures and monthly solar radiation. A standard baseline 
of 18.33 °C was defined for both Heating Degree Days (HDD) and 
Cooling Degree Days (CDD) calculation.

While the TMY data offers simplified future climate conditions, 
it allows for scalability and broad applicability in building energy 
simulations. Future research could incorporate more complex 
weather models that capture temperature extremes and other 
meteorological variations to refine these projections. 

4 Results and analysis

4.1 Site and source energy use intensity

The energy simulation, which is done by HPC and explained in 
detail in the previous section, shows that the average site Energy Use 
Intensity (EUI) decreases by 26% in the future scenario compared 
to the current situation (Figure 5). This decrease can be a result of 
the considerable reduction in heating energy demand in the future 
caused by climate change. It is important to note that the Energy Use 
Intensity (EUI) being used in this paper is only the energy needed 
for heating and cooling, which is directly under the influence of 
climate change and does not include other energy end-uses such as 
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FIGURE 5
Comparison between current and future total site energy use per unit area.

lighting, domestic hot water, and appliances. In addition, cooling 
loads reported here represent the technical demand simulated 
under the assumption that air conditioning equipment is available 
to meet the thermal demand, regardless of current penetration 
levels. To have a better understanding, and since averaging the 
site energy use may not be a favorable parameter because not 
all the energy carriers have the same conversion efficiencies, the 
source EUI is also plotted in Figure 6, showing a 4% reduction in 
average between current and future scenarios. This shows that even 
though a considerable reduction is seen in the site energy use, the 
potential shifts of the load from natural gas consumption in winter 
to electricity in summer, the production of which is less efficient, can 
cancel out the savings in heating load, in total source energy use. 
These shifts are further explained in Section 4.6, where we analyze 
the influence of weather and temperature changes on building
energy use. 

4.2 Cooling and heating loads

Breaking down the results into cooling and heating loads, 
which are illustrated in Figures 7, 8, shows a considerable reduction 
of 51% in average source heating energy intensity, and an 
increase of 96% in average for the cooling side. It can be 
concluded that in the future scenario, in a Mixed-Humid climate 
zone (i.e., 4-A), milder winter loads and harsher summer loads 
might be seen.

A notable point is that the data in all of Figures 6–8 are positively 
skewed, with the mean pulled towards the higher end of the graphs. 
This shows that there are some buildings with very high cooling, 
heating, or total energy use intensities compared to the majority of 
the buildings, which are located on the lower end. By going deeper 
into the details, it’s understood that only 21% of the total number of 
buildings have an EUI more than the average. This includes 92% of 
all non-residential buildings and 13% of the residential buildings. It’s 
clear that non-residential buildings, with much higher source energy 
use, are causing positive skewness of these histograms. Knowing this 
can be quite useful, since policies and initiatives might be designed 

not only to promote energy efficiency in most buildings but also to 
address and mitigate the impact of the high energy users (Baneshi 
and Hadianfard, 2016), in this case, mostly non-residential, to 
achieve more balanced and sustainable energy consumption across 
the entire set of buildings. The gap between median and average 
values highlights the inequality in energy consumption, where a 
relatively small group of buildings consumes disproportionately 
more energy than the majority, making them a key focus for targeted 
interventions to achieve more balanced and sustainable energy use 
across the stock.

While detailed measured data for county-level cooling energy 
use are not publicly available for Nassau County, an approximate 
verification and simple plausibility check of the simulated cooling 
results were conducted by comparing the modeled baseline against 
city-level estimates from the NYSERDA (Guidehouse, 2021) 
study for New York City (New York State Energy Research and 
Development Authority (NYSERDA), 2021). Using the NYC site 
cooling EUIs from Table C-1 of their report (≈11.3 kWh·m-2·yr-1

for residential and ≈23 kWh·m-2·yr-1 for non-residential), 
weighted by our building-count distribution shown in Figure 13 
(89.9% residential and 10.1% non-residential), yields a mean of 
≈12.5 kWh·m-2·yr-1, slightly above our modeled average site cooling 
EUI of 10.8 kWh·m-2·yr-1 for Nassau County. This close alignment 
suggests that the simulated magnitudes are realistic for current 
conditions, with the small gap potentially reflecting the stronger 
urban heat island (UHI) effect and higher non-residential cooling 
intensity in New York City. Yet, a full calibration using measured or 
metered data will be conducted in future work to establish definitive 
validation. 

