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Introduction: Artificial intelligence (Al) has been widely used to detect faults
and failures in photovoltaic (PV) systems, particularly those that conventional
protection devices fail to identify. However, previous Al-based approaches
still face major limitations, including neglecting critical detection conditions,
relying on large and complex datasets, and lacking simultaneous and accurate
multi-fault detection and classification.

Methods: To address these challenges, a novel PV fault detection framework
is proposed by combining a fuzzy logic (FL) system with a particle swarm
optimization (PSO) algorithm. An initial dataset is generated from the
current—voltage (I-V) curve of a PV array. Manhattan distance (MD) and
Chebyshev distance (CD) features are extracted from the |-V characteristics.
A wide set of machine-learning classifiers is evaluated, and the FL system
nominates the most reliable models based on mean accuracy, Fl-score, and
standard deviation. PSO is then used to determine the optimal subset of
classifiers and to assign optimized weights for ensemble prediction. Several
output-combining techniques are also examined to obtain the most accurate
final classification.

Results: Model verification is performed using a dataset that includes normal
operation as well as line-to-line (LL), open-circuit (OC), and degradation (DEG)
faults under various environmental (irradiance, temperature) and electrical
(mismatch, impedance) conditions. The proposed FL+PSO-based model
achieves outstanding accuracy in detecting and classifying multiple PV faults
and outperforms recent state-of-the-art approaches.

Discussion: The integration of distance-based feature extraction, fuzzy-driven
classifier selection, and PSO-optimized weighting significantly enhances
robustness and reduces sensitivity to environmental variations. These
improvements enable reliable multi-fault detection even when fault signatures
closely resemble normal conditions.

Conclusion: The proposed FL and PSO-based ensemble provides a highly
accurate and reliable solution for multi-fault detection in PV arrays. Its
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performance surpasses existing approaches, making it a strong candidate for
practical implementation in real PV monitoring systems.

photovoltaic, autonomous monitoring, fault detection, fuzzy logic, particle swarm

optimization

1 Introduction

Photovoltaic (PV) has become a widespread source of energy
throughout the world since it is clean, inexpensive, and easy to
access (Ghaedi et al,, 2024). According to International Energy
Agency (IEA), solar PV accounted for three-quarters of global
renewable capacity additions (Yuen, 2023). Also, the total PV
installations surpassed 1.5 TW at the end of 2023 (Aghaei et al,
2022). However, as PV components are mostly operating outdoors,
they are inevitably vulnerable to various electrical and non-electrical
failures and anomalies over their operational lifespan. This is
due to environmental factors, such as shading on the panels,
hail, lightning, dirt, dust, showers, etc. PV modules can also be
subject to several environmental stresses, such as moisture, harmful
effects of harsh sunlight, corrosive gases, heat and cold, mechanical
loads, and degradation, as well as the risk of human error and
equipment failure. This will reduce the overall system efficiency by
reducing the output power, damage the PV components, and may
even lead to catastrophic fire hazards (Mellit et al., 2018; Pillai
and Rajasekar, 2018). Therefore, in-time fault detection in
PV components seems critical in enhancing the longevity of
PV systems.

For many years, conventional protection devices such as
(OCPDs) and ground-fault
protection devices (GFPDs) have been used in industry to protect

overcurrent protection devices
PV systems against certain unexpected faults and failures as well
as to ensure their safe and efficient operation (Nedaei et al., 2023).
However, the main drawback is that conventional protection devices
have proved to be unable to detect numerous PV faults under
specific conditions, known as critical fault detection conditions,
such as critical fault impedances and/or critical mismatch levels
where fault currents are not sufficient to excite the conventional
protection devices to break. Therefore, scholars and engineers
have turned to modern approaches, such as artificial intelligence
(AI) to overcome the challenges in conventional protection
devices.

Accordingly, the main objective of this study is to design
an accurate and efficient photovoltaic fault detection and
classification model that can address critical fault conditions
while reducing dataset complexity. This is achieved by integrating
FL for classifier nomination and PSO for optimal ensemble
construction.

The rest of the paper is structured as follows: Section 2
formulates the problem and illustrates the necessity of automatic
fault detection. In Section 3, the proposed method is fully
elaborated. The experimental results and a detailed discussion is
provided in Section 4. Finally, the key outcomes of the study are
summarized in Section 5.
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2 Problem formulation

The illustration of a typical stand-alone PV array configuration
is presented in Figure 1. As shown, the structure is comprised of
PV modules, blocking diodes, combiner boxes, DC/DC converter,
GFPDs, and OCPDs. The PV array in Figure | consists of three
strings connected in parallel, each containing six modules in series.
The formation of the PV arrays, which involves the connection of
PV modules in series and parallel, achieves the desired voltage and
current (and thus the output desired power) levels.

2.1 Line-to-line (LL) faults

LL faults in PV arrays are defined as a short connection between
two different points in a photovoltaic (PV) array with dissimilar
potential levels. In-time detection and elimination of LL faults
pose a significant challenge for conventional protection devices
under specific conditions, such as high fault impedance, faulty
module involvement, etc. LL faults can happen because of three
main causes (Zhao et al., 2013):

o An accidental short-circuit between two current-carrying
conductors (CCCs),

« Serious breakdown in cables insulation,

« Internal shorting in DC junction boxes may happen due to
mechanical damage, water ingress, and corrosion.

In the event of LL faults, the voltage of the faulty string can
suddenly drop, resulting in an additional reverse current flow
from the healthy strings and modules into the fault location.
Therefore, a protection device is needed in place to identify the
additional current in PV strings. According to the U.S. National
Electrical Code (NEC), a single overcurrent protection device
(OCPD) is required in series with each string to safeguard PV
modules and conductors. The OCPD rated current should not
exceed 1.56 of the PV array short-circuit current (Ig:) at standard
test conditions (STC: irradiation 1000 W/m2, temperature
25 °C, air mass = 1.5). The installed fuse rating of an OCPD can
be calculated as 1.35 x 1.56 Iz = 2.1 Iy, given that a typical
fuse minimum breaking capacity is 1.35 of the circuit-rated current
(Pillai et al., 2019).

However, LL faults may not generate sufficient fault currents to

trip the OCPDs for various reasons, such as low irradiation levels,
high fault impedance, faulty module involvement, and a maximum
power point tracker (MPPT). As a result, the faults may go unnoticed
in PV arrays for an extended period, leading to significant damage
and catastrophic consequences.
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FIGURE 1

Typical 3 X 6 PV array configuration (3 strings, each includes 6 PV modules).

Figure 1 provides a depiction of LL faults within PV strings. The
concept of mismatch percentage, which is calculated as Equation 1,
is used for LL faults severity assessment.

numbero f faultymodulein astrin
f faulty g . 100

(1)

The diagram in Figure 1 depicts three types of LL faults: F,,
which has a 16.67% mismatch, F,, which has a 33.33% mismatch,
and F;, which has a 50% mismatch. The severity of LL faults can
also be determined by the accompanying fault impedance values,

mismatch percentage =
P g numbero fallmodulesinastring

which may range from zero to several ohms depending on the
fault path. In Figure 1, F; and F; show LL faults with 10 and 15 Q
of fault impedance, respectively, whereas F, has a fault impedance
value of zero.

This research delves into the impact of short circuit faults on
different numbers of modules at five distinct levels. These levels
include one, two, three, four, and five modules, and each level
exhibits a mismatch percentage at 16.67%, 33.33%, 50%, 66.67%, and
83.33%, respectively. The study examines fault impedance within
the range of 0-25(), with a 5Q interval between each step. In
contrast, the PV array I-V curve under normal and different LL
fault scenarios is illustrated in Figure 2A which highlights two
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important facts about LL faults. Firstly, when LL faults impact the
I-V curves under low mismatch levels and high impedances, they
behave similarly to normal conditions, making it challenging to
identify faulty conditions. Secondly, I-V curves affected by LL faults
under high mismatch levels and high impedances behave similarly
to LL faults at low mismatch levels and low impedances, presenting
another challenge in classifying faulty conditions.

