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Urban- or large-scale building energy modeling is essential to understand
how climate change may affect energy demand in urban or populated
areas. Past research, however, is generally small-scale, of low spatial
resolution, or not highly transferable to future climate conditions. In this
research, an automated high-performance computing (HPC) workflow is
created and implemented to simulate energy use in 346,827 buildings
in Nassau County, New York, under present and future 2099 climate
scenarios (RCP8.5). The simulation platform combines large-scale physics-
based modeling with morphed Typical Meteorological Year data in order
to compute site and source energy use, heating and cooling loads, and
correlated carbon emissions. Results for Nassau County show that while
mean site energy use decreases by 20.1% due to lower heating loads
during milder winters, source energy use increases by 5.36% due to
increased electrical demand for cooling. Non-residential buildings, although
constituting only 10% of the building stock, are the source for over 50% of
future total source energy consumption in the scenario considered. These
outcomes underscore the importance of grid decarbonization as well as
such focused efficiency measures, particularly for electricity-reliant types
of buildings. The proposed workflow is applicable in other fields, scalable,
and can potentially inform long-term urban energy and climate resilience
planning.

urban building energy modeling, high-performance computing, climate change
impact, building electrification, grid decarbonization, future weather scenarios, urban
planning
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GRAPHICAL ABSTRACT

Highlights

o High-definition simulations conducted on over 346,000
buildings via an HPC-enabled automated process.

Future climate (RCP8.5, 2099) reduces site energy use but
increases source energy due to rising cooling and electricity
loads.

Cooling loads nearly double as a result of rising temperatures,

offsetting reductions in heating demand.

o Only 10% of the stock, non-residential buildings, consume
more than 50% of future source energy.

o Results underscore the importance of grid decarbonization

and concentrated energy policies for non-residential buildings.

1 Introduction

According to the US. Energy Information Administration
(EIA), buildings are the main energy consumers in the
US, responsible 38% of the total
consumption and 35% of the total emissions in the US

for primary energy
(U.S. Energy Information Administration, 2023). Understanding
and improving the energy behavior of these buildings is
very important for creating a sustainable and resilient urban
environment, especially in terms of current and future climate
change scenarios (Chen et al., 2024).

There are mainly two approaches to assessing the energy
behavior of buildings in an urban area: top-down and bottom-
up. While top-down methodologies are useful for comprehensive
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and generalized large-scale analysis (van Vuuren et al, 2009),
bottom-up approaches are necessary for finding potential efficiency
improvements in the urban building sector (Ali et al., 2021)
and they are more feasible options since accessibility to sufficient
data on a large scale is limited. To come up with optimized
and cost-efficient energy improvement strategies, especially on
an urban scale, quantification of these savings, not only for
the current weather conditions but also under different climate
change scenarios, is necessary. This can be done by a proper
bottom-up approach considering the current and future probable
meteorological conditions as a result of climate change (Reyna and
Chester, 2017).

Availability and accuracy of meteorological data can be a
challenge for building energy models and can have a substantial
impact on their calibration and estimation of the energy needs
in urban buildings (Bhandari et al, 2012). Since the standard
weather data files, e.g., Typical Meteorological Year (TMY) files,
which are used in building performance simulations, cannot be
used for future climate change scenarios, the “Morphing” technique
that combines existing hourly weather data with predicted climate
change information could be a suitable alternative (Jentsch et al.,
2013). In this way, the potential future weather conditions, and
especially their effect on the energy performance of the buildings
in a specific urban area, can be assessed.

There exists a significant knowledge gap in large-scale or
Urban Building Energy Modeling (UBEM), especially when dealing
with the challenges and complexities of modeling numerous
buildings within urban areas (Ali et al,, 2021). UBEM helps in
estimating energy needs, assessing design or upgrade choices, and
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measuring the effects of severe weather or climate change; however,
it's important to correctly combine urban data (geometric and
non-geometric) with proper modeling tools (Ang et al., 2020).
While such integration is computationally feasible in a microscale,
it can be quite challenging to conduct studies in meso- or
macroscales (Oraiopoulos and Howard, 2022).

Numerous studies have assessed the effects of climate change
on the future energy behavior of buildings, often focusing on
archetypes such as commercial offices (Jafarpur and Berardi, 2021;
Nguyen et al,, 2021), (Bamdad et al., 2021) or residential buildings
(Tomrukcu and Ashrafian, 2024; Xiong et al., 2023). While valuable,
these analyses are generally region-specific or rely on varied
methodological approaches (Tootkaboni et al., 2021), limiting their
generalizability to other contexts. Moreover, a few studies have been
done in meso- or macroscales with high resolution, which can
consider the effectiveness of any Energy Conservation Measures
(ECMs) on a large scale, as well as the potential opportunities
to shift the peak loads. However, prior UBEM studies often
face challenges with computational cost, archetype definition, and
transferability, limiting their use in regional planning applications.
The contribution of this paper is not the development of a new
simulation engine but the demonstration of an automated, scalable
workflow that enables county-wide analysis. By integrating existing
building models from the Model America dataset with downscaled
climate scenarios and executing simulations on high-performance
computing, we show how UBEM can be applied to over 346,000
buildings in Nassau County. This approach provides a transferable
pathway for high-resolution, climate-aware energy analysis to
support urban planners and policymakers.

