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Mitigating furnace pressure 
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Inner Mongolia Electric Power Dispatching and Control Branch, Inner Mongolia Power (Group) Co., 
Ltd., Hohhot, China

Rapid load ramping in coal-fired power plants with high renewable energy 
integration often induces severe furnace pressure fluctuations, threatening 
combustion stability and operational safety. To address this challenge, we 
propose a predictive and adaptive control framework that integrates wavelet 
transform, long short-term memory (LSTM) neural networks, and proximal 
policy optimization (PPO) reinforcement learning. Wavelet-based multi-
resolution decomposition is employed to extract key features from pressure 
signals, while an LSTM model forecasts short-term pressure dynamics. Based 
on predictive feedback, a PPO agent learns an optimal control strategy to 
regulate secondary air and fuel inputs in real time. Validation on a 600 MW 
supercritical boiler unit demonstrates a 42.2% reduction in the standard 
deviation of furnace pressure fluctuations, improved stability under variable 
load conditions, and smoother actuator response compared with conventional 
control schemes. These results highlight the potential of combining deep 
learning and reinforcement learning techniques to enhance combustion stability 
and support secure, flexible operation of coal-fired power plants under high 
renewable energy penetration.
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Highlights

• Wavelet–LSTM–PPO predicts and regulates pressure
• Fluctuation reduced by 42.2% under load ramping

 1 Introduction

With the rapid integration of renewable energy into the power grid and the deepening 
push toward low-carbon transition, coal-fired power plants are increasingly required 
to deliver flexible, fast-response capabilities while maintaining combustion stability and 
operational reliability (Li et al., 2023; Agbleze et al., 2024; Ma et al., 2024). In response
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 to this need, the Chinese government’s “Upgrading Action Plan 
for New Generation Coal Power (2025–2027)” mandates that 
existing coal units achieve load ramping rates between 0.8% and 
2.5% of rated power per minute, while newly built pulverized 
coal units should reach 2.2% and 1.0% per minute in the 50% 
and 30%–50% load ranges, respectively. Demonstration units 
representing the next-generation of coal power are required to 
reach even higher ramping rates—4.0% and 2.0% per minute, 
respectively (NDR C, 2025).

Such aggressive ramping performance targets, though essential 
for integrating renewables and maintaining grid stability, have 
posed new technical challenges to boiler combustion control. 
These challenges are particularly marked in once-through, wall-
fired boilers, where the interplay of fuel, air, and draft systems 
must respond rapidly to fluctuating load demands. In such boilers, 
pulverized coal carried by the primary air is injected into the furnace 
burners, where ignition and flame stabilization occur. The secondary 
air system and the draft fans jointly regulate excess air and furnace 
pressure, thereby maintaining a stable negative pressure that ensures 
safe gas flow and prevents backflow. The principal control elements 
include the coal feeders, the primary- and secondary-air dampers, 
and the induced-draft and forced-draft fans. Their coordinated 
operation governs the air–fuel ratio and furnace pressure balance, 
which are directly related to combustion stability.

Rapid changes in load setpoints often outpace the response 
capabilities of conventional control systems, leading to mismatches 
between fuel supply and air flow. This uncoordinated adjustment 
results in abrupt and unpredictable fluctuations in furnace 
pressure, especially in units operating under secondary air–fuel 
regulation schemes. These pressure deviations can cause combustion 
instability, frequent alarms, actuator fatigue, and even safety 
risks such as positive pressure backflow (Liu et al., 2020; 
Duan et al., 2025; Wang et al., 2022).

As illustrated in Figure 1, Automatic Generation Control (AGC) 
signals often exhibit a triangle-wave shape during high-frequency 
modulation periods, especially under rapid ramping scenarios. 
These commands drive continuous up–down oscillations in unit 
load, causing corresponding mismatches in combustion air and fuel 
coordination. This dynamic mismatch is one of the primary causes 
of furnace pressure fluctuation in flexible coal-fired units.

Recent research has explored signal-based diagnostic 
approaches for identifying and analyzing the causes of furnace 
pressure instability. Methods such as wavelet decomposition 
(Al-Dahidi et al., 2025; Karimi et al., 2004), empirical mode 
decomposition (Kumar et al., 2017), and frequency-domain analysis 
(Hou et al., 2024; Wu et al., 2019) have been used to capture 
multiscale features and oscillation patterns in furnace dynamics. 
Correlation analysis between pressure and process variables—such 
as coal feed, primary air, and damper positions—has helped 
identify the key actuators driving instability (Bo et al., 2008; 
Zeng et al., 2024; Illingworth and Morgans, 2008). However, two 
major gaps remain: (1) existing diagnostic tools offer limited 
interpretability under dynamic ramping conditions, and (2) their 
outputs are rarely integrated into closed-loop control for real-time 
mitigation.

Meanwhile, artificial intelligence techniques—particularly deep 
learning and reinforcement learning (RL)—have shown promise for 
modeling and control of nonlinear, time-varying industrial systems. 

Long short-term memory (LSTM) networks have proven effective in 
capturing temporal dependencies and predicting dynamic behavior 
in power plant environments (Chong et al., 2025; Guan et al., 2025). 
Proximal Policy Optimization (PPO), an RL algorithm with stable 
convergence properties, has demonstrated success in continuous 
control tasks such as process optimization and energy dispatch 
(Zhang et al., 2023; Duan et al., 2021).

However, controlling furnace pressure during rapid load 
changes presents a multifaceted challenge that demands a 
carefully integrated solution. The process is characterized by: 
(1) nonstationary signal behavior driven by high-frequency 
AGC commands, making traditional frequency-domain analysis 
insufficient; (2) complex nonlinear temporal dynamics involving 
combustion delays and system inertia, which require predictive 
capabilities; and (3) stringent operational safety constraints that 
necessitate a stable and robust control policy.

An integrated framework is proposed to meet these distinct 
challenges, organized as a decomposition–prediction–optimization 
pipeline. (1) Wavelet decomposition was adopted for 
time–frequency analysis of nonstationary signals, enabling 
reliable feature extraction from fluctuating furnace pressure. 
(2) LSTM networks were selected for data-efficient modeling of 
industrial temporal processes. (3) PPO was employed for its stable 
convergence, a critical property in safety-critical control. The 
contribution of this work lies in the problem-driven integration 
of these components and its validation on real-world operational 
data. The key contributions are as follows. 

1. A wavelet-based signal decomposition and weighted 
correlation analysis method was developed to identify 
dominant influencing factors and isolate the most responsive 
coal-mill inlet;

2. A multi-resolution LSTM prediction model was constructed 
to forecast furnace pressure trajectories under ramping 
conditions;

3. A PPO-based reinforcement learning controller was designed 
to dynamically adjust secondary-air and coal dampers based 
on both predicted and real-time observations, minimizing 
a compound reward function that emphasizes fluctuation 
suppression and smooth control;

4. The full system was validated using real-world operational 
data from a 600 MW supercritical boiler unit, achieving 
more than 40% reduction in pressure-fluctuation amplitude 
and improved settling time compared with traditional 
control logic.

The remainder of the paper is organized as follows. Section 2 
introduces the signal decomposition and correlation analysis 
methods. Section 3 presents the Wavelet–LSTM–PPO control 
framework. Section 4 discusses the experimental setup and 
performance evaluation. Section 5 concludes with key findings and 
recommendations for future deployment. 

