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The integration of high-penetration distributed renewable energy sources into
new power systems introduces significant challenges, particularly frequent
reverse power flows that threaten substation security. To address this
issue, this paper proposes a novel safety assessment method based on a
system dynamics (SD) framework. This approach uniquely emphasizes the
critical roles of electrical interconnections among substation equipment and
the fluctuations in distributed power output. The methodology involves
analyzing operational characteristics to establish equipment correlations,
developing a comprehensive fault probability function for each equipment by
integrating multi-dimensional monitoring data and fault propagation factors,
and constructing a system dynamics model using an adjacency matrix to
represent operational relationships. The effectiveness of the proposed method
is validated through a case study on a regional substation. Results demonstrate
its capability to dynamically and accurately evaluate both equipment-level and
system-wide safety status under reverse power flow conditions, providing a
robust tool for enhancing the security and resilience of modern power systems.

new power system, fault probability, adjacency matrix, distributed power supply, system
dynamics mode

1 Introduction

Under the “Dual Carbon” strategic goals, the traditional power system is rapidly
transitioning towards a new type of power system characterized by a high penetration of
renewable energy sources and power electronic devices. Within this context, substations,
serving as critical hubs of the power grid, are experiencing increasingly complex operating
environments. They face new challenges such as uncertain power flow directions and
bidirectional fault propagation, which impose higher demands on safety assessment
methodologies (Yan, 2025).
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Current research addresses these challenges primarily from two
perspectives. Regarding power system security assessment with
high renewable integration, numerous studies have focused on
the distribution network or system level. For instance, (Du et al.,
2022), employed a Markov model to analyze overload risks in
distribution networks with high photovoltaic penetration. Ge et al.
(2020) and Lin et al. (2021) established probabilistic assessment
frameworks and long term load security assessment models,
respectively, based on distributed PV Beta probability models
and time varying load characteristics. Recently, Yu et al. (2024)
proposed a risk assessment index for reverse overload in distribution
networks using a combination of entropy weight and analytic
hierarchy process, demonstrating attention to new problems in
the new power system. However, these methods predominantly
concentrate on load security analysis at the system level and
often lack granular analysis within the substation, particularly
overlooking the mutual influences between key internal equipment.
Furthermore, Zhang et al. (2021) took a more comprehensive
approach by integrating equipment’s own state, environmental
factors, and power supply connectivity for substation safety
assessment, yet their work did not account for the critical impact
of bidirectional power flow inherent in new power systems.

At the equipment level within substations, data driven
assessment methods have become mainstream with the proliferation
of monitoring technologies. Early research assessed substation
reliability by establishing time varying equipment failure rate models
(Mitchurechart and Chaitusaney, 2013; Duan et al., 2011). To
accurately evaluate the status of individual equipment, scholars have
developed a variety of assessment methods. Early research primarily
focused on intelligent evaluation techniques based on uncertainty
theory, such as multi-modal data fusion (Yang, et al, 2025),
the integration of fuzzy cloud models with D-S evidence theory
(Huang, etal., 2025), and variable-weight grey cloud models (Du and
Sun, 2020). Subsequent work (Wei, et al., 2023; Wang, et al., 2023)
further emphasized the importance of integrating multi-source
data for the health assessment of primary equipment, reflecting a
trend toward data-driven approaches and information integration
in the field. In recent years, deep learning techniques, including
support vector machines (Fang, et al., 2020) and long short-
term memory networks (Dai, et al., 2018), have been increasingly
adopted, promoting the transition of equipment state assessment
toward intelligentization. The research frontier of substation safety
assessment is gradually shifting from single-equipment evaluation
to multi-equipment coordination and multi-source data fusion.
However, existing methods remain predominantly concentrated on
system-level topological analysis or in-depth characterization of
individual equipment, leaving the comprehensive safety assessment
problem—which involves dynamic inter-equipment correlations
and coupled operational states—insufficiently addressed.

Existing methods still suffer from two main shortcomings:
Firstly, they fail to dynamically couple the key characteristic
of uncertainty in power flow direction—driven by renewable
energy fluctuations in the new power system—with the
electrical connection relationships of equipment within the
substation. Secondly, there is a lack of an assessment framework
capable of quantifying the risk propagation effects arising from
functional coupling between equipment at an integrated, system
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wide level. Table 1 presents a comparison between the proposed
method and prior studies.

To address these research gaps, this study proposes a dynamic
security risk assessment method for substations that accounts
for both power flow direction and equipment interdependencies.
System Dynamics (SD) is effective in analyzing nonlinear causal
relationships among multiple factors (Liu, et al., 2022; Peng, et al.,
2023). Therefore, this paper introduces the SD method to solve
the aforementioned problems. The structure of this paper is
organized as follows: Section 2 presents the construction process
of equipment interconnection relationships. Section 3 details
the development of a security assessment model for substation
equipment. Section 4 describes the formulation of a system level
security assessment model for the substation system. Section 5
validates the effectiveness of the proposed method through a case
study. Finally, Section 6 concludes the paper and discusses potential
directions for future research.

The core innovations of the proposed method are: @ the
introduction of bidirectional power flow operating scenarios to
accurately reflect system characteristics under high renewable
energy penetration; @ the construction of an intra substation
equipment association network model to quantify the risk
conduction impact of key equipment (e.g., transformers, circuit
breakers) failures on other equipment via electrical connections;
and ® the combination of dynamic power flow scenarios with the
equipment association network to realize dynamic assessment of
the overall substation risk.

2 Analysis of substation equipment
connectivity under high penetration of
distributed renewable energy

The high penetration of distributed renewable energy introduces
uncertainty in the current direction of the substation equipment.
Therefore it is necessary to determine both the power supply
connectivity status of equipment and the direction of the current
flow to accurately identify the operational topology of the substation.

