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The integration of high-penetration distributed renewable energy sources into 
new power systems introduces significant challenges, particularly frequent 
reverse power flows that threaten substation security. To address this 
issue, this paper proposes a novel safety assessment method based on a 
system dynamics (SD) framework. This approach uniquely emphasizes the 
critical roles of electrical interconnections among substation equipment and 
the fluctuations in distributed power output. The methodology involves 
analyzing operational characteristics to establish equipment correlations, 
developing a comprehensive fault probability function for each equipment by 
integrating multi-dimensional monitoring data and fault propagation factors, 
and constructing a system dynamics model using an adjacency matrix to 
represent operational relationships. The effectiveness of the proposed method 
is validated through a case study on a regional substation. Results demonstrate 
its capability to dynamically and accurately evaluate both equipment-level and 
system-wide safety status under reverse power flow conditions, providing a 
robust tool for enhancing the security and resilience of modern power systems.
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 1 Introduction

Under the “Dual Carbon” strategic goals, the traditional power system is rapidly 
transitioning towards a new type of power system characterized by a high penetration of 
renewable energy sources and power electronic devices. Within this context, substations, 
serving as critical hubs of the power grid, are experiencing increasingly complex operating 
environments. They face new challenges such as uncertain power flow directions and 
bidirectional fault propagation, which impose higher demands on safety assessment 
methodologies (Yan, 2025).
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Current research addresses these challenges primarily from two 
perspectives. Regarding power system security assessment with 
high renewable integration, numerous studies have focused on 
the distribution network or system level. For instance, (Du et al., 
2022), employed a Markov model to analyze overload risks in 
distribution networks with high photovoltaic penetration. Ge et al. 
(2020) and Lin et al. (2021) established probabilistic assessment 
frameworks and long term load security assessment models, 
respectively, based on distributed PV Beta probability models 
and time varying load characteristics. Recently, Yu et al. (2024) 
proposed a risk assessment index for reverse overload in distribution 
networks using a combination of entropy weight and analytic 
hierarchy process, demonstrating attention to new problems in 
the new power system. However, these methods predominantly 
concentrate on load security analysis at the system level and 
often lack granular analysis within the substation, particularly 
overlooking the mutual influences between key internal equipment. 
Furthermore, Zhang et al. (2021) took a more comprehensive 
approach by integrating equipment’s own state, environmental 
factors, and power supply connectivity for substation safety 
assessment, yet their work did not account for the critical impact 
of bidirectional power flow inherent in new power systems.

At the equipment level within substations, data driven 
assessment methods have become mainstream with the proliferation 
of monitoring technologies. Early research assessed substation 
reliability by establishing time varying equipment failure rate models 
(Mitchurechart and Chaitusaney, 2013; Duan et al., 2011). To 
accurately evaluate the status of individual equipment, scholars have 
developed a variety of assessment methods. Early research primarily 
focused on intelligent evaluation techniques based on uncertainty 
theory, such as multi-modal data fusion (Yang, et al., 2025), 
the integration of fuzzy cloud models with D-S evidence theory 
(Huang, et al., 2025), and variable-weight grey cloud models (Du and 
Sun, 2020). Subsequent work (Wei, et al., 2023; Wang, et al., 2023) 
further emphasized the importance of integrating multi-source 
data for the health assessment of primary equipment, reflecting a 
trend toward data-driven approaches and information integration 
in the field. In recent years, deep learning techniques, including 
support vector machines (Fang, et al., 2020) and long short-
term memory networks (Dai, et al., 2018), have been increasingly 
adopted, promoting the transition of equipment state assessment 
toward intelligentization. The research frontier of substation safety 
assessment is gradually shifting from single-equipment evaluation 
to multi-equipment coordination and multi-source data fusion. 
However, existing methods remain predominantly concentrated on 
system-level topological analysis or in-depth characterization of 
individual equipment, leaving the comprehensive safety assessment 
problem—which involves dynamic inter-equipment correlations 
and coupled operational states—insufficiently addressed.

Existing methods still suffer from two main shortcomings: 
Firstly, they fail to dynamically couple the key characteristic 
of uncertainty in power flow direction—driven by renewable 
energy fluctuations in the new power system—with the 
electrical connection relationships of equipment within the 
substation. Secondly, there is a lack of an assessment framework 
capable of quantifying the risk propagation effects arising from 
functional coupling between equipment at an integrated, system 

wide level. Table 1 presents a comparison between the proposed 
method and prior studies.