2 Methodology

This section presents a four-step procedure that links 
signal preprocessing with sequence modeling. (1) Notation 
and assumptions—sampling, windowing, and learning targets 
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FIGURE 1
Typical AGC load command signal exhibiting rapid triangle-wave pattern. Such signals induce frequent and abrupt adjustments in fuel and air systems, 
increasing the risk of pressure instability.

were specified; (2) Wavelet preprocessing—an orthonormal 
multiresolution analysis was applied and the selected approximation 
and detail components were retained; (3) Band-limited 
correlation—per-band correlations were computed and the mixing 
weight between the second and third detail bands was determined 
by a coarse grid search on the Fisher z scale; and (4) Bridge to 
sequence modeling—the retained channels were stacked into the 
input tensor used by the LSTM in Section 3. This structure separates 
foundational definitions from analysis and clarifies the progression 
between steps. 

2.1 Notation and assumptions

Let xt denote a discrete-time signal sampled at interval Δt
(1 Hz unless otherwise noted). Over analysis windows of length w, 
bounded second moments and weak stationarity were assumed after 
detrending and normalization. Pairwise correlations were evaluated 
within each window between furnace pressure and process variables 
(e.g., primary air at mill inlets). The level-J approximation is denoted 
by aJ and the detail components by dj (j = 1,…, J). All correlations 
were computed on normalized signals to avoid scale confounding. 

2.2 Wavelet preprocessing

Wavelet decomposition is a time–frequency analysis 
method that overcomes the single-resolution limitation of 
the short-time Fourier transform, featuring multiresolution 
characteristics (Guo et al., 2022). It represents local signal 
information jointly in time and frequency. For furnace pressure 
signals, local and instantaneous abnormal fluctuations are 
often more critical to monitor than the overall trend. Wavelet 
decomposition can separate mid-frequency components in time, 
reducing interference from high- or low-frequency content in 
subsequent correlation analysis.

This paper employs the Daubechies (dbN) wavelet (Vonesch et al., 
2007), a discrete orthogonal wavelet defined by low-pass filter 
coefficients {hk} via the two-scale relations. Here, N denotes the 
number of vanishing moments; ψ and φ denote the mother wavelet 
and scaling function, respectively; and their compact support 

lengths are 2N− 1. The dbN wavelet has no closed-form expression 
(except for N = 1), though the squared magnitude of the transfer 
function associated with {hk} has an explicit form.

The decomposition uses the pyramid algorithm of 
multiresolution analysis, as shown in Equation 1:

f (t) = ∑
k∈ℤ
〈 f,φJ,k〉φJ,k (t) +∑

j<J
∑
k∈ℤ
〈 f,ψj,k〉ψj,k (t) . (1)

In practice, wavelet decomposition proceeds layer by layer, 
recursively applying J− j stages. 

2.3 Band-limited correlation and 
composition

The correlation coefficient ρ quantifies the linear association 
between two discretized signals derived from continuous 
measurements sampled over M data points at a fixed frequency. 
It is widely used to evaluate temporal alignment and statistical 
dependency between signals in power-system diagnostics. The 
normalized formulation is given by:

ρ =
∑M

k=1
x (k)y (k)

√∑M
k=1

x2 (k)√∑M
k=1

y2 (k)
(2)

In Equation 2, ρ > 0 indicates a positive linear relationship, ρ < 0
a negative one, and |ρ| = 1 denotes perfect linear dependence. A zero 
value implies no linear correlation, while intermediate magnitudes 
of |ρ| reflect varying strengths of association.

In this study, Equation 2 was used to compute correlation 
coefficients between furnace pressure and the primary-air volume 
at each coal-mill inlet at the same wavelet decomposition level, 
enabling a scale-invariant assessment of inter-signal dependency. 
Unlike methods such as (Wang et al., 2015), which segment 
signals into broad low-, mid-, and high-frequency bands, this 
work computes correlation directly at each decomposition scale. 
Correlations from adjacent intermediate scales were then combined 
using a weighted approach to enhance robustness. This analysis 
allows the identification of the primary-air channel most strongly 
associated with furnace pressure fluctuations.
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TABLE 1  Per-weight performance for mixing d2 and d3 on the 
Fisher-z scale.

w J(w) (Mean Fisher-z) tanh (J(w))

0.1 0.220 0.217

0.2 0.265 0.259

0.3 0.305 0.296

0.4 0.340 0.327

0.5 0.375 0.358

0.6 0.360 0.345

0.7 0.335 0.323

0.8 0.300 0.291

0.9 0.260 0.254

To avoid bias from directly averaging correlation coefficients, 
we operate on the Fisher-z scale: zj,s = atanh(ρj,s). To merge the two 
adjacent mid-band components d2 and d3, we evaluate a coarse grid 
w ∈ {0.1,0.2,…,0.9} and define the per-window composite

zs (w) = wz2,s + (1−w)z3,s, J (w) = 1
S

S

∑
s=1

zs (w) ,

selecting w∗ = argmaxw J(w) and reporting ρcomb,s(w) =
tanh(zs(w)) in subsequent analyses.

To further validate the results obtained from the weighted-
correlation analysis, frequency-domain analysis was performed. 
Specifically, the fast Fourier transform (Nussbaumer and 
Nussbaumer, 1982) was applied to the mid-frequency components 
of the decomposed signals to extract dominant frequencies and their 
corresponding amplitudes. The amplitude ratios of paired signals 
at matched frequencies were also computed. This dual-domain 
analysis—combining time-domain correlation and frequency-
domain spectral features—provides a more comprehensive 
characterization of coupling strength and supports cross-validation 
of the correlation-based findings.

The d2/d3 mixing proportion was therefore determined by the 
grid search on the Fisher-z scale described above. Table 1 lists {J(w)}; 
the grid search identified an optimal weight of w∗ = 0.5, which 
applies equal 0.5 weighting to the d2 and d3 components. This 
weighting was used in all subsequent analyses.

2.4 Bridge to sequence modeling

From the retained multiresolution channels C = {aJ} ∪ {dj:j ∈ J }, 
an input tensor Xt−w+1:t ∈ ℝw×|C| was constructed by stacking 
normalized samples over a window of length w. The tensor Xt−w+1:t
was then provided to the LSTM in Section 3 to estimate yt+h =
fθ(Xt−w+1:t) under a predefined loss and dataset split. 

FIGURE 2
Overview of the predictive reinforcement-learning control framework 
combining Wavelet–LSTM prediction and PPO-based policy 
optimization.

3 Intelligent prediction and adaptive 
control framework

To mitigate furnace pressure fluctuations under AGC frequency 
modulation,an integrated framework was proposed that combines 
multiresolution signal analysis, short-horizon prediction, and real-
time control optimization. The system is modular, mirroring the 
flow from low-level signal perception to high-level decision making.

Specifically, the framework comprises three components: (1) 
a wavelet-based decomposition module that extracts multiscale 
features from combustion-related signals; (2) an LSTM network 
that forecasts near-future pressure trajectories from the decomposed 
features; and (3) a reinforcement-learning (RL) control agent based 
on PPO that adjusts air and fuel dampers using both real-time and 
predictive inputs. These components are integrated into a closed-
loop control structure. An overview is shown in Figure 2.

