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Rapid load ramping in coal-fired power plants with high renewable energy
integration often induces severe furnace pressure fluctuations, threatening
combustion stability and operational safety. To address this challenge, we
propose a predictive and adaptive control framework that integrates wavelet
transform, long short-term memory (LSTM) neural networks, and proximal
policy optimization (PPO) reinforcement learning. Wavelet-based multi-
resolution decomposition is employed to extract key features from pressure
signals, while an LSTM model forecasts short-term pressure dynamics. Based
on predictive feedback, a PPO agent learns an optimal control strategy to
regulate secondary air and fuel inputs in real time. Validation on a 600 MW
supercritical boiler unit demonstrates a 42.2% reduction in the standard
deviation of furnace pressure fluctuations, improved stability under variable
load conditions, and smoother actuator response compared with conventional
control schemes. These results highlight the potential of combining deep
learning and reinforcement learning techniques to enhance combustion stability
and support secure, flexible operation of coal-fired power plants under high
renewable energy penetration.

combustion stability, intelligent control, proximal policy optimization, reinforcement
learning, wavelet transform

Highlights

o Wavelet-LSTM-PPO predicts and regulates pressure
e Fluctuation reduced by 42.2% under load ramping

1 Introduction

With the rapid integration of renewable energy into the power grid and the deepening
push toward low-carbon transition, coal-fired power plants are increasingly required
to deliver flexible, fast-response capabilities while maintaining combustion stability and
operational reliability (Li et al., 2023; Agbleze et al., 2024; Ma et al., 2024). In response
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to this need, the Chinese governments “Upgrading Action Plan
for New Generation Coal Power (2025-2027)” mandates that
existing coal units achieve load ramping rates between 0.8% and
2.5% of rated power per minute, while newly built pulverized
coal units should reach 2.2% and 1.0% per minute in the 50%
and 30%-50% load ranges, respectively. Demonstration units
representing the next-generation of coal power are required to
reach even higher ramping rates—4.0% and 2.0% per minute,
respectively (NDR C, 2025).

Such aggressive ramping performance targets, though essential
for integrating renewables and maintaining grid stability, have
posed new technical challenges to boiler combustion control.
These challenges are particularly marked in once-through, wall-
fired boilers, where the interplay of fuel, air, and draft systems
must respond rapidly to fluctuating load demands. In such boilers,
pulverized coal carried by the primary air is injected into the furnace
burners, where ignition and flame stabilization occur. The secondary
air system and the draft fans jointly regulate excess air and furnace
pressure, thereby maintaining a stable negative pressure that ensures
safe gas flow and prevents backflow. The principal control elements
include the coal feeders, the primary- and secondary-air dampers,
and the induced-draft and forced-draft fans. Their coordinated
operation governs the air-fuel ratio and furnace pressure balance,
which are directly related to combustion stability.

Rapid changes in load setpoints often outpace the response
capabilities of conventional control systems, leading to mismatches
between fuel supply and air flow. This uncoordinated adjustment
results in abrupt and unpredictable fluctuations in furnace
pressure, especially in units operating under secondary air-fuel
regulation schemes. These pressure deviations can cause combustion
instability, frequent alarms, actuator fatigue, and even safety
risks such as positive pressure backflow (Liu et al, 2020;
Duan et al.,, 2025; Wang et al., 2022).

As illustrated in Figure 1, Automatic Generation Control (AGC)
signals often exhibit a triangle-wave shape during high-frequency
modulation periods, especially under rapid ramping scenarios.
These commands drive continuous up-down oscillations in unit
load, causing corresponding mismatches in combustion air and fuel
coordination. This dynamic mismatch is one of the primary causes
of furnace pressure fluctuation in flexible coal-fired units.

Recent research has explored signal-based diagnostic
approaches for identifying and analyzing the causes of furnace
pressure instability. Methods such as wavelet decomposition
(Al-Dahidi et al, 2025; Karimi et al, 2004), empirical mode
decomposition (Kumar et al., 2017), and frequency-domain analysis
(Hou et al, 2024; Wu et al, 2019) have been used to capture
multiscale features and oscillation patterns in furnace dynamics.
Correlation analysis between pressure and process variables—such
as coal feed, primary air, and damper positions—has helped
identify the key actuators driving instability (Bo et al., 2008;
Zeng et al., 2024; Illingworth and Morgans, 2008). However, two
major gaps remain: (1) existing diagnostic tools offer limited
interpretability under dynamic ramping conditions, and (2) their
outputs are rarely integrated into closed-loop control for real-time
mitigation.

Meanwhile, artificial intelligence techniques—particularly deep
learning and reinforcement learning (RL)—have shown promise for
modeling and control of nonlinear, time-varying industrial systems.
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Long short-term memory (LSTM) networks have proven effective in
capturing temporal dependencies and predicting dynamic behavior
in power plant environments (Chong et al., 2025; Guan et al., 2025).
Proximal Policy Optimization (PPO), an RL algorithm with stable
convergence properties, has demonstrated success in continuous
control tasks such as process optimization and energy dispatch
(Zhang et al., 2023; Duan et al., 2021).

However, controlling furnace pressure during rapid load
changes presents a multifaceted challenge that demands a
carefully integrated solution. The process is characterized by:
(1) nonstationary signal behavior driven by high-frequency
AGC commands, making traditional frequency-domain analysis
insufficient; (2) complex nonlinear temporal dynamics involving
combustion delays and system inertia, which require predictive
capabilities; and (3) stringent operational safety constraints that
necessitate a stable and robust control policy.