2.1 Equipment power connectivity

In contrast to the substation operation in traditional power
system, the integration of distributed photovoltaic (PV) necessitates
that equipment operation status considers not only consider the
power supply connectivity of the equipment but also the direction
of the power flow. This dual consideration enables a more precise
determination of both equipment connectivity within the substation
and the prevailing power flow directions.

The power supply connectivity status of device
j denoted (Equation 1) Con, is calculated as:
1, PinlLi;»U,,#0
COl’lj _ Join?> Sjsin> ¥ jin (1)
0, otherwise
Here, P; 1 i and Ujn represent the incoming active power,

current and voltage of the device j, respectively. If none of these
values are zero, the device is supplied with normal power, and
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TABLE 1 Comparative analysis of the proposed method and prior studies.

Comparison dimension System/distribution
network-level studies

(

10.3389/fenrg.2025.1645357

Equipment-level studies
(e.g.,

This study (2025)
)

Core perspective System/distribution level risks (e.g.,

overload, load security)

Health state and failure assessment of
individual equipment (e.g.,
transformers)

Dynamic risk assessment of substations
considering power flow direction

Distribution feeders, areas, or the
overall system

Assessment target

Individual primary equipment within a
substation

Multi-equipment system and
interdependency network within a
substation

Key technology Probabilistic models, risk assessment

indices, combined weighting methods

Multi-source data fusion, uncertainty Dynamic power flow scenarios,
theory (e.g., fuzzy sets, cloud models),

deep learning (SVM, LSTM)

equipment interdependency network,
risk propagation algorithm

Considers power flow direction Yes (addressed in some studies, e.g.,

reverse power flow)

No (focuses on intrinsic equipment
status)

Yes (Core element, dynamic scenarios)

Considers equipment interdependency No (focus on system level phenomena)

or limited to system topology

No (focus on in-depth characterization
of individual equipment)

Yes (Electrical connection and
functional coupling within the
substation)

Assessment scale System/distribution network level

Equipment/component level Substation system level (From

equipment to the whole system)

Conj = 1. Otherwise, Conj =0, and the condition of upstream device
is checked to assess whether it is intact.

The direction of current flow in device j, denoted (Equation
2) dir_tre, , is to determine whether there is a reverse current by
determining the sign of this device current values.

-1 <0

<~

2

dir_tre, ;=
;>0
dir_tre, ; is the discriminator of the current direction of the device
J»dir_tre; ; = — 1 indicates reverse flow, while dir_tre, ; = 1 indicates
forward flow.

2.2 Equipment connection status

Based on both equipment power connectivity and current
direction, the study by Yang et al. (2021) proposed an analytical
method to sequentially enumerate the failures of primary side
substation equipment. They determined the extent of failure
propagation based on the topology diagram of the electrical
connections and the switching devices configuration. Given the
low probability of simultaneous failures in multiple devices, only
single device faults are considered in this analysis. If a device failure
is isolated and does not affect others, the failure probabilities of
remaining equipment remain unchanged. However, If equipment
failure or other causes result in a power outage that affects the
operation of downstream equipment, it is necessary to determine the
affected equipment based on the substation topology relationship
diagram and increase the probability of failure of the affected
equipment.

As an illustrative example, consider a 110 kV substation whose
main equipment wiring diagram is shown in Figure 1.
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The four major equipment types: transformers, busbars,
cables, and circuit breakers, are abstracted as nodes. And the
adjacency matrix (Hu, 2021) of the substation’s main wiring is
constructed based on the connectivity relationships within the
substation under different operating conditions, thereby capturing
the influence of each equipment’s failure on others.

The adjacency matrix changes in real time with the operating
state of the substation and substation equipment, defined
as R in follow Equation3. R is an upper triangular matrix
when the current flowing is the positive direction, and R is
a lower triangular matrix when the current is sent in the
reverse direction.

' T Tin
1 T 5}

R(t) = ! 3)
T "o Tun

The element r,, in the adjacency matrix R represents the
association relationship from nodes x to y. In a substation, r,, =1
if there is a power flow from node x to node y, and 0 otherwise,
As shown in Equation 4.

1, x—y

r (4)
v otherwise

0,

The core function of a substation is voltage transformation, and

the prerequisite for voltage transformation is to ensure that the path
between the incoming cables and the load outgoing cables remains
connected. However, these points are usually not directly linked (i.e.,
ry = 0). As shown in Equation 5, then the reachability matrix D is
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FIGURE 1

Primary equipment wiring diagram of a 110 kV substation.
derived to observe the connection of node x and node y through the
rest of the nodes.

Probability of
- 2 q
D=R+R°+---+R" (5) Grid eq'ulpment Probability of
. failure for failure of
. . T operation —| o . M ailure o

The reachability matrix D through the self-multiplication of data multidimensio neighboring

neighboring matrices to obtain. In the reachability matrix, d,., takes nal electrical equipment Fault
Y variables propagation
the values of the following equation. factors
>, x=y . Probability of
dxy = (6) Equipment equipment Probability of Combined
0, x=py status data it Qi failureofa || probability of
‘ ) multidimensio — | Single piece of equipment

In Equation 6, dxy = 0 means that node x and node y can still not Ambient - equipment failure
be connected through other nodes, d,,, > 1 means that node x and meteorologi electrical
node y can reach node y along the tidal flow through other node x. cal data variables

Thus, the reachability matrix allows for determination of the

FIGURE 2

electrical connection between the incoming cable and the load point,
confirming whether the substation’s primary electrical path remains
intact under varying conditions.

3 Construction of failure probability
function for substation equipment

of
substations, safety assessment indicators are established based on

To perform a multidimensional safety assessment
multidimensional substation monitoring data. Furthermore, failure
probability functions for individual equipment are constructed
using multidimensional monitoring indicators. The overall process
for single equipment safety assessment is illustrated in Figure 2.
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Equipment safety assessment flowchart.

