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Introduction: Artificial intelligence (AI) has been widely used to detect faults 
and failures in photovoltaic (PV) systems, particularly those that conventional 
protection devices fail to identify. However, previous AI-based approaches 
still face major limitations, including neglecting critical detection conditions, 
relying on large and complex datasets, and lacking simultaneous and accurate 
multi-fault detection and classification.
Methods: To address these challenges, a novel PV fault detection framework 
is proposed by combining a fuzzy logic (FL) system with a particle swarm 
optimization (PSO) algorithm. An initial dataset is generated from the 
current–voltage (I–V) curve of a PV array. Manhattan distance (MD) and 
Chebyshev distance (CD) features are extracted from the I–V characteristics. 
A wide set of machine-learning classifiers is evaluated, and the FL system 
nominates the most reliable models based on mean accuracy, F1-score, and 
standard deviation. PSO is then used to determine the optimal subset of 
classifiers and to assign optimized weights for ensemble prediction. Several 
output-combining techniques are also examined to obtain the most accurate 
final classification.
Results: Model verification is performed using a dataset that includes normal 
operation as well as line-to-line (LL), open-circuit (OC), and degradation (DEG) 
faults under various environmental (irradiance, temperature) and electrical 
(mismatch, impedance) conditions. The proposed FL+PSO-based model 
achieves outstanding accuracy in detecting and classifying multiple PV faults 
and outperforms recent state-of-the-art approaches.
Discussion: The integration of distance-based feature extraction, fuzzy-driven 
classifier selection, and PSO-optimized weighting significantly enhances 
robustness and reduces sensitivity to environmental variations. These 
improvements enable reliable multi-fault detection even when fault signatures 
closely resemble normal conditions.
Conclusion: The proposed FL and PSO-based ensemble provides a highly 
accurate and reliable solution for multi-fault detection in PV arrays. Its
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performance surpasses existing approaches, making it a strong candidate for 
practical implementation in real PV monitoring systems.

KEYWORDS

photovoltaic, autonomous monitoring, fault detection, fuzzy logic, particle swarm 
optimization 

1 Introduction

Photovoltaic (PV) has become a widespread source of energy 
throughout the world since it is clean, inexpensive, and easy to 
access (Ghaedi et al., 2024). According to International Energy 
Agency (IEA), solar PV accounted for three-quarters of global 
renewable capacity additions (Yuen, 2023). Also, the total PV 
installations surpassed 1.5 TW at the end of 2023 (Aghaei et al., 
2022). However, as PV components are mostly operating outdoors, 
they are inevitably vulnerable to various electrical and non-electrical 
failures and anomalies over their operational lifespan. This is 
due to environmental factors, such as shading on the panels, 
hail, lightning, dirt, dust, showers, etc. PV modules can also be 
subject to several environmental stresses, such as moisture, harmful 
effects of harsh sunlight, corrosive gases, heat and cold, mechanical 
loads, and degradation, as well as the risk of human error and 
equipment failure. This will reduce the overall system efficiency by 
reducing the output power, damage the PV components, and may 
even lead to catastrophic fire hazards (Mellit et al., 2018; Pillai 
and Rajasekar, 2018). Therefore, in-time fault detection in 
PV components seems critical in enhancing the longevity of
PV systems.

For many years, conventional protection devices such as 
overcurrent protection devices (OCPDs) and ground-fault 
protection devices (GFPDs) have been used in industry to protect 
PV systems against certain unexpected faults and failures as well 
as to ensure their safe and efficient operation (Nedaei et al., 2023). 
However, the main drawback is that conventional protection devices 
have proved to be unable to detect numerous PV faults under 
specific conditions, known as critical fault detection conditions, 
such as critical fault impedances and/or critical mismatch levels 
where fault currents are not sufficient to excite the conventional 
protection devices to break. Therefore, scholars and engineers 
have turned to modern approaches, such as artificial intelligence 
(AI) to overcome the challenges in conventional protection
devices.

Accordingly, the main objective of this study is to design 
an accurate and efficient photovoltaic fault detection and 
classification model that can address critical fault conditions 
while reducing dataset complexity. This is achieved by integrating 
FL for classifier nomination and PSO for optimal ensemble
construction.

The rest of the paper is structured as follows: Section 2 
formulates the problem and illustrates the necessity of automatic 
fault detection. In Section 3, the proposed method is fully 
elaborated. The experimental results and a detailed discussion is 
provided in Section 4. Finally, the key outcomes of the study are 
summarized in Section 5.

2 Problem formulation

The illustration of a typical stand-alone PV array configuration 
is presented in Figure 1. As shown, the structure is comprised of 
PV modules, blocking diodes, combiner boxes, DC/DC converter, 
GFPDs, and OCPDs. The PV array in Figure 1 consists of three 
strings connected in parallel, each containing six modules in series. 
The formation of the PV arrays, which involves the connection of 
PV modules in series and parallel, achieves the desired voltage and 
current (and thus the output desired power) levels.

2.1 Line-to-line (LL) faults

LL faults in PV arrays are defined as a short connection between 
two different points in a photovoltaic (PV) array with dissimilar 
potential levels. In-time detection and elimination of LL faults 
pose a significant challenge for conventional protection devices 
under specific conditions, such as high fault impedance, faulty 
module involvement, etc. LL faults can happen because of three 
main causes (Zhao et al., 2013):

• An accidental short-circuit between two current-carrying 
conductors (CCCs),

• Serious breakdown in cables insulation,
• Internal shorting in DC junction boxes may happen due to 

mechanical damage, water ingress, and corrosion.

In the event of LL faults, the voltage of the faulty string can 
suddenly drop, resulting in an additional reverse current flow 
from the healthy strings and modules into the fault location. 
Therefore, a protection device is needed in place to identify the 
additional current in PV strings. According to the U.S. National 
Electrical Code (NEC), a single overcurrent protection device 
(OCPD) is required in series with each string to safeguard PV 
modules and conductors. The OCPD rated current should not 
exceed 1.56 of the PV array short-circuit current (ISC) at standard 
test conditions (STC: irradiation = 1000 W/m2, temperature = 
25 °C, air mass = 1.5). The installed fuse rating of an OCPD can 
be calculated as 1.35 × 1.56 ISC = 2.1 ISC, given that a typical 
fuse minimum breaking capacity is 1.35 of the circuit-rated current
(Pillai et al., 2019).

However, LL faults may not generate sufficient fault currents to 
trip the OCPDs for various reasons, such as low irradiation levels, 
high fault impedance, faulty module involvement, and a maximum 
power point tracker (MPPT). As a result, the faults may go unnoticed 
in PV arrays for an extended period, leading to significant damage 
and catastrophic consequences.
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FIGURE 1
Typical 3 × 6 PV array configuration (3 strings, each includes 6 PV modules).

Figure 1 provides a depiction of LL faults within PV strings. The 
concept of mismatch percentage, which is calculated as Equation 1, 
is used for LL faults severity assessment.

mismatchpercentage =
numbero f faultymodule inastring

numbero f allmodules inastring
× 100

(1)

The diagram in Figure 1 depicts three types of LL faults: F1, 
which has a 16.67% mismatch, F2, which has a 33.33% mismatch, 
and F3, which has a 50% mismatch. The severity of LL faults can 
also be determined by the accompanying fault impedance values, 
which may range from zero to several ohms depending on the 
fault path. In Figure 1, F1 and F3 show LL faults with 10 and 15 Ω 
of fault impedance, respectively, whereas F2 has a fault impedance 
value of zero.

This research delves into the impact of short circuit faults on 
different numbers of modules at five distinct levels. These levels 
include one, two, three, four, and five modules, and each level 
exhibits a mismatch percentage at 16.67%, 33.33%, 50%, 66.67%, and 
83.33%, respectively. The study examines fault impedance within 
the range of 0–25 Ω, with a 5 Ω interval between each step. In 
contrast, the PV array I-V curve under normal and different LL 
fault scenarios is illustrated in Figure 2A which highlights two 

important facts about LL faults. Firstly, when LL faults impact the 
I-V curves under low mismatch levels and high impedances, they 
behave similarly to normal conditions, making it challenging to 
identify faulty conditions. Secondly, I-V curves affected by LL faults 
under high mismatch levels and high impedances behave similarly 
to LL faults at low mismatch levels and low impedances, presenting 
another challenge in classifying faulty conditions.