2.2 Open-circuit (OC) faults

Basically, open-circuit (OC) faults happen when CCCs
accidently break. This can occur because of crackings in PV modules
(or PV cells), or connections between modules (i.e., wiring and
junction boxes). F, in Figure 1, shows an OC fault, which might have
occurred due to any of the above-mentioned reasons. Assuming that
the mentioned OC fault has occurred under STC, it generates only
a small amount of fault current (Harrou et al., 2018). As one out
of three strings is disconnected, more than a third of the output
power is lost. According to Figure 2B, during an OC fault, the PV
array operating point voltage remains unchanged. However, the
PV array current is mainly affected in an OC fault. Accordingly,
if more strings are disconnected, there is less short-circuit current

frontiersin.org


https://doi.org/10.3389/fenrg.2025.1675953
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

Ghaedi et al.

10.3389/fenrg.2025.1675953

15 % 12
¢ , Normal T
——— .y
,/ | condition !
LL fault with 16.67% mismatch | __ - B
10 and impedance of 10 Q . ~ 10 !
- < H T
S = I “
et i 9% mi ]
g LL fau‘lit wﬁ 33.33% dn;:lsmatch _- g Pre-fault amay !
é sl and without 1mpce CC | 6 . 1-V curve |‘
LL fault with 50% mismatch | _ Post-fault array
and impedance of 15 Q I-V curve
E
00 50 100 150 200 250 300 350 400 45( ° 0 50 100 150 200 250 300 350 400 450
Voltage (V) Voltage (V)
(A) (B)
15
=< g 10
g 5
= E
5 E
O &)
5 5
Normal Degradation fault Degradation fault Degradation fault with
condition with impedance of 2Q with impedance of 7Q impedance of 12Q
. ) |
0 50 100 150 200 250 300 350 400 450 ) 50 100 150 200 250 300 350 400 450
Voltage (V) Voltage (V)
©) D)
FIGURE 2
(A) The impact of different mismatch levels and fault impedance on I-V curve during an LL fault (B) The impact of an open-circuit fault on the I-V curve
(C) A degradation fault in a string (D) A degradation fault in the whole array.

(Isc). Therefore, when n strings are disconnected as a result of an
OC fault, the PV array short circuit current will be mIg--nlg- =
(m - n)Ige, for a PV array with m strings, in which n strings are
disconnected (see Figure 2B).

2.3 Degredation faults

PV modules and arrays are a reliable source of energy, but
they are susceptible to be degraded, especially after an long time
(Santhakumari and Sagar, 2019). Optical degradation caused by
prolonged exposure to UV radiation, cell degradation caused
by a decrease in shunt resistance (Ry), a relative increase in
series resistance (Rs), or module short circuit current (Igo),
and mismatched cells due to crackings in cells, soiling on cell
surface, partial shading and other factors can all cause PV module
degradation (Meyer and Van Dyk, 2004). Numerous studies have
already investigated degradation faults (Pei et al., 2020), so our
research focused only on the impact of series resistance. In this
study, both array and string degradation faults are investigated by
incorporating Rs once in the output of an array and then throughout
astring. As shown in Figure 1, F; demonstrates a string degradation,
whereas F dipicts an array degradation fault. Also, Figure 2C shows
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the impact of degradation faults on a PV string I-V curve emulated
using various Rs values. Although a relatively high (12 Q) resistance
value is implemented, the string I-V curve under a degradation
fault looks the same as that in normal condition. Besides, Figure 2D
shows the impacts the PV array I-V curve may experience during
an array degradation fault with different Rs values. As the Rs value
is increasing, the curve is behaving very differently compared to a
normal condition curve.

Regarding the fact that conventional protection devices are
unable to detect and clear the faults in PV arrays particularly under
critical fault detection conditions, powerful modern and reliable
fault detection approaches and strategies which are able to detect the
faults early and in time are more noticeably required.

2.4 Review of related work

To overcome the challenges of conventional strategies and
provide modern automatic fault detection and classification
schemes, artificial intelligence (AI) and more specifically machine
learning (ML) have gained in popularity and appeared in
literature in recent years (Thakfan and Bin Salamah, 2024). Initial
approaches relied on individual machine learning classifiers,
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with commonly used models including Decision Tree (DT),
Support Vector Machine (SVM), Logistic Regression (LogR),
Naive Bayes (NB), and k-Nearest Neighbors (kNN), among others
(Gaviria et al., 2022).

In Yahyaoui et al. (2023), a one-class fault detection scheme is
presented which is based on comparing various single classifiers
and different groups of features. The final model selects k-nearest
neighbors (kNN) classifier and a specific group of features as
the most accurate combination. A similar approach is also used
in Hichri et al. (2024) which support vector machine (SVM)
classifier performs the best when features are selected using salp
swarm algorithm (SSA). Deep learning algorithms have been
adopted in Hajji et al. (2023) which a bidirectional long-short term
memory (BiLSTM) classifier shows an accurate performance in fault
detection and classification. In, machine learning and ensemble
learning methods were evaluated for diagnosing complex PV
faults, achieving high detection accuracy. In another study (Amiri
and Kichou, 2024), a convolutional neural network (CNN) and
bidirectional gated recurrent unit (Bi-GRU) prove to be efficient in
detecting and classifying various PV faults. However, all previously
mentioned models are able to detect and classify only the faults with
high severity. Severe faults are the easiest anomalous conditions to
detect, therefore they have neglected the most difficult and critical
conditions for fault detection in PV arrays. Note that critical fault
detection conditions are when a few modules (usually a single
module) is engaged in the fault which is also accompanied by a
critical (usually high) impedance value. The condition are named
critical since they result in a faulty condition which is very similar
to PV array normal (no-fault) condition and makes the process of
detection very difficult (or sometimes impossible).

Many studies can be found in literature that have taken into
consideration the critical conditions in fault detection. However,
some drawbacks can be seen in their proposed models. Reference
(Amiri and Oudira, 2024) presented an accurate model to
detect and classify several faults in PV arrays even under a
few critical fault detection condition. But the main drawback
is that the presented model requires a massive dataset to be
fully trained, while real-world data samples can sometimes be
extremely challenging to collect particularly in harsh weather
conditions. Authors in Badr et al. (2021), Dhimish and Tyrrell
(2023), Hong and Pula (2024), Suliman et al. (2024) have considered
a small dataset in model training process. However, the presented
models are not accurate enough to be implemented in real
condition.

To increase the final model accuracy, various novel techniques
such as stratification is employed. The mentioned technique is
used in Kumari and Panigrahi (2024) which attempts to detect
various faults in PV arrays. In Kumari and Panigrahi (2024),
the whole fault detection process is divided into multiple steps,
each of which takes its own related responsibility. However,
the most important drawback of the model is that due to
the high interdependency between the steps, in case a single
misclassification occurs, especially in initial levels, the misclassified
sample flows through the whole model and reduces the final
model reliability.

To consolidate the recent literature on PV fault detection, Table 1
provides a comparative summary of representative studies. It
highlights the datasets, fault types, methods, and key findings,
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thereby illustrating the progress and limitations of state-of-the-art
approaches.

In order to fill the gaps and overcome the challenges, a novel
model is proposed in this study to detect and classify various
kinds of faults in PV arrays. Initially, a group of machine learning
(ML) classifiers are arbitrarily selected. Then, fuzzy logic (FL)
system nominates the potentially capable classifiers. After that,
particle swarm optimization (PSO) algorithm yields the optimal
combination of the previously nominated classifiers by FL. Finally,
six combination rules are considered to combine the output
prediction of each classifier and produce the final output prediction.
To provide a more accurate prediction, PSO is again employed to
assign and optimize weights to each individual classifier. To train the
model, several features are extracted from the PV array I-V curve
under normal and fault conditions using Manhattan distance (MD)
and Chebyshev distance (CD) methods. The permutation feature
selection technique is then utilized to determine the importance of
features, and select the best and most effective features to reduce the
dimensionality of the dataset and thus the complexity of the training
process. After the final model including the selected classifiers by
PSO and the nominated combination technique is fully trained and
validated using the training dataset containing only the selected
features by the permutation feature selection technique, it is then
further verified and tested using a test (unseen) dataset.