Multidimensional monitoring indicators, including grid
operation parameters, equipment status data, and ambient
meteorological information, are selected to characterize equipment
status. The electrical variable dimension of the equipment
failure probability function is constructed based on electrical
operational indicators; while the non-electrical variable dimension
of the equipment failure probability function is established
using equipment condition and ambient meteorological data.

Furthermore, the influence of failures in adjacent equipment
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is incorporated to develop a comprehensive failure probability
function for individual equipment. This integrated model enables
real-time risk assessment and supports proactive protection of
equipment safety.

3.1 Construction of probability functions
for single device failures

The primary current-carrying equipment in substations mainly
includes cable lines, transformers, busbars, circuit breakers, and
other related components. Accordingly, this study focuses on
the safety status assessment of transformers, cable lines, and
circuit breakers. From the perspective of both internal and
external influencing factors, electrical variables and non electrical
variables representing the operational status of power system and
equipment are key indicators of potential failures. These factors
are interdependent, and anomalies in any of them warrant close
attention (Xie and Xu, 2024). To capture this complexity, a series
model is developed for individual equipment, integrating multi
dimensional electrical and non-electrical variables into a unified
failure probability function. Additionally, the model incorporates
fault propagation probability between adjacent devices, resulting in
a comprehensive estimation of overall equipment failure probability.

3.1.1 Transformer failure probability function

Failure records over a 5 year period from a province under
jurisdiction indicate that the primary causes of oil immersed
transformer failures include user related factors (59.2%), inherent
equipment aging (20.5%), and external foreign object interference
(11.0%), among others (Wang H. et al., 2020). Root cause analysis
reveals that transformer failures predominantly stem from overload
conditions and internal aging. Taking these factors into account, the
failure probability function of the j transformer at time ¢, denoted at
p;,’t, is formulated as follow in Equation 7.

£y =1-(1-pe)(1-ps57) @)

Here, pe;)'t and ps;”t represent the failure probability components
derived from multidimensional electrical variables and non
electrical variables, respectively. The detailed computation is

described below.

3.1.1.1 Construction of equipment failure probability
function based on multidimensional electrical variables

The first step involves calculating the equipment load factor
RLj(t) defined as Equation 8:

Snet,i()

RL(f) = x 100% (8)

ej

Where Sy, ;(#) denotes the net active load of device j at moment
t,and S; is the actual operating capacity of device j.

According to  relevant transformer  loading

standards00 2022;

National Standardization Administration, 2024), a transformer is

power
(National Standardization Administration,

considered to be operating normally when the load factor is less

than or equal to 80%. The transformer load factor between 80%
and 100% indicates a heavy load condition, while the load factor
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exceeding 100% reflects an overload condition. Specifically, when
the overload is 10%, the transformer can operate continuously for up
to 180 min; at 20% overload, the permissible continuous operation
time decreases to 150 min (Yu et al., 2024). These standards imply
that both the magnitude and duration of overload significantly
impact the severity of operational stress on the transformer. The
higher the transformer load factor and the longer the cumulative
over limit time, the more serious the heavy overload problem is.

To quantitatively describe the severity of a heavy load condition,
the area under the curve of the load factor exceeding the rated
limit over time is considered. The integral of the transformer load
ratio exceeding the limit and the cumulative exceeding the limit
time is synthesized to describe the severity of heavy overload of the
transformer in two dimensions, denoted as D, (RL,.,).

0,RL,, <RL}

D, (RLtr,t) = )

b
J (RL,(t) - RL},)dt,else

Where a is the time when the transformer load factor starts to
exceed the threshold, and b is the current time. RL,,(f) represents the
transformer load factor at time ¢, while RL",, is the upper threshold
value of the transformer load factor, which is taken as 0.8.

When the PV increases causing reverse power flow, the
transformer load factor may increase and even exceed the
limit. However, Equation 9 alone fails to accurately characterize the
overload condition when the trend reverses.

To address this, formulated analogously to the forward overload
index, a reverse heavy load severity index D_(RL,,,) is proposed,
with parameter definitions consistent with Equations 9, 10.

0,RL,, > -RL},

D_(RL,,) = (10)

b
J (RL,(f) + RL:)d, else
a

The relationship between the risk consequence and the
overload severity is often nonlinear. The risk consequence
typically exhibits exponential growth with increasing severity. To
reflect this characteristic, a transformer heavy overload severity
index is introduced using a utility function with risk preference
characteristics, as suggested in (Kang and Kim, 2006). This function,
denoted as g(RL,.,) as shown in Equation 11, increases more
rapidly as the severity increases, effectively reflecting the exponential
increase in failure probability.

eD(RLw) -1

e—1

g(RLtr,t) = 11)

In addition to overload severity, voltage fluctuations on
the high voltage (HV) side of the transformer also impact
equipment reliability. The voltage safety assessment index )Leuj’,; is
defined as Equation 12:

ate
U — U;',t

ate
Ui

ate
Uiy > UJ' :

Aeu;; = (12)

ate
0 U < Ujr‘t

Here, u,,, is the RMS voltage of the transformer during the
cycle containing moment ¢, and U;‘;w is the rated voltage of the
equipment j.
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According to the heavy overload severity index of the
transformer and the variation of the operating voltage, the
modified exponential function is used to react to the cumulative
damage effect, and the probability function of equipment failure
considering the multidimensional electrical variables is given in the
following (Equation 13).

pef=1- exp(— Z (w'r-g(RL,,,)+wir -AeujS)At) (13)
teQT

Where w' and w are weighting coefficients corresponding to

the impact of overload severity and voltage variation, respectively,

with w" +w" = 1. QT is the set of all sampled time points between

the taken moments and t moments.

3.1.1.2 Construction of equipment failure probability
function based on multidimensional non electrical

variables
In addition to electrical variables, non electrical factors

particularly environmental conditions—also play a significant role
in equipment safety assessment. Different types of extreme weather
events impact power equipment through distinct mechanisms. For
example, under prolonged high temperature conditions prevalent in
southern China, excessive transformer hot spot temperatures can
significantly shorten insulation life and accelerate equipment aging.
Therefore, this section focuses on modeling the failure probability
function of transformers under temperature stress.