As a case study, this workflow is utilized to assess the energy
behavior of more than 346 thousand buildings, in terms of heating
and cooling energy needs, in the mixed-humid area of Nassau
County in New York state, under current and future weather
conditions. The goal is to assess how cooling and heating loads,
in residential and non-residential buildings, will be affected as a
result of climate change in 2099. Although RCP8.5 is increasingly
seen as an unlikely scenario due to the global trend towards cleaner
energy, it remains valuable for assessing potential high-risk futures
(Hausfather and Peters, 2020). Accordingly, we use RCP8.5 as a high-
end stress-test scenario to bound impacts under severe warming;
results should therefore be interpreted as upper-bound estimates.
This is especially relevant given the global all-time high coal use
in 2022, which the International Energy Agency (IEA) projects
will continue to increase until the end of the decade (IEA, 2023).
Therefore, we employed RCP8.5 in this case study to explore its
implications on urban building energy demand under extreme
conditions. In addition, the corresponding emissions for different
energy sources (e.g., electricity or gas) and source and site energies
will be studied. Furthermore, the analysis helps to identify building
groups with disproportionately high energy use, which can be
prioritized for potential energy retrofit incentives.

This study is the first step of the proposed multi-step research
roadmap. Subsequent steps include the development of new
archetypes, calibration of simulation models, sensitivity analysis,
exploration of different climate change scenarios, and policy and
scenario analysis. These steps build on the findings of this study,
aiming to refine the models, incorporate more detailed and varied
building archetypes, and explore the broader implications and policy
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responses to the projected changes in building energy use due to
climate change.

Subsequent
(Section 2) on Large-scale and Urban Building Energy Modeling
(UBEM) and its challenges, followed by a detailed methodology
(Section 3) outlining the study’s execution using High-Performance
Computing (HPC). Results and analysis (Section 3.4) are presented

sections include a background discussion

in detail for current and future scenarios regarding energy use,
heating and cooling loads, and emissions, followed by a discussion
section (Section 5) highlighting insights for policy-making and
future research directions. Finally, the conclusion (Section 7)
summarizes key findings, underlining the urgency of transitioning
to cleaner energy sources and suggesting further exploration in
addressing the challenges caused by climate change on building
energy consumption on a large scale.

2 Background

2.1 Large-scale and Urban Building Energy
Modeling

Building Energy Modeling (BEM) is a computational tool
for optimizing a building’s energy efficiency through virtual
simulations, which originated back in the 1970s (Mills, 2004).
Urban-scale BEM (UBEM) extends these methods by combining
BEM with regional data to analyze energy use across thousands of
buildings (Reinhart and Cerezo Davila, 2016).

For the assessment of the energy behavior of buildings on an
urban scale, there are two methods available: top-down and bottom-
up. Top-down methodologies are used to analyze the overall energy
performance of the entire urban/district area by using aggregated
data and generalized parameters for large-scale usage, while
bottom-up approaches are used for identifying potential efficiency
improvements in the urban building sector (Ali et al., 2021).
Furthermore, the modeling approaches can be also categorized as
Physics-based models (white box), reduced-ordered (grey box), and
Data-driven models (black box) (Hong et al., 2020), each of which
has some benefits like computational simplicity and speed in data-
driven approaches, and detailed assessment and interpretability in
physics-based models, and can even be combined to use the benefits
of both methods (Nutkiewicz et al., 2018).

Ferrando et al. (2020), did a comprehensive review of the
bottom-up UBEM tools available, highlighting their abilities to
be used for energy assessment in different spatial and temporal
scales, their ability to implement retrofit strategies and measuring
consequent energy and emission savings, and comparing them
based on the inputs, outputs, workflow, applicability and potential
users. As mentioned in this review, one of the major trends in
UBEM could be computational optimization of these tools, coupled
with parallel or high-performance computing, to be able to run
the analysis over a larger number of buildings, for comparison of
different policies at larger scales.

One of the main uncertainties that must be addressed is the
definition of appropriate archetypes to be a decent representative
of the current building stock in large-scale studies, since access to
energy use data and thermal properties of the selected buildings
is very limited (Reinhart and Cerezo Davila, 2016). In this

frontiersin.org


https://doi.org/10.3389/fenrg.2025.1683787
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

Jalilian and Kamel

regard, some research has been done and showed promising
results in archetype definition at district scales, characterizing
each type, and validating the model by comparing them to
the measured energy data (Sokol et al, 2017; Cerezo et al,
2017). A widely used reference is the U.S. Department of
Energy prototype database (Office of Energy Efficiency and
Renewable Energy, 2022), which combines national consumption
surveys with ASHRAE standards to define residential and
commercial building types across climate zones.

Even with archetypes, simulating entire urban areas with
hundreds of thousands of buildings remains computationally
intensive and costly. While assessing ECM effectiveness at scale
is a core goal of bottom-up UBEM, relatively few studies attempt
it because of these demands (Kamel, 2022). As computational
optimization becomes a deciding factor in UBEM, it necessitates
the use of advanced computing technologies like Cloud or HPC.
As an example, Zhang etal. developed a surrogate modeling
framework for physics-based large-scale building stock modeling
that employs HPC (Zhang et al., 2021). It produces high-resolution
hourly energy outputs for large scales, like cities and regions, that
can be useful for understanding building demand profiles and
grid impacts while preparing large datasets and performing feature

engineering for training the surrogate models.

2.2 Climate change and large-scale BEM

The connection between Large-Scale or UBEM and climate
change is an important area of research to be focused on and
is useful for different stakeholders, including policymakers, urban
planners, and designers. To be able to downscale the long-term
climate neutrality plans from countrywide goals to cities, districts,
and even buildings, it is crucial to quantify the effects of different
climate change scenarios on the existing building stock, their
energy consumption, and carbon emissions, in different spatial and
temporal scales. To successfully perform such analysis on that scale
and level of detail, a calibrated, well-defined urban building energy
model is needed, along with a realistic projection of the different
climate change scenarios on the weather conditions in the future.