2.2 Open-circuit (OC) faults

Basically, open-circuit (OC) faults happen when CCCs 
accidently break. This can occur because of crackings in PV modules 
(or PV cells), or connections between modules (i.e., wiring and 
junction boxes). F4 in Figure 1, shows an OC fault, which might have 
occurred due to any of the above-mentioned reasons. Assuming that 
the mentioned OC fault has occurred under STC, it generates only 
a small amount of fault current (Harrou et al., 2018). As one out 
of three strings is disconnected, more than a third of the output 
power is lost. According to Figure 2B, during an OC fault, the PV 
array operating point voltage remains unchanged. However, the 
PV array current is mainly affected in an OC fault. Accordingly, 
if more strings are disconnected, there is less short-circuit current 
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FIGURE 2
(A) The impact of different mismatch levels and fault impedance on I-V curve during an LL fault (B) The impact of an open-circuit fault on the I-V curve
(C) A degradation fault in a string (D) A degradation fault in the whole array.

(ISC). Therefore, when n strings are disconnected as a result of an 
OC fault, the PV array short circuit current will be mISC–nISC = 
(m - n)ISC, for a PV array with m strings, in which n strings are 
disconnected (see Figure 2B). 

2.3 Degredation faults

PV modules and arrays are a reliable source of energy, but 
they are susceptible to be degraded, especially after an long time 
(Santhakumari and Sagar, 2019). Optical degradation caused by 
prolonged exposure to UV radiation, cell degradation caused 
by a decrease in shunt resistance (Rsh), a relative increase in 
series resistance (Rs), or module short circuit current (ISC), 
and mismatched cells due to crackings in cells, soiling on cell 
surface, partial shading and other factors can all cause PV module 
degradation (Meyer and Van Dyk, 2004). Numerous studies have 
already investigated degradation faults (Pei et al., 2020), so our 
research focused only on the impact of series resistance. In this 
study, both array and string degradation faults are investigated by 
incorporating Rs once in the output of an array and then throughout 
a string. As shown in Figure 1, F5 demonstrates a string degradation, 
whereas F6 dipicts an array degradation fault. Also, Figure 2C shows 

the impact of degradation faults on a PV string I-V curve emulated 
using various Rs values. Although a relatively high (12 Ω) resistance 
value is implemented, the string I-V curve under a degradation 
fault looks the same as that in normal condition. Besides, Figure 2D 
shows the impacts the PV array I-V curve may experience during 
an array degradation fault with different Rs values. As the Rs value 
is increasing, the curve is behaving very differently compared to a 
normal condition curve.

Regarding the fact that conventional protection devices are 
unable to detect and clear the faults in PV arrays particularly under 
critical fault detection conditions, powerful modern and reliable 
fault detection approaches and strategies which are able to detect the 
faults early and in time are more noticeably required. 

2.4 Review of related work

To overcome the challenges of conventional strategies and 
provide modern automatic fault detection and classification 
schemes, artificial intelligence (AI) and more specifically machine 
learning (ML) have gained in popularity and appeared in 
literature in recent years (Thakfan and Bin Salamah, 2024). Initial 
approaches relied on individual machine learning classifiers, 
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with commonly used models including Decision Tree (DT), 
Support Vector Machine (SVM), Logistic Regression (LogR), 
Naïve Bayes (NB), and k-Nearest Neighbors (kNN), among others
(Gaviria et al., 2022).

In Yahyaoui et al. (2023), a one-class fault detection scheme is 
presented which is based on comparing various single classifiers 
and different groups of features. The final model selects k-nearest 
neighbors (kNN) classifier and a specific group of features as 
the most accurate combination. A similar approach is also used 
in Hichri et al. (2024) which support vector machine (SVM) 
classifier performs the best when features are selected using salp 
swarm algorithm (SSA). Deep learning algorithms have been 
adopted in Hajji et al. (2023) which a bidirectional long-short term 
memory (BiLSTM) classifier shows an accurate performance in fault 
detection and classification. In, machine learning and ensemble 
learning methods were evaluated for diagnosing complex PV 
faults, achieving high detection accuracy. In another study (Amiri 
and Kichou, 2024), a convolutional neural network (CNN) and 
bidirectional gated recurrent unit (Bi-GRU) prove to be efficient in 
detecting and classifying various PV faults. However, all previously 
mentioned models are able to detect and classify only the faults with 
high severity. Severe faults are the easiest anomalous conditions to 
detect, therefore they have neglected the most difficult and critical 
conditions for fault detection in PV arrays. Note that critical fault 
detection conditions are when a few modules (usually a single 
module) is engaged in the fault which is also accompanied by a 
critical (usually high) impedance value. The condition are named 
critical since they result in a faulty condition which is very similar 
to PV array normal (no-fault) condition and makes the process of 
detection very difficult (or sometimes impossible).

Many studies can be found in literature that have taken into 
consideration the critical conditions in fault detection. However, 
some drawbacks can be seen in their proposed models. Reference 
(Amiri and Oudira, 2024) presented an accurate model to 
detect and classify several faults in PV arrays even under a 
few critical fault detection condition. But the main drawback 
is that the presented model requires a massive dataset to be 
fully trained, while real-world data samples can sometimes be 
extremely challenging to collect particularly in harsh weather 
conditions. Authors in Badr et al. (2021), Dhimish and Tyrrell 
(2023), Hong and Pula (2024), Suliman et al. (2024) have considered 
a small dataset in model training process. However, the presented 
models are not accurate enough to be implemented in real
condition.

To increase the final model accuracy, various novel techniques 
such as stratification is employed. The mentioned technique is 
used in Kumari and Panigrahi (2024) which attempts to detect 
various faults in PV arrays. In Kumari and Panigrahi (2024), 
the whole fault detection process is divided into multiple steps, 
each of which takes its own related responsibility. However, 
the most important drawback of the model is that due to 
the high interdependency between the steps, in case a single 
misclassification occurs, especially in initial levels, the misclassified 
sample flows through the whole model and reduces the final
model reliability.

To consolidate the recent literature on PV fault detection, Table 1 
provides a comparative summary of representative studies. It 
highlights the datasets, fault types, methods, and key findings, 

thereby illustrating the progress and limitations of state-of-the-art 
approaches.

In order to fill the gaps and overcome the challenges, a novel 
model is proposed in this study to detect and classify various 
kinds of faults in PV arrays. Initially, a group of machine learning 
(ML) classifiers are arbitrarily selected. Then, fuzzy logic (FL) 
system nominates the potentially capable classifiers. After that, 
particle swarm optimization (PSO) algorithm yields the optimal 
combination of the previously nominated classifiers by FL. Finally, 
six combination rules are considered to combine the output 
prediction of each classifier and produce the final output prediction. 
To provide a more accurate prediction, PSO is again employed to 
assign and optimize weights to each individual classifier. To train the 
model, several features are extracted from the PV array I-V curve 
under normal and fault conditions using Manhattan distance (MD) 
and Chebyshev distance (CD) methods. The permutation feature 
selection technique is then utilized to determine the importance of 
features, and select the best and most effective features to reduce the 
dimensionality of the dataset and thus the complexity of the training 
process. After the final model including the selected classifiers by 
PSO and the nominated combination technique is fully trained and 
validated using the training dataset containing only the selected 
features by the permutation feature selection technique, it is then 
further verified and tested using a test (unseen) dataset.

Therefore, the primary contributions of this study can be 
described as follows:

• The final model aggregates the most accurate classifiers and 
eliminates the ones which are not able to perform accurately. 
This remarkably increases its reliability in the process of 
fault detection and classification since all the classifiers are 
systematically selected through the fuzzy logic and PSO based 
process of classifier selection and optimization. The optimal 
number of classifiers to form the final model with respect to 
an increase in simplicity and accuracy is also determined using 
the PSO technique.

• Multiple combination techniques and rules are utilized to 
combine the output prediction of each individual classifier and 
provide the most accurate final result. In order for the final 
model to produce an even more accurate final prediction, PSO 
is also employed to assign and optimize a unique weight to each 
individual classifier.

• Numerous features have been utilized in past models from 
the PV array I-V curve. However, this study proposes the 
Manhattan distance and Chebyshev distance techniques to 
extract various features from the PV array I-V curve according 
to five predefined points. In addition, to avoid redundancy 
and select only the most effective features thus reducing 
the dataset dimensionality and making the final model less 
computationally complex, the permutation feature selection 
technique is employed.