As illustrated in Figure 2, the pipeline aligns with plant 
operations: wavelet decomposition isolates frequency components 
that reflect combustion–draft dynamics; the LSTM anticipates 
short-term pressure excursions; and the PPO agent adaptively 
tunes air and fuel dampers using current and predicted states. 
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FIGURE 3
Block diagram of a dual-input, dual-output control system for a 
medium-speed mill.

This correspondence improves interpretability and facilitates 
deployment. 

3.1 Baseline control strategy

The direct-fired medium-speed mill is a dual-input, dual-output 
system. The inputs are the coal feed rate and the primary-air flow 
rate at the mill inlet, while the outputs are the coal flow at the 
mill outlet and the outlet temperature of the air–powder mixture. 
A simplified control block diagram is shown in Figure 3. At the 
mill inlet, the primary-air flow is formed by mixing hot and cold 
primary air, actuated by the hot- and cold-primary-air dampers,
respectively.

The conventional control structure is shown in Figure 4. Both 
loops operate as independent single-loop controllers. The setpoint 
for the inlet primary-air flow is generated from the coal feeder’s 
feed rate via a function generator. To reduce loop interaction, 
the hot-air damper control signal is introduced as a feedforward 
term into the cold-air damper loop, thereby achieving effective
decoupling.

As indicated in Figure 4, F(x) denotes the function generator; 
Gh(s) the hot-air damper controller; Wh(s) the process model 
relating the hot-air actuation to the inlet primary-air flow; Hh(s)
the corresponding flow-measurement feedback; Gc(s) the cold-air 
damper controller; Wc(s) the process model relating the cold-
air actuation to the outlet air–powder temperature; and Hc(s) the 
corresponding temperature-measurement feedback.

In operation, the inlet primary-air flow setpoint is scheduled by 
the air-to-coal ratio as a function of the coal feed rate. The primary-
air flow loop provides fast response, whereas the outlet air–powder 
temperature loop is slower. Because the outlet temperature also 
reflects the appropriateness of the inlet primary-air flow, the 
optimized strategy prioritizes the outlet temperature as the primary 
regulation objective, with the flow loop serving as a follow-up 
(secondary) adjustment.

High-frequency disturbances in flow measurement can, 
however, drive the hot-air flow loop into low-frequency oscillations 
when integral action is used. To avoid this adverse effect on 
combustion stability, the hot-air controller is implemented as a 
proportional controller. 

3.2 Rationale for algorithmic choices

The architectural choices are grounded in the problem 
characteristics: nonstationary signals, nonlinear temporal dynamics 
with delays and inertia, and safety-critical constraints. Wavelet 
decomposition provides localized time-frequency analysis that 
separates long-term load trends from short-term draft fluctuations 
in nonstationary industrial signals, whereas empirical mode 
decomposition is prone to mode mixing under disturbed 
conditions and FFT-based methods lack temporal localization. For 
sequential modeling, LSTM and GRU are established recurrent 
architectures for learning long-range dependencies in dynamic 
processes; Transformer-based models show promise for time-series 
forecasting but often require large training corpora and offer limited 
interpretability for safety-critical control. For policy optimization, 
PPO’s clipped surrogate objective enables stable, sample-efficient 
updates, which is crucial in constrained industrial loops, while 
alternatives such as SAC and TD3, although strong in exploration, 
typically demand more sensitive hyperparameter tuning and may 
reduce practical robustness.

The resulting pipeline performs multiscale feature extraction via 
wavelet decomposition, short-horizon forecasting with an LSTM, 
and PPO-based policy optimization in a closed loop (see Figure 2); 
details are provided in the following subsections. 

3.3 Wavelet–LSTM-based prediction of 
furnace pressure dynamics

To enable accurate forecasting of furnace pressure dynamics, 
this study adopts a hybrid modeling approach that integrates 
wavelet decomposition for multiscale feature extraction with LSTM 
networks for sequence prediction.

First, raw time-series signals such as furnace pressure and 
primary-air flow from each coal mill are subjected to a discrete 
wavelet transform, producing low-frequency approximation 
coefficients and high-frequency detail components (e.g., d1–d5). 
These decomposed signals capture both long-term trends and 
transient behaviors critical for identifying early signs of instability.

The resulting multiresolution feature set forms the input to an 
LSTM network, which is designed to learn temporal dependencies 
in the data and forecast the future evolution of furnace pressure. 
LSTMs are gated recurrent architectures that capture long-range 
temporal dependencies by regulating information flow through 
input, forget, and output gates (Hochreiter and Schmidhuber, 1997). 
The internal operations of an LSTM unit at time step t are governed 
by Equations 3–8.

ft = σ(W fxt +U fht−1 + b f) (3)

it = σ(Wixt +Uiht−1 + bi) (4)

ot = σ(Woxt +Uoht−1 + bo) (5)

̃ct = tanh(Wcxt +Ucht−1 + bc) (6)

ct = ft ⊙ ct−1 + it ⊙ ̃ct (7)
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FIGURE 4
Control block diagram of cold- and hot-air dampers.

TABLE 2  LSTM model inputs and output.

Type Description Details/Examples

Input Historical time-series data of wavelet-decomposed 
furnace-pressure signals

Time–frequency bands from wavelet decomposition 
(e.g., a5, d1–d5)

Input Historical time-series data of wavelet-decomposed 
primary-air flow signals from all relevant coal mills 
(e.g., Mills A–F)

Time–frequency bands from wavelet decomposition 
(e.g., a5, d1–d5 for each mill)

Output Predicted furnace-pressure trajectory For a defined future time window (e.g., next N time 
steps)

ht = ot ⊙ tanh(ct) (8)

Here, xt ∈ ℝ
n denotes the input vector at time t, containing wavelet-

decomposed features such as primary-air flow and historical furnace 
pressure. The variable ht ∈ ℝm is the hidden-state output, ct ∈ ℝm

is the internal memory cell, and W⋅,U⋅,b⋅ are the corresponding 
trainable weight matrices and bias vectors. The sigmoid function is 
denoted by σ(⋅), and ⊙ represents element-wise multiplication.

This predictive model provides a high-resolution estimate of 
the furnace-pressure trajectory over a future time window, offering 
critical foresight to downstream control modules. A summary of the 
model inputs and outputs is presented in Table 2.

All variables, including furnace pressure and mill-inlet primary-
air flows, were obtained simultaneously from the same boiler unit, 
ensuring fully aligned time scales and inherently integrated data. 

3.4 Adaptive combustion control based on 
PPO with Wavelet–LSTM feature modeling

In complex boiler systems characterized by strong coupling, 
nonlinear dynamics, and variable operating conditions, traditional 
control strategies often fall short of achieving both adaptability and 
robustness. Reinforcement learning offers a promising alternative by 
enabling agents to learn optimal control policies through interaction 
with the environment, thereby handling model uncertainties, time 
delays, and multivariable dependencies.

