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In recent years, the world’s energy needs have increased significantly. In order 
to meet this demand and mitigate the environmental issues brought on by the 
use of conventional power plants, numerous studies were offered to develop 
renewable energy sources (RES) as green energy distributed generators. This 
study uses probability distribution functions to simulate the fluctuating nature 
of RES and load. A novel approach to minimize Power Loss, Total Harmonic 
Distortion, and Cost is proposed which employs Pareto front-based Multi 
Objective Backtracking Search Algorithm (PMBSA) to optimally distribute RES 
and Power Filters in an Unbalanced Distribution System (UDS). The proposed 
approach takes into account load growth and multiple non-linear loads in 
addition to linear loads while optimally allocating RES, Passive power filters 
(PPFs) and Active power filters (APFs) in UDS. The results of simultaneous 
placement of RES and PPFs are compared with simultaneous placement of 
RES and APFs by testing on a 123-bus UDS to demonstrate which combination 
performs better in reducing THD along with other objectives. Automatic Voltage 
Regulators (AVRs) and Shunt Capacitor Banks (SCBs) are also installed in 
UDS in the event of voltage limit violations. Furthermore, results comparison 
is carried out with results obtained using Non-dominated Sorting Genetic 
Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) 
and Weighted Sum technique (WSA) to demonstrate the effectiveness of the 
proposed approach employing PMBSA in improving UDS performance.

KEYWORDS

renewable energy sources, total power loss, total cost, total harmonic distortion, load 
growth, passive power filters, active power filters, distributed generators 

 1 Introduction

The substantial rise in electrical energy consumption in recent years has prompted 
distribution system operators to provide the required power through proper network use 
and design. As a result, adding DG units to distribution systems is one of the primary ways 
to supply loads for customers. Utilizing Renewable Energy Sources (RES) like solar and 
wind has been a popular choice among DG technologies because of their environmental 
benefits (El-Khattam and Salama, 2004; Bayod-Rújula, 2009). Optimal allocation of RES 
in DS is indeed a complex mathematical problem because it involves multiple objectives
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optimization subject to bus voltage, feeder capacity, and RES 
penetration constraints, considering the varying nature of loads, 
generation, load growth aspects, and the large scale of DS. Also, there 
are non-linear relations between the system variables, prompting 
a need to use evolutionary algorithms for solving the optimal RES 
allocation problem. Numerous studies are investigating the optimal 
placement of Distributed Generators (DGs) in the Distribution 
System (DS) using techniques such as Pareto-based multi-objectives 
using the Strength Pareto Evolutionary Algorithm (Ramsami 
and Ah King, 2019), PMBSA (Arubolu et al., 2024), MOPSO 
(Ba-swaimi et al., 2025), weighted multi-objective optimization 
using the Exponential Distribution Optimizer (EDO) and White 
Shark Optimizer (WSO) (Nassar et al., 2025), and customized 
GA (Maghami et al., 2025). Multi-objective Ant Lion Optimizer 
(Kalita et al., 2024) and the Multi-objective Moth Swarm Algorithm 
(Sharifi et al., 2021) are recently developed novel algorithms which 
can be used for RES allocation in DS. Due to nonlinear loads and 
inverter-based RES, harmonic problems are becoming increasingly 
common in DS. The harmonics these devices produce distort AC 
voltage and current (Wagner et al., 1993). Harmonic Power Flow 
(HPF) calculation methods are very important for distribution 
system analysis and design since they aid in determining the degree 
of harmonic distortion (Marti et al., 1991). Electric distribution 
systems commonly use power filters to lessen harmonic impacts. 
Power filters compensate for reactive power, raise the system power 
factor, lower harmonics, and decrease power losses (Ko et al., 2009; 
Chou et al., 2000; Chen, 2003). A DS’s performance in the presence 
of harmonics and unbalanced circumstances was demonstrated 
using an additional transient’s program (Manjure and Senior, 2002). 
For each bus in DS with various non-linear loads, the THD of 
voltage is calculated using a decoupled method in (Ulinuha et al., 
2007). A multi-objective harmonic filter placement strategy based 
on weighted sum (Mahlalela et al., 2015) is employed in a balanced 
DS using a genetic algorithm (GA). Small balanced DS were used to 
test the proposed approach, with the loads being taken to be constant 
power loads alone. An overview of the evolution of APF technology 
is provided in (Salam et al., 2006). Additionally, the paper examines 
various reference signal estimate methods, which are essential to 
the APF. The issues of harmonic distortion and how they affect 
electric power quality are briefly discussed. In order to enhance the 
harmonic condition, voltage profile, and reduce network losses of 
DS, a modified Particle Swarm Optimization (PSO) technique is 
described in (Rezapour et al., 2024) for the simultaneous optimal 
allocation of capacitors and APFs. In (Jannesar et al., 2019) a GA and 
Monte Carlo simulation-based approach for optimal probabilistic 
placement and scaling of single-tuned PPFs is introduced. An 
evaluation of the suggested approach was conducted on an Iranian 
383-bus LV unbalanced radial DS. It should be mentioned that since 
the modeling approach in this paper is based on measurement, 
harmonic interactions between nonlinear loads and PV systems 
have not been taken into account; thus, it is worthy to address this 
issue in future studies. In (Karadeniz et al., 2023) Photovoltaic-
based DG units (PVDGUs) and passive harmonic filters are placed 
optimally in an IEEE 33-bus system to maximize hosting capacity 
while minimizing the bus voltages’ RMS variation and overall 
harmonic distortion. In (Lakum and Mahajan, 2021) adaptive grey 
wolf optimization algorithm is used to optimally place PVDGUs and 
APFs in a balanced DS to maximize cost saving. In (Karadeniz et al., 

2023; Lakum and Mahajan, 2021) the authors didn’t consider 
varying nature of PVDGUs and load. Although load demand 
increases in practice, the results of earlier research did not take 
into consideration the growth of load for various types of loads, 
which is a crucial factor to consider when solving RES allocation 
problem. A case study on how to appropriately size and position 
RES in a DS to fulfil constraints and reduce overall system costs 
is given by (HassanzadehFard and Jalilian, 2018). The suggested 
method was tested on a balanced 31-bus DS.

The conclusions drawn from the literature review are 
summed up as.

• Majority of earlier studies optimized RES allocation considering 
linear loads (Arubolu et al., 2024; Biswas et al., 2019; Ramsami 
and Ah King, 2019; Nassar et al., 2025; Maghami et al., 2025; Ba-
swaimi et al., 2025) while only few studies took nonlinear loads 
into consideration (Karadeniz et al., 2023; HassanzadehFard 
and Jalilian, 2018). RES allocation results in THD violation 
due to the harmonic spectrum of inverter-based DG and 
nonlinear loads. Hence, there is a need to place RES and power 
filters simultaneously for reducing THD. In earlier studies, 
while accounting for non-linear nature of loads during UDS 
planning, researchers have concentrated either on optimal 
allocation of power filters (Ko et al., 2009; Chou et al., 2000; 
Mahlalela et al., 2015; Salam et al., 2006; Rezapour et al., 
2024) or optimal allocation of power filters in the presence of 
RES (Jannesar et al., 2019; Lakum and Mahajan, 2021). For a 
dependable and cost-effective system operation, both of them 
must be installed at the same time, albeit this has not yet been 
evaluated for analysis.