To address these research gaps, this study proposes a dynamic 
security risk assessment method for substations that accounts 
for both power flow direction and equipment interdependencies. 
System Dynamics (SD) is effective in analyzing nonlinear causal 
relationships among multiple factors (Liu, et al., 2022; Peng, et al., 
2023). Therefore, this paper introduces the SD method to solve 
the aforementioned problems. The structure of this paper is 
organized as follows: Section 2 presents the construction process 
of equipment interconnection relationships. Section 3 details 
the development of a security assessment model for substation 
equipment. Section 4 describes the formulation of a system level 
security assessment model for the substation system. Section 5 
validates the effectiveness of the proposed method through a case 
study. Finally, Section 6 concludes the paper and discusses potential 
directions for future research.

The core innovations of the proposed method are: ① the 
introduction of bidirectional power flow operating scenarios to 
accurately reflect system characteristics under high renewable 
energy penetration; ② the construction of an intra substation 
equipment association network model to quantify the risk 
conduction impact of key equipment (e.g., transformers, circuit 
breakers) failures on other equipment via electrical connections; 
and ③ the combination of dynamic power flow scenarios with the 
equipment association network to realize dynamic assessment of 
the overall substation risk. 

2 Analysis of substation equipment 
connectivity under high penetration of 
distributed renewable energy

The high penetration of distributed renewable energy introduces 
uncertainty in the current direction of the substation equipment. 
Therefore it is necessary to determine both the power supply 
connectivity status of equipment and the direction of the current 
flow to accurately identify the operational topology of the substation. 

2.1 Equipment power connectivity

In contrast to the substation operation in traditional power 
system, the integration of distributed photovoltaic (PV) necessitates 
that equipment operation status considers not only consider the 
power supply connectivity of the equipment but also the direction 
of the power flow. This dual consideration enables a more precise 
determination of both equipment connectivity within the substation 
and the prevailing power flow directions.

The power supply connectivity status of device 
j denoted (Equation 1) Conj, is calculated as:

Conj =
{
{
{

1, Pj,in, Ij,in,Uj,in ≠ 0

0, otherwise
(1)

Here, Pj,in, Ij,in and Uj,in represent the incoming active power, 
current and voltage of the device j, respectively. If none of these 
values are zero, the device is supplied with normal power, and
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TABLE 1  Comparative analysis of the proposed method and prior studies.

Comparison dimension System/distribution 
network-level studies 

(Yu et al., Du et al., 
Ge et al.)

Equipment-level studies 
(e.g., Yang et al., 

Wang et al., Fang, et al.)

This study (2025)

Core perspective System/distribution level risks (e.g., 
overload, load security)

Health state and failure assessment of 
individual equipment (e.g., 

transformers)

Dynamic risk assessment of substations 
considering power flow direction

Assessment target Distribution feeders, areas, or the 
overall system

Individual primary equipment within a 
substation

Multi-equipment system and 
interdependency network within a 

substation

Key technology Probabilistic models, risk assessment 
indices, combined weighting methods

Multi-source data fusion, uncertainty 
theory (e.g., fuzzy sets, cloud models), 

deep learning (SVM, LSTM)

Dynamic power flow scenarios, 
equipment interdependency network, 

risk propagation algorithm

Considers power flow direction Yes (addressed in some studies, e.g., 
reverse power flow)

No (focuses on intrinsic equipment 
status)

Yes (Core element, dynamic scenarios)

Considers equipment interdependency No (focus on system level phenomena) 
or limited to system topology

No (focus on in-depth characterization 
of individual equipment)

Yes (Electrical connection and 
functional coupling within the 

substation)

Assessment scale System/distribution network level Equipment/component level Substation system level (From 
equipment to the whole system)

Conj = 1. Otherwise, Conj = 0, and the condition of upstream device 
is checked to assess whether it is intact.

The direction of current flow in device j, denoted (Equation 
2) dir_tre1,j, is to determine whether there is a reverse current by 
determining the sign of this device current values.

dir_tre1,j =
{
{
{

−1 Ij < 0

1 Ij ≥ 0
(2)

dir_tre1,j is the discriminator of the current direction of the device 
j, dir_tre1,j = − 1 indicates reverse flow, while dir_tre1,j = 1 indicates 
forward flow. 

2.2 Equipment connection status

Based on both equipment power connectivity and current 
direction, the study by Yang et al. (2021) proposed an analytical 
method to sequentially enumerate the failures of primary side 
substation equipment. They determined the extent of failure 
propagation based on the topology diagram of the electrical 
connections and the switching devices configuration. Given the 
low probability of simultaneous failures in multiple devices, only 
single device faults are considered in this analysis. If a device failure 
is isolated and does not affect others, the failure probabilities of 
remaining equipment remain unchanged. However, If equipment 
failure or other causes result in a power outage that affects the 
operation of downstream equipment, it is necessary to determine the 
affected equipment based on the substation topology relationship 
diagram and increase the probability of failure of the affected 
equipment.