The hot spot temperature of a transformer is a key indicator of
insulation deterioration. However, due to measurement difficulties,
it is often estimated indirectly using the more accessible top
oil temperature. According to the IEC 60076 7 standard and
methodologies adopted by (Yang et al., 2019), the transformer hot
spot temperature 0y is calculated as Equation 14:

1+|RL, [*k\™
—— | +0u

1+k
Where, RL, is the transformer load ratio; A8, is the
temperature rise of transformer winding relative to the top oil

Ghst = Aehst,R : < (14)

temperature under rated power; 0, is the top oil temperature of the
transformer; k is the ratio of load loss to no load loss, which is taken
as 0.5; and m = 0.8 is the correction factor for temperature rise of
IEC standard.

According to the Arrhenius thermal aging model (Ma et al,
2025), the expected operating life (x;"t of transformer j at time ¢ is

)

Where T, =110 is the reference hot spot temperature

calculated as Equation 15:

B B

- 15
B, +273 T, +273 (15)

tr _

corresponding to a relative aging rate of 1, B=15000K is the
empirical constant, and L,,; = 180,000h is the insulation life at the
benchmark hot spot temperature.

Employing the Weibull distribution (Liu et al., 2025), the non
electrical failure rate A7}, and non electrical failure probability ps}', of
the transformer j at time ¢ are derived based on the temperature and
the operating state of the equipment life parameter a;;, as follows
(Equations 16, 17):

1r0 \ ;-1
1t
M=\ =7 (16)
o
it
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y A;;m) (17)

teQT

ps;,’t =1- exp(—

Where ! is the rated service life of transformer j, which is
set as 30 years in this study; §; is the Weibull shape parameter of
transformer j, taken as 2; At is the time step and Q7 denoted the set of
all sampled time points between the taken moments and t moments.

3.1.2 Probability functions for cable line and
busbar failures

To account for both cable line overloading and inherent aging
mechanisms, the fault probability function le’fe for cable line jat time
t is defined as Equation 18:

e =1 (1= pelre) (1= psl) s)
Where pe}f;’e and psjl.ffe are the failure probabilities of the cable

line j in the electrical dimension and non-electrical dimension at
time ¢, respectively, which are calculated as follows.

3.1.2.1 Construction of equipment failure probability
function based on multidimensional electrical variables
Cable line failure likelihood increases with current overloads,
where the relationship between failure severity and its consequences
is typically nonlinear. Specifically, more severe overloads tend to
result in exponentially greater risks. To reflect this characteristic,

a risk preferred utility based function is used to define the current
line

related failure rate Aei ¢ as Equation 19 (Kang and Kim, 2006).

0 ij,t < l}mte
: te
i1
.line _ exP( T rae | T 1
Aezj)t = pre l (19)
—_———— élse
e—
i >
1 iy > IJS

Where: i;,, is the RMS value of load current of equipment j in
the cycle at t moment, I;‘”e is the rated current of equipment j, Ij.et
is the setting value of overcurrent protection of equipment j. If the
current is sent backward, the negative value of current indicates the
reverse direction of current, then the current fault rate is as the
following equation.

In scenarios involving reverse power flow, a negative current
indicates reversed direction. In such cases, the current failure rate
is calculated as Equation 20:

H ate
0 iy > —1;
_prate_j.
it
line _ exP( T_rat > -1
Aelj,t = r-ree 1 (20)
1 else
e—
i, < —F
1 i < IJ

In addition to current stress, voltage deviations also contribute

to failure risk. The voltage related failure rate Aeu]l.i:"’ of equipment j
at the moment ¢ is expressed as Equation 21:
U — wate
ot A3
line “fﬁ] uj’t > (J;jte
/\euj, L= U;,t 21)
ate
0 uj < U
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In the formula, u;, is the RMS voltage of equipment j in the cycle

at t, and U]We is the rated operating voltage of equipment j.

Taking the cumulative damage caused by prolonged electrical
stress into account, the total electrical dimension failure
probability is modeled using a modified exponential function

as shown in Equation 22:

pejl.ft”e =1- exp(— Z (—Wf”" .Aeij’ffe - wfj"e . /leu]l.f:’e)At> (22)

teQT

line
u

line
i
the current and voltage related failure rates, respectively, and the sum

Here, w;™ and w,;"® are the weight coefficients associated with
of the two is 1. At is the time step for accumulation and Q7 represents

the evaluated time window.

3.1.2.2 Construction of equipment failure probability

function based on multidimensional non electrical

variables
According the the

lifetime of a cable line is temperature dependent and can be

to Arrhenius model, operational

expressed as formula 23:

o~ xesp(p8) @

Where oc]Z.f:‘e is the remaining operational life of cable line j at
moment f; 9}1’;‘3 is the real time operating temperature of line j,
obtained via monitoring of temperature sensors; y is a coeflicient, set
to 1,000,000; y = b/m, where b is a constant related to the properties
of the conductor material, and m is the mass of the line.

Based on the Weibull distribution, the non electrical failure
line

Ii . . ..
rate As;* and cumulative failure probability ps;

are determined by incorporating the dynamic aging effect reflected
(X}ife
ambient temperature and operating stress:

of the cable line

through as shown in Equations 24, 25, which accounts for both

lineo \ Bi~1
B [almoh
line _ T J
ASJV = line oline (24)
it it
psiye =1 —exp(— > A}f;%r) (25)
teQT

Where: ocjl.i“eo is the nominal service life of cable line j, taken as
25 years based on equipment specifications. [J’j is the Weibull shape
parameter reflecting the aging characteristics of equipment, with a
typical value of 2.5 for cable lines. At is the time interval for discrete
evaluation, and Q7 is the set of all the value moments between the
moment of the beginning of the evaluation and the moment ¢.