4.3 Energy use by different sources

Depending on the characteristics of the buildings, e.g., age, type, 
etc., different archetypes and consequently different combinations 
of the HVAC systems have been employed for each building in the 
study (New et al., 2025). As an example, an office building might 
have a VAV air-based system that uses a heat pump for the heating 
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FIGURE 6
Comparison between current and future total source energy use per unit area.

FIGURE 7
Comparison between current and future cooling source energy use per unit area.

FIGURE 8
Comparison between current and future heating source energy use per unit area.
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FIGURE 9
Comparison between current and future total site energy use by different energy sources.

coil, with a gas boiler backup system in winter, and a heat pump for 
summer. As a result, the heating system can be a combination of 
both gas and electric sources, while the cooling systems are solely 
electric-based. Knowing this and by further breaking down the total 
energy use by different energy sources in Figure 9, a total reduction 
of 20.1% in site energy use can be seen for the future scenario, while 
this is not the case for source energy in Figure 10, which is increased 
by 5.36% in the future case. It explains that despite a significant 
decrease in heating loads being seen in the future, the jump in 
cooling load, which is being produced primarily by electricity, is 
dominant and caused an increase of over 5% in total source energy 
use. Worth mentioning that in this study, a constant source-to-
site ratio (3.167 for electricity and 1.084 for natural gas, based on 
EnergyPlus documentation (U.S. Department of Energy, 2023)) is 
considered both for electricity and gas, which might not be the case 
in reality, as they are changing over time and in different regions. 
Especially the source-to-site conversion factor for electricity, which 
is being improved by technological advancement and the use of 
renewable sources of energy over time.

4.4 Residential vs. non-residential energy 
use

Furthermore, the total site and source energy use for residential 
and non-residential buildings have been shown in Figures 11, 12, 
respectively. It is noticeable that the main source of heating for 
residential buildings is gas, while in non-residential ones, some 
buildings use gas, electricity, or a combination of both. While 
we see a considerable reduction in total end-use energy for both 
categories of buildings because of milder winters in the future, a 
slight increase in source energy use can be seen for both residential 
and non-residential buildings. Electricity will play a vital role for 
non-residential buildings in the future, corresponding to 89% of 
the total primary energy use, while this number will be 69% for 
residential buildings. These two numbers necessitate an emphasis 
that must be put on improving the electricity production and 

conversion efficiency, which can consequently help toward the long-
term carbon reduction goals.

A notable point from Figures 11, 12 is that the amount of 
the source energy used is almost equal in residential and non-
residential buildings within a margin of 5%. This is true for both 
current and future scenarios. This leads to a further breakdown in 
Figure 13. Despite non-residential buildings constituting a relatively 
small percentage of the total number of buildings (10.1%) and 
representing 32.9% of the total floor area, interestingly, they are 
responsible for 49.3% and 50.8% of the total source energy use 
in current and future scenarios, respectively. This emphasizes the 
critical role they play in the future energy use landscape that 
must be addressed (Mariano-Hernández et al., 2021). Despite their 
smaller share of the stock, non-residential buildings dominate future 
source energy use because they are substantially larger in floor area 
on average, rely more heavily on electricity for both heating and 
cooling, and are therefore more affected by the higher source-to-site 
conversion factor for electricity compared to natural gas.

4.5 Carbon emissions

Moreover, Figure 14 shows carbon emissions as a 
result of the energy use for current and future scenarios. 
The emission factors are defined according to the U.S. 
Environmental Protection Agency (EPA) for gas and electricity 
at (U.S. Environmental Protection Agency (EPA), 2021) and 
(U.S. Environmental Protection Agency (EPA), 2024) respectively. 
The emission factor that is used for electricity in this study is 
specifically defined with respect to the electricity production sources 
in Long Island, NY. As it is clear from the results, like the source 
and site energy uses, a substantial reduction of 50% in carbon 
emission can be seen due to the reduction in gas consumption for 
heating, while the emission produced by electricity consumption for 
cooling increased significantly, about 99%, in both residential and 
non-residential buildings. The total carbon emission is estimated 
to decrease by about 4% in residential buildings, while it is a 
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FIGURE 10
Comparison between current and future total source energy use by different energy sources.