Among RL algorithms for continuous control tasks, Deep Q-
Network (DQN) (Mnih et al., 2015) is constrained to discrete 
action spaces and is therefore unsuitable for fine-grained regulation 
of variables such as primary-air flow. Deep Deterministic Policy 
Gradient (DDPG) (Lillicrap et al., 2015), while applicable to 
continuous domains, is prone to convergence instability and 
hyperparameter sensitivity. By contrast, PPO (Schulman et al., 2017) 
demonstrates improved sample efficiency, greater training stability, 
and practical robustness, making it well suited to high-dimensional, 
continuous-control scenarios in power-plant applications.

PPO is a widely adopted reinforcement-learning algorithm 
based on the policy-gradient framework. In PPO, the policy is 
modeled by a parameterized function πθ(at|st), which represents the 
probability of taking action at given state st at time t. The parameters 
θ typically correspond to the weights of a neural network known 
as the actor.

The learning objective is to maximize the expected cumulative 
reward (expected return), as shown in Equation 9:

J (θ) = 𝔼τ∼πθ
[

T

∑
t=0

γtrt], (9)

where τ denotes a trajectory of states, actions, and rewards; rt is the 
reward at time t; and γ ∈ (0,1] is the discount factor controlling the 
trade-off between immediate and future rewards.

PPO is typically implemented in an actor–critic architecture. 
The actor generates actions from the current policy, while the 
critic estimates the value function Vπ(st) to evaluate policy 
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quality. The temporal-difference-based advantage function is 
defined as Equation 10:

Ât = rt + γV(st+1) −V(st) , (10)

where Ât represents the estimated advantage of action at in state st.
To ensure training stability, PPO introduces a clipped surrogate 

objective defined in Equation 11:

LCLIP (θ) = 𝔼t [min(rt (θ) Ât,clip(rt (θ) ,1− ϵ,1+ ϵ) Ât)] , (11)

where rt(θ) =
πθ(at|st)

πθold
(at|st)

 is the probability ratio between the new policy 
and the old policy used to generate the current batch of data. The 
clipping operation (bounded by hyperparameter ϵ) prevents large 
deviations between successive policies and helps maintain a stable 
training trajectory.

The final PPO loss combines policy learning, value estimation, 
and entropy regularization to encourage both performance and 
exploration. The value-function loss term is defined in Equation 12:

LVF = (Vθ (st) − V̂t)
2. (12)

Based on Equation 12, the overall objective is 
as shown in Equation 13:

LPPO = LCLIP − c1LVF + c2S [πθ] , (13)

where LCLIP constrains policy updates, LVF is the squared error 
between the predicted value and the empirical return, and S[πθ]
denotes the policy entropy used to encourage sufficient exploration. 
The coefficients c1 and c2 control the relative importance 
of value fitting and entropy regularization. This formulation 
enables conservative yet efficient policy updates, making PPO 
suitable for adaptive combustion regulation in thermal power
systems.

The reward signal Rt is defined to encourage pressure stability 
and penalize excessive oscillation. Specifically, at each time step t,

Rt = −λ1|pt − ptarget| − λ2|pt − pt−1|,

where pt is the furnace pressure at time t, ptarget is the nominal 
pressure (e.g., −100 Pa), and λ1, λ2 are penalty weights for 
absolute deviation and temporal fluctuation, respectively. Beyond 
its mathematical form, the reward design is consistent with 
operational experience: operators emphasize maintaining adequate 
draft margins to ensure safe gas flow and reducing rapid oscillations 
to mitigate actuator fatigue. These considerations motivated the 
choice of the nominal setpoint and the inclusion of fluctuation 
penalties.

In this study, we set λ1 = 1.0 and λ2 = 0.1 based on preliminary 
experiments to balance steady-state accuracy and transient 
damping. The reward structure incentivizes the agent to minimize 
both pressure error and fluctuation amplitude.

In the proposed control framework, a PPO-based agent is 
integrated with a multiscale Wavelet–LSTM network, where the 
wavelet transform decomposes key combustion signals into low- 
and high-frequency components. These components are processed 
by separate LSTM branches to capture slow-varying trends and fast 
transient features. The extracted representations are then fused and 
passed to both the actor and critic to generate control actions and 

state-value estimates. This architecture enables informed decisions 
under dynamic conditions, adaptively tuning control parameters 
to suppress furnace pressure fluctuations and enhance overall
stability.

A schematic of the Wavelet–LSTM-enhanced PPO framework 
is presented in Figure 5, illustrating the modular structure from 
combustion-state perception to action generation, including 
wavelet-based feature decomposition, multiscale temporal 
modeling, actor–critic inference, and training via PPO loss 
optimization. The PPO agent receives a state vector comprising 
both historical and predicted variables. Specifically, the LSTM 
module outputs a short-horizon forecast of furnace pressure pt+Δ, 
which is concatenated with current measurements—including 
pt, coal feed rate, and air-valve positions—to form the PPO 
state input. This structure enables the agent to anticipate 
upcoming disturbances and plan regulation actions accordingly. 
To coordinate prediction and control, the forecasted furnace 
pressure is included in the agent’s observation at each
decision step.

Augmenting the agent’s state with the LSTM forecast enables 
a proactive control strategy in which actions are adjusted 
based on anticipated disturbances, improving both stability and 
responsiveness. The LSTM model is pre-trained and fixed during 
PPO policy training to avoid instability due to co-optimization. The 
overall data flow is illustrated in Figure 5. 

4 Case study analysis

The data originate from a 600 MW supercritical once-through 
boiler operating under sliding-pressure conditions (model HG-
2115/25.4-YM12). The furnace adopts a single-chamber layout with 
opposed firing on front and rear walls, a single reheat system, 
balanced-draft ventilation, outdoor arrangement, dry bottom ash 
removal, an all-steel frame, a fully suspended structure, and a π-type 
configuration.

The pulverizing system employs six medium-speed roller mills 
(HP/dyn type). Each mill has a guaranteed output of 61.1 t/h 
and a maximum output of 67.9 t/h, with a maximum ventilation 
capacity of 98 t/h. 

4.1 Evaluation metrics

Prediction performance was evaluated primarily by the root-
mean-square error (RMSE):

RMSE = √ 1
N

N

∑
t=1
(yt − ŷt)

2,

where yt and ŷt denote the observed and predicted furnace pressure 
at time t, and N is the number of samples. For comparability across 
operating ranges, we also report the Nash-Sutcliffe efficiency (NSE),

NSE = 1−
∑N

t=1
(yt − ŷt)

2

∑N
t=1
(yt − ̄y)

2
,

which measures skill relative to the mean baseline ̄y.
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FIGURE 5
Wavelet–LSTM-enhanced PPO framework.

Control performance was assessed by the standard deviation of 
furnace pressure fluctuations,

σFP = √
1
N

N

∑
t=1
(pt − p̄)2,

and the settling time tsettle required to re-enter the ±5 Pa band under 
matched ramp episodes. 

4.2 Signal decomposition and correlation 
calculation

The furnace pressure signal was decomposed using the 
db4 wavelet at five levels, where denotes the low-frequency 
approximation and di denotes the high-frequency detail. The results 
are shown in Figure 6.

The inlet air flow of each pulverizer during the same operational 
period was processed using the identical wavelet decomposition 
method (db4 wavelet with 5-level decomposition). The resultant 
decomposition profiles are displayed in Figure 7.

The correlation coefficients were calculated between the furnace 
pressure signals and the primary air flow signals at corresponding 
decomposition levels for each mill.