• Because of increasing load demand, system planner has 
to account for load growth factor also while solving RES 
allocation problem in URDS with nonlinear loads. There 
is a lack of literature on the simultaneous consideration of 
the load growth factor along with varying nature of both 
generation and load (HassanzadehFard and Jalilian, 2018;
Arubolu et al., 2024).

• Due to load growth and the installation of RES in UDS, some 
buses may encounter voltage limit violations. This specific 
problem had not been addressed in earlier research.

• Numerous studies have been published that use various 
techniques to optimize a single-objective function in order 
to find the ideal size and location of RES (Biswas et al., 
2019) or power filters (Chou et al., 2000; Salam et al., 2006; 
Karadeniz et al., 2023; Lakum and Mahajan, 2021). Some works 
also employed weighted sum based multi-objective strategy 
to improve DS performance (Ramsami and Ah King, 2019; 
Ko et al., 2009; Mahlalela et al., 2015; Nassar et al., 2025; 
Maghami et al., 2025), but this may not result in optimal RES 
allocation because the solution relies on the weights provided 
to the individual objective functions. The Pareto front-based, 
non-dominated sorting algorithms (Arubolu et al., 2024; Ba-
swaimi et al., 2025) may help get better optimal solutions 
since they are independent of weight selection. To tackle the 
simultaneous optimal placement problem of RES and power 
filters; however, no one used the superior pareto-based multi-
objective technique.

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1664533
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Arubolu et al. 10.3389/fenrg.2025.1664533

This work’s primary objectives, which are covered in detail 
below, are to address the issues described above.

• A new approach is proposed that employs PMBSA to determine 
the optimal size and placement of RES and power filters in UDS. 
RES units that rely on inverters create harmonics that negatively 
impact the system’s performance. The harmonic spectrum of 
inverter-based DG units is also taken into consideration along 
with non-linear loads in this work. When allocating RES, 
the varying nature of both generation and load is taken into 
consideration using Probability Distribution Functions (PDFs). 
This study examines load growth for the system’s available loads 
in order to satisfy demand, and it suggests a practical solution 
that expands the size of RES at their original sites.

• The results of optimal RES and passive power filter planning are 
compared to RES and active power filter planning in a DS to 
ascertain which combination improved DS performance better. 
The results are also contrasted with those of the traditional 
MOPSO and NSGA-II.

• During placement of RES and power filters in UDS, due to load 
growth, there could be voltage limit violations (V > 1.05 p.u. and 
V < 0.95 p.u.) problems. This study finds the best place for the 
AVR/SCB to overcome those problems.

There are eight sections further in this study apart from the 
introduction. Section 2 discusses RES modelling, whereas Section 3 
explains power filters design. Section 4 discusses how load growth 
affects the performance of the DS. In Section 5, the problem 
formulation process is explained. The overview of PMBSA and 
its application to the optimal allocation studies are explained in 
Section 6. The PMBSA, NSGA-II and WSA results are discussed in 
Section 7, and the conclusion is given in Section 8.

2 Resource analysis for renewable 
energy

RES in this study includes wind and photovoltaic. Generation 
sources and loads need to be precisely described in order for RES to 
be designed and distributed in UDS efficiently. Probabilistic models 
are used in this work for the design of RES. This section provides a 
basic understanding of the modelling of the RES system. 

2.1 Solar energy PV system modelling

The Weibull PDF is employed to characterize the stochastic 
behaviour of solar irradiance because, unlike other PDFs, it matched 
the irradiance data at the chosen location satisfactorily. For each time 
period ‘t,’ the Weibull distribution for solar irradiance SIrrt (W/m2) 
is provided by Equation 1.

f ( SIrrt) =
KSt

CSt (
SIrrt

CSt )
KSt−1
.exp(−(

SIrrt

CSt )
KSt

) for KSt > 0; CSt > 1 (1)

By splitting the continuous PDF into several states, the solar PV 
output power in each time segment is calculated. For a particular 

time interval “t” or hour, the average output power of the solar PV 
array (Patibandla et al., 2021) is provided by Equation 2.

Ppvo(t) =
NPV

∑
n=1

Ppvon ∗ Ps(SIrrt
n) (2)

The likelihood of solar irradiance for a specific nth condition 
throughout any given period of time is provided by Equation 3.

Ps(SIrrt
n) =

{{{{{{{{
{{{{{{{{
{

∫
(SIrrt

n+SIrrt
n+1)/2

0
f ( SIrrt)ds  for n = 1

∫
(SIrrt

n+SIrrt
n+1)/2

(SIrrt
n−1+SIrrt

n)/2
f ( SIrrt)ds  for n = 2,3,…., (NPV− 1)

∫
∞

(SIrrt
n−1+SIrrt

n)/2
f ( SIrrt)ds  for n = NPV

(3)

2.2 System modeling for wind power

The random behaviour of wind speed over a certain time period 
is represented by the Weibull PDF since it offers a good fit for the 
wind speed distribution. Wind speed wtbs (m/s) in any time ‘t’ has a 
Weibull PDF given by Equation 4.

f (wtbst) =
KSt

CSt (
wtbst

CSt )
KSt−1

exp (−(
wtbst

CSt )
KSt

) for KSt > 0; CSt > 1

(4)

Wind turbines’ (WT) average power output over a specified time 
period ‘t’ is given by Equation 5 (Patibandla et al., 2021).

Pwto(t) =
NWI

∑
n=1

Pwton ∗ Pws(wtbst
n) (5)

For every given time frame “t” or hour, the likelihood of the wind 
speed is provided by Equation 6.

Pws(wtbst
n) =

{{{{{{{{
{{{{{{{{
{

∫
(wtbst

n+wtbst
n+1)/2

0
f (wtbst)ds  for n = 1

∫
(wtbst

n+wtbst
n+1)/2

(wtbst
n−1+wtbst

n)/2
f (wtbst)ds  for n = 2,3,…., (NWI− 1)

∫
∞

(wtbst
n−1+wtbst

n)/2
f (wtbst)ds  for n = NWI

(6)

2.3 Load modeling

A normal probability distribution function is used to describe 
the random behaviour of the load. Equation 7 provides the PDF for 
load demand for any period ‘t’.

f(z|μ,σ2) = 1
√2πσ2
(−
(z− μ)2

2σ2 ) (7)

For a time segment “t,” the hourly average load demand is 
provided by Equation 8 (Patibandla et al., 2021)

Pldh(t) =
Nlds

∑
n=1

Pldhn ∗ Pld(lddt
n) (8)
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FIGURE 1
PMBSA application flow chart.
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TABLE 1  IEEE 123-bus performance without RES, with RES, and RES with load growth.

Case Load growth RES place & 
size, RES 
type (PV, 
Wind)

F1 = TC 
($/hr)

F2 = THD (%) F3 = TPL 
(kW)

Vmax (Bus 
no.)

Vmin (Bus 
no.)