• To demonstrate the model high capability of fault 
classification, the final model is experimented under various 
faults critical conditions (i.e., critical impedance values 
and/or low mismatch levels) which are proven to be 
the most challenging conditions for PV array faults to
be detected.
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TABLE 1  Review of related works.

Ref Key 
findings/Performance

Faults addressed Methods/Techniques Dataset/Setup

Yahyaoui et al. (2023) One-Class framework; 
∼98–99% accuracy; robust to 
irradiance variation; lack of 

real-world data

Thermal, I–V, bypass diode, 
connectivity, shading, inverter, 

sensor

One-Class, PCA, I–V analysis, 
thermal imaging

Simulation + experimental; 
irradiance variation scenarios

Thakfan and Bin Salamah 
(2024)

Comprehensive ML/DL 
survey; high accuracy in 

literature; 
data/implementation 

limitations

Thermal, I–V, bypass diode, 
connectivity, shading, 
cell-to-system faults

Survey of ML/DL, I–V curves, 
thermal imaging

Based on literature; no new 
dataset

Amiri and Kichou (2024) Hybrid CNN + Bi-GRU; <99% 
accuracy; robust to 

noise/operational variation

Open/short circuit, partial 
shading, multiple PV array 

faults

CNN + Bi-GRU, two-stage 
diagnosis, data augmentation

Real PV data (irradiance and 
temp) + modeled data

Hichri et al. (2024) <99% accuracy; reduced 
computation time; improved 

precision

Line-to-line, line-to-ground, 
bypass diode, connectivity, 

mixed faults

Salp Swarm feature selection + 
ML classifiers; compared with 

PCA/KPCA

Simulated PV system with 
multiple faults; train/test split

Hajji et al. (2023) ML/DL FDD under irradiance 
variations; high accuracy

Line-to-line, line-to-ground, 
bypass, connectivity, mixed

ML + DL (ANN, CNN, 
boosting)

Simulated 12 kW PV system, 
variable irradiance

Badr et al. (2021) SVM outperforms DT and 
KNN; robust under 

shading/env. variation; high 
multi-class performance

Arc, open circuit, shading, 
temporary, permanent, MPPT 

failure

DT, KNN, SVM; Bayesian 
optimization

Simulation + experimental; 
multiple arrays with varying 

shading

Dhimish and Tyrrell (2023) ANN detects bypass diode 
faults; ∼93% accuracy

Bypass diode (open/short) ANN using Pout, Isc, Voc Experimental PV modules, 
diode fault tests

Hong and Pula (2024) Digital twin + Transformer; 
PSO improves results; effective 

detection and localization; 
good generalization

Line-to-line, open/shorted 
module, open/shorted string, 

partial shading

Digital Twin, Shifted Window 
Transformer, PSO

Digital twin setup; sensor data; 
faulted and non-faulted 

scenarios

Kumari and Panigrahi (2024) MBGA-WKNN method; 
detection, classification and 

severity

LL, LG, low mismatch, high 
impedance, PSCs, irradiance 

changes

MBGA for feature selection, 
Weighted KNN, hybrid time + 

frequency features

Simulated PV array (3 strings 
× 5 modules), 660 LL + 430 LG 

cases, 10 kHz data

Amiri and Oudira (2024) RFC approach; 99.4% 
detection/diagnosis accuracy

Healthy, short/open circuit, 
line faults, shading

Random Forest, MGWO, I–V 
translation

MATLAB + PSIM, 
9.54 kW PV plant (Algiers)

Suliman et al. (2024) SVM/XGBoost with 
hyperparameter tuning; Bees > 
PSO; high accuracy on similar 

I–V faults

Intra/cross-string line-to-line, 
open circuit

SVM, XGBoost; Bees and PSO 
optimization; I–V analysis

Small-scale lab PV array; 
realistic noisy data

Gaviria et al. (2022) Reviewed 100+ ML/DL works; 
high accuracy in fault 

detection, forecasting, MPPT

Array faults, islanding, 
shading, aging

LSTM, RNN, CNN, SVM, RF, 
RL methods

Simulations, public PV 
datasets, open-source cases

3 The proposed fuzzy logic and PSO 
based fault detection methods

The present study proposes a novel idea to detect and classify 
various frequent faults in PV arrays. The presented model combines 
the predictions from various individual ML classifiers to make 
accurate decisions in detecting and classifying faults in PV arrays. 
The chart of the proposed method is shown in detail in Figure 3. As 
shown, first, the initial dataset is collected according to the PV array 
I-V curve under a wide range of normal and faulty conditions. Then, 
the dataset is pre-processed and several features are constructed 

based on Manhattan distance (MD) and Chebyshev distance (CD) 
techniques.

Next, a group of classifiers are arbitrarily selected and trained 
using the whole normalized dataset. To initially select the best 
classifiers, each individual classifier is assigned a score using fuzzy 
logic (FL) system based on the classifier training mean accuracy, 
standard deviation, and F1-score and the classifiers with the highest 
scores are nominated. After that, the particle swarm optimization 
(PSO) technique determines the optimal number of classifiers 
through a binary (0 or 1) classification. In the meanwhile, the 
permutation feature selection technique is applied to the normalized 
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FIGURE 3
Proposed fuzzy logic and PSO based method for fault detection and classification in PV array.

dataset to select only the most effective features and reduce the 
dataset dimensionality. The dataset is then split into training subsets 
with 80% and validation subset with 20% of the whole dataset. 
To combine the prediction of each individual classifier, various 
combination techniques, such as min rule, max rule, product rule, 
mean rule, median rule, and majority vote rule are tested and 
finally the best technique is ascertained. To produce a more 
accurate final result, PSO technique is again employed to assign 
and optimize weights for specific combination techniques, namely 
min rule, max rule, mean rule, and median rule. In the end, 
the finally created model is further evaluated using an test
(unseen) dataset. 

3.1 Initial dataset creation

The initial data samples are collected by defining five specific 
points on the PV array I-V curve under normal and faulty conditions 
in various environmental settings, including different temperature 
and irradiance levels. As illustrated in Figure 4A, the pre-defined 
points are labeled as A-E and are explained below.

• “A” represents a point where IPV = ISC and VPV = 0.

• “B” is a point where VPV = VOC/2 with the corresponding 
current which is known as I (half-VOC) in this study.

• “C” refers to a point where IPV = IMPP and VPV = VMPP.
• “D” is a point where IPV = ISC/2 with the corresponding voltage 

which is known as V (half-ISC) in this study.
• And finally “E” represents a point where VPV = VOC with IPV

= 0.

3.2 Feature extraction process

Feature extraction techniques are usually utilized to provide 
the ML classifiers with more understandable interpretation of 
the initial datasets. In this study, two distance-based feature 
extraction techniques, namely the Manhattan distance (MD), 
and the Chebyshev distance (CD) are employed. Manhattan 
and Chebyshev distances are computationally more efficient than 
Euclidean distances and tend to perform better in high-dimensional 
spaces. The Manhattan distance is more robust to outliers, while 
the Chebyshev distance effectively captures the maximum variations 
across coordinates. The Manhattan distance, sometimes referred to 
as L1 distance or city block distance, is calculated using Equation 2. 
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FIGURE 4
(A) Pre-defined points on a PV array I-V curve to construct the initial dataset (B) Example of Manhattan distance technique in feature extraction process
(C) Example of Chebyshev distance technique in feature extraction process.

It measures the dissimilarity between two data points regarding their 
positional deviation along a graph X and Y axes (Yang, 2019).

Manhattandistance = |x2 − x1| + |y2 − y1| (2)

where the pairs (x1, y1) and (x2, y2) represent the respective 
coordinates of the two points. As shown in Figure 4B, the Manhattan 
distance between the points B and D can be calculated as BDManhattan
= BF + FD. Besides, the Chebyshev distance, also known as the L ∞
or chessboard distance, quantifies the maximum difference between 
the corresponding features of two data points using Equation 3. It 
measures the dissimilarity between two data points on any axis in a 
graph (Coghetto, 2016).

Chebyshevdistance =max(|x2 − x1|, |y2 − y1|) (3)

where the pairs (x1, y1) and (x2, y2) represent the respective 
coordinates of the two points. As shown in Figure 4C, the Chebyshev 
distance between the points A and D can be calculated as 
ADChebyshev = max (AF, FD) = FD. Finally, all extracted features 
are listed in Table 2.