3.1.3 Circuit breaker failure probability function

Considering both the operational state of electrical dimensions
and non electrical dimensions of the circuit breaker, the circuit
breaker failure probability function p]b; for breaker j at time ¢ is
defined as Equation 26:

b b b
pp=1- (1 _Pej,;)(l —st,f) (26)

Where pej.’: and ps;’ 7 represent the failure probabilities attributed
to the electrical operation condition and non electrical operation
condition, respectively. These are calculated as follows.
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3.1.3.1 Construction of equipment failure probability
function based on multidimensional electrical variables

Firstly, the current induced fault rate )Leuﬁ: of the circuit breaker
based on forward and reverse currents are constructed as shown in
Equations 27, 28, respectively.

. ate \ k
lj’t B I; . ate
-br Imte lj,t > 1;
/\ezj,t = ; 27)
. ate
0 i < I

Here, I' is the rated current and k is the current stress factor,
typically ranging from 2 to 6.
When the current flows in the reverse direction, the current fault

k
i< .ate

S _Jrate
]

br .. . .
rate Aew’; is given by:

br _ <
Aezj,t =

0 i

ate _ »
_I; — lj,t

ate
It (28)

Unlike most other types of equipment, the failure probability
of circuit breaker is also affected by the number of mechanical
operations. And the operation based failure rate is given in the
following equation 29.

Aen” = N

Bt N

J

(29)

where Nj(f) is the cumulative number of operations up to time ¢ and
N;if ® is the number of mechanical operation lifetimes.

Combining the current and mechanical operations, the failure
probability in the electrical dimension of the circuit breaker is given
by the following (Equation 30).

br_ br Y b _ b b
per=1- exp< %:T(_Wi "o Aeily—w, Aenﬁ)At) (30)
te

where wf.’r and w!" are weighting coefficients, respectively, satisfying
br

w/+ wlr=1.
3.1.3.2 Construction of equipment failure probability
function based on multidimensional non-electrical

variables
The performance of SF4 gas insulated circuit breakers is highly

sensitive to gas pressure. Abnormally high pressure reduces will
reduce the insulation and arc quenching performance, accelerating
equipment aging. While excessively low pressure similarly degrades
the dielectric strength and lead to the risk of failure will also
increase. Based on the Weibull model (Wang Y. et al,, 2020), the
failure rate of SFq pressure Aspﬁ: related to the temperature is
as follows (Equation 31).

pt_PO

B
7)

where a is the pressure sensitivity coefficient, set to 2; 8 is the shape

Aspﬁ:=1+u-< (1)

parameter, which takes the value of 2 for the shape parameter of the
circuit breaker; p, is the SF gas pressure for real-time monitoring
of t, and P, is the rated pressure at the rated temperature T, = 293K,
which is 0.5 MPa.
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The Arrhenius model is used to construct the effect of
temperature on circuit breaker faults, which is calculated
as follows (Equation 32).

E 1 1
br _ a _
Astj = exp ( R < T, temp, >> (32)

/\st]lg is the failure rate due to temperature of circuit breaker. E, is
the activation energy of the material, which is generally 0.6 ~ 1.2eV.
R is Boltzmann’s constant, i.e., 8.617 x 10™°eV/K. T, is 293K, and
temp, is the real-time measured operating temperature of the circuit
breaker in Kelvin.

By combining pressure and temperature effects, the failure rate
as well as the probability of failure for the non-electrical dimension
of circuit breaker equipment can be obtained as Equations 33, 34,

Asly = Asply - st (33)
ps}j =1- exp(— Z AsﬂAt) (34)
QT

3.2 Integrated failure probability of
equipment considering fault propagation

Taking the topological connectivity of substation equipment and
the direction of the tidal current into account, the safety status of
device is influenced by the operational states of the equipment in
the direction of the source of the tidal current. The fault propagation
influence matrix W is constructed, where each element w;j quantifies
the cascade effect of the fault in equipment x on equipment y.
Higher weights are assigned to directly connected equipment based
on empirical failure data.

Taking the probability of failure of the equipment’s own
electrical non electrical dimensions as well as the equipment’s direct
interactions into account, the combined failure probability pii™ of
the equipment j is therefore formulated as Equation 35:

p;¢m=1—<1—p;iff)(l—zrg~wi,~-p:iff) o9

zelj

Where pj.elf denoted the intrinsic failure probability of device j,
i.e., it is mentioned in the above section to p;’, p}i”e, ;’”. I; is the
set of all devices flowing to device j according to the direction of
the tide, and r;; is the element of the adjacency matrix indicating
connection between device i and j. w;; is the associated weight in the
propagation matrix W.

4 Safety assessment of substation
systems under high penetration of
distributed renewable energy

4.1 Substation safety condition assessment
framework

The safety condition of the substation system is affected by a
multitude of factors. In this study, critical primary transmission
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FIGURE 3

Flowchart of substation system safety status assessment methodology.

substation equipment, along with their key influencing variables
are selected as the core indicators for safety assessment. The
specific process of substation system security status assessment is
illustrated in Figure 3.

The progress begins by analyzing real time substation monitoring
data to determine the direction of power flow and the supply status of
each device, thereby identifying the substation’s operating state. Based
on this, the internal connection topology of the equipment under
current operating conditions is analyzed to construct the equipment
connectivity matrix. Then, by integrating the connectivity relationships
and intrinsic multidimensional variables of individual devices, the
failure probability functions of single equipment are established. These
are further aggregated using a series system model to derive the
overall failure probability of the substation system, which quantitatively
reflects substation’s safety status and enables classification into safety
levels. Finally, a substation system dynamics model is developed to
evaluate the safety status of the substation under varying operational
and environmental conditions.