An integrated framework is proposed to meet these distinct
challenges, organized as a decomposition-prediction—-optimization
(1)  Wavelet
time—frequency analysis

pipeline. decomposition was adopted for
of nonstationary signals, enabling
reliable feature extraction from fluctuating furnace pressure.
(2) LSTM networks were selected for data-efficient modeling of
industrial temporal processes. (3) PPO was employed for its stable
convergence, a critical property in safety-critical control. The
contribution of this work lies in the problem-driven integration
of these components and its validation on real-world operational
data. The key contributions are as follows.

1. A wavelet-based signal decomposition and weighted
correlation analysis method was developed to identify
dominant influencing factors and isolate the most responsive
coal-mill inlet;

2. A multi-resolution LSTM prediction model was constructed
to forecast furnace pressure trajectories under ramping
conditions;

3. A PPO-based reinforcement learning controller was designed
to dynamically adjust secondary-air and coal dampers based
on both predicted and real-time observations, minimizing
a compound reward function that emphasizes fluctuation
suppression and smooth control;

4. The full system was validated using real-world operational
data from a 600 MW supercritical boiler unit, achieving
more than 40% reduction in pressure-fluctuation amplitude
and improved settling time compared with traditional

control logic.

The remainder of the paper is organized as follows. Section 2
introduces the signal decomposition and correlation analysis
methods. Section 3 presents the Wavelet-LSTM-PPO control
framework. Section 4 discusses the experimental setup and
performance evaluation. Section 5 concludes with key findings and
recommendations for future deployment.

2 Methodology

This section presents a four-step procedure that links
signal preprocessing with sequence modeling. (1) Notation
and assumptions—sampling, windowing, and learning targets
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https://doi.org/10.3389/fenrg.2025.1658163
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

Jing et al.

—— Actual Power

10.3389/fenrg.2025.1658163

S00r — acc
2
: 400
£ 300
[e]
a

200

0 10 20 30 40 50 60
Time (min)

FIGURE 1

Typical AGC load command signal exhibiting rapid triangle-wave pattern. Such signals induce frequent and abrupt adjustments in fuel and air systems,

increasing the risk of pressure instability.

were specified; (2) Wavelet preprocessing—an orthonormal
multiresolution analysis was applied and the selected approximation
and detail (3) Band-limited

correlation—per-band correlations were computed and the mixing

components were retained;
weight between the second and third detail bands was determined
by a coarse grid search on the Fisher z scale; and (4) Bridge to
sequence modeling—the retained channels were stacked into the
input tensor used by the LSTM in Section 3. This structure separates
foundational definitions from analysis and clarifies the progression

between steps.

2.1 Notation and assumptions

Let x, denote a discrete-time signal sampled at interval At
(1 Hz unless otherwise noted). Over analysis windows of length w,
bounded second moments and weak stationarity were assumed after
detrending and normalization. Pairwise correlations were evaluated
within each window between furnace pressure and process variables
(e.g., primary air at mill inlets). The level-J approximation is denoted
by a; and the detail components by d; (j=1,...,]). All correlations
were computed on normalized signals to avoid scale confounding.

2.2 Wavelet preprocessing

Wavelet
method that overcomes the single-resolution limitation of

decomposition is a time-frequency analysis
the short-time Fourier transform, featuring multiresolution
characteristics (Guo et al, 2022). Tt represents local signal
information jointly in time and frequency. For furnace pressure
signals, local and instantaneous abnormal fluctuations are
often more critical to monitor than the overall trend. Wavelet
decomposition can separate mid-frequency components in time,
reducing interference from high- or low-frequency content in
subsequent correlation analysis.

This paper employs the Daubechies (dbN) wavelet (Vonesch etal.,
2007), a discrete orthogonal wavelet defined by low-pass filter
coefficients {h;} via the two-scale relations. Here, N denotes the
number of vanishing moments; y and ¢ denote the mother wavelet

and scaling function, respectively; and their compact support
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lengths are 2N — 1. The dbN wavelet has no closed-form expression
(except for N =1), though the squared magnitude of the transfer
function associated with {4;} has an explicit form.

The decomposition uses the pyramid algorithm of
multiresolution analysis, as shown in Equation 1:
@O =Y o0 O+ Y Y fyow, ). 6)

keZ Jj<] keZ

In practice, wavelet decomposition proceeds layer by layer,
recursively applying J —j stages.

2.3 Band-limited correlation and
composition

The correlation coefficient p quantifies the linear association
between two discretized signals derived from continuous
measurements sampled over M data points at a fixed frequency.
It is widely used to evaluate temporal alignment and statistical
dependency between signals in power-system diagnostics. The

normalized formulation is given by:
M
Y xRy ()

P =
VDL e T g2

In Equation 2, p > 0 indicates a positive linear relationship, p < 0

(2)

anegative one, and |p| = 1 denotes perfect linear dependence. A zero
value implies no linear correlation, while intermediate magnitudes
of |p| reflect varying strengths of association.

In this study, Equation 2 was used to compute correlation
coefficients between furnace pressure and the primary-air volume
at each coal-mill inlet at the same wavelet decomposition level,
enabling a scale-invariant assessment of inter-signal dependency.
Unlike methods such as (Wang et al, 2015), which segment
signals into broad low-, mid-, and high-frequency bands, this
work computes correlation directly at each decomposition scale.
Correlations from adjacent intermediate scales were then combined
using a weighted approach to enhance robustness. This analysis
allows the identification of the primary-air channel most strongly
associated with furnace pressure fluctuations.
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TABLE 1 Per-weight performance for mixing d, and d; on the
Fisher-z scale.

w J(w) (Mean Fisher-z) ’ tanh (J(w))
0.1 0.220 0217
0.2 0.265 0.259
03 0.305 0.296
0.4 0.340 0.327
0.5 0.375 0.358
0.6 0.360 0.345
0.7 0.335 0.323
0.8 0.300 0.291
0.9 0.260 0.254

To avoid bias from directly averaging correlation coefficients,
we operate on the Fisher-z scale: z;; = atanh(p; ). To merge the two
adjacent mid-band components d, and d;, we evaluate a coarse grid
w€{0.1,0.2,...,0.9} and define the per-window composite

s
z,(w)=wzy  + (1 - W)z, J(w) = é ZZS (W),
s=1

selecting  w" = argmax, J(w) and reporting p_ .. (W)=
tanh (z,(w)) in subsequent analyses.