To address these needs, a web-based framework developed at
MIT automates UBEM creation from GIS data and archetypes,
supporting multiple climate pathways and retrofit comparisons
(Ang et al,, 2022). Similarly, de Rubeis et al. (2021). introduced a
tool that models individual buildings, recommends improvements,
and generates neighborhood- or city-scale energy ratings (UBER),
demonstrated in Italian case studies. There are many other powerful
and integrated tools, each of which has some benefits over the others,
which are comprehensively reviewed in (Ferrando et al., 2020).

Large-scale and UBEM help to quantify the impact of climate
change on energy consumption patterns in urban areas and their
influence on heating and cooling demands. This allows researchers
to assess how climate change may cause shifts in energy usage
in urban buildings. One study in Baghdad applied a degree-day
methodology and found that summer cooling accounted for nearly
40% of total city energy use under future warming, with associated
increases in pollution (Abed Hassan and Ismail Husain, 2022). A
large-scale U.S. analysis combining climate change, population
growth, and power sector decarbonization showed that while
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efficiency and location shape local outcomes, population growth
could raise energy use by over 50%, while decarbonization could
reduce it by about 17%, with climate change itself contributing a
modest further reduction (Wang et al., 2023). In another study, Bass
and his colleagues conducted research to quantify the impact of
future IPCC climate scenarios on US commercial buildings' energy
use (Bass and New, 2023). Their results show a significant increase
in total energy use in future scenarios, for the warmest parts of
the US, as a result of an increase in cooling loads, and a substantial
reduction in coldest areas, due to a decrease in gas needs and heating
loads. Across these studies, including (Deng et al., 2023), the results
show a significant reduction in heating loads and a considerable
increase in cooling loads, as a result of climate change, but the overall
energy use in the future primarily depends on the climate zone
in which the study is conducted, and can be positive or negative.
City-scale analyses for New York City project substantial rises in
summer cooling under future warming (Ortiz et al., 2018), and
validated simulations for Beijing indicate that the urban heat island
increases cooling while reducing heating (Xu et al., 2018), together
framing our expectation of cooling increases and heating decreases
in dense urban areas. In parallel, grid-level forecasts such as the
2025 NYISO Gold Book project rising electricity demand in Zone
K (Long Island) through 2055, reflecting regional electrification and
load growth (New York Independent System Operator (NYISO),
2025). While broader in scope than UBEM, such studies share the
goal of anticipating future energy needs under changing climate
conditions.

Using UBEM, and by simulation and comparison of different
building designs, materials, energy systems, efc., researchers and
designers can recommend measures and strategies that reduce
energy consumption and carbon emissions and enhance the
resilience of urban areas to a changing climate. In a comprehensive
study, Kamel reviewed physics-based modeling techniques, focusing
on ECMs, and examined different case studies based on various
criteria like building systems, archetypes, calibration methods, etc.
(Kamel, 2022). The study shows that while existing tools and
techniques can successfully simulate and assess different ECMs at
larger scales, there are still some challenges, like standardization in
UEBM, high-resolution energy data for calibration, and occupancy
schedules that have to be addressed. In a study of a single building,
researchers optimized energy-saving measures and operation
parameters for a retrofitted office building in future climate
conditions (Gao et al, 2023). They used a detailed simulation
model, coupled with multi-objective optimization, and achieved
significant energy savings while maintaining thermal comfort.
Extended to an urban scale, Mayrhofer et al. assessed the energy-
saving potential of passive cooling measures in Austrian buildings
in 2050. They found a potential for up to 73% energy savings by
measures like shading, night cooling, and sufficiency measures. The
study suggests the need for further research to validate passive
strategies by applying them to other regions and climate conditions
(Mayrhofer et al., 2023). Similarly, city-scale studies in tropical
coastal climates have applied UBEM to evaluate mitigation strategies
such as reflective roofs, thermostat adjustments, and efficient
cooling systems, showing that these measures can reduce cooling
demand and alleviate peak loads (Pokhrel et al., 2019; Pokhrel
and Gonzdlez-Cruz, 2021). At the national scale, ResStock and
ComStock modeling identifies building typologies with the highest

frontiersin.org


https://doi.org/10.3389/fenrg.2025.1683787
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

Jalilian and Kamel

energy intensities and maps engineering pathways toward zero-
carbon building stock by 2050 (Reyna et al., 2023).

The results gained by UBEM, considering climate change
scenarios, can help policymakers and urban planners to develop
regulations and incentives that help reduce carbon footprints and
increase sustainable building practices to adapt to climate change.
However, UBEM may still not be able to fully consider technological
advancement, different policies’ implementation, and behavioral
assumptions that affect energy usage. Broader modeling studies also
highlight pathways: the EMF 37 study identified electrification and
efficiency as primary levers for net-zero buildings in North America
(Browning et al., 2023), while analyses in China stressed aligning
building efficiency policies with long-term climate goals (Li and
Shui, 2015).

As an important tool, Large-Scale BEM can help in designing
and implementing low-carbon urban development strategies. Cities
can reduce their emissions and align with climate goals by utilizing
Large-Scale BEM to integrate renewable energy sources, green
building technologies, and energy-efficient design principles. For
example, studies of future London scenarios highlight that certain
compact geometries improve efficiency, though overall demand may
still rise with added cooling and EV loads (Ahmadian et al., 2022).
In Dallas, UBEM-based analyses of transit-oriented development
showed that densification and compactness can increase energy use
intensity across building types (Trepci et al., 2020).