The substation system safety status assessment model proposed in
this paper focuses on the operational status of substation equipment,
and intuitively reacts to the safety condition of both individual devices
and substation system by real-time multidimensional monitoring data
and relationship of equipment. This method not only enables the
integrated evaluation of device level and multi-device joint safety
status but also facilitates real-time reflection of the overall substation
safety level. In doing so, it effectively addresses the challenge of
information occlusion caused by the complexity of multidimensional
data sources within substations.

4.2 Construction of failure probability
functions for substation systems based on
cascade characteristics

Substation system can be characterized as the multi component
series system, where the failure of a single component may
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FIGURE 4
Schematic diagram of the series system model.

TABLE 2 Substation safety status classification.

Security status

Failure probability p§3£7 t

Normal 0<pir <02

Attention 0.2 <p <0.4

sub,t

Abnormal 0.4 <p" <0.6

subt =

Severe Doy > 0.6

propagate and compromise the operational safety of the entire
system. Therefore, the failure probability of the substation is
modeled using a series system approach. As shown in Figure 4, the
system is divided into several interconnected subunits, and the safe
operation of the overall system requires all individual subunits to
function properly (Xie et al., 2024).

Due to the integration of distributed photovoltaic (PV) sources,
power flow directions within the substation become uncertain. As
illustrated in Figure 4, the forward power flow is represented by
black arrows, while the reverse flow is indicated by blue arrows.
Based on the connectivity and energization status of substation
components, the failure probabilities of individual devices along
each possible power path are evaluated. The comprehensive failure
probability of the substation under a given operating condition is
then calculated using the series system model. According to this
model, an increase in the number of series connected components
leads to a higher overall system failure probability.

Pan=1= TT (1-pi") (36)
jEEz,sub
Where p’'" in Equation 36 is the comprehensive failure

probability of the substation at time ¢, E, ,, represents the set of all
energized primary equipment in the operating state of the substation

at the moment f, and p{9™ denoted the integrated fault probability of

the equipment j at tim]e;tt.

In accordance with expert knowledge and industry standards,
the safety status of a substation is classified into four categories:
Normal, Attention, Abnormal, and Severe. The classification criteria

are defined as follow Table 2.

4.3 Construction of substation system
dynamics model

Given its suitability for analyzing complex, nonlinear, and large
scale systems, System Dynamics (SD) is employed in this study
to evaluate the dynamic safety status of substations. Originally
proposed by Professor J. W. Forrester, SD is an interdisciplinary
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methodology that integrates various interacting subsystems into a
unified model, enabling the analysis of how internal feedback and
interactions influence overall system behavior (Wang, 2009).

The establishment of a system dynamics model begins with the
decomposition of the research objective into multiple independent
elements, followed by the identification of causal relationships
among these components (Li et al., 2015; Wang et al., 2011).

Based on this process, the modeling process begins with the
construction of a system dynamics flow diagram for the substation,
which outlines the relationships between safety indicators,
equipment status, and system level safety. Next, the fault probability
relationship derived in previous sections are mathematically
formalized as system dynamics equations. These equations are
implemented within the Vensim software environment to construct
the complete System Dynamic safety assessment model for the
substation. Due to the extensive scale of the full system model, only
the subsystem the System Dynamics model diagrams corresponding
to transformers (Figure 5A), cable lines (Figure 5B), circuit breakers
(Figure 5C), and the overall substation system (Figure 5D) are
presented for clarity. Due to the extensive scale of the full system
model, only the subsystem the System Dynamics model diagrams
corresponding to transformers, cable lines, circuit breakers, and the
overall substation system are presented for clarity.

5 Calculus analysis
5.1 Parameters determination

The proposed methodology is based on the following
assumptions regarding the substation system:

5.1.1 Data completeness

Real-time monitoring data (e.g., current, voltage, temperature,
dissolved gas analysis) for critical equipment (e.g., main
transformers, circuit breakers, disconnectors) are assumed to be
fully and accurately available via the data bus without missing or
anomalous values.

5.1.2 Communication reliability

The communication channels between the substation
monitoring system and the assessment center are assumed to be
ideally reliable, ensuring real-time synchronization of multi-source

data with no transmission delays or packet loss.

5.1.3 Deterministic topological connectivity

The electrical topology of the substation (e.g., double-bus,
breaker-and-a-half) is assumed to be deterministic and known
during each assessment interval, with fixed electrical connections
between equipment.

5.1.4 Ideal protection system operation

Protective relays and automation devices are assumed to
operate ideally according to their designated logic and time
settings, ensuring accurate and rapid isolation of faulty components.
Cascading risks arising from secondary system failures (e.g.,
protection refusal or maloperation) are not considered in this study.
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FIGURE 5
System dynamics modeling of substation equipment and systems.

5.1.5 Simplified external grid boundary conditions

The substation is treated as a relatively independent assessment
entity. The external transmission and distribution grids are assumed
to remain stable during the assessment period, with their interaction
represented solely by the magnitude and direction of power flow at
the transformer terminals.

To validate the proposed method under these assumptions,
a case study is conducted on a substation located in a region
of China characterized by frequent bidirectional power flow
variations due to high penetration of distributed photovoltaic
(PV) generation. The substation is configured with two 110 kV
buses, four 10 kV buses, two 80 MVA oil immersed transformers,
and multiple switchgear units. Among the two transformers,
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only the load side of transformer T1 is connected to distributed
photovoltaic (PV) generation. For simplification, this study assumes
identical operational characteristics for busbar and transformers
of the same voltage level, and all switchgear devices are treated
homogeneously. The parameters of the key equipment are detailed
as follows.

The average service life of the transformer is 30 years
(approximately 262,800 h). Its maximum allowable load ratio is
set to 0.8. The ratio of load loss to no load loss under rated current
is 5:1. The temperature rise of the winding temperature for the top
oil temperature at rated power is 20 °C. The shape parameter of
transformer is taken as 2.0.