The selection of d2 and d3 components from the five-
level wavelet decomposition is based on two complementary 
considerations: frequency localization and empirical energy 
distribution. At a sampling rate of 1 Hz, d2 and d3 correspond 
approximately to the 0.25–0.5 Hz and 0.125–0.25 Hz bands, 
respectively. These bands were observed to contain dominant energy 

modes in both furnace pressure and primary air flow signals during 
AGC-induced load swings, as revealed by their power spectral 
density profiles (see Figure 9). Physically, this frequency range 
reflects the response time scale of air–fuel mismatches due to 
control lag or actuator delay. In contrast, d1 typically captures high-
frequency noise or short-duration spikes, while d4 and d5 reflect 
slower drift or load ramps that are less correlated with transient 
pressure instability.

The calculation results are presented in Table 3. 
As shown in Table 3, the primary air flow of Mill C exhibits the 
highest correlation with furnace pressure in the mid-frequency 
band, followed by Mill F.

4.3 Spectrum analysis

The spectrum analysis diagrams of furnace pressure signal are 
shown in Figure 8 and primary air volume at the inlet of each coal 
mill at the same time period d2 and d3 decomposition layer signals 
are shown in Figures 9, 10.

The maximum amplitude and its corresponding frequency in 
the spectrum analysis diagrams are summarized in the table below. 
As shown in Table 4, the frequencies corresponding to the maximum 
amplitudes of the d2 and d3 decomposition layer signals of the 
primary air volume at the inlet of mill C are very close to those of the 
corresponding decomposition layer signals of the furnace pressure. 
The amplitude proportions are 2.88% and 3.22%, respectively. 
This further validates the correctness of the correlation coefficient 
weighted merging algorithm.

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1658163
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Jing et al. 10.3389/fenrg.2025.1658163

FIGURE 6
Wavelet decomposition diagram of furnace pressure.

4.4 Wavelet-LSTM pressure prediction 
results

The dataset was chronologically split into training (60%), 
validation (20%), and testing (20%) subsets to prevent information 
leakage and ensure reliable model evaluation. All hyperparameter 
tuning was conducted exclusively on the training and validation sets 
to maintain the integrity of the final test results.

To develop the Wavelet-LSTM model for one-step-ahead 
furnace pressure prediction, a structured hyperparameter search 
was performed. The key hyperparameters considered included the 
number of LSTM layers (1 or 2), the number of units per layer 
(32 or 64), the learning rate (1× 10−2, 1× 10−3, 1× 10−4), and the 
input window length (20, 30, 40, 60 time steps; with a sampling 
interval of 1 s).

Hyperparameters were tuned sequentially via a grid search, 
where each parameter was varied individually while keeping others 
fixed. First, increasing the number of hidden units from 32 to 
64 in a single-layer LSTM reduced the validation RMSE from 
5.42 to 5.19. Adding a second LSTM layer further decreased 
the RMSE to 5.12. Then, learning rate tuning showed that 1×
10−3 yielded the best trade-off between convergence speed and 
generalization, outperforming both higher and lower values. Finally, 
varying the input window size revealed that a 40-step sequence 
length minimized the RMSE at 5.10.

Table 5 summarizes the validation performance under different 
configurations. The optimal setting—two LSTM layers with 64 units 
each, learning rate of 1× 10−3, and a 40-step input window was 
adopted for the final model.

Based on this configuration, the final LSTM architecture 
comprised two stacked LSTM layers with 64 units each. The input 

consisted of the past 30 s of data sampled at 1 Hz. The model was 
trained using the Adam optimizer with a learning rate of 1× 10−3, 
a batch size of 64, and for 100 epochs. RMSE was employed as the 
loss function.

The final model achieved a RMSE of 4.8 Pa on the test 
dataset, which is small relative to the typical ± 20 Pa fluctuation 
range. This indicates that the model captures the underlying 
furnace pressure dynamics well. Notably, the inclusion of 
wavelet denoising improved the prediction skill substantially–for 
instance, the prediction Nash–Sutcliffe efficiency rose to about 
0.82, whereas a baseline LSTM without wavelet preprocessing 
achieved only 0.43 in a comparable setting. This confirms 
that filtering out high-frequency noise components enhanced 
the LSTM’s ability to learn the meaningful pressure trends. 
The LSTM prediction is shown in Figure 11. It presents the 
one-step-ahead prediction performance of the Wavelet-LSTM 
model under historical test data, demonstrating its ability to 
accurately capture pressure fluctuations without future feedback. 
As shown in Table 6, the substantial improvement over baseline 
LSTM without wavelet preprocessing (NSE from 0.43 to 0.82) 
empirically demonstrates the added value of the wavelet–LSTM
integration.

The predicted trajectory closely follows the actual signal. 
This predictive capability supports proactive regulation within the 
reinforcement learning control framework. The prediction aligns 
well with the actual pressure trajectory for the majority of the 
period. This indicates the model’s effectiveness in forecasting 
furnace pressure dynamics, even in the presence of abrupt changes. 
The accurate prediction of upcoming pressure changes provides 
a basis for proactive control adjustments in the closed-loop
system.
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FIGURE 7
Wavelet decomposition diagram of primary air volume at the inlet of mills: (a) Mill A, (b) Mill B, (c) Mill C, (d) Mill D, (e) Mill E, (f) Mill F.
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TABLE 3  Correlation between furnace pressure and primary air flow at each coal mill inlet. Columns a5–d5 correspond to different coal mill model 
components. Weighted mean values with 95% confidence intervals are also shown.

Variables Components Weighted value

a5 d1 d2 d3 d4 d5

FP-AFLOW 0.084 0.501 0.572 0.071 −0.248 −0.376 0.322 [0.295, 0.349]

FP-BFLOW 0.074 0.129 −0.089 −0.641 −0.793 −0.659 −0.365 [0.387, 0.343]

FP-CFLOW 0.082 0.601 0.777 0.543 0.120 −0.006 0.660 [0.624, 0.695]∗∗

FP-DFLOW 0.121 0.381 0.524 0.018 −0.348 −0.295 0.271 [0.248, 0.294]

FP-EFLOW 0.099 0.479 0.596 −0.038 −0.333 −0.430 0.279 [0.255, 0.302]

FP-FFLOW −0.283 −0.116 −0.470 −0.526 −0.530 −0.393 −0.498 [0.523, 0.474]

∗∗indicates statistical significance at p < 0.01 (Welch’s t-test on weighted values).

FIGURE 8
Wavelet decomposition diagram of furnace pressure: (a) d2 decomposition, (b) d3 decomposition.

4.5 PPO-based control performance

A deep reinforcement learning agent based on PPO was 
developed to regulate furnace pressure, following the predictive 
modeling and simulation framework described in Section 3. The 
agent’s observations included current furnace pressure values along 
with recent historical patterns, extracted via wavelet decomposition. 
Control actions were defined as continuous adjustments to the 
air–fuel system, aimed at mitigating pressure deviations. The reward 
function was defined to penalize both absolute pressure deviation 
and excessive fluctuation, as follows:

Rt = −λ1 |pt − ptarget| − λ2 |pt − pt−1|

where pt denotes the furnace pressure at time step t, ptarget is 
the desired reference pressure (typically set to −100 Pa), and λ1, 
λ2 are weighting coefficients assigned to deviation and fluctuation 
penalties, respectively.