3.3 Data normalization

During data pre-processing, it is essential to normalize data 
attributes to maintain their intrinsic nature. This process aims 
to improve feature type consistency and minimize redundancy 
within the dataset. In this study, Z-score normalization technique 
is utilized in which features are distributed as X ∼ N (μ = 0, σ2 = 1) 
centered at a mean of 0 and a variance (σ2), thus standard deviation 
(σ) of 1. This approach is preferred to ensure that the feature 
columns follow a standard normal distribution. The mathematical 
representation of Z-score normalization process can be seen
in Equation 4.

x(normalized) =
x− μ(X)

σ(X)
(4)

In Equation 4, X = {x1, …, xn} represents the feature vector 
including n samples, and x denotes a single sample in X. 
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TABLE 2  Extracted features from PV array I-V characteristic curves.

MD-based features CD-based features

f1 = |‐
Voc

2
| + |Isc‐Ivoc/2| f11 = max((‐ Voc

2
), (Isc‐Ivoc/2))

f2 = |‐Vmpp| + |Isc‐Impp| f12 = max ((‐Vmpp), (Isc‐Impp))

f3 = |‐Visc/2| + |Isc‐Isc/2| f13 = max ((‐ Visc
2
), (Isc‐Isc/2))

f4 = |‐Voc| + |Isc| f14 = max ((‐Voc), (Isc))

f5 = |
Voc

2
‐Vmpp| + | Ivoc

2
‐Impp| f15 = max (( Voc

2
‐Vmpp),( Ivoc

2
‐Impp))

f6 = |
Voc

2
‐Visc/2| + | Ivoc

2
‐Isc/2| f16 = max (( Voc

2
‐ Visc

2
),( Ivoc

2
‐Isc/2))

f7 = |
Voc

2
‐Voc| + | Ivoc

2
| f17 = max (( Voc

2
‐Voc), (Ivoc/2))

f8 = |Vmpp‐Visc/2| + |Impp‐Isc/2| f18 = max ((Vmpp‐ Visc
2
), (Impp‐Isc/2))

f9 = |Vmpp‐Voc| + |Impp| f19 = max ((Vmpp‐Voc), (Impp))

f10 = |
Visc

2
‐Voc| + |Isc/2| f20 = max (( Visc

2
‐Voc), (Isc/2))

3.4 Fuzzy logic (FL) system

3.4.1 Fuzzification
The use of fuzzy logic (FL) in decision-making is particularly 

effective in uncertain and ambiguous situations, as it can produce 
more accurate results. This is accomplished by assigning degrees 
of membership between 0 and 1 to elements, indicating their 
membership in a particular set, through the creation of membership 
functions (MFs) (Rios et al., 2021). Several kinds of MFs can 
be used in FL systems, such as triangular, sigmoid, trapezoidal, 
gaussian, etc. (see Figure 5A).

In this study, trapezoidal MFs are utilized to examine four fuzzy 
variables: training mean accuracy, standard deviation, F1-score, and 
output as the output result of the aggregation of three other variables. 
Additionally, the range of values for each variable is established using 
arrays with a certain step size. The impact of input on output in 
FL is primarily determined by MFs, with the trapezoidal function 
being widely used due to its ability to transform complex inputs 
into a fuzzy form using two slope change points, thus increasing 
the membership range compared to more straightforward functions. 
Moreover, the dual points of slope alteration in the trapezoidal 
membership function allow for precise parameter configurations, 
enabling the desired input influence on output adjustment. For 
this problem, the trapezoidal membership function is defined and 
utilized as Equation 5.

u(x;a,b,c,d) =

{{{{{{{{{{{
{{{{{{{{{{{
{

0 x ≤ a
x− a
b− a

a ≤ x ≤ b

1
d− x
d− c
0

b ≤ x ≤ c

c ≤ x ≤ d

x ≥ d

(5)

where u(x) is the normalized data, x is the data extracted from the 
datasets and a, b, c and d are the values referring to the data on x-axis 
belonging to highest and lowest pertinence degree. 

3.4.2 Inference system
After fuzzification, the values of the pertinence degree generated 

in each input variable are passed to the set of fuzzy rules which must 
cover all possible situations of the behavior of the fuzzy system. The 
number of rules are mathematically calculated as Equation 6.

Nrules = nm (6)

where n is the number of categorical values and m shows the 
number of input variables. In all of the rules, the Mamdani 
inference model (Mamdani and Assilian, 1999) is applied, in which 
the logical operator ‘‘AND’’ is used over the antecedents of each 
rule, being the lowest value chosen as a consequence among the 
values of the pertinence degree of the triggered rule. To this end, 
fuzzy numbers are utilized to assess the membership degree of each 
input variable, and a series of rules are created to combine the 
mentioned degrees. These rules include a certain number of unique 
combinations of the three input variables membership degrees, and 
the activation degree for each rule is determined by taking the 
minimum membership degree of the input variables. Finally, the 
activation degree for each possible value of the output is calculated 
by considering the minimum activation degree for all rules linked to 
that value. The activation levels obtained are then aggregated across 
the entire spectrum of output values. A designated function is used 
to calculate the highest activation level of the non-fuzzified outcome 
and the degree of membership of the fuzzified output value.

As stated, the firing level for each rule is determined using the 
min operator shown in Equation 7. If the AND operator appears in 
the antecedents part, the minimum fuzzified value will be selected 
(see Figure 5B). As shown in Figure 5B, Rule 2 is not activated 
because the input value a has zero membership degree for the 
linguistic value A2, which has the minimum fuzzified value based 
on the AND operator.

uA∩B…N(x) =min[uA(x),uB(x),…,uN(x)] (7)

where A, B, …, N are fuzzy sets with membership functions uA(x), 
uB(x), …, uN(x) respectively.

In this study, this methodology employs the training mean 
accuracy, standard deviation, and F1-score as input variables, along 
with an output variable that represents the score achieved by each 
classifier, adhering to predetermined standards to assess efficacy and 
determine scores. 

3.4.3 Defuzzification
At the end, the defuzzification module starts after all the rules 

were triggered by the inference module. In order to transform 
the values of the pertinence degree, selected as consequent by the 
inference module, into an accurate output of numerical values, it is 
necessary to defuzzify them. For this, the mean of maxima (MoM) 
method is used, because it is one of the most used in fuzzy expert 
systems. In this method, the defuzzified value is taken as the element 
with the highest membership values. When there are more than 
one element having maximum membership values, the mean value 
of the maxima is taken. The MoM (X∗) is given by Equation 8 
(Mondal et al., 2017):

X∗ = [∑
i
ui(x) ×max{yi}] × [∑i

ui(x)]
−1 (8)

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1675953
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Ghaedi et al. 10.3389/fenrg.2025.1675953

FIGURE 5
(A) Several fuzzy logic membership functions: triangular, sigmoid, trapezoidal, and gaussian (B) Evaluation of rules in the process of inferencing (C)
Aggregation of rules and defuzzification of final shape.
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FIGURE 6
Scores in m different states of permutation.

where ui(x) represents the membership function value of the fuzzy 
set at point x, yi represents the value of the universe of discourse 
corresponding to the membership function ui(x) and max{yi} 
represents the maximum value among the values of the universe 
of discourse that correspond to the maximum membership values 
of the fuzzy set. In this way, based on the generated results, the 
system can give a score to each of the classifiers, and the higher score 
indicates that the classifier is superior to the others. Figure 5C shows 
the calculated MoM of the final output fuzzy set for the previous 
example problem. 

3.5 Optimal number selection

Using FL, scores are assigned to each individual classifier in 
the group of classifiers. Low-scoring classifiers are eliminated, and 
higher-scoring ones are selected to improve the results. However, 
determining the optimal number of selected classifiers for maximum 
effectiveness is complex. Mathematical modeling and optimization 
techniques can address this issue. According to Equation 9, a 
mathematical model is created based on statistical metrics, including 
the training mean accuracy and standard deviation acquired 
from cross-validation (CV) technique. The objective function and 
constraints are crucial to the model and depend on the desired 
outcomes of the classification task.

objective function =max(∑
i=1
(xi × trainingmeanaccuracyi)

−β(1500×∑
i=1
(xi × stdi_(normalized))))subject to:∑

i=1
xi = n (xi ∈ {0.1}) (9)

Equation 9 is developed to address the challenge of maximizing 
training mean accuracy while minimizing standard deviation 
simultaneously. The proposed method involves a composite function 
that combines the training mean accuracy and the negative standard 
deviation with a weightage factor β that allows to adjust the 
balance between precision and variability based on the objectives and 
preferences. The decision variables in this model are binary variables 
xi, where n is the number of classifiers selected from a set of N available 

classifiers. These variables take the value of 1 if the classifier is selected 
and 0, otherwise. The model constraints ensure that exactly n classifiers 
are selected, and each binary variable takes on one of two possible 
values (i.e., 0 or 1). The trainingmeanaccuracyi and stdi_(normalized) of 
the selected classifiers represent the variables, with efforts to align the 
standard deviation with the accuracy scale through standardization. 
In the subsequent analysis, a coefficient of 1500 which is calculated 
according to the trial-and-error technique is employed to amplify the 
standard deviation impact on the objective function. Equation 9 is 
finally addressed using the PSO technique. 