The choice of appropriate and adequate weather data can
largely affect the buildings' energy results, especially for future
scenarios (Erba et al, 2017). For creating future weather data,
scientists use climate models to make projections based on different
scenarios of future greenhouse gas emissions. Although there is no
single perfect pathway to reach long-term climate goals, there are
numerous possible approaches to reach the 1.5 C target, but clearly,
all of them need rapid cuts in GHG emissions and need to be
started immediately (Mitigation Pathways Compatible with Long-
term Goals, 2023). The “Morphing” technique, by combining
existing hourly weather data with predicted climate change
information, showed promising results (Jentsch et al., 2013). To
address the challenge of creating future weather files for UBEM,
Manapragada et al. proposed an effective and affordable tool, the
Future Weather File Generator (Manapragada et al., 2022). The tool
uses geo-filtering and machine learning for accurate predictions, and
it was tested in India as a case study.

The background highlights the challenges associated with Large-
Scale and UBEM, like the need for accurate meteorological data,
high computational cost and optimization, archetype definition,
and the integration of climate change scenarios. Considering these
challenges, this paper aims to implement an automated workflow
using HPC to assess the energy behavior of over 340 thousand
buildings in Nassau County, New York, under current and future
climate conditions. The focus is to evaluate the impact of climate
change on heating and cooling loads, and emissions from different
energy carriers, and possibly identify the buildings that have priority
for targeted energy retrofit incentives. In this paper, we execute
Stage 1 of the roadmap, an automated, building-resolved UBEM
under current and morphed future TMY, to quantify heating and
cooling end uses and site/source energy and emissions. Subsequent
stages (development of new archetypes, meter-based calibration,
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sensitivity analysis, exploration of additional climate scenarios, and
policy/scenario analysis) are reserved for future work.

3 Methodology

This study utilizes a comprehensive simulation workflow to
assess urban buildings’ energy performance under current and
future climate conditions. The workflow encompasses several
key stages, including the preparation of building models, the
configuration and execution of simulations on an HPC cluster, and
the post-processing of simulation results to analyze energy use and
emissions. This can be easily customized with region-specific data
and climate scenarios, making it suitable for modeling urban energy
use in diverse geographic and climate contexts.

Initially, building models are prepared based on the dataset
from the Model America project (New et al., 2025), including
details on building geometry, materials, occupancy, and HVAC
systems. These models are then configured in the EnergyPlus
simulation engine, which is executed on an HPC cluster to efficiently
process large datasets across thousands of buildings within a
manageable timeframe. The computational resources of the HPC
enable the parallelization of simulations, making large-scale urban
modeling feasible.

Post-simulation, Python scripts are employed to automate the
extraction and processing of results from the EnergyPlus output files.
These scripts parse HTML files to retrieve the desired metrics such
as total energy use, heating loads, and cooling loads. Simulations
were executed separately with two climate files, the historical TMY
and the morphed future TMY representing RCP8.5. Then with
post-processing, building-level outputs were extracted (e.g., total
energy use, heating, and cooling loads), allowing direct comparison
between the current and future scenarios. Also, source energy
was calculated at the building level by applying the source-to-
site conversion factors to each building’s site energy use, then
aggregating to county totals. The present paper reports results from
Stage 1 only; later stages (new archetypes, calibration, sensitivity,
additional scenarios, and policy analysis) are deferred to future
work. The final scope of this study is shown in Table 1, and the overall
workflow is illustrated in Figure 1.

3.1 Description of the study location and
building dataset

This Nassau County (Figure 2) case study involves 346,827
building energy models simulated with EnergyPlus. The Google
Map image (Web Mercator map projection) shows the outline of
Nassau County and the buildings’ outlines are shown in a map
with equal-area projection. Derived from the Model America dataset
(New et al, 2025), the subset represents a mix of residential
and commercial buildings in the county’s mixed-humid climate
zone. The study focuses on individual buildings, providing a
foundation for exploring urban-scale building energy modeling and
its implications for global warming impacts in Nassau County. A
preliminary version of this case study was presented at the ASHRAE
Annual Conference (Jalilian and Kamel, 2025), and the present
paper extends that work with a comprehensive county-wide UBEM
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TABLE 1 summarizes the scope of this case study, following the UBEM workflow categories discussed in (Kamel, 2022).

Tools and file
Schemas

Location

Input sources

Nassau County, New York, USA Meso (346,827 Buildings) Simulation Engine: EnergyPlus DOE-Prototype Large-scale carbon/energy

Model America reduction
NSRDB
Input Simulation Output
S—
Geometric Data EnergyPlus Energy Performance
Source: Model America Simulati Insights
~ Tool: EnergyPlus
Study Area Definiti ( i oad
tudy Area Definition Non-Geometric Data Scenario Analysis Automated by EnergyPlus Output Emissions and
i Envi |
Project-Specific: Source: DOE Prototype Base Model vs RCP8.5 BashiScripton HTML or SQL B °
Nassau County, New York L Building 2099 Analysis
v High-Performance N
‘Weather Data ljusts for i ost-Processes ]
Desired Scenario Computing (HPC) Results Energy Re-tmﬁt and
> Source: TMY and Climate Resource: HPC Cluster — Policy
Projections using morphing Recommendations
technique

FIGURE 1
Overview of the simulation workflow and data processing.

Map data ©2025 Google ~ United States  Terms  Privacy ~ Send Product Feedback 5 Mi bt

FIGURE 2

the left panel applies to both panels.

Nassau County, Long Island, New York. (Left) Study area shown on Google Maps (data source: Google Maps; Map data ©2025 Google). (Right) Outlines
of simulated buildings generated in QGIS using building layout coordinates from Model America EnergyPlus files. North is up; the scale bar shown in

workflow and expanded analyses, including residential vs. non-
residential contributions and carbon emissions.

The building archetypes used in this study are based on those
already assigned in the Model America project (New et al., 2025),
which applies DOE prototype models to individual buildings based
on their building type, construction year, and size. These archetypes
include characteristics, such as building envelope, HVAC systems,
and occupancy schedules appropriate for ASHRAE climate zone 4A.