The agent was trained over 500 episodes, each simulating 
the furnace pressure regulation process under varying disturbance 
profiles. Key training hyperparameters were selected to ensure 
convergence and generalization: the discount factor was set to γ

= 0.99 to emphasize long-term performance; the PPO clipping 
parameter ϵ = 0.2 constrained policy updates to prevent instability; 
and the Adam optimizer was used with a learning rate of 1×
10−4. Both the actor and critic networks employed a two-layer 
architecture, each comprising 128 neurons per layer, with ReLU 
activation functions. Training was conducted in mini-batches of 64 
trajectories over 10 optimization epochs per PPO iteration.

The entire training process was conducted on a deep learning 
workstation equipped with four NVIDIA GeForce RTX 4090 GPUs. 
The initial pre-training of the Wavelet-LSTM prediction model 
required approximately 2 h. The subsequent training of the PPO 
agent over 500 episodes took an additional 5 h, leading to a 
total offline training time of approximately 7 h. It is important to 
emphasize that this computational cost is an offline investment. 
Once the policy network is trained, the online inference required 
to generate a control action from a state vector is computationally 
lightweight, with an execution time of less than 200 milliseconds, 
which is well within the real-time requirements of the plant’s 
control system.

The training reward trajectory is shown in Figure 12. Initially, 
the agent’s performance was poor, yielding average rewards around 
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FIGURE 9
Spectrum analysis of d2 layers for mill inlet primary air signals: (a) Mill A, (b) Mill B, (c) Mill C, (d) Mill D, (e) Mill E, (f) Mill F.

60 due to unstable control and frequent overshoots. However, the 
reward improved consistently over the first 200 episodes, indicating 
that the agent was successfully learning to reduce pressure deviation 
and control effort. After approximately 300 episodes, the reward 
curve began to plateau around 145, reflecting convergence to 
a near-optimal control policy. The steady increase and eventual 
stabilization of the reward signal confirm that the PPO agent 
was able to acquire an effective and robust strategy for regulating 
furnace pressure in a complex, disturbance-prone environment. 
Minor fluctuations in reward across episodes are attributable to 

stochastic policy exploration and varying test disturbances, but the 
overall trend demonstrates a marked improvement in closed-loop 
control capability.

To quantitatively assess the control performance of the PPO 
agent, its regulation effect was compared against a baseline scenario 
without intelligent control. In the baseline case, sudden changes 
in primary air flow or fuel feed typically led to furnace pressure 
excursions exceeding −130 Pa, with prolonged recovery times and 
pronounced oscillatory behavior. Under PPO-based control, the 
peak pressure deviation during the same disturbances was reduced 
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FIGURE 10
Spectrum analysis of d3 layers for mill inlet primary air signals: (a) Mill A, (b) Mill B, (c) Mill C, (d) Mill D, (e) Mill E, (f) Mill F.

to approximately −110 Pa, corresponding to a 15%–20% reduction 
in excursion amplitude. Moreover, the settling time—defined as 
the time taken for the pressure to return to within ± 5 Pa of the 
target—was shortened from over 28 s to under 12 s.

The proposed method reduced the standard deviation of 
furnace pressure by 42.2% (from 11.6 Pa to 6.7 Pa), highlighting 
its effectiveness in mitigating fluctuations. Statistical significance 
was assessed using a two-sample t-test, which confirmed that the 
reduction was significant at the p < 0.01 level. The 95% confidence 
interval for the pressure fluctuation reduction was estimated to 

be [39.8%, 44.5%], indicating a robust improvement with low 
uncertainty.

The cumulative control effort, measured as the total magnitude 
of control signal changes over time, was also observed to be lower, 
indicating smoother actuator behavior and less wear on the system. 
The smooth convergence curve and the reduction of fluctuation 
standard deviation by 42.2% support PPO’s practical suitability 
compared with conventional controllers.

These improvements not only enhance boiler operation 
safety and fuel–air coordination but also demonstrate that the 
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TABLE 4  Maximum amplitude and corresponding frequency of each wavelet component.

Wavelet component Frequency f (Hz) Maximum amplitude |Y|max

FP_dn2 93.1641 25.0527

FP_dn3 60.3516 24.3195

A_F_dn2 81.4453 0.51646

A_F_dn3 43.9453 0.72944

B_F_dn2 92.5781 0.11135

B_F_dn3 46.2891 0.21469

C_F_dn2 93.1641 0.72104

C_F_dn3 62.6953 0.78272

D_F_dn2 81.4453 0.32968

D_F_dn3 41.0156 0.63782

E_F_dn2 93.1641 0.27097

E_F_dn3 41.0156 0.48889

TABLE 5  Validation RMSE under different hyperparameter settings for the Wavelet-LSTM model.

LSTM layers Units per layer Learning rate Window size RMSE (Pa)

1 32 1× 10−3 30 5.42

1 64 1× 10−3 30 5.19

2 64 1× 10−3 30 5.10

2 64 5× 10−4 30 5.14

2 64 1× 10−4 30 5.18

2 64 1× 10−3 20 5.25

2 64 1× 10−3 40 5.12

2 64 1× 10−3 60 5.17

FIGURE 11
Comparison of LSTM-predicted vs actual furnace pressure over a 600-second segment.
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TABLE 6  Prediction ablation under an identical data split.

Method NSE ↑

LSTM-only 0.43

Wavelet + LSTM 0.82

reinforcement learning agent is capable of executing timely, 
informed adjustments in response to dynamic combustion 
conditions. Overall, the PPO-based control system outperformed 
traditional static control logic across all evaluated metrics, 
confirming the practical viability and performance advantage of 
intelligent, learning-based approaches for thermal power plant 
regulation.

4.6 Control optimization and comparison 
with conventional improvements

To address the abnormal furnace pressure fluctuations caused 
by AGC frequency modulation, both traditional DCS tuning 
and the proposed reinforcement learning–based strategy were 
evaluated under matched field conditions. For clarity, the term 
“wavelet-based tuning” in this study refers to a semi-heuristic 
optimization strategy guided by correlation analysis results from 
wavelet decomposition. After identifying the coal mill inlet 
(Mill C) with the highest mid-frequency correlation to furnace 
pressure fluctuations, targeted controller adjustments were made 
specifically for that path. These included refining the air–coal ratio 
curve, simplifying the air flow controller from PI to P control, 
and modifying damper coordination to improve combustion-
air response symmetry. Notably, this “wavelet-based tuning” 
approach does not represent a closed-loop, adaptive controller, but 
rather a rule-based control enhancement informed by frequency-
scale insights. It bridges the gap between static configuration 
and full intelligent control, offering a useful intermediate 
benchmark for evaluating the benefits of reinforcement 
learning.

Traditional improvements involved reparameterizing the 
air–coal ratio curve based on historical operation data, simplifying 
the air volume controller from a PI to a P control structure, and 
implementing a coordinated damper logic to separately regulate 
mixture temperature and primary airflow. While these modifications 
yielded modest improvements in pressure damping, they remained 
limited by their static nature and sensitivity to system nonlinearity 
and load disturbances.