C-I 0th year – 169.28 4.31 55.3103 1.04899 (83) 0.9857 (65)

C-II

0th year 36–385 kW, 
13–1765 kW

123.48 9.00 32.599 1.05149 (83) 0.9872 (65)

1st year 36–385 kW, 
13–1765 kW

136.00 9.17 36.9779 1.05071 (83) 0.9697 (65)

2nd year 36–385 kW, 
13–1765 kW

149.5 9.26 42.1673 1.04923 (83) 0.9501 (65)

3rd year 36–385 kW, 
13–1765 kW

164.10 9.44 48.7883 1.04847 (83) 0.9498 (65)

4th year 36–385 kW, 
13–1765 kW

179.89 9.64 57.2295 1.04631 (83) 0.9374 (65)

4th year 36–385 kW, 
13–1765 kW

196.94 9.90 67.3347 1.04342 (83) 0.9120 (65)

In a given time period “t” the probability of load demand 
is given by Equation 9

Pld(lddt
k) =

{{{{{{{{
{{{{{{{{
{

∫
(lddt

k+lddt
k+1)/2

0
f ( z|μ,σ2)ds  for k = 1

∫
(lddt

k+lddt
k+1)/2

(lddt
k−1+lddt

k)/2
f ( z|μ,σ2)ds  for k = 2,3,…., (Nld− 1)

∫
∞

(lddt
k−1+lddt

k)/2
f ( z|μ,σ2)ds  for k = Nld

(9)

3 Power filters

Power filters are instruments used to remove undesirable 
components from electrical power systems. Power filters are 
categorized into passive power filters and active power filters. 

3.1 Passive power filters

Reactors and capacitors arranged in resonant circuit architecture 
and adjusted to the frequency of the power harmonic order that 
needs to be removed make up a passive filter. When designing a 
passive filter, the following steps are followed. 

Step 1: Use Inverter based DG harmonic spectrum data and 
harmonic spectrum data of nonlinear loads to run HPF and 
identify the most dominant frequency components.

Step 2: Choose the filter type, tuned frequencies of passive filters, 
and the number of frequencies to be attenuated. Determine 
the specifications of passive filter unit and assign a specific 
amount of reactive power that it is supposed to provide 

which is reactive power demand (Qr) of the load. Qr is used 
to find the size of the capacitors. Capacitance’s absolute value 
Ck, is given by

Ck =
Qr

HωV2
s

(10)

The inductance (Lk) and resistance (Rk) of the kth order filter 
with angular frequency ω is computed as follows in order to trap the 
kth harmonic current

Lk =
1

k2ω2Ck
 &Rk =

kωLk

Q fk
(11)

Where, H is number of dominant harmonic frequencies to be 
attenuated, the quality factor (Q fk) of the kth order filter inductor is 
in the range of 10 < Q fk < 100. 

Step 3: If the passive filter units’ resonant frequencies are close to the 
present harmonic frequencies generated by the non-linear 
load, adjust the tuned frequency and adjust the parameters 
using Equations 10, 11. This prevents the supply system and 
passive filter from resonating in parallel.

Step 4: After installing the filters, run the HPF to determine the 
harmonic distortion of the bus voltages.

3.2 Active power filters

The basic idea behind APF is to use power electronics 
technologies to produce specific current components that cancel out 
the harmonic currents caused by the nonlinear load. Using sensors, 
the APF detects harmonic distortion in the power system. The APF 
generates a compensating current that is equal in size and opposite 
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TABLE 2  IEEE 123-bus system’s optimal RES allocation for S-I, S-II and S-III under load growth.

Scenario Load growth RES place & size, RES type (PV, Wind) F1 = TC ($/hr) F2 = THD (%) F3 = TPL (kW)

S-I

0th year 36–385 kW, 13–1765 kW 123.48 9.00 32.599

1st year 36–885 kW, 13–1355 kW 140.12 8.01 38.3564

2nd year 36–715 kW, 13–2010 kW 140.45 9.95 41.9239

3rd year 36–1125 kW, 13–1860 kW 154.17 9.73 49.337

4th year 36–940 kW, 13–2005 kW 168.41 10.32 54.9869

5th year 36–1020 kW, 13–2295 kW 177.86 11.33 62.6532

S-II

0th year 36–385 kW, 13–1765 kW 123.48 9.00 32.599

1st year 36–385 kW, 13–1765 kW
36–105 kW, 13–30 kW

134.21 9.26 36.8688

2nd year 36–385 kW, 13–1765 kW
36–150 kW, 13–240 kW

142.44 9.93 41.5703

3rd year 36–385 kW, 13–1765 kW
36–190 kW, 13–390 kW

153.13 10.51 47.1876

4th year 36–385 kW, 13–1765 kW
36–345 kW, 13–550 kW

163.54 11.15 54.1006

5th year 36–385 kW, 13–1765 kW
36–290 kW, 13–825 kW

174.75 12.09 61.6498

S-III

0th year 36–385 kW, 13–1765 kW 123.48 9.00 32.599

1st year 36–385 kW, 13–1765 kW
41–75 kW, 92–300 kW

128.42 9.17 36.9779

2nd year 36–385 kW, 13–1765 kW
49–135 kW, 88–385 kW

139.23 9.60 40.4622

3rd year 36–385 kW, 13–1765 kW
15–180 kW, 73–650 kW

147.36 9.26 47.2952

4th year 36–385 kW, 13–1765 kW
10–200 kW, 71–700 kW

161.92 9.64 57.2295

5th year 36–385 kW, 13–1765 kW
1–315 kW, 50–975 kW

170.82 12.36 58.5577

in phase to the harmonic distortion. APF injects a compensating 
current into the power system, removing harmonic distortion and 
creating a sinusoidal, clean waveform (Rezapour et al., 2024). Use 
Inverter based DG harmonic spectrum data and harmonic spectrum 
data of nonlinear loads to run HPF to find RMS value of current to 
be injected by APF’s. Using the Equation 12, the RMS value of an 
APF’s injection current is determined:

IRMS
n = √ ∑

k=3,5,. . . h
(Ik2

r,n + Ik2

j,n) (12)

4 Distribution system effects of 
growing loads

Distribution systems naturally experience load growth, but 
planning engineers face a great deal of difficulty in making the 
system adapt to load growth without affecting service quality. 
Installing a new substation or increasing the capacity of an existing 
substation will boost the DS capacity to handle the yearly increases in 
demand. Although it is very costly to install a new substation, adding 
RES units closer to the heavy load areas can increase the capacity 
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FIGURE 2
(a) Plot of dominant voltage harmonics with respect to fundamental in 
the IEEE 123-bus system at bus 40 without Power filters in base year.
(b) Plot of dominant voltage harmonics with respect to fundamental in 
the IEEE 123-bus system at bus 40 with PPF in base year. (c) Plot of 
dominant voltage harmonics with respect to fundamental in the IEEE 
123 bus system at bus 40 with APF in base year.

of the current substation. Using the Equation 13, the effect of the 
annual increase on the system’s reactive power (Qld(k)\) and active 
power (Pld(k)\) loads is assessed (Das, 2004).