FIGURE 11
Comparison between current and future total site energy use by different energy sources and building types.

5% increase in non-residential buildings, from the current to 
the future case. These results highlight how different types of 
buildings use energy and affect the environment, showing that 
specific plans are needed to reduce carbon emissions from various 
building sources (Ang et al., 2023).

4.6 Impact of climate and temperature 
changes

Lastly, while this study shows that for a mixed-humid climate 
zone, like the one of Nassau County, in which the heating load is 
dominant, the site energy use has been decreased by almost 20% for the 
future scenario (Figure 9), it is completely depending on the weather 
condition and location of the case study and it should not be deceiving. 
As illustrated in Figure 15 by plotting the monthly average temperature 

for the current and future cases and the average thermostat set-point 
temperatures in winter and summer, it can be seen that, for the case 
of Nassau County, the difference of the external temperature and the 
thermostat set-point is reduced for the future case, which leads to 
a decrease in heating loads. On the other hand, the difference in the 
average external temperature and cooling set-point is increased, which 
simply leads to an increase in cooling loads in the future. Obviously, 
for warmer climate zones, in which the dominant load is cooling, a 
harsher increase in cooling loads will be seen. 

5 Discussion

The results provide important trends and patterns for both 
current and future scenarios in residential and non-residential 
buildings. Importantly, the breakdown of energy consumption by 
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FIGURE 12
Comparison between current and future total source energy use by different energy sources and building types.

FIGURE 13
Comparison between the number of buildings, total floor area, and source energy use.

FIGURE 14
Total carbon emissions for current and future scenarios in Nassau County.

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1683787
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Jalilian and Kamel 10.3389/fenrg.2025.1683787

FIGURE 15
Average external temperature for current and future scenarios and 
summer and winter temperature set-points.

building type and the following analysis of source and site energy 
use patterns reveal important considerations for energy efficiency 
and sustainability actions.

It is concluded that, depending on the climate zone and the 
conversion approach in creating fTMY (Bass et al., 2022), the mixed-
humid climate zone might experience an increase in cooling loads 
and a decrease in heating loads, which resulted in reduced energy 
use in some buildings and an increase in others. Depending on the 
balance between heating and cooling degree days, climate change’s 
overall impact varies between regions.

In general, for both source and site energy, a substantial 
reduction in heating and a significant increase in cooling loads are 
observed. Although the results indicated that the site energy use will 
be reduced by almost 20% in the future scenario due to the milder 
winters, which is the dominant load for this climate zone, this is not 
the case for source energy. The total source energy is increased by 
over 5% in the future case, since the increase in cooling loads, which 
is solely provided by the electricity, not only cancels out the savings 
in milder winters in the future but also increases the total source 
energy use.

Although the non-residential buildings constitute around 10% 
of the total number of buildings in the study area, they have a 
substantial overall impact and are responsible for over 50% of the 
total source energy use in the future scenario. Since a large portion 
of the load is being produced by electricity, both for heating and 
cooling, in non-residential buildings, their bold contribution to total 
source energy use seems to be logical.

The analysis showed that in the future scenario, electricity 
will be responsible for around 89% of the total source energy 
in non-residential buildings and 69% for residential ones. 
Comparable studies for New York City have shown that 
electrification substantially reshapes electricity demand profiles 
and urban thermal conditions, and that the electrification of 
heating and domestic hot water systems will push electricity 
demand even higher, which supports the implications of our 
projected high electric share (Gamarro and González-Cruz, 
2023). Providing a broader regional context, the 2025 NYISO 
Gold Book similarly projects continued growth in overall 
electricity demand for Long Island, confirming that this building-
level trend aligns with larger, multi-sector energy forecasts 
(New York Independent System Operator (NYISO), 2025). This 

significant shift to electricity in building stock indicates the 
emphasis that has to be put on increasing the efficiency of electricity 
production. While using more efficient power plants, less fossil fuel, 
more renewable production sources, and investing in distributed 
systems seem to be feasible technical solutions, other aspects like 
social, economic, business, and governance challenges have to be 
addressed as well (Eyre et al., 2018).