3.6 Feature selection process

Feature selection techniques are utilized to select a relevant 
subset of features from a dataset. They offer two primary benefits, 
which include enhancing the performance of classification problems 
and simplifying model interpretation by discarding irrelevant 
features. In this study, the permutation method is utilized to perform 
a feature selection to identify the most important features which can 
affect the accuracy of the final model.

The permutation method which is basically grounded in 
mathematical permutation (see Equation 10) severs the connection 
between the input (feature) and the target (class) and haphazardly 
rearranges the values for a pre-determined number of iterations.

P(
n

r
) = n!
(n− r)!

(r ≤ n) (10)

In Equation 10, n shows the total number of samples in a 
feature and r is a subset of n samples. In the process of feature 
selection in this study, n = r, meaning that all samples (values) of 
a specific feature take part in permutation process and thus no value 
is excluded from the feature vector. Therefore, Equation 10 can be 
simplified as Equation 11.

P(
n

n
) = n! (11)
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TABLE 3  Typical 2 × 2 confusion matrix.

Actual Predicted

Positive samples Negative samples

Positive Samples TP FN

Negative Samples FP TN

Therefore, according to Equation 11, a feature can present n!
different states when all values are considered in the permutation 
process (Let n! = m). The model is then trained using the dataset 
which includes one permuted (shuffled) feature and yields a specific 
score (e.g., accuracy) after each state (see Figure 6). In Figure 6, V i
(i = 1, …, n) are different values of n samples of a specific feature.

The final permutation score can be calculated as Equation 12 in 
which k is a hyperparameter and denotes the number of permutation 
subsets which are randomly selected (i.e., k subsets of m total 
possible subsets).

model scorepermutation =
1
k
∑k

i=1
(model score)i (k ≤m) (12)

As shown in Equation 13, the final permutation score shows 
a deviation with the model actual score (i.e., before permutation). 
Therefore, the more “model score deviation”, the more importance 
in the specific feature which shows that the target is more dependent 
on that specific feature.

model scoredeviation =model scoreactual −model scorepermutation
(13)

In practice, permutation importance was implemented using 
the scikit-learn library. For each feature, the values were randomly 
shuffled while keeping the other features fixed, the model was 
re-trained, and the accuracy drop was recorded. This procedure 
was repeated 20 times for each feature, and the average score was 
reported as the final importance measure.

Finally, to determine the optimal input (feature) space, a dataset 
including only the first important feature enters the model and the 
score of the model is obtained. This proceeds as the next important 
inputs are added during the next stages and the score of the model 
is calculated at the end of each stage. Finally, the best input (feature) 
space is selected based on model scores. 

3.7 Weight optimization

To provide more accurate final results, the process of combining 
the output predictions of multiple classifiers can be accompanied by 
assigning weights to each individual classifier. However, achieving 
the optimal set of weights can be a complex optimization problem, 
mainly when dealing with many classifiers. This is due to the high-
dimensional and non-linear nature of the weight space, which 
may require unconventional optimization methods to reach the 
global optimum.

Among various optimization algorithms, PSO is selected for its 
strong global search capability, rapid convergence, and flexibility in 
tackling complex, high-dimensional optimization problems. Unlike 

gradient-based methods, PSO uses a population-based stochastic 
approach that allows it to explore the solution space effectively, 
making it ideal for non-differentiable and multimodal functions. 
Its computational efficiency and ability to balance exploration and 
exploitation contribute to its competitive performance, even in 
the face of advanced optimization techniques. In PSO, a swarm 
of particles navigates through the search space, working together 
to identify the optimal solution by updating their positions and 
velocities based on their previous and the swarm global best 
performance. Equations 14, 15 express the current position and 
velocity of particle i in the context of PSO.

xi = xi1,xi2,…,xiD (14)

vi = vi1,vi2,…,viD (15)

where D is the dimension of the principal search space.
The determination of the particle i velocity and position is 

achieved through Equations 16, 17 for calculation purposes.

vt+1
id = [w× vt

id] + [c1 × r1i × (pid − xt
id)] + [c2 × r2i × (pgd − xt

id)]
(16)

xt+1
id = xt

id + vt+1
id (17)

Which involves the use of various parameters such as inertia 
weight (w), acceleration constants (c1 and c2), and random values 
(r1i and r2i) uniformly distributed in [0, 1]. The variables denoted by t
and d represent the tth iteration and the dth dimension, respectively. 
Additionally, the elements of p-best and g-best in the dth dimension 
are represented by pid and pgd. Each particle position and velocity 
values are updated continuously to locate the optimal set until a 
stopping criterion is met, which may include a maximum number 
of iterations or a satisfactory fitness value.

In this study, the particles in the swarm correspond to possible 
weight assignments, and their movements reflect the search for 
an optimal set of weights. By using PSO to optimize the weights, 
the high-dimensional space of possible weight assignments can be 
efficiently explored and quickly converged to an optimal set of 
weights that minimizes the overall error rate. Equation 18 has been 
formulated to fulfill the aforementioned requirements.

objective function

=max (
n

∑
i=1

validation accuracyi ×weighti)Subject to

:
n

∑
i=1

weighti = 1 (18)

In Equation 18, the weight variable of interest is multiplied by 
the validation accuracy of each classifier, leading them to attain their 
respective maximum values. This approach aims to optimize the 
algorithmic performance and achieve the desired outcomes. 

3.8 Combination techniques

To obtain a single final prediction, the output predictions 
produced by classifiers must be combined. In order to combine 
the output predictions of each classifier, various probability-based 
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FIGURE 7
(A) Experimental 3 × 6 PV array (B) DC-DC boost converter and other equipment (C) Data collection station to elicit the PV array I-V curves.

TABLE 4  PV system specifications.

Component Parameter Value

Yingli YL010D-18b
PV modules

ISC 0.61 A

VOC 22.5 V

IMPP 0.56 A

VMPP 18 V

PMPP 10 W

DC-DC boost converter

Inductor 2 mH

Capacitor 390 μF, 400 V

Switching frequency 40 kHz

techniques exist in literature and can be utilized. The combination 
task involves assigning sample z to one of m possible classes (C1, 
C2, …, Cm). Assuming n classifiers are available, each representing 
z by a distinct predicted class. The predicted class by the ith classifier 
is denoted by xi. Each class Ck is modeled by the probability 
density function (PDF) P (xi|Ck), with P(Ck) indicating the prior 
probability of its occurrence. Based on Bayesian theory, given all 
the predicted classes xi, z should be allocated to Cj if and only if 
the posterior probability, P(Ck|xi) is maximum. Equation 19, which 
refers to Bayesian decision-making theory, shows that in order to 
achieve an accurate decision based on all available information, it 
is imperative to meticulously compute the probabilities of various 
classes by simultaneously considering all predicted classes.

assign z→ Cj i f P(Cj|xi) =max
k

P(Ck|xi) (19)
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TABLE 5  Detailed number of data samples.

Condition Label Training samples Testing samples

Normal (no-fault) N 433 60

Open circuit fault OC 433 60

Line-to-line fault (one-module mismatch) LL1 114 24

Line-to-line fault (two-module mismatch) LL2 114 24

Line-to-line fault (more-that-two-module mismatch) LL3 342 72

Array degradation fault Adeg 582 48

String degradation fault Sdeg 582 48

Total samples 2600 336

Bold values indicate the highest summary totals.

FIGURE 8
The evaluation metrics and standard deviation of each individual classifier.

Based on Equation 19, six popular existing combination 
techniques can be briefly summarized as follows, and the 
formulation is provided in Equations 20–25. 