Pld(k) = Pld(0)(1+ gw)k & Qld(k) = Qld(0)(1+ gw)k (13)

Initially connected load (Pld(0)\&Qld(0)\) and yearly load 
increase rate ( gw) are used to express load in kth year. For a given 
DS, gw is usually determined using statistical data. In this instance, 
gw is taken as 7.5% (Das, 2004). 

5 Problem formulation

As daily electricity use increases and also the usage of nonlinear 
loads is increasing, existing DS are unable to meet the demand while 
satisfying THD constraints. Power filters need to be used to reduce 
distortion due to nonlinear loads and deployment of RES is needed 
to meet the demand. This study optimizes the integration of RES and 
power filters into UDS to reduce power loss, THD, and cost. 

5.1 Total real power loss (TPL)

One goal of adding RES to the grid is to decrease the overall 
power loss. Power loss (TPL) includes losses due to fundamental 
current and harmonic currents (Mahlalela et al., 2015; Satish et al., 
2021). The TPL mathematical formula is given by Equation 14.

TPL =
Nbno

∑
bno=1
[Plabc]

1
bno+

hmax

∑
h=h0

Nbno

∑
bno=1
[Plabc]

h
bno (14)

 

5.2 Total harmonic distortion (THD)

THD measures the extent to which a voltage or current 
waveform deviates from its ideal sinusoidal shape. THD measures 
the unwanted harmonics that are present in the waveforms of voltage 
or current (Satish et al., 2021). The THD mathematical formula 
is given by Equation 15.

(THD)abc
j =
√∑hmax

h=ho
|(Vabc)

h
j |

2

|(Vabc)
1
j |
 & (THD)j =max (THD)abc

j

(15) 

5.3 Total cost (TC)

The annualized total cost includes grid sales and purchase, wind 
generator costs, and PV system costs (Ahmadi et al., 2021). The 
objective function can be expressed as

TC = CSolar +CWind −Cgrsc +Cgrpc (16)
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TABLE 3  IEEE 123-bus system’s optimal RES and PPF allocation for S-II.

Load 
growth

PPF 
location 
(5,7 and 
11th 
harmonic)

Filter 
parameters 
C (µF), L 
(mH) and R 
(Ω)

RES place &
size, RES type
(PV, Wind)

Vmax (Bus 
no.)

F1 = TC 
($/hr)

F2 = THD 
(%)

F3 = TPL 
(kW)

0th year Bus-107 C5 = C7 = C11 = 
38.26,L5 = 2.77,L7
= 1.41,L11 = 
0.57,R5 = 
0.027,R7 = 
0.014,R11 = 
0.0057

21–350 kW
2–2100 kW

1.05249 (83) 117.08 4.75 39.80

1st year Bus-107 C5 = C7 = C11 = 
44.76,L5 = 2.37,L7
= 1.21,L11 = 
0.48,R5 = 
0.023,R7 = 
0.012,R11 = 
0.0048

21–350 kW
2–2100 kW
21–60 kW, 
2–120 kW

1.05198 (83) 126.29 4.79 44.69

2nd year Bus-107 C5 = C7 = C11 = 
51.74,L5 = 2.05,L7
= 1.04,L11 = 
0.42,R5 = 
0.021,R7 = 
0.011,R11 = 
0.0042

21–350 kW
2–2,100 kW
21–170 kW, 
2–210 kW

1.05260 (83) 136.64 4.82 49.59

3rd year Bus-107 C5 = C7 = C11 = 
59.34,L5 = 1.78,L7
= 0.91,L11 = 
0.36,R5 = 
0.017,R7 = 
0.009,R11 = 
0.0036

21–350 kW
2–2,100 kW
21–270 kW, 
2–290 kW

1.05407 (83) 148.33 4.86 55.59

4th year Bus-107 C5 = C7 = C11 = 
67.65,L5 = 1.56,L7
= 0.80,L11 = 
0.32,R5 = 
0.015,R7 = 
0.008,R11 = 
0.0032

21–350 kW
2–2,100 kW
21–405 kW, 
2–415 kW

1.05606 (83) 159.75 4.91 61.98

5th year Bus-107 C5 = C7 = C11 = 
76.68,L5 = 1.38,L7
= 0.70,L11 = 
0.28,R5 = 
0.013,R7 = 
0.007,R11 = 
0.0028

21–350 kW
2–2,100 kW
21–565 kW, 
2–505 kW

1.05607 (83) 172.92 4.94 69.45

CSolar =
NSolar

∑
n=1
(ICSolar ∗CτSolar +OMSolar) ∗ SSolarn (17)

CWind =
NWind

∑
n=1
(ICWind ∗CτWind +OMWind) ∗ SWindn (18)

PPFs and APFs are used to reduce prominent harmonics when 
THD violation occurs. The Total Cost function will include CPPF
(Jannesar et al., 2019) and CAPF (Rezapour et al., 2024).

CPPF = [(CR × Ppl) + (C fixC
+CC ×QCn

) + (CI ×Qln)] ∗CτPPF (19)

CAPF =
NAPF

∑
n=1
(C fix +Cvar ∗ SnAPF) ∗CτAPF (20)

Shunt capacitors and AVR are used to reduce voltage violations. 
The function for total cost includes these. AVR modelling 
with modified tap locations was taken from (Arubolu et al., 
2024). The AVR cost is calculated using the current rating data 
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TABLE 4  IEEE 123-bus system’s optimal RES and APF allocation for S-II.

Load 
growth

APF 
location 
(5,7 and 
11th 
harmonic)

APF’s 
harmonic 
injection 
currents 
(pu)

RES place & 
size, RES 
type (PV, 
Wind)

Vmax (Bus 
no.)

F1 = TC 
($/hr)

F2 = THD 
(%)

F3 = TPL 
(kW)

0th year Bus-92 I5 = 0.011 + 
j0.103
I7 = 0.097 + 
j0.085
I11 = 0.02 + j0.027

49–530 kW
123–1920 kW

1.0514 (83) 118.9 3.91 39.08

1st year Bus-92 I5 = 0.013 + 
j0.109
I7 = 0.102 + 
j0.093
I11 = 0.021 + 
j0.028

49–530 kW
123–1920 kW
49–65 kW, 
123–120 kW

1.0529 (83) 127.1 3.95 43.22

2nd year Bus-92 I5 = 0.016 + 
j0.115
I7 = 0.108 + 
j0.102
I11 = 0.023 + 
j0.029

49–530 kW
123–1920 kW
49–180 kW, 
123–200 kW

1.0527 (83) 137.5 4.01 47.41

3rd year Bus-92 I5 = 0.019 + 
j0.122
I7 = 0.114 + 
j0.112
I11 = 0.024 + j0.03

49–530 kW
123–1920 kW
49–250 kW, 
123–340 kW

1.0529 (83) 149.7 4.12 53.28

4th year Bus-92 I5 = 0.022 + 
j0.129
I7 = 0.12 + j0.122
I11 = 0.026 + 
j0.031

49–530 kW
123–1920 kW
49–420 kW, 
123–400 kW

1.0531 (83) 161.8 4.30 58.77

5th year Bus-92 I5 = 0.026 + 
j0.136
I7 = 0.126 + 
j0.134
I11 = 0.027 + 
j0.032

49–530 kW
123–1920 kW
49–500 kW, 
123–570 kW

1.0532 (83) 173.9 4.42 66.87

(Szuvovivski et al., 2012), while the cost of the switching capacitor is 
derived from (Selim et al., 2019).