Moreover, this jump in electricity use highlights the importance 
of grid cleaning and power sector decarbonization, which not only 
helps in climate change mitigation (Leibowicz et al., 2018; Zhao and 
You, 2020), but also improves public health (Luderer et al., 2019), 
increases energy security (Rabbi et al., 2022), provides economic 
benefits (Jacobson et al., 2019), and accelerates the innovation and 
technological advancement (Di Silvestre et al., 2018). When this 
initiative comes along with the integration of renewable sources 
into the grids and a growing number of Electric Vehicles (EVs), it 
signifies that the study of Demand Response (DR) for Building-to-
Grid (B2G) integration and management on an urban scale would 
be inevitable (Vázquez-Canteli and Nagy, 2019) and can be used 
for more precise modeling of occupant’s behavior (Osman et al., 
2024) and HVAC optimization (Razmara et al., 2017). At the same 
time, experience from New York City shows that cooling costs weigh 
disproportionately on low-income households, and that simple 
measures such as reflective roofs or modest set-point changes can 
help ease this burden (Ortiz et al., 2022)

While the total emissions barely remained unchanged from 
the current to the future scenario, we see a decrease of 4% in 
residential buildings and an increase of 5% for non-residential 
buildings. Taking advantage of these statistics, by proper energy 
efficiency policies and incentives on non-residential buildings, 
which correspond to about 10% of the total buildings in 
Nassau County, NY, promising carbon emission reductions can 
be achieved.

The dependence of site energy use reduction on climate 
conditions emphasizes that local weather patterns are crucial factors. 
For a Mixed-Humid climate like Nassau County, where heating loads 
dominate, a decrease in site energy use is observed. However, the 
applicability of these results should be considered with caution, as 
they heavily rely on specific climate conditions.

While this study aggregates building-level simulations to 
represent county-wide energy behavior, it does not explicitly 
account for Urban Heat Island (UHI) effects or local microclimate 
variations, which can influence air temperatures and cooling 
loads in denser urban areas (Xu et al., 2018). Previous city-
scale coupled modeling studies (Ortiz et al., 2022; Ortiz et al., 
2017) have demonstrated that integrating atmospheric feedback 
and grid-level energy data can improve the representation of 
spatial temperature variability and baseline energy demand. Their 
methods separate weather-dependent and baseline loads, enabling 
more accurate benchmarking of urban energy models against 
observed demand. Nevertheless, the present large-scale approach 
retains the precision needed to inform county-wide energy 
and decarbonization planning. Future work will explore the 
integration of UBEM with mesoscale climate models or grid-
level baselines to capture microclimatic effects more accurately, 
complementing the current focus on aggregate results that provide 
policymakers with actionable insights for broad-scale energy
interventions. 
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5.1 Limitations and uncertainties

In this study, the energy models rely on TMY data, which, 
unlike actual weather data, represents the most common weather 
conditions based on historical data. In addition, the fTMY in this 
study only accounts for the temperature and solar radiation increase 
and does not consider any extremely low or high temperatures that 
could be a side effect of climate change. Also, the significant increases 
in temperatures are uncertain, and different scenarios could be 
evaluated in the future.

The building energy models benefit from measured geometries. 
Still, other important inputs, such as schedules, thermostat settings, 
heating and cooling system properties, and envelope system thermal 
properties, are all assumed from the energy codes adapted from 
the construction year per the Model America project. Although 
knowing the buildings' construction year (i.e., vintage) reduces the 
uncertainties to a certain degree, other assumptions could differ 
from the actual buildings’ characteristics. The simulation is also set 
to a 1-h resolution to reduce the simulation time, which could affect 
the accuracy of time-of-use but would not affect the accuracy of 
total energy consumption because the weather files are based on 
hourly inputs.

From the results, it is understood that electricity will play a 
vital role as the primary energy source for the future scenario. 
In this study, the source-to-site conversion factors are considered 
constant for the future case. Considering the dynamic source-to-
site conversion factors over time, and integration of renewable 
energy technologies, and their potential impact on the source-to-site 
conversion factors, which will be the case as a result of technological 
advancement, as well as the electrification of heating and hot water 
systems, can be studied further to give us more realistic results for 
future cases.