Therefore, the primary contributions of this study can be
described as follows:

o The final model aggregates the most accurate classifiers and
eliminates the ones which are not able to perform accurately.
This remarkably increases its reliability in the process of
fault detection and classification since all the classifiers are
systematically selected through the fuzzy logic and PSO based
process of classifier selection and optimization. The optimal
number of classifiers to form the final model with respect to
an increase in simplicity and accuracy is also determined using
the PSO technique.

o Multiple combination techniques and rules are utilized to
combine the output prediction of each individual classifier and
provide the most accurate final result. In order for the final
model to produce an even more accurate final prediction, PSO
isalso employed to assign and optimize a unique weight to each
individual classifier.

o Numerous features have been utilized in past models from
the PV array I-V curve. However, this study proposes the
Manhattan distance and Chebyshev distance techniques to
extract various features from the PV array I-V curve according
to five predefined points. In addition, to avoid redundancy
and select only the most effective features thus reducing
the dataset dimensionality and making the final model less
computationally complex, the permutation feature selection
technique is employed.

e To
classification, the final model is experimented under various

demonstrate the model high capability of fault
faults critical conditions (i.e., critical impedance values
and/or low mismatch levels) which are proven to be
the most challenging conditions for PV array faults to
be detected.
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TABLE 1 Review of related works.

Key

findings/Performance

Faults addressed

Methods/Techniques

10.3389/fenrg.2025.1675953

Dataset/Setup

Yahyaoui et al. (2023)

One-Class framework;
~98-99% accuracy; robust to
irradiance variation; lack of
real-world data

Thermal, I-V, bypass diode,
connectivity, shading, inverter,
sensor

One-Class, PCA, I-V analysis,
thermal imaging

Simulation + experimental;
irradiance variation scenarios

Thakfan and Bin Salamah
(2024)

Comprehensive ML/DL
survey; high accuracy in
literature;
data/implementation
limitations

Thermal, I-V, bypass diode,
connectivity, shading,
cell-to-system faults

Survey of ML/DL, I-V curves,
thermal imaging

Based on literature; no new
dataset

Amiri and Kichou (2024)

Hybrid CNN + Bi-GRU; <99%
accuracy; robust to
noise/operational variation

Open/short circuit, partial
shading, multiple PV array
faults

CNN + Bi-GRU, two-stage
diagnosis, data augmentation

Real PV data (irradiance and
temp) + modeled data

Hichri et al. (2024)

<99% accuracy; reduced
computation time; improved
precision

Line-to-line, line-to-ground,
bypass diode, connectivity,
mixed faults

Salp Swarm feature selection +
ML classifiers; compared with
PCA/KPCA

Simulated PV system with
multiple faults; train/test split

Hajji et al. (2023)

ML/DL FDD under irradiance
variations; high accuracy

Line-to-line, line-to-ground,
bypass, connectivity, mixed

ML + DL (ANN, CNN,
boosting)

Simulated 12 kW PV system,
variable irradiance

faults; ~93% accuracy

Badr et al. (2021) SVM outperforms DT and Arc, open circuit, shading, DT, KNN, SVM; Bayesian Simulation + experimental;
KNN; robust under temporary, permanent, MPPT optimization multiple arrays with varying
shading/env. variation; high failure shading
multi-class performance
Dhimish and Tyrrell (2023) ANN detects bypass diode Bypass diode (open/short) ANN using Pout, Isc, Voc Experimental PV modules,

diode fault tests

Hong and Pula (2024)

Digital twin + Transformer;
PSO improves results; effective
detection and localization;
good generalization

Line-to-line, open/shorted
module, open/shorted string,
partial shading

Digital Twin, Shifted Window
Transformer, PSO

Digital twin setup; sensor data;
faulted and non-faulted
scenarios

Kumari and Panigrahi (2024)

MBGA-WKNN method;
detection, classification and
severity

LL, LG, low mismatch, high
impedance, PSCs, irradiance
changes

MBGA for feature selection,
Weighted KNN, hybrid time +
frequency features

Simulated PV array (3 strings
x 5 modules), 660 LL + 430 LG
cases, 10 kHz data

Amiri and Oudira (2024)

RFC approach; 99.4%
detection/diagnosis accuracy

Healthy, short/open circuit,
line faults, shading

Random Forest, MGWO, I-V
translation

MATLAB + PSIM,
9.54 KW PV plant (Algiers)

Suliman et al. (2024)

SVM/XGBoost with
hyperparameter tuning; Bees >
PSO; high accuracy on similar

1-V faults

Intra/cross-string line-to-line,
open circuit

SVM, XGBoost; Bees and PSO
optimization; I-V analysis

Small-scale lab PV array;
realistic noisy data

Gaviria et al. (2022)

Reviewed 100+ ML/DL works;
high accuracy in fault
detection, forecasting, MPPT

Array faults, islanding,
shading, aging

LSTM, RNN, CNN, SVM, RE,
RL methods

Simulations, public PV
datasets, open-source cases

3 The proposed fuzzy logic and PSO

based fault detection methods

The present study proposes a novel idea to detect and classify
various frequent faults in PV arrays. The presented model combines
the predictions from various individual ML classifiers to make
accurate decisions in detecting and classifying faults in PV arrays.
The chart of the proposed method is shown in detail in Figure 3. As
shown, first, the initial dataset is collected according to the PV array
I-V curve under a wide range of normal and faulty conditions. Then,
the dataset is pre-processed and several features are constructed

Frontiers in Energy Research

based on Manhattan distance (MD) and Chebyshev distance (CD)
techniques.

Next, a group of classifiers are arbitrarily selected and trained

06

using the whole normalized dataset. To initially select the best
classifiers, each individual classifier is assigned a score using fuzzy
logic (FL) system based on the classifier training mean accuracy,
standard deviation, and F1-score and the classifiers with the highest
scores are nominated. After that, the particle swarm optimization
(PSO) technique determines the optimal number of classifiers
through a binary (0 or 1) classification. In the meanwhile, the
permutation feature selection technique is applied to the normalized
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FIGURE 3

Proposed fuzzy logic and PSO based method for fault detection and classification in PV array.

dataset to select only the most effective features and reduce the
dataset dimensionality. The dataset is then split into training subsets
with 80% and validation subset with 20% of the whole dataset.
To combine the prediction of each individual classifier, various
combination techniques, such as min rule, max rule, product rule,
mean rule, median rule, and majority vote rule are tested and
finally the best technique is ascertained. To produce a more
accurate final result, PSO technique is again employed to assign
and optimize weights for specific combination techniques, namely
min rule, max rule, mean rule, and median rule. In the end,
the finally created model is further evaluated using an test
(unseen) dataset.

3.1 Initial dataset creation

The initial data samples are collected by defining five specific
points on the PV array I-V curve under normal and faulty conditions
in various environmental settings, including different temperature
and irradiance levels. As illustrated in Figure 4A, the pre-defined
points are labeled as A-E and are explained below.

“A” represents a point where Ipy = Igc and Vpy = 0.
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o “B” is a point where Vyy = V/2 with the corresponding
current which is known as I (half-V ) in this study.

o “C” refers to a point where Ipy = Iypp and Vpy = Viypp.

o “D”isapoint where Ipy = Ig/2 with the corresponding voltage

which is known as V (half-Ig) in this study.

And finally “E” represents a point where Vpy = Vo with Iy

=0.

3.2 Feature extraction process

Feature extraction techniques are usually utilized to provide
the ML classifiers with more understandable interpretation of
the initial datasets. In this study, two distance-based feature
extraction techniques, namely the Manhattan distance (MD),
and the Chebyshev distance (CD) are employed. Manhattan
and Chebyshev distances are computationally more efficient than
Euclidean distances and tend to perform better in high-dimensional
spaces. The Manhattan distance is more robust to outliers, while
the Chebyshev distance effectively captures the maximum variations
across coordinates. The Manhattan distance, sometimes referred to
as L1 distance or city block distance, is calculated using Equation 2.
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FIGURE 4
(A) Pre-defined points on a PV array |-V curve to construct the initial dataset (B) Example of Manhattan distance technique in feature extraction process
(C) Example of Chebyshev distance technique in feature extraction process.