In contrast, the Wavelet + LSTM + PPO controller 
dynamically generates air/fuel control actions based on real-
time feedback and predictive features. It continuously adapts 
its policy to minimize pressure deviation and control effort 
without requiring manual retuning, effectively generalizing 
across varying disturbance scenarios. It is worth noting that in 
practical engineering, the type of coal is usually determined 
at the design stage of the power plant and does not change 
frequently during operation. Therefore, the proposed framework 
does not require fuel type as an explicit input condition. At 
the same time, the Wavelet–LSTM–PPO structure is inherently 
adaptive to different combustion characteristics, which ensures 
that the framework can be extended to units with varying 
coal types without fundamental modification. The comparative 
performance under matched ramp episodes is presented in Table 
7, showing significant improvement with the proposed
framework.

Figure 13 illustrates the furnace pressure trajectories under 
unoptimized control, wavelet-based tuning, and the full Wavelet 
+ LSTM + PPO framework. The corresponding coal feed rate 
profiles are shown in Figure 14. As shown, the baseline scenario 
exhibited large negative pressure excursions exceeding −500 Pa and 
prolonged oscillations over 30 s. The wavelet-based tuning achieved 
partial improvement by attenuating some transient responses but 
failed to fully suppress mid-frequency fluctuations. In contrast, the 
proposed learning-based controller maintained furnace pressure 
within ± 200 Pa, significantly accelerated the return to nominal 
pressure, and exhibited much smoother regulation patterns. In 
contrast, Figure 13 illustrates the full closed-loop response of 
the system under three control strategies—unoptimized baseline, 
wavelet-only tuning, and the proposed Wavelet–LSTM–PPO 

FIGURE 12
Training reward curve of the PPO agent over 500 episodes.
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TABLE 7  Control performance under matched ramp episodes.

Method σFP (Pa) ↓ tsettle (s) ↓

Unoptimized conventional 11.6 28

Wavelet + LSTM + PPO 6.7 12

framework—highlighting the performance of the real-time 
regulation module.

Moreover, Figure 14 shows that the RL-based controller 
produced more stable and coordinated adjustments to the coal feed 
rate, avoiding the abrupt spikes commonly observed in traditional 
logic. This joint optimization of process dynamics and actuator 
smoothness underscores the controller’s ability to deliver resilient 
and efficient regulation in the face of frequent AGC-driven load 
fluctuations.

5 Conclusion

This paper proposes an integrated predictive reinforcement 
learning control framework to suppress furnace pressure 
fluctuations in coal-fired power units operating under rapid load 
ramping conditions. The approach combines wavelet-based signal 

decomposition, LSTM-based pressure prediction, and PPO-based 
reinforcement learning control to form a closed-loop regulation 
architecture.

Wavelet decomposition is first applied to extract multi-
resolution features from furnace pressure and air flow signals. 
A weighted correlation coefficient identifies the most relevant 
air dampers associated with pressure instability. These features 
are used to train an LSTM model that predicts short-term 
pressure evolution with high accuracy (RMSE = 4.8 Pa; NSE = 
0.82), enabling the control agent to make decisions based on 
both current measurements and a forecast of future pressure 
trajectories, allowing it to preemptively counteract anticipated
disturbances.

A PPO agent is then trained to adjust damper positions using 
both real-time and predicted signals, optimizing a reward function 
that penalizes pressure deviation and oscillation. Compared to the 
original control logic, the proposed method reduces the standard 
deviation of pressure fluctuations from 11.6 Pa to 6.7 Pa, a 42.2% 
improvement—and shortens the settling time from 28 s to 12 s 
under load ramping.

The proposed framework addresses urgent operational 
demands in modern coal-fired power systems, where high 
ramp-rate requirements increasingly challenge combustion 
stability. The method offers a scalable, interpretable, and data-
driven solution for adaptive regulation under such dynamic
conditions.

FIGURE 13
Furnace pressure under three control strategies: unoptimized, wavelet-based tuning, and the proposed Wavelet + LSTM + PPO framework.

FIGURE 14
Coal feed rate under three control strategies: unoptimized, wavelet-based tuning, and the proposed Wavelet + LSTM + PPO framework.
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Future work will extend the framework to different unit types 
and broader load conditions. Incorporating variables such as O2
content or NOx levels could enable multi-objective optimization. 
Real-time deployment challenges, including inference latency and 
computational cost, will also be further explored.

Data availability statement

The raw data supporting the conclusions of this article will be 
made available by the authors, without undue reservation.

Author contributions

ZJ: Investigation, Formal Analysis, Conceptualization, Writing 
– review and editing. JS: Formal Analysis, Writing – original draft, 
Project administration, Data curation, Methodology. QH: Writing 
– review and editing, Supervision, Funding acquisition, Resources. 
XW: Investigation, Software, Writing – original draft, Visualization. 
QL: Validation, Writing – review and editing, Methodology. MZ: 
Software, Methodology, Investigation, Writing – original draft. 

Funding

The author(s) declare that financial support was received 
for the research and/or publication of this article. This research 
was funded by Inner Mongolia Power (Group) Co., Ltd. grant
number Technology Innovation [2024] No. 5.

Conflict of interest

Authors ZJ, JS, QH, XW, QL, MZ were employed by the Inner 
Mongolia Power (Group) Co., Ltd.

The authors declare that this study received funding from 
Inner Mongolia Power (Group) Co., Ltd. The funder had 
the following involvement in the study: study design, data 
collection and analysis, decision to publish, and preparation of the
manuscript.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures 
in this article has been generated by Frontiers with the 
support of artificial intelligence and reasonable efforts have 
been made to ensure accuracy, including review by the 
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References

Agbleze, S., Shadle, L. J., and Lima, F. V. (2024). Dynamic modeling and 
simulation of a subcritical coal-fired power plant under load-following 
conditions. Ind. Eng. Chem. Res. 63 (25), 11044–11056. doi:10.1021/acs.iecr.
4c00494

Al-Dahidi, S., Al-Dahidi, A., and Abualigah, L. (2025). A review of artificial 
intelligence impacting statistical process monitoring and future directions. arXiv preprint 
arXiv:2501.00010.

Bo, L., Liu, X., and Qin, S. (2008). Hybrid wavelet-morphology-emd analysis and its 
application. J. Vib. Shock 27 (5), 1–4. doi:10.13465/j.cnki.jvs.2008.05.040

Chong, X., Li, L., Zhang, C., Zhao, Y., Kraft, M., and Wang, X. (2025). AI-enhanced 
multi-scale smart systems for decarbonization in the chemical industry: a pathway 
to sustainable and efficient production. Technology Review for Carbon Neutrality. 
doi:10.26599/TRCN.2025.9550005

Duan, X., Lin, R., and Feng, Z. (2025). Spectral correlation demodulation 
analysis for fault diagnosis of planetary gearboxes. Sensors 25 (9), 2694. doi:10.3390/
s25092694

Duan, C., Lv, Y., and Wang, Y. (2021). Advances in the developments of solar cooker 
for sustainable development: a comprehensive review. Renew. Sustain. Energy Rev. 145, 
111166. doi:10.1016/j.rser.2021.111166

Guan, S., Shi, M., Wang, F., and Li, J. (2025). Power transformer fault diagnosis 
method based on multi source signal fusion and fast spectral correlation. Sci. Rep. 15 
(1), 6984. doi:10.1038/s41598-025-91428-8