To further validate the results obtained from the weighted-
correlation analysis, frequency-domain analysis was performed.
Specifically, the fast Fourier transform (Nussbaumer and
Nussbaumer, 1982) was applied to the mid-frequency components
of the decomposed signals to extract dominant frequencies and their
corresponding amplitudes. The amplitude ratios of paired signals
at matched frequencies were also computed. This dual-domain
analysis—combining time-domain correlation and frequency-
domain spectral features—provides a more comprehensive
characterization of coupling strength and supports cross-validation
of the correlation-based findings.

The d,/d; mixing proportion was therefore determined by the
grid search on the Fisher-z scale described above. Table 1 lists {J(w)};
the grid search identified an optimal weight of w* = 0.5, which
applies equal 0.5 weighting to the d, and d; components. This

weighting was used in all subsequent analyses.

2.4 Bridge to sequence modeling

From the retained multiresolution channels C = {a;} U {dj: jeJh

an input tensor X, .., € R"™C! was constructed by stacking

t-wt
normalized samples over a window of length w. The tensor X,_,,;.;
was then provided to the LSTM in Section 3 to estimate y,,, =

So(X;_,,11.1) under a predefined loss and dataset split.
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FIGURE 2
Overview of the predictive reinforcement-learning control framework

combining Wavelet—LSTM prediction and PPO-based policy
optimization.

3 Intelligent prediction and adaptive
control framework

To mitigate furnace pressure fluctuations under AGC frequency
modulation,an integrated framework was proposed that combines
multiresolution signal analysis, short-horizon prediction, and real-
time control optimization. The system is modular, mirroring the
flow from low-level signal perception to high-level decision making.

Specifically, the framework comprises three components: (1)
a wavelet-based decomposition module that extracts multiscale
features from combustion-related signals; (2) an LSTM network
that forecasts near-future pressure trajectories from the decomposed
features; and (3) a reinforcement-learning (RL) control agent based
on PPO that adjusts air and fuel dampers using both real-time and
predictive inputs. These components are integrated into a closed-
loop control structure. An overview is shown in Figure 2.

As illustrated in Figure 2, the pipeline aligns with plant
operations: wavelet decomposition isolates frequency components
that reflect combustion-draft dynamics; the LSTM anticipates
short-term pressure excursions; and the PPO agent adaptively
tunes air and fuel dampers using current and predicted states.

frontiersin.org
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FIGURE 3
Block diagram of a dual-input, dual-output control system for a
medium-speed mill.

This correspondence improves interpretability and facilitates
deployment.

3.1 Baseline control strategy

The direct-fired medium-speed mill is a dual-input, dual-output
system. The inputs are the coal feed rate and the primary-air flow
rate at the mill inlet, while the outputs are the coal flow at the
mill outlet and the outlet temperature of the air-powder mixture.
A simplified control block diagram is shown in Figure 3. At the
mill inlet, the primary-air flow is formed by mixing hot and cold
primary air, actuated by the hot- and cold-primary-air dampers,
respectively.

The conventional control structure is shown in Figure 4. Both
loops operate as independent single-loop controllers. The setpoint
for the inlet primary-air flow is generated from the coal feeder’s
feed rate via a function generator. To reduce loop interaction,
the hot-air damper control signal is introduced as a feedforward
term into the cold-air damper loop, thereby achieving effective
decoupling.

As indicated in Figure 4, F(x) denotes the function generator;
G,,(s) the hot-air damper controller; W),(s) the process model
relating the hot-air actuation to the inlet primary-air flow; Hj,(s)
the corresponding flow-measurement feedback; G_.(s) the cold-air
damper controller; W.(s) the process model relating the cold-
air actuation to the outlet air-powder temperature; and H,(s) the
corresponding temperature-measurement feedback.

In operation, the inlet primary-air flow setpoint is scheduled by
the air-to-coal ratio as a function of the coal feed rate. The primary-
air flow loop provides fast response, whereas the outlet air-powder
temperature loop is slower. Because the outlet temperature also
reflects the appropriateness of the inlet primary-air flow, the
optimized strategy prioritizes the outlet temperature as the primary
regulation objective, with the flow loop serving as a follow-up
(secondary) adjustment.

High-frequency disturbances in flow measurement can,
however, drive the hot-air flow loop into low-frequency oscillations
when integral action is used. To avoid this adverse effect on
combustion stability, the hot-air controller is implemented as a
proportional controller.

Frontiers in Energy Research

05

10.3389/fenrg.2025.1658163

3.2 Rationale for algorithmic choices

The architectural choices are grounded in the problem
characteristics: nonstationary signals, nonlinear temporal dynamics
with delays and inertia, and safety-critical constraints. Wavelet
decomposition provides localized time-frequency analysis that
separates long-term load trends from short-term draft fluctuations
in nonstationary industrial signals, whereas empirical mode
decomposition is prone to mode mixing under disturbed
conditions and FFT-based methods lack temporal localization. For
sequential modeling, LSTM and GRU are established recurrent
architectures for learning long-range dependencies in dynamic
processes; Transformer-based models show promise for time-series
forecasting but often require large training corpora and offer limited
interpretability for safety-critical control. For policy optimization,
PPO’s clipped surrogate objective enables stable, sample-efficient
updates, which is crucial in constrained industrial loops, while
alternatives such as SAC and TD3, although strong in exploration,
typically demand more sensitive hyperparameter tuning and may
reduce practical robustness.