Frontiers in Energy Research

3.2 High-performance computing (HPC)
for large-scale simulations

To process these large-scale simulations, the study leverages
an HPC cluster, equipped with 24 cores, 192 GB of RAM,
and four Nvidia V100 GPUs, which supports parallel CPU-
based computations. Each building simulation is treated as an
independent task, enabling the system to run thousands of
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simulations concurrently, significantly reducing processing time.
This parallelization is critical for conducting high-resolution
simulations across an urban area of 346,827 buildings, a task that
would be infeasible using traditional serial processing methods.

Post-simulation Python scripts automate the extraction and
processing of results from EnergyPlus output files. These scripts
retrieve metrics such as total energy use, heating and cooling
loads, and emissions, ensuring an efficient workflow from model
generation to data analysis.

3.3 Current weather files vs. future climate
data for 2099

In this study, TMY weather files, based on typical weather
conditions rather than extreme events, were used due to their
simplicity, representativeness, and acceptance as a standardized
input. While in some cases TMY may lead to some inaccuracies in
urban energy systems’ design (Perera etal.,, 2018), or building energy
models (Ma and Yu, 2020), it would be aligned with the purpose
of this study, which is to assess the effects of climate change on
buildings” energy behavior in a large scale, and previously showed
valuable insights (Bass et al., 2022).

Despite the global trend towards cleaner energy, assessing
Representative Concentration Pathway (RCP) 8.5 remains crucial
for several reasons. First, it serves as a valuable benchmark for
understanding potential high-risk futures (Riahi et al, 2011),
providing a critical reference point for extreme climate impact
scenarios. Additionally, significant feedback mechanisms, such as
the release of greenhouse gases from thawing permafrost, could
align with RCP8.5 outcomes (Schuur et al., 2022). Furthermore,
recent trends, such as the record-high coal use in 2022 and
projections from the IEA indicating continued increases until
the end of the decade, underscore the possibility that RCP8.5
could still occur (IEA, 2023). Therefore, by using RCP8.5 in
this study, we aim for the worst-case scenario, highlighting the
importance of robust climate modeling and policy planning to
mitigate severe impacts. We therefore treat RCP8.5 as an explicit
stress test of building performance under severe warming. In future
work, we will also run RCP4.5 as a sensitivity to cover a more
moderate future.

For future weather data in this study, we used the WeatherShift
tool (Dickinson and Brannon, 2016), which generates future
TMY files by applying the Morphing technique (Jentsch et al,
2013) to standard historical TMY datasets. WeatherShift combines
downscaled and bias-corrected outputs from multiple global climate
models (GCMs) to modify key meteorological variables, such as
temperature, solar irradiance, and humidity, ensuring consistency
with projected climate conditions under RCP8.5. Thus, the baseline
(current) TMY is based on observed historical weather data, while
the future TMY represents a morphing-based projection of these
data under a high-emission scenario.

One limitation is that the morphed data retains the
characteristics of TMY data, meaning that extreme weather events
are not fully captured. The baseline climate, derived from a Long
Island weather station, may not fully represent all areas in Nassau
County, but it is within the mixed-humid (4-A) climate zone.
Figures 3,4 compare current and future climate scenarios for average
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FIGURE 3
Hourly dry-bulb temperature for current TMY vs. fTMY for
the year 2099.

Monthly Global Horizontal Insolation - current vs. year 2099
300

250
200
150

100

Global Horizontal Insolation (Wh/m?)

0 2190 4380

Hours in a year

6570 8760

future (2099) insolation (Wh/m2) current insolation (Wh/m2)

FIGURE 4
Monthly insolation for current TMY vs. fTMY for the year 2099.

daily temperatures and monthly solar radiation. A standard baseline
of 18.33 °C was defined for both Heating Degree Days (HDD) and
Cooling Degree Days (CDD) calculation.

While the TMY data offers simplified future climate conditions,
it allows for scalability and broad applicability in building energy
simulations. Future research could incorporate more complex
weather models that capture temperature extremes and other
meteorological variations to refine these projections.

4 Results and analysis
4.1 Site and source energy use intensity

The energy simulation, which is done by HPC and explained in
detail in the previous section, shows that the average site Energy Use
Intensity (EUI) decreases by 26% in the future scenario compared
to the current situation (Figure 5). This decrease can be a result of
the considerable reduction in heating energy demand in the future
caused by climate change. It is important to note that the Energy Use
Intensity (EUT) being used in this paper is only the energy needed
for heating and cooling, which is directly under the influence of
climate change and does not include other energy end-uses such as
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lighting, domestic hot water, and appliances. In addition, cooling
loads reported here represent the technical demand simulated
under the assumption that air conditioning equipment is available
to meet the thermal demand, regardless of current penetration
levels. To have a better understanding, and since averaging the
site energy use may not be a favorable parameter because not
all the energy carriers have the same conversion efficiencies, the
source EUT is also plotted in Figure 6, showing a 4% reduction in
average between current and future scenarios. This shows that even
though a considerable reduction is seen in the site energy use, the
potential shifts of the load from natural gas consumption in winter
to electricity in summer, the production of which is less efficient, can
cancel out the savings in heating load, in total source energy use.
These shifts are further explained in Section 4.6, where we analyze
the influence of weather and temperature changes on building
energy use.

4.2 Cooling and heating loads

Breaking down the results into cooling and heating loads,
which are illustrated in Figures 7, 8, shows a considerable reduction
of 51% in average source heating energy intensity, and an
increase of 96% in average for the cooling side. It can be
concluded that in the future scenario, in a Mixed-Humid climate
zone (i.e., 4-A), milder winter loads and harsher summer loads
might be seen.