It measures the dissimilarity between two data points regarding their 3.3 Data normalization
positional deviation along a graph X and Y axes (Yang, 2019).
During data pre-processing, it is essential to normalize data
Manhattan distance = |x, — x| + |y, — y,| (2) . g .p ‘p . ,g . . .
attributes to maintain their intrinsic nature. This process aims
where the pairs (x;, y;) and (x,, y,) represent the respective  to improve feature type consistency and minimize redundancy
coordinates of the two points. As shown in Figure 4B, the Manhattan ~ within the dataset. In this study, Z-score normalization technique
distance between the points B and D can be calculated as BDy, poian s utilized in which features are distributed as X ~ N (u=0,02=1)
= BF + FD. Besides, the Chebyshev distance, also known asthe L 0o centered at a mean of 0 and a variance (02), thus standard deviation
or chessboard distance, quantifies the maximum difference between (0) of 1. This approach is preferred to ensure that the feature
the corresponding features of two data points using Equation 3. It 5lymns follow a standard normal distribution. The mathematical
measures the dissimilarity between two data points on any axis in a

representation of Z-score normalization process can be seen
graph (Coghetto, 2016).

in Equation 4.

Chebyshev distance = max(|x, — x|, |y, - »,|) (3)
where the pairs (x;, y;) and (x,, y,) represent the respective X(normalized) = x#X) (4)
coordinates of the two points. As shown in Figure 4C, the Chebyshev o(X)
distance between the points A and D can be calculated as
AD(pepyshey = max (AF, FD) = FD. Finally, all extracted features In Equation 4, X = {x,, ..., X,} represents the feature vector
are listed in Table 2. including n samples, and x denotes a single sample in X.
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TABLE 2 Extracted features from PV array |-V characteristic curves.

MD-based features CD-based features

_ | Voc
f, = |- %=

> | + |Isc-Ivoc/2|

fi, = max(( % ),(Isc-Ivoc/Z))

f, = [-Vmpp| + |Isc-Impp|

f}, = max ((-Vmpp), (Isc-Impp))

fy = |-Visc/2| + [Isc-Isc/2|

f; = max ((-%),(ISC-ISC/Z))

fy =1-Voc] + [Isc|

f,, = max ((-Voc), (Isc))

v
%-Vmpp| +

Voc Ivoc

f;= IV%-Imppl fi5 = max ((T-Vmpp),(T-Impp))

f, = %—Visc/2| + |”%—Isc/2| fi6= max((%-ﬁ),(l‘%-lscﬁ))

2

Voc

f,= %—Voc| + |1v2£| f,; = max ((T—Voc),(lvoc/Z))

Visc

fy = |Vmpp-Visc/2| + [Impp-Isc/2| fig = max ((Vmpp- T)’ (Impp—Isc/Z))

fy = [Vmpp-Voc| + [Impp| f,o = max ((Vmpp-Voc), (Impp))

fio = |%—Voc| +|Isc/2| f,, = max ((E-Voc), (Isc/Z))

2

3.4 Fuzzy logic (FL) system

3.4.1 Fuzzification

The use of fuzzy logic (FL) in decision-making is particularly
effective in uncertain and ambiguous situations, as it can produce
more accurate results. This is accomplished by assigning degrees
of membership between 0 and 1 to elements, indicating their
membership in a particular set, through the creation of membership
functions (MFs) (Rios et al., 2021). Several kinds of MFs can
be used in FL systems, such as triangular, sigmoid, trapezoidal,
gaussian, etc. (see Figure 5A).

In this study, trapezoidal MFs are utilized to examine four fuzzy
variables: training mean accuracy, standard deviation, F1-score, and
output as the output result of the aggregation of three other variables.
Additionally, the range of values for each variable is established using
arrays with a certain step size. The impact of input on output in
FL is primarily determined by MFs, with the trapezoidal function
being widely used due to its ability to transform complex inputs
into a fuzzy form using two slope change points, thus increasing
the membership range compared to more straightforward functions.
Moreover, the dual points of slope alteration in the trapezoidal
membership function allow for precise parameter configurations,
enabling the desired input influence on output adjustment. For
this problem, the trapezoidal membership function is defined and
utilized as Equation 5.

u(x;a,b,c,d) = 3

where u(x) is the normalized data, x is the data extracted from the
datasets and g, b, c and d are the values referring to the data on x-axis
belonging to highest and lowest pertinence degree.
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3.4.2 Inference system
After fuzzification, the values of the pertinence degree generated
in each input variable are passed to the set of fuzzy rules which must
cover all possible situations of the behavior of the fuzzy system. The
number of rules are mathematically calculated as Equation 6.
N, n™ (6)

rules —

where n is the number of categorical values and m shows the
number of input variables. In all of the rules, the Mamdani
inference model (Mamdani and Assilian, 1999) is applied, in which
the logical operator “AND” is used over the antecedents of each
rule, being the lowest value chosen as a consequence among the
values of the pertinence degree of the triggered rule. To this end,
fuzzy numbers are utilized to assess the membership degree of each
input variable, and a series of rules are created to combine the
mentioned degrees. These rules include a certain number of unique
combinations of the three input variables membership degrees, and
the activation degree for each rule is determined by taking the
minimum membership degree of the input variables. Finally, the
activation degree for each possible value of the output is calculated
by considering the minimum activation degree for all rules linked to
that value. The activation levels obtained are then aggregated across
the entire spectrum of output values. A designated function is used
to calculate the highest activation level of the non-fuzzified outcome
and the degree of membership of the fuzzified output value.

As stated, the firing level for each rule is determined using the
min operator shown in Equation 7. If the AND operator appears in
the antecedents part, the minimum fuzzified value will be selected
(see Figure 5B). As shown in Figure 5B, Rule 2 is not activated
because the input value a has zero membership degree for the
linguistic value A2, which has the minimum fuzzified value based
on the AND operator.
™)

Upng N = min[uy (x), ug(x), ..., upn(x)]

where A, B, ..., N are fuzzy sets with membership functions uA(x),
uB(x), ..., uN(x) respectively.

In this study, this methodology employs the training mean
accuracy, standard deviation, and F1-score as input variables, along
with an output variable that represents the score achieved by each
classifier, adhering to predetermined standards to assess efficacy and
determine scores.

3.4.3 Defuzzification

At the end, the defuzzification module starts after all the rules
were triggered by the inference module. In order to transform
the values of the pertinence degree, selected as consequent by the
inference module, into an accurate output of numerical values, it is
necessary to defuzzify them. For this, the mean of maxima (MoM)
method is used, because it is one of the most used in fuzzy expert
systems. In this method, the defuzzified value is taken as the element
with the highest membership values. When there are more than
one element having maximum membership values, the mean value
of the maxima is taken. The MoM (X#) is given by Equation 8
(Mondal et al., 2017):

X* = [Z,—”i(x) X max{yi}] X [Ziu,-(x)]_1 (8)

frontiersin.org


https://doi.org/10.3389/fenrg.2025.1675953
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

Ghaedi et al. 10.3389/fenrg.2025.1675953

(A)

u(x) u(x) u(x) u(x)

a b c

Rule 1: IF (ais A1) AND (bis By) AND (cis C1) THEN (dis Di)

/. \

; \ L :

a b ¢
Rule 2: IF (ais Az) AND (bis Bz) AND (cis C2) THEN (dis D2)
Rule n: IF (ais An) AND (b is Bn) AND (cis Cn) THEN (d is Dn)

®)

u(x) u(x) u(x) u(x) u(x)

Defuzzification X" = (atb)2

of final shape
—
n-2 rules for evaluation

©

FIGURE 5
(A) Several fuzzy logic membership functions: triangular, sigmoid, trapezoidal, and gaussian (B) Evaluation of rules in the process of inferencing (C)
Aggregation of rules and defuzzification of final shape.
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Scores in m different states of permutation.

where u;(x) represents the membership function value of the fuzzy
set at point x, y; represents the value of the universe of discourse
corresponding to the membership function u;(x) and max{y;}
represents the maximum value among the values of the universe
of discourse that correspond to the maximum membership values
of the fuzzy set. In this way, based on the generated results, the
system can give a score to each of the classifiers, and the higher score
indicates that the classifier is superior to the others. Figure 5C shows
the calculated MoM of the final output fuzzy set for the previous
example problem.