1. The product rule:

P−(n−1)(Cj)
n

∏
i=1

P(Cj|xi) = max
1≤k≤m

P−(n−1)(Ck)
n

∏
i=1

P(Ck|xi) (20)

2. The max rule:

max
1≤i≤n

P(Cj|xi) = max
1≤k≤m
 max

1≤i≤n
P(Ck|xi) (21)

3. The min rule:

min
1≤i≤n

P(Cj|xi) = max
1≤k≤m

min
1≤i≤n

P(Ck|xi) (22)

4. The mean rule:

mean
1≤i≤n

P(Cj|xi) = max
1≤k≤m
 mean

1≤i≤n
P(Ck|xi) (23)

5. The median rule:

median
1≤i≤n

P(Cj|xi) = max
1≤k≤m
 median

1≤i≤n
P(Ck|xi) (24)

6. The majority vote rule:

n

∑
i=1
Δji = max

1≤k≤m

n

∑
i=1
Δki (25)

where Δji denotes the ith classifier choice for class j.
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FIGURE 9
(A) Membership functions for training mean accuracy, standard deviation, F1-score and the output (B) MoM-based defuzzification of final shape in 
each classifier.

3.9 Evaluation metrics

The performance of the proposed model is evaluated using 
various popular evaluation metrics. Firstly, to ensure a reliable model 
and avoid overfitting during the training process, the k-fold cross-
validation (CV) method is employed to measure the mean accuracy 
of each individual classifier. Secondly, the confusion matrix, shown 
in Table 3 is utilized and a comprehensive report of the final 
model performance is provided through the “accuracy”, “precision”, 
“recall”, and “F1-score” metrics which are calculated according to 
Equations 26–29.

Accuracy = TP+TN
TP+TN+ FN+ FP

(26)

Precision = TP
TP+ FP

(27)

Recall = TP
TP+ FN

(28)

F1‐score =
2× (Precision×Recall)

Precision+Recall
(29)

The initiations used in Equations 26–29 can be explained as 
follows:

• TP: The number of positive samples correctly classified by the 
model.

• FP: The number of negative samples incorrectly classified as 
positive by the model.
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TABLE 6  Set of base rules of the inference module.

Rule If Output

Training mean accuracy Standard deviation F1-score

Low Medium High Low Medium High Low Medium High

1 X X X Low

2 X X X Low

3 X X X Low

4 X X X Low

5 X X X Low

6 X X X Low

7 X X X Low

8 X X X Low

9 X X X Low

10 X X X Medium

11 X X X Medium

12 X X X Medium

13 X X X Medium

14 X X X Medium

15 X X X Medium

16 X X X Medium

17 X X X Medium

18 X X X Medium

19 X X X High

20 X X X High

21 X X X High

22 X X X High

23 X X X High

24 X X X High

25 X X X High

26 X X X High

27 X X X High
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FIGURE 10
Results of PSO algorithm in obtaining the best combination of classifiers in fault detection (A) Particle Swarm Optimization Results (B) Determining 
parameter beta (β) with respect to global best fitness.

• FN: The number of positive samples incorrectly classified as 
negative by the model.

• TN: The number of negative samples correctly classified by the 
model.

4 Model implemention, results, and 
discussion

4.1 PV array setup

To evaluate the proposed model, a stand-alone experimental 
PV system including a 3 × 6 PV array (three parallel strings each 
containing six Yingli YL010D-18 b PV modules in series) has been 
designed along with a DC-DC boost converter which are depicted 
in Figure 7. The PV modules used in the setup are rated at 10 W 
with Voc = 22.5 V, Isc = 0.61 A, VMPP = 18 V, and IMPP = 0.56 A. 
The detailed specifications of the PV modules and the DC-DC boost 
converter are summarized in Table 4.

4.2 Data acquisition process

The initial data samples in this study are acquired using five 
predefined points on the PV array I-V curves under various 

environmental (irradiance and temperature) and anomalous 
(normal or faulty) conditions. To elicit the PV array I-V curves, 
an I-V curve tracer is developed according to Figure 7C which 
includes current and voltage sensors, a DC/DC converter, an 
ARM microcontroller for controlling the switch, and a gate 
driver circuit. Figure 7C depicts that the duty cycle is regulated 
by the ARM microcontroller to extract the features from the I-V 
curve. The STM32f103C8T6 ARM is also used for I-V curve testing 
algorithm. When testing, voltage and current values are read by 
the controller. The magnitude of the controller signal is 3.3 V, but 
the switch requires a minimum of 15 V to remain on. Hence, a 
gate driver is used to supply the MOSFET necessary voltage. Two 
voltage regulators power the controller and output circuits of the 
driver. One produces 3.3 V for the ARM microcontroller, while 
at the same time, the other generates a 15 V controllable voltage 
for the gate driver. This tracking algorithm is straightforward 
in which the PV array initially supplies a low-resistive load to 
produce a high current level, with a low-duty cycle (approximately 
10%). In this case, the PV array yields a low amount of current 
which is almost equal to the PV array short circuit current. This 
process is repeated with incremental rises in the duty cycle until 
it reaches a specific range (over 80%). Finally, the OC voltage is 
determined by measuring the PV array output voltage in an open 
circuit state.
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TABLE 7  Parameters and values used in PSO algorithm in optimization.

Step Parameters

Step1: The first PSO (Classifier selection) Population size = 30
Max iteration = 100

W = 0.729
C1 = 1.49
C2 = 1.49

Step2: The second PSO (Classifier weights) Population size = 4
Max iteration = 100

W = 0.9
C1 = 0.5
C2 = 0.3

FIGURE 11
The importance of features in permutation method: (A) scoring features based on their importance in mean rule technique, and (B) scoring features 
based on their importance in majority vote rule, product rule, max rule, min rule, and median rule techniques.

During the experimental data collection process, 2936 samples 
are collected under different conditions, such as no-fault conditions, 
open circuit faults, line-to-line faults, and degradation faults. 
The initial dataset includes 2600 training samples and 336 
samples for testing the final model which is further detailed
in Table 5.

Once the initial dataset is collected, various features are 
extracted according to Table 2 and the data samples are normalized 
using Z-score normalization technique based on Equation 4.

4.3 Experimental results

During the initial stage, each classifier is assessed individually, 
using the training mean accuracies, standard deviations, and F1-
scores as determinants for selecting the initial classifiers by entering 
the FL process. Figure 8 shows the training mean accuracies and F1-
scores as well as standard deviations (highlighted in boxes) produced 
by ten machine learning classifiers when they are trained using 
the whole normalized dataset.
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FIGURE 12
Training and validation accuracies during the permutation feature selection process based on six different rules (A) Product rule (B) Max rule (C)
Min rule (D) Median rule (E) Mean rule (F) Majority voting rule.

4.3.1 Fuzzification
After completing the initial step, the fuzzy system is set 

up with three linguistic terms; “low,” “medium,” and “high”, for 
each input variable: training mean accuracy, standard deviation,
and F1-score. It is certainly worth mentioning that the linguistic 
terms are set based on the variable acceptability in the final model 
creation. Therefore, for instance, a “low” in training mean accuracy 
and F1-score denotes a low real value in these variables which 
is not acceptable. However, a “low” in standard deviation shows 

a high real value in this variable which is also unacceptable. 
1n addition, a variable named “output” is also defined as the 
output result to determine whether the aggregation of three other 
variables will be either “low”, “medium”, or “high”. In this study, 
trapezoidal membership function is selected to standardize the data 
values for all components (see Figure 9A). The range of values 
for each variable is determined based on the values of evaluated 
variables (training mean accuracy, standard deviation, F1-score,
and output).

Frontiers in Energy Research 19 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1675953
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Ghaedi et al. 10.3389/fenrg.2025.1675953

TABLE 8  Results of model development in training and validation processes.

Combination technique Training accuracy Validation accuracy Selected features

Product rule 99.03% 98.65% f18, f8, f20, f6, f19, f7, f5, f1

Max rule 82.83% 99.42% f18, f8, f20, f6, f19

Min rule 98.26% 97.12% f18, f8, f20, f6, f19, f7, f5, f1, f9

Median rule 96.92% 96.73% f18, f8, f20, f6, f19, f7, f5, f1, f9, f11

Majority voting rule 98.41% 98.07% f18, f8, f20, f6, f19, f7, f5, f1, f9, f11, f14, f17, f15

Mean rule 99.51% 99.81% f8, f18, f20, f19, f6, f7, f5, f1, f11, f14, f17

Bold values indicate the highest performance values.