A notable point is that the data in all of Figures 6-8 are positively
skewed, with the mean pulled towards the higher end of the graphs.
This shows that there are some buildings with very high cooling,
heating, or total energy use intensities compared to the majority of
the buildings, which are located on the lower end. By going deeper
into the details, it's understood that only 21% of the total number of
buildings have an EUI more than the average. This includes 92% of
all non-residential buildings and 13% of the residential buildings. It’s
clear that non-residential buildings, with much higher source energy
use, are causing positive skewness of these histograms. Knowing this
can be quite useful, since policies and initiatives might be designed
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not only to promote energy efficiency in most buildings but also to
address and mitigate the impact of the high energy users (Baneshi
and Hadianfard, 2016), in this case, mostly non-residential, to
achieve more balanced and sustainable energy consumption across
the entire set of buildings. The gap between median and average
values highlights the inequality in energy consumption, where a
relatively small group of buildings consumes disproportionately
more energy than the majority, making them a key focus for targeted
interventions to achieve more balanced and sustainable energy use
across the stock.

While detailed measured data for county-level cooling energy
use are not publicly available for Nassau County, an approximate
verification and simple plausibility check of the simulated cooling
results were conducted by comparing the modeled baseline against
city-level estimates from the NYSERDA (Guidehouse, 2021)
study for New York City (New York State Energy Research and
Development Authority (NYSERDA), 2021). Using the NYC site
cooling EUTs from Table C-1 of their report (=11.3 kWh-m2.yr’!
for residential and =23 kWh~m'2'yr'1 for non-residential),
weighted by our building-count distribution shown in Figure 13
(89.9% residential and 10.1% non-residential), yields a mean of
~12.5 kWh-m2.yr'l, slightly above our modeled average site cooling
EUI of 10.8 kWh-m™2.yr"! for Nassau County. This close alignment
suggests that the simulated magnitudes are realistic for current
conditions, with the small gap potentially reflecting the stronger
urban heat island (UHI) effect and higher non-residential cooling
intensity in New York City. Yet, a full calibration using measured or
metered data will be conducted in future work to establish definitive
validation.

4.3 Energy use by different sources

Depending on the characteristics of the buildings, e.g., age, type,
etc., different archetypes and consequently different combinations
of the HVAC systems have been employed for each building in the
study (New et al., 2025). As an example, an office building might
have a VAV air-based system that uses a heat pump for the heating
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Comparison between current and future total site energy use by different energy sources.

Future

coil, with a gas boiler backup system in winter, and a heat pump for
summer. As a result, the heating system can be a combination of
both gas and electric sources, while the cooling systems are solely
electric-based. Knowing this and by further breaking down the total
energy use by different energy sources in Figure 9, a total reduction
0f 20.1% in site energy use can be seen for the future scenario, while
this is not the case for source energy in Figure 10, which is increased
by 5.36% in the future case. It explains that despite a significant
decrease in heating loads being seen in the future, the jump in
cooling load, which is being produced primarily by electricity, is
dominant and caused an increase of over 5% in total source energy
use. Worth mentioning that in this study, a constant source-to-
site ratio (3.167 for electricity and 1.084 for natural gas, based on
EnergyPlus documentation (U.S. Department of Energy, 2023)) is
considered both for electricity and gas, which might not be the case
in reality, as they are changing over time and in different regions.
Especially the source-to-site conversion factor for electricity, which
is being improved by technological advancement and the use of
renewable sources of energy over time.

4.4 Residential vs. non-residential energy
use

Furthermore, the total site and source energy use for residential
and non-residential buildings have been shown in Figures 11, 12,
respectively. It is noticeable that the main source of heating for
residential buildings is gas, while in non-residential ones, some
buildings use gas, electricity, or a combination of both. While
we see a considerable reduction in total end-use energy for both
categories of buildings because of milder winters in the future, a
slight increase in source energy use can be seen for both residential
and non-residential buildings. Electricity will play a vital role for
non-residential buildings in the future, corresponding to 89% of
the total primary energy use, while this number will be 69% for
residential buildings. These two numbers necessitate an emphasis
that must be put on improving the electricity production and
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conversion efficiency, which can consequently help toward the long-
term carbon reduction goals.

A notable point from Figures 11, 12 is that the amount of
the source energy used is almost equal in residential and non-
residential buildings within a margin of 5%. This is true for both
current and future scenarios. This leads to a further breakdown in
Figure 13. Despite non-residential buildings constituting a relatively
small percentage of the total number of buildings (10.1%) and
representing 32.9% of the total floor area, interestingly, they are
responsible for 49.3% and 50.8% of the total source energy use
in current and future scenarios, respectively. This emphasizes the
critical role they play in the future energy use landscape that
must be addressed (Mariano-Herndndez et al., 2021). Despite their
smaller share of the stock, non-residential buildings dominate future
source energy use because they are substantially larger in floor area
on average, rely more heavily on electricity for both heating and
cooling, and are therefore more affected by the higher source-to-site
conversion factor for electricity compared to natural gas.

4.5 Carbon emissions

Moreover, Figure 14 shows carbon emissions as a

result of the energy use for current and future scenarios.
The emission factors are defined according to the UL.S.
Environmental Protection Agency (EPA) for gas and electricity
2021)
(U.S. Environmental Protection Agency (EPA), 2024) respectively.

at  (U.S. Environmental Protection Agency (EPA), and
The emission factor that is used for electricity in this study is
specifically defined with respect to the electricity production sources
in Long Island, NY. As it is clear from the results, like the source
and site energy uses, a substantial reduction of 50% in carbon
emission can be seen due to the reduction in gas consumption for
heating, while the emission produced by electricity consumption for
cooling increased significantly, about 99%, in both residential and
non-residential buildings. The total carbon emission is estimated
to decrease by about 4% in residential buildings, while it is a
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5% increase in non-residential buildings, from the current to
the future case. These results highlight how different types of
buildings use energy and affect the environment, showing that
specific plans are needed to reduce carbon emissions from various
building sources (Ang et al., 2023).