As an illustrative example, consider a 110 kV substation whose 
main equipment wiring diagram is shown in Figure 1.

The four major equipment types: transformers, busbars, 
cables, and circuit breakers, are abstracted as nodes. And the 
adjacency matrix (Hu, 2021) of the substation’s main wiring is 
constructed based on the connectivity relationships within the 
substation under different operating conditions, thereby capturing 
the influence of each equipment’s failure on others.

The adjacency matrix changes in real time with the operating 
state of the substation and substation equipment, defined 
as R in follow Equation 3. R is an upper triangular matrix 
when the current flowing is the positive direction, and R is 
a lower triangular matrix when the current is sent in the
reverse direction.

R(t) =

[[[[[[[

[

r11 r12

r21 r22

⋯ r1n

… r2n

⋮ ⋮

rn1 rn2

… ⋮

… rnn

]]]]]]]

]

(3)

The element rxy in the adjacency matrix R represents the 
association relationship from nodes x to y. In a substation, rxy = 1
if there is a power flow from node x to node y, and 0 otherwise, 
As shown in Equation 4.

rxy =
{
{
{

1, x→ y

0, otherwise
(4)

The core function of a substation is voltage transformation, and 
the prerequisite for voltage transformation is to ensure that the path 
between the incoming cables and the load outgoing cables remains 
connected. However, these points are usually not directly linked (i.e., 
rxy = 0). As shown in Equation 5, then the reachability matrix D is 
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FIGURE 1
Primary equipment wiring diagram of a 110 kV substation.

derived to observe the connection of node x and node y through the 
rest of the nodes.

D = R+R2 +⋯+Rn (5)

The reachability matrix D through the self-multiplication of 
neighboring matrices to obtain. In the reachability matrix, dxy takes 
the values of the following equation.

dxy =
{
{
{

≥ 1, x⇒ y

0, x⇏ y
(6)

In Equation 6, dxy = 0 means that node x and node y can still not 
be connected through other nodes, dxy ≥ 1 means that node x and 
node y can reach node y along the tidal flow through other node x.

Thus, the reachability matrix allows for determination of the 
electrical connection between the incoming cable and the load point, 
confirming whether the substation’s primary electrical path remains 
intact under varying conditions. 

3 Construction of failure probability 
function for substation equipment

To perform a multidimensional safety assessment of 
substations, safety assessment indicators are established based on 
multidimensional substation monitoring data. Furthermore, failure 
probability functions for individual equipment are constructed 
using multidimensional monitoring indicators. The overall process 
for single equipment safety assessment is illustrated in Figure 2.

FIGURE 2
Equipment safety assessment flowchart.

Multidimensional monitoring indicators, including grid 
operation parameters, equipment status data, and ambient 
meteorological information, are selected to characterize equipment 
status. The electrical variable dimension of the equipment 
failure probability function is constructed based on electrical 
operational indicators; while the non-electrical variable dimension 
of the equipment failure probability function is established 
using equipment condition and ambient meteorological data. 
Furthermore, the influence of failures in adjacent equipment 
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is incorporated to develop a comprehensive failure probability 
function for individual equipment. This integrated model enables 
real-time risk assessment and supports proactive protection of 
equipment safety. 

3.1 Construction of probability functions 
for single device failures

The primary current-carrying equipment in substations mainly 
includes cable lines, transformers, busbars, circuit breakers, and 
other related components. Accordingly, this study focuses on 
the safety status assessment of transformers, cable lines, and 
circuit breakers. From the perspective of both internal and 
external influencing factors, electrical variables and non electrical 
variables representing the operational status of power system and 
equipment are key indicators of potential failures. These factors 
are interdependent, and anomalies in any of them warrant close 
attention (Xie and Xu, 2024). To capture this complexity, a series 
model is developed for individual equipment, integrating multi 
dimensional electrical and non-electrical variables into a unified 
failure probability function. Additionally, the model incorporates 
fault propagation probability between adjacent devices, resulting in 
a comprehensive estimation of overall equipment failure probability. 