3.5 Optimal number selection

Using FL, scores are assigned to each individual classifier in
the group of classifiers. Low-scoring classifiers are eliminated, and
higher-scoring ones are selected to improve the results. However,
determining the optimal number of selected classifiers for maximum
effectiveness is complex. Mathematical modeling and optimization
techniques can address this issue. According to Equation9, a
mathematical model is created based on statistical metrics, including
the training mean accuracy and standard deviation acquired
from cross-validation (CV) technique. The objective function and
constraints are crucial to the model and depend on the desired
outcomes of the classification task.

objective function = max(zlzl(x, X trainingmean accuracy,)

—ﬁ(lSOO X Zi:l(xi x std,i(na,mu,,»zed))))subjecttozzlﬂxi =n (x€{0.1})

€)

Equation 9 is developed to address the challenge of maximizing
training mean accuracy while minimizing standard deviation
simultaneously. The proposed method involves a composite function
that combines the training mean accuracy and the negative standard
deviation with a weightage factor f3 that allows to adjust the
balance between precision and variability based on the objectives and
preferences. The decision variables in this model are binary variables
x;, where n is the number of classifiers selected from a set of N available
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classifiers. These variables take the value of 1 if the classifier is selected
and 0, otherwise. The model constraints ensure that exactly # classifiers
are selected, and each binary variable takes on one of two possible
values (i.e., 0 or 1). The training meanaccuracy; and std; ,ormalized) Of
the selected classifiers represent the variables, with efforts to align the
standard deviation with the accuracy scale through standardization.
In the subsequent analysis, a coefficient of 1500 which is calculated
according to the trial-and-error technique is employed to amplify the
standard deviation impact on the objective function. Equation 9 is

finally addressed using the PSO technique.

3.6 Feature selection process

Feature selection techniques are utilized to select a relevant
subset of features from a dataset. They offer two primary benefits,
which include enhancing the performance of classification problems
and simplifying model interpretation by discarding irrelevant
features. In this study, the permutation method is utilized to perform
a feature selection to identify the most important features which can
affect the accuracy of the final model.

The permutation method which is basically grounded in
mathematical permutation (see Equation 10) severs the connection
between the input (feature) and the target (class) and haphazardly
rearranges the values for a pre-determined number of iterations.

()

In Equation 10, n shows the total number of samples in a

n!

- (n—r)! (10)

(r<n)

feature and r is a subset of n samples. In the process of feature
selection in this study, n = r, meaning that all samples (values) of
a specific feature take part in permutation process and thus no value
is excluded from the feature vector. Therefore, Equation 10 can be
simplified as Equation 11.

(11)
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TABLE 3 Typical 2 x 2 confusion matrix.

Actual Predicted

Positive samples

Negative samples

Positive Samples TP FN

Negative Samples FP N

Therefore, according to Equation 11, a feature can present n!
different states when all values are considered in the permutation
process (Let n! = m). The model is then trained using the dataset
which includes one permuted (shuftled) feature and yields a specific
score (e.g., accuracy) after each state (see Figure 6). In Figure 6, V;
(i=1, ..., n) are different values of n samples of a specific feature.

The final permutation score can be calculated as Equation 12 in
which kis a hyperparameter and denotes the number of permutation
subsets which are randomly selected (i.e., k subsets of m total
possible subsets).

1k
modelscorey,,ytation = Ezizl(modelscore)i (k<m) (12)

As shown in Equation 13, the final permutation score shows
a deviation with the model actual score (i.e., before permutation).
Therefore, the more “model score deviation”, the more importance
in the specific feature which shows that the target is more dependent
on that specific feature.

- modelscorepe,mumtion

(13)

modelscore deviation = modelscore .,

In practice, permutation importance was implemented using
the scikit-learn library. For each feature, the values were randomly
shuffled while keeping the other features fixed, the model was
re-trained, and the accuracy drop was recorded. This procedure
was repeated 20 times for each feature, and the average score was
reported as the final importance measure.

Finally, to determine the optimal input (feature) space, a dataset
including only the first important feature enters the model and the
score of the model is obtained. This proceeds as the next important
inputs are added during the next stages and the score of the model
is calculated at the end of each stage. Finally, the best input (feature)
space is selected based on model scores.

3.7 Weight optimization

To provide more accurate final results, the process of combining
the output predictions of multiple classifiers can be accompanied by
assigning weights to each individual classifier. However, achieving
the optimal set of weights can be a complex optimization problem,
mainly when dealing with many classifiers. This is due to the high-
dimensional and non-linear nature of the weight space, which
may require unconventional optimization methods to reach the
global optimum.

Among various optimization algorithms, PSO is selected for its
strong global search capability, rapid convergence, and flexibility in
tackling complex, high-dimensional optimization problems. Unlike
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gradient-based methods, PSO uses a population-based stochastic
approach that allows it to explore the solution space effectively,
making it ideal for non-differentiable and multimodal functions.
Its computational efficiency and ability to balance exploration and
exploitation contribute to its competitive performance, even in
the face of advanced optimization techniques. In PSO, a swarm
of particles navigates through the search space, working together
to identify the optimal solution by updating their positions and
velocities based on their previous and the swarm global best
performance. Equations 14, 15 express the current position and
velocity of particle i in the context of PSO.

(14)

Xi = XipXig> -+ > Xip

Vi =V Vi Vip (15)

where D is the dimension of the principal search space.
The determination of the particle i velocity and position is
achieved through Equations 16, 17 for calculation purposes.

Vg = [W x "fd] + [Cl X1 % (Pid - xﬁd)] + [Cz X1 X (Pgd - xfd)]
(16)
=l )

Which involves the use of various parameters such as inertia
weight (w), acceleration constants (¢, and c,), and random values
(r); and r5;) uniformly distributed in [0, 1]. The variables denoted by ¢
and d represent the tth iteration and the dth dimension, respectively.
Additionally, the elements of p-best and g-best in the dth dimension
are represented by p;q and pyy. Each particle position and velocity
values are updated continuously to locate the optimal set until a
stopping criterion is met, which may include a maximum number
of iterations or a satisfactory fitness value.

In this study, the particles in the swarm correspond to possible
weight assignments, and their movements reflect the search for
an optimal set of weights. By using PSO to optimize the weights,
the high-dimensional space of possible weight assignments can be
efficiently explored and quickly converged to an optimal set of
weights that minimizes the overall error rate. Equation 18 has been
formulated to fulfill the aforementioned requirements.

objective function

n
= max <Z validation accuracy, x weighti)Subject to

i=1

1Y weight, = 1 (18)

i=1
In Equation 18, the weight variable of interest is multiplied by
the validation accuracy of each classifier, leading them to attain their
respective maximum values. This approach aims to optimize the
algorithmic performance and achieve the desired outcomes.

3.8 Combination techniques

To obtain a single final prediction, the output predictions
produced by classifiers must be combined. In order to combine
the output predictions of each classifier, various probability-based
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FIGURE 7
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TABLE 4 PV system specifications.

Component Parameter ’ Value
I 0.61 A
Voc 225V
ingli :
Ve 18V
Pyp 0w
Inductor 2mH
DC-DC boost converter Capacitor 390 uF 400 V/
Switching frequency 40 kHz

Frontiers in Energy Research

techniques exist in literature and can be utilized. The combination
task involves assigning sample z to one of m possible classes (C1,
C2, ..., Cm). Assuming n classifiers are available, each representing
z by a distinct predicted class. The predicted class by the ith classifier
is denoted by xi. Each class Ck is modeled by the probability
density function (PDF) P (xi|Ck), with P(Ck) indicating the prior
probability of its occurrence. Based on Bayesian theory, given all
the predicted classes xi, z should be allocated to Cj if and only if
the posterior probability, P(Ck|xi) is maximum. Equation 19, which
refers to Bayesian decision-making theory, shows that in order to
achieve an accurate decision based on all available information, it
is imperative to meticulously compute the probabilities of various
classes by simultaneously considering all predicted classes.

assignz — C; ifP(lex,-) = mlfsz(Cklxi) (19)
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TABLE 5 Detailed number of data samples.