4.6 Impact of climate and temperature
changes

Lastly, while this study shows that for a mixed-humid climate
zone, like the one of Nassau County, in which the heating load is
dominant, the site energy use has been decreased by almost 20% for the
future scenario (Figure 9), it is completely depending on the weather
condition and location of the case study and it should not be deceiving.
Asillustrated in Figure 15 by plotting the monthly average temperature
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for the current and future cases and the average thermostat set-point
temperatures in winter and summer, it can be seen that, for the case
of Nassau County, the difference of the external temperature and the
thermostat set-point is reduced for the future case, which leads to
a decrease in heating loads. On the other hand, the difference in the
average external temperature and cooling set-point is increased, which
simply leads to an increase in cooling loads in the future. Obviously,
for warmer climate zones, in which the dominant load is cooling, a
harsher increase in cooling loads will be seen.

5 Discussion

The results provide important trends and patterns for both
current and future scenarios in residential and non-residential
buildings. Importantly, the breakdown of energy consumption by
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building type and the following analysis of source and site energy
use patterns reveal important considerations for energy efficiency
and sustainability actions.

It is concluded that, depending on the climate zone and the
conversion approach in creating fTMY (Bass et al., 2022), the mixed-
humid climate zone might experience an increase in cooling loads
and a decrease in heating loads, which resulted in reduced energy
use in some buildings and an increase in others. Depending on the
balance between heating and cooling degree days, climate change’s
overall impact varies between regions.

In general, for both source and site energy, a substantial
reduction in heating and a significant increase in cooling loads are
observed. Although the results indicated that the site energy use will
be reduced by almost 20% in the future scenario due to the milder
winters, which is the dominant load for this climate zone, this is not
the case for source energy. The total source energy is increased by
over 5% in the future case, since the increase in cooling loads, which
is solely provided by the electricity, not only cancels out the savings
in milder winters in the future but also increases the total source
energy use.

Although the non-residential buildings constitute around 10%
of the total number of buildings in the study area, they have a
substantial overall impact and are responsible for over 50% of the
total source energy use in the future scenario. Since a large portion
of the load is being produced by electricity, both for heating and
cooling, in non-residential buildings, their bold contribution to total
source energy use seems to be logical.

The analysis showed that in the future scenario, electricity
will be responsible for around 89% of the total source energy
in non-residential buildings and 69% for residential ones.
Comparable studies for New York City have shown that
electrification substantially reshapes electricity demand profiles
and urban thermal conditions, and that the electrification of
heating and domestic hot water systems will push electricity
demand even higher, which supports the implications of our
projected high electric share (Gamarro and Gonzdlez-Cruz,
2023). Providing a broader regional context, the 2025 NYISO
Gold Book similarly projects continued growth in overall
electricity demand for Long Island, confirming that this building-
level trend aligns with larger, multi-sector energy forecasts
(New York Independent System Operator (NYISO), 2025). This
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significant shift to electricity in building stock indicates the
emphasis that has to be put on increasing the efficiency of electricity
production. While using more efficient power plants, less fossil fuel,
more renewable production sources, and investing in distributed
systems seem to be feasible technical solutions, other aspects like
social, economic, business, and governance challenges have to be
addressed as well (Eyre et al., 2018).

Moreover, this jump in electricity use highlights the importance
of grid cleaning and power sector decarbonization, which not only
helps in climate change mitigation (Leibowicz et al., 2018; Zhao and
You, 2020), but also improves public health (Luderer et al., 2019),
increases energy security (Rabbi et al., 2022), provides economic
benefits (Jacobson et al., 2019), and accelerates the innovation and
technological advancement (Di Silvestre et al.,, 2018). When this
initiative comes along with the integration of renewable sources
into the grids and a growing number of Electric Vehicles (EVs), it
signifies that the study of Demand Response (DR) for Building-to-
Grid (B2G) integration and management on an urban scale would
be inevitable (Vazquez-Canteli and Nagy, 2019) and can be used
for more precise modeling of occupant’s behavior (Osman et al.,
2024) and HVAC optimization (Razmara et al., 2017). At the same
time, experience from New York City shows that cooling costs weigh
disproportionately on low-income households, and that simple
measures such as reflective roofs or modest set-point changes can
help ease this burden (Ortiz et al., 2022)

While the total emissions barely remained unchanged from
the current to the future scenario, we see a decrease of 4% in
residential buildings and an increase of 5% for non-residential
buildings. Taking advantage of these statistics, by proper energy
efficiency policies and incentives on non-residential buildings,
which correspond to about 10% of the total buildings in
Nassau County, NY, promising carbon emission reductions can
be achieved.

The dependence of site energy use reduction on climate
conditions emphasizes that local weather patterns are crucial factors.
For a Mixed-Humid climate like Nassau County, where heating loads
dominate, a decrease in site energy use is observed. However, the
applicability of these results should be considered with caution, as
they heavily rely on specific climate conditions.