CVR = CτVR ∗ ∑j∈n
VRcostn (21)

The set of lines with AVR attached is denoted by n. VRcostn is the 
cost of AVR located at line n. An AVR, APF, and PPF are assumed to 
have an average lifespan of 20 years.

CCca = (Pca ∗
v

∑
j=1

Qre)∗Cτca (22)

Where Pca denotes the capacitor’s purchase and installation 
cost, which in this study is assumed to be 5 ($/KVAR) with a life 
expectancy of 10 years.

Cτc =
ir(1+ ir)τc

(1+ ir)τc − 1
(23)

Where c might be PV (Solar)/Wind Turbine 
(Wind)/AVR/APF/PPF/Capacitor (ca), and the interest rate ir of 
10% is assumed. 

5.4 Limitations

Objective functions TC, TPL, and THD are minimized under 
specific constraints outlined in
Equations 24–29.

Limitations on Voltage: 0.95 p.u.≤ VBN ≤ 1.05 p.u. (24)

Thermal cut off: Il flow ≤ ITrml (25)

Power balance: PGrS +∑TPRES =∑PLdc +TPL (26)
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FIGURE 3
THD comparison plot of 123-Bus system.

Limitations on DG Power: 0 ≤ TPRES ≤ TPmax
RES and TPmax

RES ≤∑PLdc
(27)

Limitations of THD: THDV ≤ THDVmax (THDmax = 5%) (28)

AVRs tap position: Tpmin
VR,j ≤ TpVR,j ≤ Tpmax

VR,j (29)

 

5.5 Formulation with multiple objectives

The multi-objective optimization problem can be 
written as Equation 30 if the conflicting objective functions are 
OBF1,OBF2,OBF3,….OBFn.

F =min {OBF1,OBF2,OBF3} (30)

Where F is the main objective and, in this work, OBF1 = TC, 
OBF2 = THD, and OBF3 = TPL.

A Pareto-front-based multiple-objective optimization approach 
is used to find non-dominated solution set. RES installation, RES 
along with power filter installation, considering multiple conflicting 
objectives, are complex computational optimization problems that 
require a computationally strong algorithm like PMBSA to determine 
the ideal size and location of RES and power filters. 

6 Optimizing the distribution of RES 
and power filters with the use of the 
pareto multi-objective back track 
search algorithm

The RES and power filter allocation problem is being addressed 
by multi-objective optimization algorithm PMBSA (Arubolu et al., 
2024), which is a modified version of BSA technique that can 
solve single-objective optimization problems. The structure of 
PMBSA is much simpler than that of the other multi-objective 
optimization algorithms, and it has a single control parameter, 
which makes it a suitable approach to solve even multimodal 

optimization problems. Unlike many evolutionary approaches, 
PMBSA does not suffer from premature convergence or high 
computation time, nor is its performance overly sensitive to 
its control parameter. PMBSA efficiently explores the search 
domain by using crossover and mutation operators. These 
operators are entirely distinct from those employed by evolutionary 
programming and genetic algorithms, among other evolutionary 
techniques. Another benefit of PMBSA is its memory, which 
establishes the search direction depending on earlier generations. 
The steps for using PMBSA to find Pareto optimum solutions 
(Arubolu et al., 2024; Brigatto et al., 2011) are provided in the 
Appendix section. 

6.1 Flowchart for using PMBSA to achieve 
the best possible allocation

The suggested approach accounts for the fluctuating 
characteristics of wind speed, load demand, and irradiance for RES 
modelling while distributing RES in a UDS. Figure 1 illustrates the 
procedures for using PMBSA to solve the optimal allocation of RES 
and power filters problem. Wind speed and irradiance data were 
collected at Gangadevipalli, a small village in Thondur mandal, 
Cuddapah district, Andhra Pradesh state, India (Onefivenine, 
2025). Wind and solar data for 3 years were obtained from the 
website http://niwe.res.in of the National Institute of Wind Energy. 
The hourly load demand is taken from a typical a residential 
neighbourhood close to Gangadevipalli. The four seasons of 
a year are separated into the following categories: monsoon 
(July to September), post-monsoon (October to November), 
summer (March to June), and winter (December to February). 
There are 96 segments taken into consideration in this study 
because each season is treated as a single, typical day with 24
hourly sections. 

7 Results and discussion

The proposed approach makes use of the OpenDSS and 
MATLAB software and is implemented in MATLAB 2017a running 
on a 2.9 GHz core i3 processor. Wind speed, solar irradiation, and 
load demand data are the inputs for estimating RES generation and 
load demand. The optimal placement and size of RES in a UDS 
are determined by taking into account the load growth, non-linear 
and linear load types, and the varying nature of both generation 
and load. This is accomplished by the use of the efficient PMBSA 
algorithm, while reducing THD, cost, and losses in the presence 
of load growth. The PMBSA algorithm settings used in this study 
were population size (PPS = 50) and itrmax = 200. The cost of 
energy supplied to the grid and purchased is estimated to be 0.077 
USD/kWh (Arubolu et al., 2024). 2.7 m/s, 25 m/s, and 11 m/s are the 
cut-in, cut-out, and rated wind speeds of the wind turbine generator 
used in this work, respectively (Premono et al., 2017). 300Wp is 
the rated capacity of a solar PV panel (Arubolu et al., 2024). The 
cost information for wind turbines and solar PV is sourced from 
(Ahmadi et al., 2021), and it is based on an analysis of the US market. 
Also, cost details of all components used in this study are included in 
Supplementary Table A1. Equations 16–23 and these data are used 
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TABLE 5  IEEE 123-bus system’s optimal distribution of RES, PPF, and AVR/SCB for S-II.

Load 
growth

PPF 
location 
(5,7 and 
11th 
harmonic)

RES 
place & 
size, RES 
type (PV, 
Wind)

AVR 
location 
(Line 
segment)

SCB 
location 
and 
capacity

F1 = TC 
($/hr)

F2 = 
THD (%)

F3 = TPL 
(kW)

Vmin (Bus 
no.)

Vmax

(Bus no.)

0th year Bus-107 21–350 kW
2–2100 kW

81–82 82-50kVAr 117.57 4.87 39.74 0.9773 (65) 1.04986 (81)

1st year Bus-107 21–350 kW
2–2100 kW
21–60 kW
2–120 kW

81–82 82-75kVAr 126.84 4.88 44.78 0.9751 (65) 1.04995 (81)

2nd year Bus-107 21–350 kW
2–2,100 kW
21–170 kW
2–210 kW

81–82 82-90kVAr
84-30kVAr

137.17 4.90 49.50 0.9736 (65) 1.04915 (81)

3rd year Bus-107 21–350 kW
2–2,100 kW
21–270 kW
2–290 kW

81–82 82-120kVAr
84-50kVAr

148.94 4.93 55.76 0.9731 (65) 1.04985 
(150RG)

4th year Bus-107 21–350 kW
2–2,100 kW
21–405 kW
2–415 kW

78–80 82-180kVAr
90-10kVAr

160.42 4.95 62.64 0.9691 (65) 1.04985 
(150RG)

5th year Bus-107 21–350 kW
2–2,100 kW
21–565 kW
2–505 kW

78–80 81-280kVAr
82-300kVAr

174.23 4.96 72.05 0.9698 (65) 1.04986 
(150RG)

to compute the annualized total cost. The cost is then divided by 
8,760 to get the cost per hour.