The resulting pipeline performs multiscale feature extraction via
wavelet decomposition, short-horizon forecasting with an LSTM,
and PPO-based policy optimization in a closed loop (see Figure 2);
details are provided in the following subsections.

3.3 Wavelet—LSTM-based prediction of
furnace pressure dynamics

To enable accurate forecasting of furnace pressure dynamics,
this study adopts a hybrid modeling approach that integrates
wavelet decomposition for multiscale feature extraction with LSTM
networks for sequence prediction.

First, raw time-series signals such as furnace pressure and
primary-air flow from each coal mill are subjected to a discrete
wavelet transform, producing low-frequency approximation
coeflicients and high-frequency detail components (e.g., d;-d;).
These decomposed signals capture both long-term trends and
transient behaviors critical for identifying early signs of instability.

The resulting multiresolution feature set forms the input to an
LSTM network, which is designed to learn temporal dependencies
in the data and forecast the future evolution of furnace pressure.
LSTMs are gated recurrent architectures that capture long-range
temporal dependencies by regulating information flow through
input, forget, and output gates (Hochreiter and Schmidhuber, 1997).
The internal operations of an LSTM unit at time step ¢ are governed
by Equations 3-8.

fi=0(Wpx,+ Ush,, +by) 3)
iy=0(Wix,+ Uh,_ +b;) (4)
0o,=a(W,x,+Uyh,_,+b,) (5)
& =tanh(W.x,+Uh,_ +b,) (6)
¢ =f,0c,+i,0¢ (7)
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Control block diagram of cold- and hot-air dampers.

TABLE 2 LSTM model inputs and output.

Type Description ’ Details/Examples

Input Historical time-series data of wavelet-decomposed Time-frequency bands from wavelet decomposition
furnace-pressure signals (e.g., as, d,~ds)

Input Historical time-series data of wavelet-decomposed Time-frequency bands from wavelet decomposition
primary-air flow signals from all relevant coal mills (e.g., a5, d,—ds for each mill)
(e.g., Mills A-F)

Output Predicted furnace-pressure trajectory For a defined future time window (e.g., next N time

steps)

h, = 0,0 tanh(c,) (8)

Here, x, € R" denotes the input vector at time ¢, containing wavelet-
decomposed features such as primary-air flow and historical furnace
pressure. The variable i, € R™ is the hidden-state output, ¢, € R™
is the internal memory cell, and W,,U,,b. are the corresponding
trainable weight matrices and bias vectors. The sigmoid function is
denoted by o(-), and © represents element-wise multiplication.

This predictive model provides a high-resolution estimate of
the furnace-pressure trajectory over a future time window, offering
critical foresight to downstream control modules. A summary of the
model inputs and outputs is presented in Table 2.

All variables, including furnace pressure and mill-inlet primary-
air flows, were obtained simultaneously from the same boiler unit,
ensuring fully aligned time scales and inherently integrated data.

3.4 Adaptive combustion control based on
PPO with Wavelet—LSTM feature modeling

In complex boiler systems characterized by strong coupling,
nonlinear dynamics, and variable operating conditions, traditional
control strategies often fall short of achieving both adaptability and
robustness. Reinforcement learning offers a promising alternative by
enabling agents to learn optimal control policies through interaction
with the environment, thereby handling model uncertainties, time
delays, and multivariable dependencies.
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Among RL algorithms for continuous control tasks, Deep Q-
Network (DQN) (Mnih et al., 2015) is constrained to discrete
action spaces and is therefore unsuitable for fine-grained regulation
of variables such as primary-air flow. Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al., 2015), while applicable to
continuous domains, is prone to convergence instability and
hyperparameter sensitivity. By contrast, PPO (Schulman et al., 2017)
demonstrates improved sample efficiency, greater training stability,
and practical robustness, making it well suited to high-dimensional,
continuous-control scenarios in power-plant applications.

PPO is a widely adopted reinforcement-learning algorithm
based on the policy-gradient framework. In PPO, the policy is
modeled by a parameterized function my(a,ls,), which represents the
probability of taking action 4, given state s, at time t. The parameters
0 typically correspond to the weights of a neural network known
as the actor.

The learning objective is to maximize the expected cumulative
reward (expected return), as shown in Equation 9:

3

¢
Z Y
where 7 denotes a trajectory of states, actions, and rewards; r, is the

J(6)=E,_,, ©

t=0

reward at time f; and y € (0,1] is the discount factor controlling the
trade-off between immediate and future rewards.

PPO is typically implemented in an actor—critic architecture.
The actor generates actions from the current policy, while the
critic estimates the value function V7(s,) to evaluate policy
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quality. The temporal-difference-based advantage function is
defined as Equation 10:

A=+ yV(s) = V(s), (10)
where A, represents the estimated advantage of action a, in state s,.

To ensure training stability, PPO introduces a clipped surrogate
objective defined in Equation 11:

L (0) = E, [min (r, (0) A, clip(r,(6),1 -6 1+)4,)],  (11)
wherer,(0) = % is the probability ratio between the new policy
oo \FelSt

and the old policy used to generate the current batch of data. The
clipping operation (bounded by hyperparameter ¢) prevents large
deviations between successive policies and helps maintain a stable
training trajectory.