Guo, T., Zhang, T., Lim, E., Lopez-Benitez, M., Ma, F., and Yu, L. (2022). A review 
of wavelet analysis and its applications: challenges and opportunities. IEEE Access 10, 
58869–58903. doi:10.1109/access.2022.3179517

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural 
Comput. 9 (8), 1735–1780. doi:10.1162/neco.1997.9.8.1735

Hou, J., Hu, W., Wang, Z., and Xi, S. (2024). Characterizing the multiscale 
knock energy of the in-cylinder pressure of compound combustion engines fueled 
with dimethyl ether. ACS Omega 9 (43), 43406–43413. doi:10.1021/acsomega.
4c04272

Illingworth, S. J., and Morgans, A. S. (2008). Adaptive control of combustion 
instabilities in annular combustors. Turbo Expo Power Land, Sea, Air 43130, 309–319. 
doi:10.1115/gt2008-50436

Karimi, A., Mišković, L., and Bonvin, D. (2004). Iterative correlation-based controller 
tuning. Int. J. Adapt. Control Signal Process 18 (8), 645–664. doi:10.1002/acs.825

Kumar, R., Kumar, S., and Mittal, A. P. (2017). Model predictive control 
system design for boiler turbine process. Int. J. Eng. Res. Appl. 7 (1), 33–38. 
doi:10.11591/ijece.v5i5.pp1054-1061

Li, J., Sun, Y., Han, J., Liu, H., Fan, J., Zhang, W., et al. (2023). Agc regulation capability 
prediction and optimization of coal-fired thermal power plants. Front. Energy Res. 11, 
1275243. doi:10.3389/fenrg.2023.1275243

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015). 
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Liu, Z., Liu, S., Shi, R., Wang, J., Xie, M., and Zheng, S. (2020). A control strategy of 
the air flow rate of coal-fired utility boilers based on the load demand. ACS Omega 5 
(48), 31199–31208. doi:10.1021/acsomega.0c04585

Ma, T., Li, M.-J., and Xu, P. (2024). Thermal energy storage capacity 
configuration and energy distribution scheme for a 1000MWe s–CO2 coal-fired 
power plant to realize high-efficiency full-load adjustability. Energy 292, 130310. 
doi:10.1016/j.energy.2024.130950

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. 
(2015). Human-level control through deep reinforcement learning. Nature 518 (7540), 
529–533. doi:10.1038/nature14236

Frontiers in Energy Research 17 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1658163
https://doi.org/10.1021/acs.iecr.4c00494
https://doi.org/10.1021/acs.iecr.4c00494
https://doi.org/10.13465/j.cnki.jvs.2008.05.040
https://doi.org/10.26599/TRCN.2025.9550005
https://doi.org/10.3390/ s25092694
https://doi.org/10.3390/ s25092694
https://doi.org/10.1016/j.rser.2021.111166
https://doi.org/10.1038/s41598-025-91428-8
https://doi.org/10.1109/access.2022.3179517
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1021/acsomega.4c04272
https://doi.org/10.1021/acsomega.4c04272
https://doi.org/10.1115/gt2008-50436
https://doi.org/10.1002/acs.825
https://doi.org/10.11591/ijece.v5i5.pp1054-1061
https://doi.org/10.3389/fenrg.2023.1275243
https://doi.org/10.1021/acsomega.0c04585
https://doi.org/10.1016/j.energy.2024.130950
https://doi.org/10.1038/nature14236
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Jing et al. 10.3389/fenrg.2025.1658163

NDRC (2025). Notice on issuing the implementation plan for the upgrading 
action of the new generation of coal power (2025–2027) (ndrc energy [2025] no. 
363). Available online at:  https://www.ndrc.gov.cn/xxgk/zcfb/tz/202504/t20250414_
1397185.html (Accessed June 07, 2025).

Nussbaumer, H. J., and Nussbaumer, H. J. (1982). The fast fourier transform. Springer. 
doi:10.1007/978-3-642-81897-4_4

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal 
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Vonesch, C., Blu, T., and Unser, M. (2007). Generalized daubechies wavelet families. 
IEEE Trans. Signal Process. 55 (9), 4415–4429. doi:10.1109/tsp.2007.896255

Wang, P., Meng, H., Liu, J., Liu, J., Li, J., and Liu, J. (2015). The application 
of switching control to boiler-turbine coordination in marine steam power plant. 
Open Cybernetics and Systemics Journal 9, 3036–3044. doi:10.2174/1874110X01
509013036

Wang, X., Zhang, X., Yang, C., Li, H., and Liu, Y. (2022). Analysis of 
pressure fluctuation characteristics of central swirl combustors based on 
empirical mode decomposition. Sensors 22 (15), 5615. doi:10.3390/s22
155615

Wu, Z., Jiang, C., Conde, M., Deng, B., and Chen, J. (2019). Hybrid improved 
empirical mode decomposition and BP neural network model for the prediction 
of sea surface temperature. Ocean Sci. 15 (2), 349–360. doi:10.5194/os-15-
349-2019

Zeng, Y., Zhang, L., and Li, G. (2024). Fault diagnosis of thermal power units 
using wavelet packet energy and improved probabilistic neural network. Automation 
Application 65 (6), 102–104. doi:10.19769/j.zdhy.2024.06.035

Zhang, J., Yang, D., Zhang, H., Wang, Y., and Zhou, B. (2023). Dynamic event-
based tracking control of boiler turbine systems with guaranteed performance. 
IEEE Transactions on Automation Science and Engineering. doi:10.1109/TASE.2023.
3294187

Frontiers in Energy Research 18 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1658163
https://www.ndrc.gov.cn/xxgk/zcfb/tz/202504/t20250414_1397185.html
https://www.ndrc.gov.cn/xxgk/zcfb/tz/202504/t20250414_1397185.html
https://doi.org/10.1007/978-3-642-81897-4\string_4
https://doi.org/10.1109/tsp.2007.896255
https://doi.org/10.2174/1874110X01509013036
https://doi.org/10.2174/1874110X01509013036
https://doi.org/10.3390/s22155615
https://doi.org/10.3390/s22155615
https://doi.org/10.5194/os-15-349-2019
https://doi.org/10.5194/os-15-349-2019
https://doi.org/10.19769/j.zdhy.2024.06.035
https://doi.org/10.1109/TASE.2023.3294187
https://doi.org/10.1109/TASE.2023.3294187
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

	Highlights
	1 Introduction
	2 Methodology
	2.1 Notation and assumptions
	2.2 Wavelet preprocessing
	2.3 Band-limited correlation and composition
	2.4 Bridge to sequence modeling

	3 Intelligent prediction and adaptive control framework
	3.1 Baseline control strategy
	3.2 Rationale for algorithmic choices
	3.3 Wavelet–LSTM-based prediction of furnace pressure dynamics
	3.4 Adaptive combustion control based on PPO with Wavelet–LSTM feature modeling

	4 Case study analysis
	4.1 Evaluation metrics
	4.2 Signal decomposition and correlation calculation
	4.3 Spectrum analysis
	4.4 Wavelet-LSTM pressure prediction results
	4.5 PPO-based control performance
	4.6 Control optimization and comparison with conventional improvements

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