The IEEE 123-bus test system (Distribution test feeders, 2010) 
is used to evaluate the performance of the proposed approach. 
The harmonic spectrum of the RES-based DGs with inverters 
is extracted from (HassanzadehFard and Jalilian, 2018), while 
the harmonic source data for the IEEE 123-bus system is 
acquired from (Ulinuha et al., 2007). RES penetration is limited to 
70% of the system’s active power consumption. The power factor 
of RES is assumed to be 0.85 in this work. This study examines 
two cases to evaluate RES’s performance. Case I (C-I): DS without 
RES (Base case) and Case II (C-II): Optimal allocation of wind and 
solar RES in DS.

The objective function’s values are calculated and regarded as 
base case outcomes when RES is not included in the system, as in 
case I. Case II enhances the DS’s performance by reducing TPL, 
THD, and TC with the integration of wind and PV sources into UDS, 
whose ideal sizes and locations are acquired using PMBSA. RES 
penetration lowers overall costs and power losses, which improves 
DS behaviour, according to results presented in Table 1. The RES’s 
harmonic injection has led to an increase in harmonic distortion. 
However, the loss and cost reduction that are seen may eventually 
diminish as the system load increases over time. Thus, studying the 
impact of load growth on system performance is crucial. Table 1 
shows the findings of this study’s additional analysis of the impact 
of load growth on RES system performance.

Table 2 shows that the objective function values increase from 
the first to the fifth year as the load increases over a 5-year 
period while maintaining the same RES size and location. Hence, 
this study focused on adjusting RES annually in relation to load 
variance in order to improve the DS’s performance under load 
growth. Three scenarios are outlined for C-II, which are listed 
below, in order to determine the best approach to be taken for RES
integration:

Scenario I(S-I): Wind and solar energy resources are distributed 
in the UDS, with RES sites being fixed as decided in the base (0th) 
year, but RES sizes optimized annually.

Scenario II(S-II): Distribution of wind and solar energy 
resources in UDS, with RES sites being fixed as decided in the base 
(0th) year, but requiring a further increase in RES size beyond that 
determined in the base year to meet demand growth.

Scenario III(S-III): In UDS, optimal solar and wind energy 
resource sizes and locations are found considering the base (0th) 
year’s load demand. The optimal site for additional RES size is 
determined to accommodate load growth.

To illustrate the effectiveness of the previously suggested 
scenarios for optimal RES allocation under load growth 
conditions, the values of the objective function for each year 
are shown in Table 2. From a loss and cost reduction perspective, 
S-III is found to perform better than S-I and S-II. The RES 
size may decrease or increase as the load increases. This 
adjustment is made annually in S-I. This plan may turn out to 
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TABLE 6  IEEE 123-bus system’s optimal distribution of RES, APF, and AVR for S-II.

Load 
growth

APF 
location 
(5,7 and 
11th 
harmonics)

RES place 
& size, 
RES type 
(PV, Wind)

AVR 
location 
(Line 
segment)

F1 = TC 
($/hr)

F2 = THD 
(%)

F3 = TPL 
(kW)

Vmin (Bus 
no.)

Vmax (Bus 
no.)

0th year Bus-92 49–530 kW
123–1920 kW

81–82 119.56 4.12 38.96 0.9965 (65) 1.04868 (81)

1st year Bus-92 49–530 kW
123–1920 kW
49–65 kW
123–120 kW

81–82 128.48 4.23 43.13 0.9970 (65) 1.04879 (81)

2nd year Bus-92 49–530 kW
123–1920 kW
49–180 kW
123–200 kW

81–82 138.14 4.28 47.25 0.9934 (65) 1.04886 (81)

3rd year Bus-92 49–530 kW
123–1920 kW
49–250 kW
123–340 kW

81–82 150.46 4.32 53.15 0.9935 (65) 1.048894 
(150RG)

4th year Bus-92 49–530 kW
123–1920 kW
49–420 kW
123–400 kW

81–82 162.49 4.39 58.67 0.9932 (65) 1.04924 
(150RG)

5th year Bus-92 49–530 kW
123–1920 kW
49–500 kW
123–570 kW

81–82 174.62 4.51 66.81 0.9931 (65) 1.04928 
(150RG)

TABLE 7  C-metric, SP-metric, and computation time comparison for PMBSA versus NSGA-II and MOPSO.

Mean C-metric S-II Mean SP-metric S-II Computation time (hour)

C(PMBSA, NSGA-II) 0.61 PMBSA 0.6899 PMBSA - 4.1 h s

C(NSGA-II, PMBSA) 0.39 NSGA-II 0.8514 NSGA-II - 5.2 h s

C(PMBSA, MOPSO) 0.7667 PMBSA 0.6899 PMBSA - 4.1 h s

C (MOPSO, PMBSA) 0.625 MOPSO 0.8163 MOPSO - 4.6 h s

TABLE 8  Comparison of various algorithms for objective functions, including mean, variance and standard deviation.

Algorithm TC ($/hr) THD (%) TPL (kW)

Mean Variable SD Mean Variable SD Mean Variable SD

PMBSA 174.26 0.30438 0.5517 4.523 0.0006 0.0246 66.374 0.1634 0.4043

MOPSO 173.58 0.39119 0.6254 4.640 0.0025 0.0509 67.332 0.3221 0.5675

NSGA-II 175.49 0.90389 0.9507 4.689 0.0039 0.0631 68.360 0.9616 0.9806

be very costly and unfeasible because it asks for shrinking the 
size 1 year and then enhancing it the following, or vice versa. 
Even though S-III yields superior benefits, it is not logistically 
viable to move the additional RES sizes annually to different 

locations in accordance with load growth. Since S-II is a more 
realistic strategy that permits an expansion of RES size at the 
original RES sites, it was the subject of this study for further
analysis.
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FIGURE 4
Variance and standard deviation bar graphs for the optimal RES and 
APF distribution.

It is observed that THD value exceeds the system’s maximum 
allowable limit. The fifth, seventh, and eleventh harmonic voltage 
levels are the most prevalent at all buses, according to the HPF results 
for S-II in the base year. Dominant voltage harmonics that have 
been normalized with respect to fundamental voltage are shown in 
Figure 2a for bus 40 of IEEE 123-bus system where there is large non-
linear load. Therefore, in addition to RES, power filters such as PPFs 
and APFs are utilized in this study to reduce harmonic distortion 
while satisfying other objectives. As described in Section 3.1, filter 
parameters are computed to attenuate these prominent harmonics. 
The optimal RES, PPF sizes, and locations, along with objective 
function values obtained by PMBSA are shown in Table 3.