The final PPO loss combines policy learning, value estimation,
and entropy regularization to encourage both performance and
exploration. The value-function loss term is defined in Equation 12:

LV = (Vy(s) - V,)". (12)
Based on Equation 12, the overall objective is
as shown in Equation 13:
LPPO = [CMP ¢ LVF 4 ¢, S [mp], (13)
where LU constrains policy updates, LV is the squared error

between the predicted value and the empirical return, and S[m]
denotes the policy entropy used to encourage sufficient exploration.
The coefficients ¢, and ¢, control the relative importance
of value fitting and entropy regularization. This formulation
enables conservative yet efficient policy updates, making PPO
suitable for adaptive combustion regulation in thermal power
systems.

The reward signal R, is defined to encourage pressure stability
and penalize excessive oscillation. Specifically, at each time step t,

Rt = _Allpt_ptargetl _/\2|pt_pt71|’

where p, is the furnace pressure at time t, p,, ... is the nominal
pressure (e.g., —100 Pa), and A;, A, are penalty weights for
absolute deviation and temporal fluctuation, respectively. Beyond
its mathematical form, the reward design is consistent with
operational experience: operators emphasize maintaining adequate
draft margins to ensure safe gas flow and reducing rapid oscillations
to mitigate actuator fatigue. These considerations motivated the
choice of the nominal setpoint and the inclusion of fluctuation
penalties.

In this study, we set A, = 1.0 and A, = 0.1 based on preliminary
experiments to balance steady-state accuracy and transient
damping. The reward structure incentivizes the agent to minimize
both pressure error and fluctuation amplitude.

In the proposed control framework, a PPO-based agent is
integrated with a multiscale Wavelet-LSTM network, where the
wavelet transform decomposes key combustion signals into low-
and high-frequency components. These components are processed
by separate LSTM branches to capture slow-varying trends and fast
transient features. The extracted representations are then fused and
passed to both the actor and critic to generate control actions and
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state-value estimates. This architecture enables informed decisions
under dynamic conditions, adaptively tuning control parameters
to suppress furnace pressure fluctuations and enhance overall
stability.

A schematic of the Wavelet-LSTM-enhanced PPO framework
is presented in Figure 5, illustrating the modular structure from
combustion-state perception to action generation, including
wavelet-based feature decomposition, multiscale temporal
modeling, actor—critic inference, and training via PPO loss
optimization. The PPO agent receives a state vector comprising
both historical and predicted variables. Specifically, the LSTM
module outputs a short-horizon forecast of furnace pressure p,, ,,
which is concatenated with current measurements—including
p,» coal feed rate, and air-valve positions—to form the PPO
state input. This structure enables the agent to anticipate
upcoming disturbances and plan regulation actions accordingly.
To coordinate prediction and control, the forecasted furnace
pressure is included in the agent’s observation at each
decision step.

Augmenting the agent’s state with the LSTM forecast enables
a proactive control strategy in which actions are adjusted
based on anticipated disturbances, improving both stability and
responsiveness. The LSTM model is pre-trained and fixed during
PPO policy training to avoid instability due to co-optimization. The

overall data flow is illustrated in Figure 5.

4 Case study analysis

The data originate from a 600 MW supercritical once-through
boiler operating under sliding-pressure conditions (model HG-
2115/25.4-YM12). The furnace adopts a single-chamber layout with
opposed firing on front and rear walls, a single reheat system,
balanced-draft ventilation, outdoor arrangement, dry bottom ash
removal, an all-steel frame, a fully suspended structure, and a 7-type
configuration.

The pulverizing system employs six medium-speed roller mills
(HP/dyn type). Each mill has a guaranteed output of 61.1t/h
and a maximum output of 67.9 t/h, with a maximum ventilation
capacity of 98 t/h.

4.1 Evaluation metrics

Prediction performance was evaluated primarily by the root-
mean-square error (RMSE):

where y, and j, denote the observed and predicted furnace pressure
at time ¢, and N is the number of samples. For comparability across
operating ranges, we also report the Nash-Sutcliffe efficiency (NSE),

ZLOQ—%)Z
Zil()}t _)7)2 ,

which measures skill relative to the mean baseline j.

NSE=1-
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Control performance was assessed by the standard deviation of
furnace pressure fluctuations,

Opp =

and the settling time ¢

seule Tequired to re-enter the +5 Pa band under

matched ramp episodes.

4.2 Signal decomposition and correlation
calculation

The furnace pressure signal was decomposed using the
db4 wavelet at five levels, where denotes the low-frequency
approximation and d; denotes the high-frequency detail. The results
are shown in Figure 6.

The inlet air flow of each pulverizer during the same operational
period was processed using the identical wavelet decomposition
method (db4 wavelet with 5-level decomposition). The resultant
decomposition profiles are displayed in Figure 7.

The correlation coeflicients were calculated between the furnace
pressure signals and the primary air flow signals at corresponding
decomposition levels for each mill.

The selection of d2 and d3 components from the five-
level wavelet decomposition is based on two complementary
considerations: frequency localization and empirical energy
distribution. At a sampling rate of 1 Hz, d2 and d3 correspond
approximately to the 0.25-0.5Hz and 0.125-0.25Hz bands,
respectively. These bands were observed to contain dominant energy
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modes in both furnace pressure and primary air flow signals during
AGC-induced load swings, as revealed by their power spectral
density profiles (see Figure 9). Physically, this frequency range
reflects the response time scale of air-fuel mismatches due to
control lag or actuator delay. In contrast, d1 typically captures high-
frequency noise or short-duration spikes, while d4 and d5 reflect
slower drift or load ramps that are less correlated with transient
pressure instability.