This study used one future climate scenario (RCP8.5 for 2099) 
and the same weather file for all buildings, which means local 
weather differences within the county were not considered. Also, 
buildings were modeled independently, without including the 
effects of nearby buildings like shading or heat exchange. These 
simplifications helped make large-scale simulation possible but 
reduced accuracy in capturing local and urban effects. Future work 
will include more climate scenarios, detailed weather data, and 
urban form effects. 

5.2 Urban planning, policy-making, and 
future research

As the results indicated, a significant shift to electricity 
is expected. Apart from the technical solutions that can be 
implemented to improve the efficiency of electricity production, 
considering the societal and economic aspects of these practices 
would be crucial (Nidam et al., 2023). It can include dealing 
with uncertainties caused by climate change and human systems 
(Perera et al., 2022), along with the assessment of the occupant 
behavior (Happle et al., 2018), acceptance and adaptation to 
the new technologies, and the transition of households to be 
energy prosumers instead of being only consumers (Parag and 
Sovacool, 2016).

Future research can focus on dynamic climate change scenarios, 
considering different climate patterns and extreme weather 
conditions. It can be useful to assess how different climate patterns 
affect energy use in spatial and temporal granularities, to reach more 
accurate predictions and potential improvement strategies.

Furthermore, the effectiveness of different ECMs under the 
influence of probable climate scenarios can be assessed to give a 
more accurate overview of the potential future policies and incentive 
allocations by governments and policymakers.

Lastly, a key limitation of this study is that the current results 
are not yet calibrated against measured building or district-level 
energy data due to limited access to private data in the understudied 
county. Calibration and validation will be addressed in subsequent 
work, in line with UBEM best practice, to ensure the accuracy 
and applicability of the modeled results. While the workflow is 
designed to be scalable, its practical deployment at larger regional 
or national levels remains limited by computational demands, the 
representativeness of archetypes across diverse building stocks, and 
the availability of calibration datasets. 

6 Conclusion

This study developed an automated and scalable Large-Scale 
Building Energy Modeling workflow, and it was applied to over 
346,000 buildings in Nassau County, New York, to assess the 
impact of climate change on energy demand by 2099 under RCP8.5 
conditions using morphed Typical Meteorological Year (TMY) data. 
Through the assistance of High-Performance Computing (HPC) 
and a bottom-up simulation approach, the study demonstrates 
how large-scale and detailed energy assessment can inform climate 
mitigation planning at the urban scale and county level.

Key contributions and findings of this work could be 
listed as follows: 

• A streamlined, large-scale BEM process that is scalable and 
incorporates country-level EnergyPlus physics-based models, 
climate morphed data, and HPC-parallelized runs to enable 
large-scale, climate-enlightened energy modeling in any 
geographic or climatic context.

• The quantitative evidence of future energy transitions showed 
that whereas site energy demand decreases by ∼20%, source 
energy consumption increases by ∼5%, due to more electricity 
consumption for cooling, which is a significant observation 
in evaluating electrification possibilities under conditions of 
global warming.

• The results identified the high-impact targets of non-
residential buildings, accounting for over 50% of aggregate 
source energy consumption, though they only account for 
10% of the building inventory, which is a clear case for systemic 
retrofits and policy attention.

• Grid decarbonization is critical, as further electrification 
(mostly for cooling) will not reduce emissions until electricity 
generation becomes radically cleaner. This highlights the 
co-dependency of building-sector approaches and energy 
infrastructure shifts.

These findings give a real-world basis for county- or city-
scale planning, policymaking, and energy transition simulation. The
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procedure here is transportable to different emissions scenarios (e.g., 
RCP4.5, RCP2.6) and world regions and therefore offers a helpful 
tool for researchers and practitioners studying the intersection of 
climate change and urban energy demand.

Subsequent studies should also expand on this method by 
including real energy consumption data for calibration, varying 
climate change scenarios, and incorporating demand response 
and building-to-grid interactions to better represent future urban 
energy systems.
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