Normalized dominant harmonic voltages after installing PPFs 
are shown in Figure 2b, which illustrate the extent to which PPFs 
reduce harmonic distortion. The findings in Table 3 show that 
the simultaneous placement of RES and PPF can lower objective 
function values while meeting THD constraints. However, the THD 
value obtained in the fifth year was 4.94%, which is very close 
to the upper allowable limit. The THD value might be higher 
than 5% in the following years. Therefore, the authors of this 
work investigated the possibility of placing APFs in addition to 
RES in order to see if DS performance might be improved over 
that of placing PPFs with RES. As described in Section 4.2, the 
injection current of APFs is computed. Table 4 displays the best RES 
sizes and locations, APF locations found using PMBSA. Figure 2c 
displays the normalized dominant harmonic voltages after installing 
APFs. Figure comparison shows that harmonic reduction is more 
noticeable with APF than PPF.

Comparing the results of Scenario II in Table 2 with Tables 3, 4
makes it clear that the system’s power losses are lower and its 
harmonic distortion is higher than permitted limits when power 
filters are not present. However, THD decreases when power filters 
are included in the system, although power loss somewhat rises 
as RES sizes and placements are altered to meet THD restrictions 
(Tan et al., 2017). The THD comparison plot utilizes the base year 
and 5th year outcomes for S-II with PPF and APF, along with data 
for C-I and C-II, as illustrated in Figure 3. The comparative figure 

indicates that APF can more effectively reduce THD and voltage 
limit violations in addition to other objectives.

According to the results presented in Tables 3, 4, the best 
distribution of RES and power filters enhances DS performance by 
reducing power losses, total cost, and THD. Nonetheless, the power 
flow results show that the test system violates the voltage limit. In 
the IEEE 123-bus system, bus 83 consistently exhibits over voltage 
limit violations. In order to maintain bus voltages within permissible 
limits, AVRs are utilized in DS in conjunction with the existing RES 
and power filters. A new node, designated, <node number RG > will 
be created with the addition of AVR.

Purpose of AVR placement is to control voltage and maintain the 
system voltage within permitted bounds; however, this placement 
results in a lower lagging power factor condition (Arubolu et al., 
2024), which may cause the THD value to rise. In this situation, 
it is required to install both AVRs and SCBs in together to reduce 
the THD and maintain the voltage within permitted bounds. When 
RES and PPFs are placed simultaneously, there are more voltage 
violations; therefore, AVRs alone are insufficient to limit violations 
and enhance other objectives due to low lagging power factor. For 
this reason, AVRs and SCBs are placed together to limit violations 
whose results are presented in Table 5. Table 6 presents the results 
of adding AVRs to a system that already has RES and APFs. Since 
there are fewer voltage limit violations due to the superior harmonic 
mitigation capabilities of APF, only AVRs are employed to solve 
this issue.

Sensitivity tests with 5% and 10% yearly load growth are 
done to highlight the robustness of the proposed approach in 
improving DS performance, and the respective tabulated results are 
included in Supplementary Appendix SB. These results presented 
in Supplementary Tables A3, A4 indicate that THD increases due 
to load growth, and there will be voltage limit violations apart 
from increased cost and losses. To address these issues, the 
proposed approach of optimal RES and APF allocation is done, 
whose results are presented in Supplementary Tables A5, A6. When 
the load growth is 10%, even after optimal RES and APF 
allocation, there are still some voltage violations, and to address 
that, AVRs are also placed. And the respective results are 
presented in Supplementary Table A7, based on which it can be 
concluded that the proposed approach works even when the system 
load growth rates are high. 

7.1 Comparison of proposed PMBSA with 
MOPSO and NSGA-II

PMBSA’s performance is evaluated in comparison to those 
of the well-known NSGA-II and MOPSO. The results of a 
comparison of the simultaneous deployment of AVRs, RES, and 
APFs utilizing PMBSA, NSGA-II, and MOPSO are shown in 
Supplementary Table A2. The findings suggest that using PMBSA 
rather than NSGA-II and MOPSO improves DS performance. 
Comparison metrics such as the spacing metric (SP-metric) and the 
convergence meter (C-metric) (Arubolu et al., 2024) are used in this 
work to evaluate the quality of Pareto-front solutions produced by 
multi-objective optimization algorithms.

According to the authors’ thorough sensitivity testing, all of the 
algorithms in this study have a population size (P) of 50, a maximum 
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TABLE 11  The optimal allocation of RES, APF, and AVR for the IEEE 123-bus system in the S-II scenario is based on 30 trials with varying mix rate values.

Mix rate TC ($/hr) THD (%) TPL (kW)

Minimum Avg Maximum Minimum Avg Maximum Minimum Avg Maximum

0 120.12 122.46 123.74 4.3 4.5 4.78 38.377 41.014 42.359

0.2 119.99 122.20 123.014 3.94 4.45 4.69 37.899 41.25 43.784

0.4 121.94 121.64 122.63 3.86 4.51 4.71 38.251 40.372 41.7543

0.6 118.92 120.41 122.74 3.83 4.28 4.36 37.860 40.07 41.85

0.8 119.2 121.65 122.910 3.91 4.21 4.32 37.545 40.534 41.982

1.0 118.29 119.56 120.95 3.81 4.195 4.26 38.326 41.274 42.714

number of iterations of 200, and each algorithm is run 50 times. Mix 
rate of 1.0 is chosen for PMBSA. NSGA-II’s mutation and crossover 
probabilities are set at 0.35 and 0.875, respectively. MOPSO’s inertia 
weight (W), personal best weight (c1) and leader weight (c2) are set 
as 0.4, 2.1 and 1.9 respectively.

The mean C-metric values for the IEEE 123-bus system under 
scenario II for the fifth year are shown in Table 7. With C(NSGA-
II, PMBSA) of 0.39, NSGA-II dominates 39% of PMBSA solutions, 
and with C (MOPSO, PMBSA) of 0.625, MOPSO dominates 62.5% 
of PMBSA solutions. The C(PMBSA, NSGA-II) of 0.61 indicates 
that the average PMBSA dominance of NSGA-II solutions is 
61%, while the C(PMBSA, NSGA-II) of 0.7667 indicates that the 
average PMBSA dominance of MOPSO solutions is 76.67%. It 
is suggested that PMBSA is more capable of identifying better 
solutions. Computation times of PMBSA, NSGA-II, and MOPSO 
are contrasted in Table 7. PMBSA takes less computing time than 
NSGA-II and MOPSO. The table’s mean SP-metric values indicate 
that PMBSA’s metric value is lower than NSGA-II and MOPSO. A 
lower SP-metric value indicates that the solutions are distributed 
more uniformly.

Table 8 displays the mean, variance, and Standard Deviations 
(SD) of the findings obtained by applying the suggested PMBSA 
to solve optimal RES and APF allocation problem. The outcomes 
are contrasted with those derived from NSGA-II and MOPSO 
algorithms. Bar graphs showing the variance and standard deviation 
of the objective functions obtained using the three algorithms 
are presented in Figure 4. From the results, it is evident that the 
variance and SD of the PMBSA are significantly lower than those of 
the NSGA-II and MOPSO algorithms, confirming the convergence 
ability of PMBSA for better results. 