The
As shown in Table 3, the primary air flow of Mill C exhibits the

calculation results are presented in  Table 3.
highest correlation with furnace pressure in the mid-frequency

band, followed by Mill E

4.3 Spectrum analysis

The spectrum analysis diagrams of furnace pressure signal are
shown in Figure 8 and primary air volume at the inlet of each coal
mill at the same time period d2 and d3 decomposition layer signals
are shown in Figures 9, 10.

The maximum amplitude and its corresponding frequency in
the spectrum analysis diagrams are summarized in the table below.
Asshown in Table 4, the frequencies corresponding to the maximum
amplitudes of the d2 and d3 decomposition layer signals of the
primary air volume at the inlet of mill C are very close to those of the
corresponding decomposition layer signals of the furnace pressure.
The amplitude proportions are 2.88% and 3.22%, respectively.
This further validates the correctness of the correlation coeflicient
weighted merging algorithm.
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Wavelet decomposition diagram of furnace pressure.

4.4 Wavelet-LSTM pressure prediction
results

The dataset was chronologically split into training (60%),
validation (20%), and testing (20%) subsets to prevent information
leakage and ensure reliable model evaluation. All hyperparameter
tuning was conducted exclusively on the training and validation sets
to maintain the integrity of the final test results.

To develop the Wavelet-LSTM model for one-step-ahead
furnace pressure prediction, a structured hyperparameter search
was performed. The key hyperparameters considered included the
number of LSTM layers (1 or 2), the number of units per layer
(32 or 64), the learning rate (1 x 1072, 1x1073, 1x107™), and the
input window length (20, 30, 40, 60 time steps; with a sampling
interval of 1 s).

Hyperparameters were tuned sequentially via a grid search,
where each parameter was varied individually while keeping others
fixed. First, increasing the number of hidden units from 32 to
64 in a single-layer LSTM reduced the validation RMSE from
5.42 to 5.19. Adding a second LSTM layer further decreased
the RMSE to 5.12. Then, learning rate tuning showed that 1x
107 yielded the best trade-off between convergence speed and
generalization, outperforming both higher and lower values. Finally,
varying the input window size revealed that a 40-step sequence
length minimized the RMSE at 5.10.

Table 5 summarizes the validation performance under different
configurations. The optimal setting—two LSTM layers with 64 units
each, learning rate of 1x107%, and a 40-step input window was
adopted for the final model.

Based on this configuration, the final LSTM architecture
comprised two stacked LSTM layers with 64 units each. The input
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consisted of the past 30 s of data sampled at 1 Hz. The model was
trained using the Adam optimizer with a learning rate of 1 x 107,
a batch size of 64, and for 100 epochs. RMSE was employed as the
loss function.

The final model achieved a RMSE of 4.8 Pa on the test
dataset, which is small relative to the typical + 20 Pa fluctuation
range. This indicates that the model captures the underlying
furnace pressure dynamics well. Notably, the inclusion of
wavelet denoising improved the prediction skill substantially—for
instance, the prediction Nash-Sutcliffe efficiency rose to about
0.82, whereas a baseline LSTM without wavelet preprocessing
achieved only 0.43 in a comparable setting. This confirms
that filtering out high-frequency noise components enhanced
the LSTM’s ability to learn the meaningful pressure trends.
The LSTM prediction is shown in Figure 11. It presents the
one-step-ahead prediction performance of the Wavelet-LSTM
model under historical test data, demonstrating its ability to
accurately capture pressure fluctuations without future feedback.
As shown in Table 6, the substantial improvement over baseline
LSTM without wavelet preprocessing (NSE from 0.43 to 0.82)
empirically demonstrates the added value of the wavelet-LSTM
integration.

The predicted trajectory closely follows the actual signal.
This predictive capability supports proactive regulation within the
reinforcement learning control framework. The prediction aligns
well with the actual pressure trajectory for the majority of the
period. This indicates the models effectiveness in forecasting
furnace pressure dynamics, even in the presence of abrupt changes.
The accurate prediction of upcoming pressure changes provides
a basis for proactive control adjustments in the closed-loop
system.
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Wavelet decomposition diagram of primary air volume at the inlet of mills: (a) Mill A, (b) Mill B, (c) Mill C, (d) Mill D, (e) Mill E, (f) Mill F.
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TABLE 3 Correlation between furnace pressure and primary air flow at each coal mill inlet. Columns a5-d5 correspond to different coal mill model
components. Weighted mean values with 95% confidence intervals are also shown.

Variables

dl d2 d3

Components

d4 d5

Weighted value

FP-AFLOW 0.084 0.501 0.572 0.071 -0.248 -0.376 0.322 [0.295, 0.349]
FP-BFLOW 0.074 0.129 —-0.089 —0.641 -0.793 —-0.659 —0.365 [0.387, 0.343]
FP-CFLOW 0.082 0.601 0.777 0.543 0.120 —-0.006 0.660 [0.624, 0.695]**
FP-DFLOW 0.121 0.381 0.524 0.018 —-0.348 -0.295 0.271 [0.248, 0.294]
FP-EFLOW 0.099 0.479 0.596 —0.038 —-0.333 —-0.430 0.279 [0.255, 0.302]
FP-FFLOW -0.283 -0.116 -0.470 -0.526 -0.530 -0.393 —0.498 [0.523, 0.474]
“*indicates statistical significance at p < 0.01 (Welch’s t-test on weighted values).
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Wavelet decomposition diagram of furnace pressure: (a) d2 decomposition, (b) d3 decomposition.