While this study aggregates building-level simulations to
represent county-wide energy behavior, it does not explicitly
account for Urban Heat Island (UHI) effects or local microclimate
variations, which can influence air temperatures and cooling
loads in denser urban areas (Xu et al, 2018). Previous city-
scale coupled modeling studies (Ortiz et al., 2022; Ortiz et al,
2017) have demonstrated that integrating atmospheric feedback
and grid-level energy data can improve the representation of
spatial temperature variability and baseline energy demand. Their
methods separate weather-dependent and baseline loads, enabling
more accurate benchmarking of urban energy models against
observed demand. Nevertheless, the present large-scale approach
retains the precision needed to inform county-wide energy
and decarbonization planning. Future work will explore the
integration of UBEM with mesoscale climate models or grid-
level baselines to capture microclimatic effects more accurately,
complementing the current focus on aggregate results that provide
policymakers with actionable insights for broad-scale energy
interventions.
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5.1 Limitations and uncertainties

In this study, the energy models rely on TMY data, which,
unlike actual weather data, represents the most common weather
conditions based on historical data. In addition, the fTMY in this
study only accounts for the temperature and solar radiation increase
and does not consider any extremely low or high temperatures that
could be a side effect of climate change. Also, the significant increases
in temperatures are uncertain, and different scenarios could be
evaluated in the future.

The building energy models benefit from measured geometries.
Still, other important inputs, such as schedules, thermostat settings,
heating and cooling system properties, and envelope system thermal
properties, are all assumed from the energy codes adapted from
the construction year per the Model America project. Although
knowing the buildings' construction year (i.e., vintage) reduces the
uncertainties to a certain degree, other assumptions could differ
from the actual buildings’ characteristics. The simulation is also set
to a 1-h resolution to reduce the simulation time, which could affect
the accuracy of time-of-use but would not affect the accuracy of
total energy consumption because the weather files are based on
hourly inputs.

From the results, it is understood that electricity will play a
vital role as the primary energy source for the future scenario.
In this study, the source-to-site conversion factors are considered
constant for the future case. Considering the dynamic source-to-
site conversion factors over time, and integration of renewable
energy technologies, and their potential impact on the source-to-site
conversion factors, which will be the case as a result of technological
advancement, as well as the electrification of heating and hot water
systems, can be studied further to give us more realistic results for
future cases.

This study used one future climate scenario (RCP8.5 for 2099)
and the same weather file for all buildings, which means local
weather differences within the county were not considered. Also,
buildings were modeled independently, without including the
effects of nearby buildings like shading or heat exchange. These
simplifications helped make large-scale simulation possible but
reduced accuracy in capturing local and urban effects. Future work
will include more climate scenarios, detailed weather data, and
urban form effects.

5.2 Urban planning, policy-making, and
future research

As the results indicated, a significant shift to electricity
is expected. Apart from the technical solutions that can be
implemented to improve the efficiency of electricity production,
considering the societal and economic aspects of these practices
would be crucial (Nidam et al, 2023). It can include dealing
with uncertainties caused by climate change and human systems
(Perera et al, 2022), along with the assessment of the occupant
behavior (Happle et al, 2018), acceptance and adaptation to
the new technologies, and the transition of households to be
energy prosumers instead of being only consumers (Parag and
Sovacool, 2016).
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Future research can focus on dynamic climate change scenarios,
considering different climate patterns and extreme weather
conditions. It can be useful to assess how different climate patterns
affect energy use in spatial and temporal granularities, to reach more
accurate predictions and potential improvement strategies.

Furthermore, the effectiveness of different ECMs under the
influence of probable climate scenarios can be assessed to give a
more accurate overview of the potential future policies and incentive
allocations by governments and policymakers.

Lastly, a key limitation of this study is that the current results
are not yet calibrated against measured building or district-level
energy data due to limited access to private data in the understudied
county. Calibration and validation will be addressed in subsequent
work, in line with UBEM best practice, to ensure the accuracy
and applicability of the modeled results. While the workflow is
designed to be scalable, its practical deployment at larger regional
or national levels remains limited by computational demands, the
representativeness of archetypes across diverse building stocks, and
the availability of calibration datasets.

6 Conclusion

This study developed an automated and scalable Large-Scale
Building Energy Modeling workflow, and it was applied to over
346,000 buildings in Nassau County, New York, to assess the
impact of climate change on energy demand by 2099 under RCP8.5
conditions using morphed Typical Meteorological Year (TMY) data.
Through the assistance of High-Performance Computing (HPC)
and a bottom-up simulation approach, the study demonstrates
how large-scale and detailed energy assessment can inform climate
mitigation planning at the urban scale and county level.

Key contributions and findings of this work could be
listed as follows:

o A streamlined, large-scale BEM process that is scalable and
incorporates country-level EnergyPlus physics-based models,
climate morphed data, and HPC-parallelized runs to enable
large-scale, climate-enlightened energy modeling in any
geographic or climatic context.

« The quantitative evidence of future energy transitions showed
that whereas site energy demand decreases by ~20%, source
energy consumption increases by ~5%, due to more electricity
consumption for cooling, which is a significant observation
in evaluating electrification possibilities under conditions of
global warming.

o The results identified the high-impact targets of non-
residential buildings, accounting for over 50% of aggregate
source energy consumption, though they only account for
10% of the building inventory, which is a clear case for systemic
retrofits and policy attention.

o Grid decarbonization is critical, as further electrification
(mostly for cooling) will not reduce emissions until electricity
generation becomes radically cleaner. This highlights the
co-dependency of building-sector approaches and energy
infrastructure shifts.

These findings give a real-world basis for county- or city-
scale planning, policymaking, and energy transition simulation. The
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procedure here is transportable to different emissions scenarios (e.g.,
RCP4.5, RCP2.6) and world regions and therefore offers a helpful
tool for researchers and practitioners studying the intersection of
climate change and urban energy demand.

Subsequent studies should also expand on this method by
including real energy consumption data for calibration, varying
climate change scenarios, and incorporating demand response
and building-to-grid interactions to better represent future urban
energy systems.
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