According to the IEC 60502 2 standard, the rated load current
of the cable line is 800A, with the protection overcurrent setting of
1200A. The material aging constant is 1.2 x 10*. The stress coefficient
y is 0.05. The average service lifetime is set to 25 years, while
the actual duration is set to 10 years. The shape parameter for the
cable is 2.5.

The rated current of thell0kV circuit breaker is 2000A.
The current stress coefficient is 4. The number of mechanical
lifetimes operations is 20,000. The shape parameter of its
failure probability model is set to 2. And the activation energy
for the temperature accelerated aging model is assumed to
be 0.8ev.

To determine the fault influence weights used in Equations 13,
22, 30, a hybrid approach combining the entropy weight
method and the ordinal priority approach (OPA) is employed.
This integrated method balances subjective expert judgment
with objective data driven analysis. Detailed derivation of the
methodology can be found in the referenced literature (Xie et al.,
2021) and will not be repeated here. The final fault influence
weight factors derived using this approach are summarized
in Table 3.

During normal operation of the substation, the node topology
of the equipment in the station is shown in Figure 6. Based
on the sequential node numbering from smallest to largest,
the corresponding adjacency matrix and the fault propagation
probability matrix are constructed.

In this study, faults in adjacent equipment are assumed
to have a stronger mutual influence, thus, the weight of fault
propagation between neighboring equipment are assigned higher
values. According to the value of the reachable matrix, the value of
the fault propagation probability matrix is derived, as expressed by
the following Equation 37.

0.4, d,, =
Wy =401, 1<d,, <3 (37)
0, dy=0Ud,>3

Based on the aforementioned parameter configuration,
the proposed method was implemented and evaluated on
a computer with the following specifications. Windows 10
Operating System; Intel Core i7-8565U CPU @ 1.8 GHz; and
8 GB RAM. All algorithms were developed using Python
3.10 with scientific computing libraries such as NumPy and
Pandas, alongside Vensim PLE x64 for system dynamics
modeling.

A 24-h operational cycle was simulated for the case study, with a
time step of 15 min, resulting in a total of 96 evaluation time points.
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TABLE 3 Table of values of fault influence factors.

Equipment type

Failure impact factor 1

10.3389/fenrg.2025.1645357

Failure impact factor 2

Transformers w=0.76 wi=0.24
Cable routes and busbars Wﬁ""e =0.68 whne = .32
Circuit breaker Wi =0.85 wl'=0.15

FIGURE 6
Substation node diagram.

The simulation incorporated intra-day load variations and power
flow fluctuations caused by distributed photovoltaic generation to
assess the dynamic security state. The total computational time for
the complete simulation was approximately 1.8s, corresponding
to an average of about 0.02s per time point. The specific
computational results are presented as follows. These computation
times demonstrate that the proposed system dynamics-based
assessment method achieves second level overall assessment and
millisecond level real-time evaluation on a standard personal
computing platform. The computational time is significantly shorter
than the data sampling interval, ensuring the system can consistently
complete assessments using the latest data. This performance
fulfills the requirements for real-time evaluation and provides a
solid foundation for the online and quasi-real-time application of
the method.

5.2 Analysis of substation safety status
under normal power flow conditions
For the forward tidal current case, the substation equipment

connectivity is analyzed to obtain the corresponding adjacency
matrix R,. Due to the large number of nodes, only the adjacency
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matrices elements corresponding to nodes 1, 2, 5, 6,9, 12, 14, 16, 18,
and 19 are presented here as follows for brevity.

12 5 6 9 12 14 16 18 19

1 0 0 0 0 0 0 0 0 O O
2 0 0 00OO OO O OPD
5 10 00 0 00 0 00O
6 010 0 0 0 O0OOTP O
R,=9 0 01 100O0O0O0TPO
12 0 00 01 0O0O0O0OTPO
14 0 00001 0 0 0O
16 0 00 00 010 000
18 0 00 0O OO 10O

19 '0 0 0 0 OO O 1 0 o

In this study, the real-time monitoring data were obtained from a
110 kV substation accessing distributed PV generation in China. The
data corresponds to a cloudy day, during which the different loads
composition connected to transformer T1 is illustrated in Figure 7.
Specifically, residential electricity consumption accounts for about
35%, administration, education, healthcare loads accounts for
approximately 20%, industrial loads accounts for about 30%,
commercial usage comprises the remaining 15%. Due to the reduced
solar irradiance under cloud cover, the PV output was relatively
low and did not result in any reverse power flow through 110 kV
substation.

Taking transformer T1 as an example, the net load curve
exhibits a typical “duck curve” (Denholm et al, 2015). The
monitoring data sampled at 15minintervals as described
above are input into the system dynamics model. Based on
the direction of the power flow and the associated fault
propagation probabilities, the failure probability of individual
equipment and the substation system are computed, as shown in
Figure 8.

In Figures 8, 9, the dotted lines represent the aggregated failure
probability of a single device and the substation, considering
the correlation between different devices. It is observed that
the comprehensive failure probability accounting for the failures
propagation among interconnected components is notably higher
than the failure probability calculated for single equipment in
isolation.

5.3 Analysis of substation safety status
under power flow reversal

On clear sunny days, sufficient photovoltaic output combined

with low midday load can result in reverse power flow within the
110 kV substation. Under such conditions, the substation equipment
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connectivity is reanalyzed to derive the reverse adjacency matrix R_,
corresponding to the forward direction adjacency matrix.

12 5 6 9 12 14 16 18 19

1 0 0 1 0 0 0 0 0 0 0
2 0 00100 0 O0 O0UDO
5 0 00 01 0 O0O0OTUDO
6 0 00 01000 O0UDO
R_=9 0 00 00100 00O
12 0 0000 010 O0UDO0
14 0 0000 0 01000
16 0 00 00 O0 0 011
18 0 00 00 0 0 0 0O

19 ‘0 0 0 0 00O O O o
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Monitoring data from a 110kV substation accessing to
distributed photovoltaic in China, recorded on a day characterized
by power flow reversal, are shown in Figure 10.