4.5 PPO-based control performance

A deep reinforcement learning agent based on PPO was
developed to regulate furnace pressure, following the predictive
modeling and simulation framework described in Section 3. The
agent’s observations included current furnace pressure values along
with recent historical patterns, extracted via wavelet decomposition.
Control actions were defined as continuous adjustments to the
air-fuel system, aimed at mitigating pressure deviations. The reward
function was defined to penalize both absolute pressure deviation
and excessive fluctuation, as follows:

R, = _Al |Pt _ptarget| _/12 |Pt _Pt—1|

where p, denotes the furnace pressure at time step £, py .. is
the desired reference pressure (typically set to —100 Pa), and A,,
A, are weighting coefficients assigned to deviation and fluctuation
penalties, respectively.

The agent was trained over 500 episodes, each simulating
the furnace pressure regulation process under varying disturbance
profiles. Key training hyperparameters were selected to ensure
convergence and generalization: the discount factor was set to y
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= 0.99 to emphasize long-term performance; the PPO clipping
parameter ¢ = 0.2 constrained policy updates to prevent instability;
and the Adam optimizer was used with a learning rate of 1x
107*. Both the actor and critic networks employed a two-layer
architecture, each comprising 128 neurons per layer, with ReLU
activation functions. Training was conducted in mini-batches of 64
trajectories over 10 optimization epochs per PPO iteration.

The entire training process was conducted on a deep learning
workstation equipped with four NVIDIA GeForce RTX 4090 GPUs.
The initial pre-training of the Wavelet-LSTM prediction model
required approximately 2 h. The subsequent training of the PPO
agent over 500 episodes took an additional 5h, leading to a
total offline training time of approximately 7 h. It is important to
emphasize that this computational cost is an offline investment.
Once the policy network is trained, the online inference required
to generate a control action from a state vector is computationally
lightweight, with an execution time of less than 200 milliseconds,
which is well within the real-time requirements of the plants
control system.

The training reward trajectory is shown in Figure 12. Initially,
the agent’s performance was poor, yielding average rewards around

frontiersin.org
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FIGURE 9
Spectrum analysis of d2 layers for mill inlet primary air signals: (a) Mill A, (b) Mill B, (c) Mill C, (d) Mill D, (e) Mill E, (f) Mill F.

60 due to unstable control and frequent overshoots. However, the
reward improved consistently over the first 200 episodes, indicating
that the agent was successfully learning to reduce pressure deviation
and control effort. After approximately 300 episodes, the reward
curve began to plateau around 145, reflecting convergence to
a near-optimal control policy. The steady increase and eventual
stabilization of the reward signal confirm that the PPO agent
was able to acquire an effective and robust strategy for regulating
furnace pressure in a complex, disturbance-prone environment.
Minor fluctuations in reward across episodes are attributable to
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stochastic policy exploration and varying test disturbances, but the
overall trend demonstrates a marked improvement in closed-loop
control capability.

To quantitatively assess the control performance of the PPO
agent, its regulation effect was compared against a baseline scenario
without intelligent control. In the baseline case, sudden changes
in primary air flow or fuel feed typically led to furnace pressure
excursions exceeding —130 Pa, with prolonged recovery times and
pronounced oscillatory behavior. Under PPO-based control, the
peak pressure deviation during the same disturbances was reduced
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to approximately —110 Pa, corresponding to a 15%-20% reduction
in excursion amplitude. Moreover, the settling time—defined as
the time taken for the pressure to return to within + 5 Pa of the
target—was shortened from over 28 s to under 12 s.

The proposed method reduced the standard deviation of
furnace pressure by 42.2% (from 11.6 Pa to 6.7 Pa), highlighting
its effectiveness in mitigating fluctuations. Statistical significance
was assessed using a two-sample t-test, which confirmed that the
reduction was significant at the p < 0.01 level. The 95% confidence
interval for the pressure fluctuation reduction was estimated to
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be [39.8%, 44.5%], indicating a robust improvement with low
uncertainty.

The cumulative control effort, measured as the total magnitude
of control signal changes over time, was also observed to be lower,
indicating smoother actuator behavior and less wear on the system.
The smooth convergence curve and the reduction of fluctuation
standard deviation by 42.2% support PPO’s practical suitability
compared with conventional controllers.

These improvements not only enhance boiler operation
safety and fuel-air coordination but also demonstrate that the
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TABLE 4 Maximum amplitude and corresponding frequency of each wavelet component.

Wavelet component

Frequency f (Hz)

10.3389/fenrg.2025.1658163

Maximum amplitude |Y] .y

FP_dn2 93.1641 25.0527
FP_dn3 60.3516 24.3195
A_F_dn2 81.4453 0.51646
A_F_dn3 43.9453 0.72944
B_F_dn2 92.5781 0.11135
B_F_dn3 46.2891 0.21469
C_F_dn2 93.1641 0.72104
C_F_dn3 62.6953 0.78272
D_F_dn2 81.4453 0.32968
D_F_dn3 41.0156 0.63782
E_F_dn2 93.1641 0.27097
E_F_dn3 41.0156 0.48889
TABLE 5 Validation RMSE under different hyperparameter settings for the Wavelet-LSTM model.
LSTM layers ‘ Units per layer Learning rate ‘ Window size RMSE (Pa)
1 32 1x107° 30 5.42
1 64 1x107° 30 5.19
2 64 1x107° 30 5.10
2 64 5x 107 30 5.14
2 64 1x107* 30 5.18
2 64 1x107° 20 5.25
2 64 1x107° 40 5.12
2 64 1x107° 60 5.17
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TABLE 6 Prediction ablation under an identical data split.

Method NSE T

LSTM-only 0.43

Wavelet + LSTM 0.82

reinforcement learning agent is capable of executing timely,
informed adjustments in response to dynamic combustion
conditions. Overall, the PPO-based control system outperformed
traditional static control logic across all evaluated metrics,
confirming the practical viability and performance advantage of
intelligent, learning-based approaches for thermal power plant
regulation.