4.3.2 Inferencing
After the fuzzification process, the corresponding degree values 

generated in each input variable are transferred to a set of fuzzy 
rules. The number of rules designed to cover all potential situations 
of fuzzy system behavior according to Equation 6 with n = 3 
categorical values and m = 3 input variables will be 33 = 27 as shown
in Table 6. 

4.3.3 Defuzzification
Following the application of fuzzy logic and subsequent 

fuzzification, each individual classifier is assigned a score between 
0 and 100 according to MoM defuzzification technique and based 
on three metrics: training mean accuracy, standard deviation, and 
F1-score (see Figure 9B). The resulting scores serve as an index of 
classifiers well-suited for the combination. Figure 9B displays the 
classifiers scores based on MoM defuzzification technique. In this 
study, the classifiers with the score of 50 and above are selected for 
the combination which, according to Figure 9B, include LR, SVM 
(linear), SVM (RBF), SVM (poly), RF, and MLP.

In the initial stage of the method, ten classifiers were considered, 
out of which LR, SVM (linear), SVM (RBF), SVM (poly), RF, and 
MLP classifiers progressed to the second stage. These classifiers 
achieved the highest scores in the fuzzy logic filtering process based 
on Equation 5 which forms part of the mathematical model that 
optimizes the best combination of classifiers for the final model. 
After applying the mathematical programming model to the binary 
feature problem, discrete states (0 or 1) are observed in X = [x1, x2, 
x3, x4, x5, x6], in which x1 = LR, x2 = SVM(linear), x3 = SVM(RBF), 
x4 = SVM(poly), x5 = RF, and x6 = MLP (see Figure 10A). The 
PSO algorithm is then applied to the mathematical programming 
model, and the optimal state which yields the maximum value of the 
objective function as [0 1 1 1 0 0], assigning 1 to x2 = SVM(linear), 
x3 = SVM(RBF), and x4 = SVM(poly) thus selecting them as the 
optimal classifiers to create the final model. The parameters for 
PSO algorithm used to select the optimal classifiers are listed and 
explained in Table 7 (Step 1).

It is worth mentioning that based on the parameters outlined in 
Equation 9; Figure 10B demonstrates that the optimal value for β is 
0.5. This outcome is a product of a seamless balance between training 
mean accuracy and standard deviation, essential for achieving the 
objective function optimal state (see Equation 9).

Three SVM classifiers with linear, RBF, and polynomial kernels 
have been selected as the best classifiers to participate in the final 
model. Before combining the output of each classifier to make 
the final model, the weight of each classifier needs to be assigned 
and optimized. This approach prioritizes the classifiers which show 
higher accuracies as they have substantially more impact on the 
final model accuracy. A mathematical programming model has 
been developed for this purpose, and PSO has solved the problem 
of assigning weights to each SVM classifier with linear, RBF, and 
polynomial kernels. The PSO variables are explained in Table 7 
(Step 2). It's important to note that Step 1 requires further 
exploration, which is why it employs a larger population, balanced 
coefficients C1 and C2, and a lower inertia weight. In contrast, 
Step 2 focuses on stability, utilizing a smaller population, reduced 
coefficients C1 and C2, and a higher inertia weight. The most 
optimal weight values for SVM (linear), SVM (RBF), and SVM 
(poly) are 0.35, 0.5, and 0.15, respectively. After training these 
classifiers, it is necessary to perform their validation process during 
each of the techniques (product rule, max rule, min rule, mean 
rule, median rule, and majority vote rule) of the combination. 
These weights are allocated to max, min, mean, and median rule 
techniques.

The permutation feature selection method has been used to 
determine the importance of each feature of 20 extracted feature 
and provides an efficient feature selection process (see Figure 11). 
According to Figure 11, the permutation technique yields different 
importance values for the mean rule combination technique in 
comparison to five other techniques.

Finally, the performance of the model is investigated using 
each combination technique and the selecting the extracted features 
according to their importance value. Figure 12 demonstrates the 
training and validation accuracies produced by the model using 
each combination techniques using a certain number of features, 
from the most to the least important based on Figure 11. As 
shown in Figure 12, the mean rule combination technique has been 
able to produce the highest accuracy during the training process 
(99.51%) using 11 features which are f8, f18, f20, f19, f6, f7, f5, f1, f11, 
f14, f17, in correct order of importance. Using the corresponding 
number of features, the mean rule combination technique has 
also proves to outperform five other combination techniques with 
99.81% of accuracy when the model is validated. In addition, 
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FIGURE 13
Validation accuracies in different combination techniques (A) Product rule (B) Max rule (C) Min rule (D) Mean rule (E) Median rule (F) Majority voting rule.

Table 8 provides a summarized report of training and validation 
accuracies as well as the selected features in correct ranking based on
Figures 11, 12.

Furthermore, Figure 13 presents the validation confusion 
matrices, providing a comprehensive summary of the validation 
results. It clearly shows the final model accuracy during the 
validation process by carefully detailing the number of correct 
and incorrect classifications using different combination techniques. 
Also, Figure 14 provides information on three other evaluation 

metrics which are precision, recall, and f1-score which can be 
extracted from each confusion matrix based on Equations 26–29.

Once the final model (including the mean rule combination 
technique) is selected, the final stage involves using test (unseen) 
experimental data samples to further verify the model performance. 
As demonstrated in Figure 15 which include the detailed confusion 
matrices of using each combination technique, the final model 
(including the mean rule combination technique) shows the best 
performance with 97.02% of accuracy during the testing process.
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FIGURE 14
Class-wise validation metric values in different combination techniques (A) Product rule (B) Max rule (C) Min rule (D) Mean rule (E) Median rule (F)
Majority voting rule.

To provide a more detailed assessment, per-class test 
metrics (precision, recall, and F1-score) have been reported, 
as summarized in Table 9. Furthermore, ablation studies have 
been conducted considering (i) single model vs. ensemble 
settings, (ii) weighted vs. unweighted fusion strategies, and (iii) 
the use of top-k features and feature types. The corresponding 
results are presented in Table 10. These findings clearly indicate 
the benefits of ensemble learning and weighted fusion, as 
well as the impact of feature selection on classification
performance. 

4.4 Comparison and a detailed discussion

In order to confirm the superiority of the proposed fuzzy logic 
and PSO based model, according to Table 11, it is compared to 
several recent studies in the area of PV fault detection. To provide a 
fair comparison, various factors are considered, such as the recency 
of the studies (2023 and 2024), inclusion of modern strategies (e.g., 
deep learning), various comparison aspects (the ability of severity 
assessment, the number of required data samples, the consideration 
of critical conditions for fault detection, and the final experimental 
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FIGURE 15
Test accuracies in different combination techniques (A) Majority voting rule (B) Product rule (C) Max rule (D) Min rule (E) Median rule (F) Mean rule.

accuracies). According to Table 11, the following discussion can be 
presented: 

a. Multiple models in literature, such as Hajji et al., (2023), 
Yahyaoui et al., (2023), Amiri and Kichou, (2024) have 
attempted to provide a high accuracy in detection and 
classification of faults in PV arrays. But, the major disadvantage 
of all the above-mentioned studies is that none of them have 

taken into account the critical fault detection conditions. 
Disregarding the critical fault detection conditions, the process 
of fault detection becomes absolutely easy to proceed. In 
addition, the above-mentioned models are not capable of 
assessing the faults severity to provide a precise instruction 
for protection devices. To wrap up, despite the fact that these 
models might apparently look accurate, they are not reliable to 
be implemented in real world.
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TABLE 9  Results of model development in testing process.