The failure probability of transformerl is presented in Figure 11.
In the right figure, T1_P represents the transformer failure probability
derived using the methodology of this paper, while T1_P1 corresponds
to the methodology where reverse overloading is not considered. The
left figure illustrates the failure probability of the electrical dimension
as well as non electrical dimension. It is evident that the failure
probability of the electrical dimension due to reverse overloading
cannot be adequately judged using only a single forward threshold.
The methodology proposed in this study enables effectively estimation
of the failure probability induced by reverse overloading conditions.
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The 24 h fault probabilities of the substation and individual
current carrying components under reverse power flow conditions
are depicted in Figure 12. The dashed line indicates the fault
probability considering the fault propagation factor among
interconnected devices.

As shown in Figures 12, 13, the failure probability of different
devices increases gradually along the direction of the current path.
Furthermore, when inter device failure correlations are accounted
for, the overall failure probability is significantly higher than the
values computed for each device in isolation. This indicates that the
proposed model can more effectively capture the compounded impact
of fault propagation, thus providing enhanced sensitivity in detecting
system vulnerabilities.

6 Conclusion and future work
6.1 Summary of findings

In this study, a System Dynamics approach is utilized to evaluate
the safety status of the substation system. The grid operational
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characteristics, the non electrical factors of the equipment and
the coupling effects between different equipment are considered.
A regional substation is selected as a case study to validate the
proposed methodology. The results demonstrate the following:

The impact of distributed renewable energy integration on
the current direction within the substation is fully taken into
account. Thus, the neighbor matrix is constructed to characterize the
interconnection of equipment. The proposed method can effectively
support safety status assessment in substation system with high
penetration of distributed energy resources.

The method addresses the limitations of traditional approaches
that assume mutual independence among equipment condition
indicators. It enables real-time safety evaluation by integrating multi
factor coupling effects of equipment itself and others. This allows
the transition from independent assessments of equipment health
status and grid operational status to a comprehensive evaluation
framework. Electrical and non-electrical failure propagation
between devices can also be captures by this framework.

Leveraging System Dynamics as a carrier, the proposed
approach extends equipment assessments to substation system safety
evaluations. It significantly enhances the real-time and effectiveness
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of substation safety status monitoring through multi departmental
data sharing.

6.2 Limitations of the study

The validation based on a single case study presents certain
limitations, primarily manifested in the following aspects:

6.2.1 Specificity of substation topology

The case substation employs a specific main electrical
(e.g., single-bus  arrangement).  Different
configurations (such as double-bus, breaker-and-a-half,
bridge schemes) directly alter the complexity of the equipment

configuration
or

interconnection network and risk propagation paths. While the
method proves effective for simpler layouts, its direct applicability
to highly complex hub substations requires further validation. For
ultra-high voltage (UHV) substations with greater equipment count
and more intricate electrical connections, the scale and complexity
of the resulting adjacency matrices and system dynamics equations
may grow significantly, potentially challenging computational
efficiency and model stability.

6.2.2 Limited representativeness of operational
characteristics and renewable penetration

The load profiles, types of distributed energy resources
(e.g, PV, wind), installed capacity, and penetration levels
in the case study region are location-specific. The intensity
and frequency of bidirectional power flow variations differ
substantially between, for instance, a substation serving primarily
commercial/industrial loads with moderate PV penetration and
one serving agricultural loads with very high wind penetration.
The range of power flow fluctuations validated in the case
study may not encompass all extreme operating scenarios. The
method’s effectiveness under more severe and frequent power
flow reversals needs testing in more diversified operational
environments.

6.2.3 Limitations regarding equipment types and
aging states

The equipment models, service years, and aging status within
the case substation are specific. The parameters and models for
equipment aging likely rely heavily on the failure history data of
the primary equipment (e.g., transformers of specific models) at
this particular site. The general applicability of the method depends
on the accuracy of its equipment aging sub-models. Applying the
method to substations with vastly different equipment portfolios
(e.g., predominantly GIS, SF6 circuit breakers) or different average
equipment ages might necessitate model adjustments and could
potentially reduce assessment accuracy.

6.3 Directions for future research

Based on the present work, several promising directions for
future research can be identified:

Model Enhancement and Physics Data Integration. While the
current model integrates multi dimensional factors including grid
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operation, equipment aging, and interdependencies, future work
could further incorporate microscopic physical failure models of
equipment (e.g., the thermal aging model of transformer insulation
paper) with data driven approaches. Introducing machine learning
techniques to adaptively calibrate key parameters within the System
Dynamics model would facilitate the development of a hybrid
“physics data” driven model. This integration would enhance
predictive accuracy and adaptability while preserving the model’s
interpretability.

Expansion of Assessment Scale and System Resilience Analysis.
This study primarily focuses on risk assessment within a single
substation. Future research could expand the assessment boundary
to encompass coordinated distribution network source load systems.
By constructing a regional “critical infrastructure interdependence
network,” it would be possible to simulate cascading failure
scenarios where substation risks propagate through transmission
and distribution lines. This approach would enable evaluating the
vulnerabilities and critical nodes of substations from a system
wide perspective, providing decision support for enhancing grid
resilience.

Development of Digital Twins and Proactive Safety Defense.
Leveraging the dynamic simulation capability of the model
established in this study, it can serve as the core computational
model embedded within a substation digital twin platform.
This would enable rolling prediction and early warning of
security status. Building upon this, developing proactive defense
strategies based on model predictions (e.g., optimizing power
flow, switching reactive power compensation devices) would shift
the paradigm from “passive assessment” to “active defense”
Furthermore, exploring its potential for participating in ancillary
service markets under electricity market environments could
unlock opportunities for coordinating security and economic
objectives.

Data availability statement

The data analyzed in this study includes critical operational
parameters, equipment topology, and fault records from a substation
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