4.6 Control optimization and comparison
with conventional improvements

To address the abnormal furnace pressure fluctuations caused
by AGC frequency modulation, both traditional DCS tuning
and the proposed reinforcement learning-based strategy were
evaluated under matched field conditions. For clarity, the term
“wavelet-based tuning” in this study refers to a semi-heuristic
optimization strategy guided by correlation analysis results from
wavelet decomposition. After identifying the coal mill inlet
(Mill C) with the highest mid-frequency correlation to furnace
pressure fluctuations, targeted controller adjustments were made
specifically for that path. These included refining the air-coal ratio
curve, simplifying the air flow controller from PI to P control,
and modifying damper coordination to improve combustion-
air response symmetry. Notably, this “wavelet-based tuning”
approach does not represent a closed-loop, adaptive controller, but
rather a rule-based control enhancement informed by frequency-
scale insights. It bridges the gap between static configuration
and full intelligent control, offering a wuseful intermediate
benchmark for evaluating the benefits of reinforcement
learning.

10.3389/fenrg.2025.1658163

Traditional improvements involved reparameterizing the
air-coal ratio curve based on historical operation data, simplifying
the air volume controller from a PI to a P control structure, and
implementing a coordinated damper logic to separately regulate
mixture temperature and primary airflow. While these modifications
yielded modest improvements in pressure damping, they remained
limited by their static nature and sensitivity to system nonlinearity
and load disturbances.
the Wavelet + LSTM + PPO controller
dynamically generates air/fuel control actions based on real-

In contrast,

time feedback and predictive features. It continuously adapts
its policy to minimize pressure deviation and control effort
without requiring manual retuning, effectively generalizing
across varying disturbance scenarios. It is worth noting that in
practical engineering, the type of coal is usually determined
at the design stage of the power plant and does not change
frequently during operation. Therefore, the proposed framework
does not require fuel type as an explicit input condition. At
the same time, the Wavelet-LSTM-PPO structure is inherently
adaptive to different combustion characteristics, which ensures
that the framework can be extended to units with varying
coal types without fundamental modification. The comparative
performance under matched ramp episodes is presented in Table
7, showing significant improvement with the proposed
framework.

Figure 13 illustrates the furnace pressure trajectories under
unoptimized control, wavelet-based tuning, and the full Wavelet
+ LSTM + PPO framework. The corresponding coal feed rate
profiles are shown in Figure 14. As shown, the baseline scenario
exhibited large negative pressure excursions exceeding —500 Pa and
prolonged oscillations over 30 s. The wavelet-based tuning achieved
partial improvement by attenuating some transient responses but
failed to fully suppress mid-frequency fluctuations. In contrast, the
proposed learning-based controller maintained furnace pressure
within + 200 Pa, significantly accelerated the return to nominal
pressure, and exhibited much smoother regulation patterns. In
contrast, Figure 13 illustrates the full closed-loop response of
the system under three control strategies—unoptimized baseline,

wavelet-only tuning, and the proposed Wavelet-LSTM-PPO
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FIGURE 12
Training reward curve of the PPO agent over 500 episodes.
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TABLE 7 Control performance under matched ramp episodes.

Method OFp (Pa) .J, tsettle (S) l
Unoptimized conventional 11.6 28
Wavelet + LSTM + PPO 6.7 12

framework—highlighting the performance of the real-time
regulation module.

Moreover, Figure 14 shows that the RL-based controller
produced more stable and coordinated adjustments to the coal feed
rate, avoiding the abrupt spikes commonly observed in traditional
logic. This joint optimization of process dynamics and actuator
smoothness underscores the controller’s ability to deliver resilient
and efficient regulation in the face of frequent AGC-driven load
fluctuations.

5 Conclusion

This paper proposes an integrated predictive reinforcement
learning control framework to suppress
fluctuations in coal-fired power units operating under rapid load

furnace pressure

ramping conditions. The approach combines wavelet-based signal

10.3389/fenrg.2025.1658163

decomposition, LSTM-based pressure prediction, and PPO-based
reinforcement learning control to form a closed-loop regulation
architecture.

Wavelet decomposition is first applied to extract multi-
resolution features from furnace pressure and air flow signals.
A weighted correlation coeflicient identifies the most relevant
air dampers associated with pressure instability. These features
are used to train an LSTM model that predicts short-term
pressure evolution with high accuracy (RMSE = 4.8 Pa; NSE =
0.82), enabling the control agent to make decisions based on
both current measurements and a forecast of future pressure
trajectories, allowing it to preemptively counteract anticipated
disturbances.

A PPO agent is then trained to adjust damper positions using
both real-time and predicted signals, optimizing a reward function
that penalizes pressure deviation and oscillation. Compared to the
original control logic, the proposed method reduces the standard
deviation of pressure fluctuations from 11.6 Pa to 6.7 Pa, a 42.2%
improvement—and shortens the settling time from 28s to 12s
under load ramping.

The proposed framework addresses urgent operational
demands in modern coal-fired power systems, where high
ramp-rate requirements increasingly challenge combustion
stability. The method offers a scalable, interpretable, and data-
driven solution for adaptive regulation under such dynamic
conditions.
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Furnace pressure under three control strategies: unoptimized, wavelet-based tuning, and the proposed Wavelet + LSTM + PPO framework.
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Coal feed rate under three control strategies: unoptimized, wavelet-based tuning, and the proposed Wavelet + LSTM + PPO framework.
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Future work will extend the framework to different unit types
and broader load conditions. Incorporating variables such as O,
content or NO, levels could enable multi-objective optimization.
Real-time deployment challenges, including inference latency and
computational cost, will also be further explored.
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