Combination technique Precision Recall F1-score

Majority voting rule P1 = 92.3%
P2 = 94.44%

P3 = 92%
P4 = 100%

P5 = 94.11%
P6 = 67.18%
P7 = 100%

R1 = 100%
R2 = 70.83%
R3 = 95.83%
R4 = 97.22%
R5 = 100%

R6 = 89.58%
R7 = 71.66%

F1 = 96%
F2 = 80.95%
F3 = 93.87%
F4 = 98.59%
F5 = 96.96%
F6 = 76.78%
F7 = 83.49%

Product rule P1 = 95.23%
P2 = 100%
P3 = 90.9%
P4 = 100%
P5 = 92.3%
P6 = 60%

P7 = 95.34%

R1 = 100%
R2 = 45.83%
R3 = 83.33%
R4 = 97.22%
R5 = 100%

R6 = 93.75%
R7 = 68.33%

F1 = 97.56%
F2 = 62.85%
F3 = 86.95%
F4 = 98.59%

F5 = 96%
F6 = 73.17%
F7 = 79.61%

Max rule P1 = 93.75%
P2 = 100%

P3 = 86.36%
P4 = 100%

P5 = 84.21%
P6 = 57.14%
P7 = 94.11%

R1 = 100%
R2 = 54.16%
R3 = 79.16%
R4 = 95.83%
R5 = 100%

R6 = 91.66%
R7 = 53.33%

F1 = 96.77%
F2 = 70.27%
F3 = 82.6%

F4 = 97.87%
F5 = 91.42%
F6 = 70.39%
F7 = 68.08%

Min rule P1 = 92.3%
P2 = 100%

P3 = 95.23%
P4 = 100%

P5 = 92.15%
P6 = 58.9%

P7 = 97.61%

R1 = 100%
R2 = 54.16%
R3 = 83.33%
R4 = 98.61%
R5 = 97.91%
R6 = 89.58%
R7 = 68.33%

F1 = 96%
F2 = 70.27%
F3 = 88.88%
F4 = 99.3%

F5 = 94.44%
F6 = 71.07%
F7 = 80.39%

Median rule P1 = 95.23%
P2 = 100%

P3 = 85.71%
P4 = 100%

P5 = 85.71%
P6 = 55.55%
P7 = 94.44%

R1 = 100%
R2 = 41.66%

R3 = 75%
R4 = 95.83%
R5 = 100%

R6 = 93.75%
R7 = 56.66%

R1 = 100%
R2 = 41.66%

R3 = 75%
R4 = 95.83%
R5 = 100%

R6 = 93.75%
R7 = 56.66%

Mean rule P1 = 97%
P2 = 100%
P3 = 100%
P4 = 100%
P5 = 100%
P6 = 94%
P7 = 92%

R1 = 98%
R2 = 92%

R3 = 100%
R4 = 100%
R5 = 90%
R6 = 96%

R7 = 100%

F1 = 98%
F2 = 96%

F3 = 100%
F4 = 100%
F5 = 95%
F6 = 95%
F7 = 96%

b. Authors in Dhimish and Tyrrell (2023), Amiri and Kichou 
(2024) have positively considered a difficult fault detection 
condition (critical mismatch levels). Also, the above-
mentioned models are capable of assessing the severity of 
faults in PV arrays. However, it seems that since a challenging 
fault detection condition is considered, as a result, the model in 
Dhimish and Tyrrell (2023) is not able to yield high accuracy 
therefore it looks unreliable in practice. Moreover, model in 
Amiri and Kichou (2024) requires a massive training dataset 
to produce a high accuracy.

c. Several disadvantages can also be witnessed in studied such 
as Hajji et al. (2023), Yahyaoui et al. (2023). Although the 
previously mentioned models are producing an apparently 
acceptable accuracy, they need a large number of data samples, 

have not considered the critical conditions in fault detection, 
and are not able assess the severity of faults.

d. The model presented in Kumari and Panigrahi (2024) has 
addressed fault impedance, as another important factor of fault 
detection conditions (added to critical mismatch levels) that 
affects the severity of faults in PV arrays. They have also taken 
considered the severity assessment, and a small dataset for 
model training process. However, the main drawback is its low 
accuracy, especially when trying to classify less severe faults.

e. Finally, the proposed fuzzy logic and PSO based model in 
this study has attempted to overcome all the above mentioned 
challenges. Initially, unlike previous studies in which the ML 
classifier selection process was mostly carried out based on 
a deterministic approach, the proposed model has carefully 
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TABLE 10  Comparison results of ablations in testing process.

Model Ave. Accuracy Ave. Precision Ave. Recall Ave. F1-score

SVM (Kernel: linear) 93.75% 89.5% 95.8% 92.4%

SVM (Kernel: RBF) 92.3% 88% 94.5% 91.0%

SVM (Kernel: poly) 91.58% 90.0% 92.2% 91.1%

Ensemble (unweighted fusion) 95.6% 94.5% 96.5% 95.4%

Ensemble (weighted fusion) 96.2% 95.2% 97% 96.1%

Ensemble (Top-5 Features) 94% 92.5% 94.5% 93.4%

Ensemble (Top-10 Features) 95.6% 95% 96.2% 95.6%

Ensemble (Top-11 Features) 97.02% 97.57% 96.57% 97.14%

Ensemble (Top-15 Features) 96.5% 95.6% 97% 96.3%

Ensemble (Top-20 Features) 96.2% 95.2% 97% 96.1%

Ensemble (feature type: MD) 95% 94.2% 95.3% 94.7%

Ensemble (feature type: CD) 96.5% 96% 96.8% 96.4%

TABLE 11  FL-PSO model comparison with several recent models in literature.

References Utilized 
technique

Critical fault 
detection 
conditions

Severity 
assessment

Training data 
samples

Avg. 
Experimental 

accuracyAccuracy

Yahyaoui et al. (2023) One-class classification 
(Various single 

classifiers)

Neither No 550,000 99.02%

Amiri et al. (2024) CNN + Bi-GRU Mismatch only Yes 43,164 99.73%

Hajji et al. (2023) Various neural networks Neither No 40,000 99.71%

Dhimish and Tyrrell 
(2023)

ANN Mismatch only Yes 4988 93.45%

Kumari and Panigrahi 
(2024)

GA + Weighted kNN Impedance and 
Mismatch

Yes 1970 94.68%

Amiri et al. (2024) Random forest Mismatch only Yes 437,202 99.4%

Proposed model in this 
study

Fuzzy logic + PSO Impedance and 
Mismatch

Yes 2936 98.78%

Bi-GRU: bidirectional gated recurrent unit, CNN: convolutional neural network, GA: genetic algorithm, ANN: artificial neural network.

investigated a vast group of ML classifiers and successfully 
selected the optimal classifiers which increase its reliability 
in fault detection and classification process. In addition, 
optimizing the number of classifiers (PSO), selecting the best 
combination technique (trial-and-error), and assigning the 
optimal weights to finally nominated classifiers (PSO) have 
further improved the final model accuracy and reliability. 
Moreover, according to Table 11, it can be clearly witnessed 

that the proposed model in this study outperforms the other 
recent models in literature since: 
• It has considered the most difficult conditions in the 

process of fault detection and classification (both critical 
mismatch levels and critical impedance values at the same 
time).

• It warrants only a small dataset to be fully trained.
• It produces a high accuracy of experimental testing

Frontiers in Energy Research 25 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1675953
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Ghaedi et al. 10.3389/fenrg.2025.1675953

5 Conclusion

This paper presented a cutting-edge method to detect and classify 
LL, OC, and degradation faults in PV arrays through I-V curve 
measurements. Firstly, initial data samples were collected according to 
five specific points on the PV array I-V curve under various irradiance 
and temperature conditions. Then, twenty features were extracted 
from the initial dataset by utilizing the Manhattan distance (MD) and 
Chebyshev distance (CD) techniques. The model employed various 
individual machine learning classifiers, such as logistic regression (LR), 
Gaussian naïve Bayes (GNB), k-nearest neighbors (kNN), support 
vector machine (SVM), decision tree (DT), random forest (RF), and 
multi-layer perceptron (MLP). A subset of classifiers with better 
performance than others were first nominated by fuzzy logic system. 
Here, fuzzy logic nominated six classifiers LR, RF, MLP, and SVM with 
three different kernels; linear, RBF, and polynomial kernels. Particle 
swarm optimization (PSO) technique were then utilized to determine 
the optimal number of previously nominated classifiers. The optimal 
number of classifiers optimized by PSO was three including SVM 
with three different kernels; linear, RBF, and polynomial kernels. 
To combine the output prediction of each selected classifier, various 
combination rules were tested, such as min rule, max rule, mean rule, 
product rule, majority voting rule, and median rule. PSO technique 
is once again employed to assign optimal weights to each selected 
classifier. In addition, to reduce the dimensionality of the dataset 
and simplifying the training process, permutation feature selection 
technique is used to select the best feature space by determining the 
importance of each feature. The results showed that the mean rule 
technique was selected to conclude the final model using 11 selected 
features according to permutation feature selection technique. The 
final model showed an outstanding performance among all the other 
techniques with 98.78% average accuracy. 
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