7.2 Comparison between pareto-front 
based proposed approach and WSA

WSA (Ramsami and Ah King, 2019; Ko et al., 2009; 
Mahlalela et al., 2015) is a conventional method for reducing a 
multi-objective optimization problem to a single-objective problem. 
This is accomplished by applying weights to each objective function. 

WSA mathematical formula is given by Equation 31.

Minimize OBF(y) =
p

∑
s=1
(WEs ×OFs(y)) (31)

With weighting coefficients WEs = 0.3333, 
p
∑
s=1

WEs  = 1 where, 
OBF1 = TC, OBF2 = THD, and OBF3 =TPL.

RES, PPFs/APFs, AVR, and SCBs are allotted in this study 
using WSA in order to minimize objective functions and mitigate 
fifth, seventh, and eleventh harmonic components in a 123-bus 
system. The findings of the proposed approach employing PMBSA 
are shown in Tables 9, 10, along with a comparison to WSA for the 
IEEE 123-bus system.

Table 9, 10 display the results of the proposed approach as well as 
WSA for comparison purposes in case of the IEEE 123-bus system. 
When comparing the proposed approach with WSA for the optimal 
distribution of RES, PPF/APF, AVR, and SCB, the results indicate 
a decrease in system TPL, THD, and TC. The proposed approach 
outperforms WSA in terms of optimal allocation for improved DS 
performance. 

7.3 Sensitivity analysis

The suggested method’s performance is influenced by the 
control parameter, which needs to be adjusted correctly for optimal 
outcomes. For sensitivity analysis, the mixrate is set to values 
between 0 and 1, with steps of 0.20. The mixrate is the only 
variable that is altered; the population size and maximum iteration 
values remain constant. Finding the ideal control parameter is 
done through sensitivity analysis. The optimization problem is 
executed 30 times for the specified population size and maximum 
iteration value, and the statistical indices of the best outcomes from 
each trial, such as the minimum, average, and maximum values, 
are noted. The objective functions’ statistical indices for various 
mixrate levels are displayed in Table 11. The results indicate that 
PMBSA offers superior optimal solutions when the mixrate value is
equal to 1.
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8 Conclusion

In order to optimize the distribution of RES and power filters in 
an unbalanced distribution system (UDS), a novel approach is put 
forth that uses the Pareto front-based Multi Objective Backtracking 
Search Algorithm (PMBSA) to reduce Power Loss, Total Harmonic 
Distortion, and Cost. To ensure dependable performance, the 
distribution system planning process took into account both linear 
and non-linear load types, in addition to the varying nature of 
the PV and wind generating outputs, and harmonics injected by 
inverter-based RES. Additionally, for each type of available load, 
the load growth of the distribution system was considered. When 
the distribution system’s yearly demand increased, THD, TPL, and 
TC increased as well. At the same time, several buses’ voltage 
dropped to levels below the permitted limit. In order to enhance 
system performance, the proposed approach optimally increased the 
RES sizes to accommodate growing load demands. However, THD 
violations were observed, and to mitigate this issue, APF and PPFs 
are employed in conjunction with RES. It has been found that APF 
placement outperformed PPF in reducing THD, loss, and voltage 
limit violations. The enhanced UDS performance was demonstrated 
by testing the proposed approach, which combines OpenDSS and 
MATLAB co-simulation, on the IEEE 123-bus system. The findings 
show that, in comparison to the base case, i.e., without any RES, TC 
and TPL decreased by 27.05% and 41.06%, respectively, but THD 
increased by 108.8% when RES is optimally placed in the 123-bus 
UDS. Whereas, when RES and APF are deployed in DS, TC, THD, 
and TPL decreased by 29.76%, 9.28%, and 29.35%, respectively. By 
carefully positioning the AVR/SCBs, the proposed approach also 
solved the problem of voltage limit violation. The results show 
how well the proposed approach enhances DS performance when 
compared to NSGA-II, MOPSO, and WSA.
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Glossary

KSt,CSt Space and Scale parameters
SIrrn

t,
SIrrn-1

t, SIrrn+1
t Solar irradiance for the tth time interval in the nth, (n-1)th, and 

(n+1)th states
wtbsn

t,
wtbsn-1

t, wtbsn+1
t Wind speed for the tth time interval in the nth, (n-1)th, and 

(n+1)th states

lddk
t, lddk-1

t, lddk+1
t Load demand for the tth time interval in the kth, (k-1)th, and 

(k+1)th states

NPV, NWI, Nlds Number of solar irradiance states, wind speed states, and 

load states

Ps(SIrrtn) Probability of solar irradiance for the nth state in a specific time ‘t’
Pws(wtbs

t
n) Wind speed probability for the nth state in a specific time ‘t’

Ppvon PV array output power at average irradiance SIrrt
n

Pwton Wind turbine output power with an average wind speed wtbst
n

z Load demand in kth time interval

µ Mean

σ SD

σ2 Variance of normal distribution

Ikr,n, Ikj,n Real and imaginary parts of the nth APF’s injection current in 

the kth harmonic

Nbno Number of feeders

Plabc Power loss of phases a, b and c
h0 hmax Minimum and maximum harmonic order

(Vabc)
1
j Rms of the system’s fundamental voltage

(Vabc)
h
j Rms of the bus j harmonic voltage

(THD)j Total harmonic distortion at bus j
CSolar, CWind Total cost of PV units and Wind units ($/hr)

Cgrsc, Cgrpc Cost of power sold to and power purchased from the 

grid ($/kWh)

NSolar Number of solar PV units

NWind Number of wind turbines

IC Marginal installation cost ($/kW or $/kWh)

OM Annual operational and maintenance marginal cost ($/Kw-hr or 

$/kWh-yr)

τ Estimated life time in years

SSolarn, SWindn Size of DG units

Cτ Capital recovery factor

CPPF, CAPF Cost of PPFs and APFs ($/hr)

NAPFs Number of APFs

Cfix, Cvar Fixed and variable costs related to the APFs

SnAPF Size of nth APF

Cfixc Fixed cost of the capacitor

CC, CR, CI PPFs capacitor, inductor, and resistance costs

Ppl Power loss of PPF

Qcn, Qln Rms values of reactive powers of capacitance and inductance

CCca Cost of capacitor ($/hr)

CVR AVR installation cost ($/hr)

v Total number of installed capacitors

Qre Reactive power that each capacitor injects

VBN Bus voltage

ITrml Thermal limit of the line

I lf low Current flowing through lf th line.

PLdc Load demand (kW)

PGrs Power drawn from the substation (kW)

TPRES Power injected by RES

T Pmax
RES Maximum power injected by RES

TpVR,j Tap position of the jth AVR

Tmin
pVR,j Minimum tap position of the jth AVR

Tmax
pVR,j Maximum tap position of the jth AVR

PP Initial population

OPP Old population

TPP Trial population

Nr rth design variable of a solution

NrminP Minimum limits of variable Nr

NrmaxP Maximum limits of variable Nr

k, l Random numbers
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