Condition Label Training samples Testing samples

Normal (no-fault) N 433 60

Open circuit fault oC 433 60

Line-to-line fault (one-module mismatch) LL1 114 24
Line-to-line fault (two-module mismatch) LL2 114 24
Line-to-line fault (more-that-two-module mismatch) LL3 342 72
Array degradation fault Adeg 582 48

String degradation fault Sdeg 582 48

Total samples 2600 336

Bold values indicate the highest summary totals.

" Training Mean Accuracy ' Fl-score I2Standard deviation 100
90
80
o)
=
~—
w
70 .2
—
B
b=
60
50
40
SVM SVM DT (ID3) DT
(linear) (RBF) (poly) (CART)
Classifier
FIGURE 8
The evaluation metrics and standard deviation of each individual classifier.
Based on Equation 19, six popular existing combination 4. The mean rule:
techniques can be briefly summarized as follows, and the
formulation is provided in Equations 20-25. 1215?;1 P(C |x; ) = lrgctzc” rlnsggrrf P(Cilx;) (23)
1. The product rule: 5. The median rule:
n
~(=D(C. 1x.) = (n-1)
3 (CJ)HP(lex,) max P (Ck)l_[P(Cklx) (20) medzanP(C |x; ) = max median P(Cy|x;) (24)
i=1 i=1 1<i<n Isksm  1<i<n
2. :
The masx rule 6. The majority vote rule:
maxP(Ghe) = s paxP(Glx) @D :
A= A 25
3. The min rule: ; I 12115222 ki (25)
min P! (C |x; ) = max min P(Cylx;) (22) where A denotes the ith classifier choice for class j.
1<i<n 1<k<m 1<i<n Jt
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FIGURE 9
(A) Membership functions for training mean accuracy, standard deviation, F1-score and the output (B) MoM-based defuzzification of final shape in
each classifier.

3.9 Evaluation metrics

The performance of the proposed model is evaluated using
various popular evaluation metrics. Firstly, to ensure a reliable model
and avoid overfitting during the training process, the k-fold cross-
validation (CV) method is employed to measure the mean accuracy
of each individual classifier. Secondly, the confusion matrix, shown
in Table 3 is utilized and a comprehensive report of the final
model performance is provided through the “accuracy’,
“recall”, and “Fl-score” metrics which are calculated according to

Equations 26-29.

precision”,

TP+ TN

— (26)
TP+ TN + FN + FP

Accuracy =
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TP

Precision — —LE__ 27
recision TP TP (27)
TP
Recall = ——— 28
T TPYEN (28)
2 x (Precision x Recall)
Fl1-score = (29)

Precision + Recall

The initiations used in Equations 26-29 can be explained as
follows:

o TP: The number of positive samples correctly classified by the
model.

o FP: The number of negative samples incorrectly classified as
positive by the model.
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TABLE 6 Set of base rules of the inference module.

Training mean accuracy

Low Medium High

10.3389/fenrg.2025.1675953

If

Standard deviation F1-score

Medium High Low ’ Medium ’

2 X X X Low
3 X X Low
4 X X X Low
5 X X X Low
6 X X X Low
7 X X X Low
8 X X X Low
9 X X Low
10 X X X Medium
11 X X X Medium
12 X X X Medium
13 X X Medium
14 X X X Medium
15 X X X Medium
16 X X X Medium
17 X X X Medium
18 X X Medium
19 X X High
20 X X X High
21 X X High
22 X X High
23 X X X High
24 X X X High
25 X X X High
26 X X High
27 X X High
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FIGURE 10
Results of PSO algorithm in obtaining the best combination of classifiers in fault detection (A) Particle Swarm Optimization Results (B) Determining
parameter beta (B) with respect to global best fitness.

o FN: The number of positive samples incorrectly classified as
negative by the model.

o TN: The number of negative samples correctly classified by the
model.

4 Model implemention, results, and
discussion

4.1 PV array setup

To evaluate the proposed model, a stand-alone experimental
PV system including a 3 x 6 PV array (three parallel strings each
containing six Yingli YL010D-18 b PV modules in series) has been
designed along with a DC-DC boost converter which are depicted
in Figure 7. The PV modules used in the setup are rated at 10 W
with Voc = 22,5V, Isc = 0.61 A, Vypp = 18V, and Iypp = 0.56 A.
The detailed specifications of the PV modules and the DC-DC boost
converter are summarized in Table 4.

4.2 Data acquisition process

The initial data samples in this study are acquired using five
predefined points on the PV array I-V curves under various
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environmental (irradiance and temperature) and anomalous
(normal or faulty) conditions. To elicit the PV array I-V curves,
an I-V curve tracer is developed according to Figure 7C which
includes current and voltage sensors, a DC/DC converter, an
ARM microcontroller for controlling the switch, and a gate
driver circuit. Figure 7C depicts that the duty cycle is regulated
by the ARM microcontroller to extract the features from the I-V
curve. The STM32f103C8T6 ARM is also used for I-V curve testing
algorithm. When testing, voltage and current values are read by
the controller. The magnitude of the controller signal is 3.3 V, but
the switch requires a minimum of 15V to remain on. Hence, a
gate driver is used to supply the MOSFET necessary voltage. Two
voltage regulators power the controller and output circuits of the
driver. One produces 3.3V for the ARM microcontroller, while
at the same time, the other generates a 15V controllable voltage
for the gate driver. This tracking algorithm is straightforward
in which the PV array initially supplies a low-resistive load to
produce a high current level, with a low-duty cycle (approximately
10%). In this case, the PV array yields a low amount of current
which is almost equal to the PV array short circuit current. This
process is repeated with incremental rises in the duty cycle until
it reaches a specific range (over 80%). Finally, the OC voltage is
determined by measuring the PV array output voltage in an open
circuit state.
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TABLE 7 Parameters and values used in PSO algorithm in optimization.

Step Parameters

Step1: The first PSO (Classifier selection) Population size = 30
Max iteration = 100
W =0.729
C, =149
C, =149

Step2: The second PSO (Classifier weights) Population size = 4
Max iteration = 100
W=09
C,=05
C,=03
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FIGURE 11
The importance of features in permutation method: (A) scoring features based on their importance in mean rule technique, and (B) scoring features

based on their importance in majority vote rule, product rule, max rule, min rule, and median rule techniques.

During the experimental data collection process, 2936 samples 4.3 Expe rimental results
are collected under different conditions, such as no-fault conditions,
open circuit faults, line-to-line faults, and degradation faults. During the initial stage, each classifier is assessed individually,
The initial dataset includes 2600 training samples and 336  using the training mean accuracies, standard deviations, and F1-
samples for testing the final model which is further detailed  scoresas determinants for selecting the initial classifiers by entering
in Table 5. the FL process. Figure 8 shows the training mean accuracies and F1-
Once the initial dataset is collected, various features are  scoresaswell asstandard deviations (highlighted in boxes) produced
extracted according to Table 2 and the data samples are normalized ~ by ten machine learning classifiers when they are trained using
using Z-score normalization technique based on Equation 4. the whole normalized dataset.
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Training and validation accuracies during the permutation feature selection process based on six different rules (A) Product rule (B) Max rule (C)

Min rule (D) Median rule (E) Mean rule (F) Majority voting rule.

4.3.1 Fuzzification

After completing the initial step, the fuzzy system is set
up with three linguistic terms; “low;” “medium,” and “high”, for
each input variable: training mean accuracy, standard deviation,
and Fl1-score. It is certainly worth mentioning that the linguistic
terms are set based on the variable acceptability in the final model
creation. Therefore, for instance, a “low” in training mean accuracy
and Fl-score denotes a low real value in these variables which
is not acceptable. However, a “low” in standard deviation shows
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a high real value in this variable which is also unacceptable.
In addition, a variable named “output” is also defined as the
output result to determine whether the aggregation of three other
variables will be either “low”, “medium’, or “high”. In this study,
trapezoidal membership function is selected to standardize the data
values for all components (see Figure 9A). The range of values
for each variable is determined based on the values of evaluated
variables (training mean accuracy, standard deviation, F1-score,
and output).
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TABLE 8 Results of model development in training and validation processes.

Combination technique

Training accuracy

Validation accuracy

10.3389/fenrg.2025.1675953

Selected features

Product rule 99.03% 98.65% fis» T fr00 £ f105 £, £, £
Max rule 82.83% 99.42% f1g, > £500 fo 1o
Min rule 98.26% 97.12% £1g5 Tos Toos s Trgo s Fiss 1o
Median rule 96.92% 96.73% fig» fso 00 £ f105 £ £5, £1, £, £
Majority voting rule 98.41% 98.07% f1g5 fao £500 fo F105 £ £ £, fo, £ £ £ 15
Mean rule 99.51% 99.81% £y f195 £205 F105 65 £75 £, £15 £115 £145 £17

Bold values indicate the highest performance values.

4.3.2 Inferencing

After the fuzzification process, the corresponding degree values
generated in each input variable are transferred to a set of fuzzy
rules. The number of rules designed to cover all potential situations
3
categorical values and m = 3 input variables will be 3° = 27 as shown
in Table 6.

of fuzzy system behavior according to Equation 6 with n

4.3.3 Defuzzification

Following the application of fuzzy logic and subsequent
fuzzification, each individual classifier is assigned a score between
0 and 100 according to MoM defuzzification technique and based
on three metrics: training mean accuracy, standard deviation, and
Fl-score (see Figure 9B). The resulting scores serve as an index of
classifiers well-suited for the combination. Figure 9B displays the
classifiers scores based on MoM defuzzification technique. In this
study, the classifiers with the score of 50 and above are selected for
the combination which, according to Figure 9B, include LR, SVM
(linear), SVM (RBF), SVM (poly), RE and MLP.

In the initial stage of the method, ten classifiers were considered,
out of which LR, SVM (linear), SVM (RBF), SVM (poly), RE, and
MLP classifiers progressed to the second stage. These classifiers
achieved the highest scores in the fuzzy logic filtering process based
on Equation 5 which forms part of the mathematical model that
optimizes the best combination of classifiers for the final model.
After applying the mathematical programming model to the binary
feature problem, discrete states (0 or 1) are observed in X = [x;, X,,
X3, Xy X5, X6 ], in which x; = LR, x, = SVM(linear), x; = SVM(RBF),
x4 = SVM(poly), x5 = RE and x, = MLP (see Figure 10A). The
PSO algorithm is then applied to the mathematical programming
model, and the optimal state which yields the maximum value of the
objective function as [0 1 1 1 0 0], assigning 1 to x, = SVM(linear),
x; = SVM(RBF), and x, = SVM(poly) thus selecting them as the
optimal classifiers to create the final model. The parameters for
PSO algorithm used to select the optimal classifiers are listed and
explained in Table 7 (Step 1).

It is worth mentioning that based on the parameters outlined in
Equation 9; Figure 10B demonstrates that the optimal value for f is
0.5. This outcome is a product of a seamless balance between training
mean accuracy and standard deviation, essential for achieving the
objective function optimal state (see Equation 9).
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Three SVM classifiers with linear, RBE, and polynomial kernels
have been selected as the best classifiers to participate in the final
model. Before combining the output of each classifier to make
the final model, the weight of each classifier needs to be assigned
and optimized. This approach prioritizes the classifiers which show
higher accuracies as they have substantially more impact on the
final model accuracy. A mathematical programming model has
been developed for this purpose, and PSO has solved the problem
of assigning weights to each SVM classifier with linear, RBE, and
polynomial kernels. The PSO variables are explained in Table 7
(Step 2). It's important to note that Step 1 requires further
exploration, which is why it employs a larger population, balanced
coefficients C, and C,, and a lower inertia weight. In contrast,
Step 2 focuses on stability, utilizing a smaller population, reduced
coeflicients C, and C,, and a higher inertia weight. The most
optimal weight values for SVM (linear), SVM (RBF), and SVM
(poly) are 0.35, 0.5, and 0.15, respectively. After training these
classifiers, it is necessary to perform their validation process during
each of the techniques (product rule, max rule, min rule, mean
rule, median rule, and majority vote rule) of the combination.
These weights are allocated to max, min, mean, and median rule
techniques.

The permutation feature selection method has been used to
determine the importance of each feature of 20 extracted feature
and provides an efficient feature selection process (see Figure 11).
According to Figure 11, the permutation technique yields different
importance values for the mean rule combination technique in
comparison to five other techniques.

Finally, the performance of the model is investigated using
each combination technique and the selecting the extracted features
according to their importance value. Figure 12 demonstrates the
training and validation accuracies produced by the model using
each combination techniques using a certain number of features,
from the most to the least important based on Figure 11. As
shown in Figure 12, the mean rule combination technique has been
able to produce the highest accuracy during the training process
(99.51%) using 11 features which are fg, fi5, £, f10, fg, 7, £5, £, £,
fi4> fi7, in correct order of importance. Using the corresponding
number of features, the mean rule combination technique has
also proves to outperform five other combination techniques with
99.81% of accuracy when the model is validated. In addition,
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Table 8 provides a summarized report of training and validation
accuracies as well as the selected features in correct ranking based on
Figures 11, 12.

Furthermore, Figure 13 presents the validation confusion
matrices, providing a comprehensive summary of the validation
results. It clearly shows the final model accuracy during the
validation process by carefully detailing the number of correct
and incorrect classifications using different combination techniques.
Also, Figure 14 provides information on three other evaluation
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metrics which are precision, recall, and fl-score which can be
extracted from each confusion matrix based on Equations 26-29.
Once the final model (including the mean rule combination
technique) is selected, the final stage involves using test (unseen)
experimental data samples to further verify the model performance.
As demonstrated in Figure 15 which include the detailed confusion
matrices of using each combination technique, the final model
(including the mean rule combination technique) shows the best
performance with 97.02% of accuracy during the testing process.
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FIGURE 14
Class-wise validation metric values in different combination techniques (A) Product rule (B) Max rule (C) Min rule (D) Mean rule (E) Median rule (F)
Majority voting rule.

To provide a more detailed assessment, per-class test
metrics (precision, recall, and Fl-score) have been reported,
as summarized in Table 9. Furthermore, ablation studies have
been conducted considering (i) single model vs. ensemble
settings, (ii) weighted vs. unweighted fusion strategies, and (iii)
the use of top-k features and feature types. The corresponding
results are presented in Table 10. These findings clearly indicate
the benefits of ensemble learning and weighted fusion, as
well as the impact of feature selection on classification

performance.
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4.4 Comparison and a detailed discussion

In order to confirm the superiority of the proposed fuzzy logic
and PSO based model, according to Table 11, it is compared to
several recent studies in the area of PV fault detection. To provide a
fair comparison, various factors are considered, such as the recency
of the studies (2023 and 2024), inclusion of modern strategies (e.g.,
deep learning), various comparison aspects (the ability of severity
assessment, the number of required data samples, the consideration
of critical conditions for fault detection, and the final experimental
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FIGURE 15
Test accuracies in different combination techniques (A) Majority voting rule (B) Product rule (C) Max rule (D) Min rule (E) Median rule (F) Mean rule.

accuracies). According to Table 11, the following discussion can be

presented:

a. Multiple models in literature, such as Hajji et al., (2023),
Yahyaoui et al., (2023), Amiri and Kichou, (2024) have
attempted to provide a high accuracy in detection and
classification of faults in PV arrays. But, the major disadvantage
of all the above-mentioned studies is that none of them have
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taken into account the critical fault detection conditions.
Disregarding the critical fault detection conditions, the process
of fault detection becomes absolutely easy to proceed. In
addition, the above-mentioned models are not capable of
assessing the faults severity to provide a precise instruction
for protection devices. To wrap up, despite the fact that these
models might apparently look accurate, they are not reliable to
be implemented in real world.
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TABLE 9 Results of model development in testing process.

10.3389/fenrg.2025.1675953

Combination technique Precision Recall F1-score
Majority voting rule P1=923% R, = 100% F, = 96%
P, = 94.44% R, = 70.83% F, = 80.95%
P, =92% R, = 95.83% F, = 93.87%
P, = 100% R, =97.22% F, = 98.59%
Py =94.11% R, = 100% F; = 96.96%
P, = 67.18% R, = 89.58% Fy = 76.78%
P, = 100% R, = 71.66% F, = 83.49%
Product rule P, =95.23% R, = 100% F, = 97.56%
P, = 100% R, = 45.83% F, = 62.85%
P, = 90.9% R, = 83.33% F, = 86.95%
P, = 100% R, = 97.22% F, = 98.59%
Py =92.3% R, = 100% F, = 96%
Pg = 60% R, = 93.75% Fg=73.17%
P, = 95.34% R, = 68.33% F,=79.61%
Max rule P, = 93.75% R, = 100% F, = 96.77%
P, = 100% R, = 54.16% F, = 70.27%
P, = 86.36% R, = 79.16% F, = 82.6%
P, = 100% R, = 95.83% F,=97.87%
P, =84.21% R, = 100% F, = 91.42%
Py =57.14% R, = 91.66% F = 70.39%
P, =94.11% R, = 53.33% F, = 68.08%
Min rule P, =923% R, = 100% F, = 96%
P, = 100% R, = 54.16% F, = 70.27%
P, =95.23% R, = 83.33% F, = 88.88%
P, = 100% R, = 98.61% F, =99.3%
Py =92.15% R =97.91% Fy = 94.44%
Pg = 58.9% R, = 89.58% F¢ = 71.07%
P, =97.61% R, = 68.33% F, = 80.39%
Median rule P, =95.23% R, = 100% R, = 100%
P, = 100% R, = 41.66% R, = 41.66%
P, =85.71% R, = 75% R, = 75%
P, = 100% R, = 95.83% R, = 95.83%
P, =85.71% Rs = 100% Rs = 100%
P, = 55.55% R, = 93.75% Ry = 93.75%
P, = 94.44% R, = 56.66% R, = 56.66%
Mean rule P, =97% R, =98% F, =98%
P, = 100% R, = 92% F, = 96%
P, = 100% R, = 100% F, = 100%
P, = 100% R, = 100% F, = 100%
P, = 100% R, = 90% Fy = 95%
Py = 94% Ry = 96% Fg = 95%
P, = 92% R, = 100% F, = 96%

b. Authors in Dhimish and Tyrrell (2023), Amiri and Kichou

(2024) have positively considered a difficult fault detection
condition (critical mismatch levels). Also, the above-
mentioned models are capable of assessing the severity of
faults in PV arrays. However, it seems that since a challenging
fault detection condition is considered, as a result, the model in
Dhimish and Tyrrell (2023) is not able to yield high accuracy
therefore it looks unreliable in practice. Moreover, model in
Amiri and Kichou (2024) requires a massive training dataset
to produce a high accuracy.

Several disadvantages can also be witnessed in studied such
as Hajji et al. (2023), Yahyaoui et al. (2023). Although the
previously mentioned models are producing an apparently
acceptable accuracy, they need a large number of data samples,
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have not considered the critical conditions in fault detection,
and are not able assess the severity of faults.

The model presented in Kumari and Panigrahi (2024) has
addressed fault impedance, as another important factor of fault
detection conditions (added to critical mismatch levels) that
affects the severity of faults in PV arrays. They have also taken
considered the severity assessment, and a small dataset for
model training process. However, the main drawback is its low
accuracy, especially when trying to classify less severe faults.
Finally, the proposed fuzzy logic and PSO based model in
this study has attempted to overcome all the above mentioned
challenges. Initially, unlike previous studies in which the ML
classifier selection process was mostly carried out based on
a deterministic approach, the proposed model has carefully
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TABLE 10 Comparison results of ablations in testing process.

10.3389/fenrg.2025.1675953

Ave. Accuracy Ave. Precision Ave. Recall Ave. F1-score
SVM (Kernel: linear) 93.75% 89.5% 95.8% 92.4%
SVM (Kernel: RBF) 92.3% 88% 94.5% 91.0%
SVM (Kernel: poly) 91.58% 90.0% 92.2% 91.1%
Ensemble (unweighted fusion) 95.6% 94.5% 96.5% 95.4%
Ensemble (weighted fusion) 96.2% 95.2% 97% 96.1%
Ensemble (Top-5 Features) 94% 92.5% 94.5% 93.4%
Ensemble (Top-10 Features) 95.6% 95% 96.2% 95.6%
Ensemble (Top-11 Features) 97.02% 97.57% 96.57% 97.14%
Ensemble (Top-15 Features) 96.5% 95.6% 97% 96.3%
Ensemble (Top-20 Features) 96.2% 95.2% 97% 96.1%
Ensemble (feature type: MD) 95% 94.2% 95.3% 94.7%
Ensemble (feature type: CD) 96.5% 96% 96.8% 96.4%

TABLE 11 FL-PSO model comparison with several recent models in literature.

References Utilized Critical fault Severity Training data Avg.
technique detection assessment samples Experimental
conditions accuracyAccuracy|
Yahyaoui et al. (2023) One-class classification Neither No 550,000 99.02%
(Various single
classifiers)
Amiri et al. (2024) CNN + Bi-GRU Mismatch only Yes 43,164 99.73%
Hajji et al. (2023) Various neural networks Neither No 40,000 99.71%
Dhimish and Tyrrell ANN Mismatch only Yes 4988 93.45%
(2023)
Kumari and Panigrahi GA + Weighted kNN Impedance and Yes 1970 94.68%
(2024) Mismatch
Amiri et al. (2024) Random forest Mismatch only Yes 437,202 99.4%
Proposed model in this Fuzzy logic + PSO Impedance and Yes 2936 98.78%
study Mismatch

Bi-GRU: bidirectional gated recurrent unit, CNN: convolutional neural network, GA: genetic algorithm, ANN: artificial neural network.

investigated a vast group of ML classifiers and successfully
selected the optimal classifiers which increase its reliability
in fault detection and classification process. In addition,
optimizing the number of classifiers (PSO), selecting the best
combination technique (trial-and-error), and assigning the
optimal weights to finally nominated classifiers (PSO) have
further improved the final model accuracy and reliability.
Moreover, according to Table 11, it can be clearly witnessed
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that the proposed model in this study outperforms the other
recent models in literature since:

o It has considered the most difficult conditions in the
process of fault detection and classification (both critical
mismatch levels and critical impedance values at the same
time).

o It warrants only a small dataset to be fully trained.

o It produces a high accuracy of experimental testing
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5 Conclusion

This paper presented a cutting-edge method to detect and classify
LL, OC, and degradation faults in PV arrays through I-V curve
measurements. Firstly, initial data samples were collected according to
five specific points on the PV array I-V curve under various irradiance
and temperature conditions. Then, twenty features were extracted
from the initial dataset by utilizing the Manhattan distance (MD) and
Chebyshev distance (CD) techniques. The model employed various
individual machinelearning classifiers, such aslogistic regression (LR),
Gaussian naive Bayes (GNB), k-nearest neighbors (kNN), support
vector machine (SVM), decision tree (DT), random forest (RF), and
multi-layer perceptron (MLP). A subset of classifiers with better
performance than others were first nominated by fuzzy logic system.
Here, fuzzy logic nominated six classifiers LR, RE MLP, and SVM with
three different kernels; linear, RBE and polynomial kernels. Particle
swarm optimization (PSO) technique were then utilized to determine
the optimal number of previously nominated classifiers. The optimal
number of classifiers optimized by PSO was three including SVM
with three different kernels; linear, RBE, and polynomial kernels.
To combine the output prediction of each selected classifier, various
combination rules were tested, such as min rule, max rule, mean rule,
product rule, majority voting rule, and median rule. PSO technique
is once again employed to assign optimal weights to each selected
classifier. In addition, to reduce the dimensionality of the dataset
and simplifying the training process, permutation feature selection
technique is used to select the best feature space by determining the
importance of each feature. The results showed that the mean rule
technique was selected to conclude the final model using 11 selected
features according to permutation feature selection technique. The
final model showed an outstanding performance among all the other
techniques with 98.78% average accuracy.
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