3.1.1 Transformer failure probability function
Failure records over a 5 year period from a province under 

jurisdiction indicate that the primary causes of oil immersed 
transformer failures include user related factors (59.2%), inherent 
equipment aging (20.5%), and external foreign object interference 
(11.0%), among others (Wang H. et al., 2020). Root cause analysis 
reveals that transformer failures predominantly stem from overload 
conditions and internal aging. Taking these factors into account, the 
failure probability function of the j transformer at time t, denoted at 
ptr

j,t, is formulated as follow in Equation 7.

ptr
j,t = 1− (1− petr

j,t)(1− pstr
j,t) (7)

Here, petr
j,t and pstr

j,t represent the failure probability components 
derived from multidimensional electrical variables and non 
electrical variables, respectively. The detailed computation is 
described below. 

3.1.1.1 Construction of equipment failure probability 
function based on multidimensional electrical variables

The first step involves calculating the equipment load factor 
RLj(t) defined as Equation 8:

RLj(t) =
SNet,j(t)

Se,j
× 100% (8)

Where SNet,j(t) denotes the net active load of device j at moment 
t, and Se,j is the actual operating capacity of device j.

According to relevant power transformer loading 
standards00 (National Standardization Administration, 2022; 
National Standardization Administration, 2024), a transformer is 
considered to be operating normally when the load factor is less 
than or equal to 80%. The transformer load factor between 80% 
and 100% indicates a heavy load condition, while the load factor 

exceeding 100% reflects an overload condition. Specifically, when 
the overload is 10%, the transformer can operate continuously for up 
to 180 min; at 20% overload, the permissible continuous operation 
time decreases to 150 min (Yu et al., 2024). These standards imply 
that both the magnitude and duration of overload significantly 
impact the severity of operational stress on the transformer. The 
higher the transformer load factor and the longer the cumulative 
over limit time, the more serious the heavy overload problem is.

To quantitatively describe the severity of a heavy load condition, 
the area under the curve of the load factor exceeding the rated 
limit over time is considered. The integral of the transformer load 
ratio exceeding the limit and the cumulative exceeding the limit 
time is synthesized to describe the severity of heavy overload of the 
transformer in two dimensions, denoted as D+(RLtr,t).

D+(RLtr,t) =
{{
{{
{

0,RLtr,t ≤ RL∗tr

∫
b

a
(RLtr(t) −RL∗tr)dt,else

(9)

Where a is the time when the transformer load factor starts to 
exceed the threshold, and b is the current time. RLtr(t) represents the 
transformer load factor at time t, while RL∗

tr is the upper threshold 
value of the transformer load factor, which is taken as 0.8.

When the PV increases causing reverse power flow, the 
transformer load factor may increase and even exceed the 
limit. However, Equation 9 alone fails to accurately characterize the 
overload condition when the trend reverses.

To address this, formulated analogously to the forward overload 
index, a reverse heavy load severity index D−(RLtr,t) is proposed, 
with parameter definitions consistent with Equations 9, 10.

D−(RLtr,t) =
{{
{{
{

0,RLtr,t ≥ −RL∗tr

∫
b

a
(RLtr(t) +RL∗tr)dt,else

(10)

The relationship between the risk consequence and the 
overload severity is often nonlinear. The risk consequence 
typically exhibits exponential growth with increasing severity. To 
reflect this characteristic, a transformer heavy overload severity 
index is introduced using a utility function with risk preference 
characteristics, as suggested in (Kang and Kim, 2006). This function, 
denoted as g(RLtr,t) as shown in Equation 11, increases more 
rapidly as the severity increases, effectively reflecting the exponential 
increase in failure probability.

g(RLtr,t) =
eD(RLtr,t) − 1

e− 1
(11)

In addition to overload severity, voltage fluctuations on 
the high voltage (HV) side of the transformer also impact 
equipment reliability. The voltage safety assessment index λeutr

j,t is 
defined as Equation 12:

λeutr
j,t =
{{{
{{{
{

utr,t −Urate
j,t

Urate
j,t

uj,t > Urate
j,t

0 uj,t ≤ Urate
j,t

(12)

Here, utr,t is the RMS voltage of the transformer during the 
cycle containing moment t, and Urate

j,t  is the rated voltage of the
equipment j.
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According to the heavy overload severity index of the 
transformer and the variation of the operating voltage, the 
modified exponential function is used to react to the cumulative 
damage effect, and the probability function of equipment failure 
considering the multidimensional electrical variables is given in the 
following (Equation 13).

petr
j,t = 1− exp(− ∑

t∈ΩT

(wtr
s · g(RLtr,t) +wtr

u · λeutr
j,t)Δt) (13)

Where wtr
s  and wtr

u  are weighting coefficients corresponding to 
the impact of overload severity and voltage variation, respectively, 
with wtr

s +wtr
u = 1. ΩT is the set of all sampled time points between 

the taken moments and t moments. 

3.1.1.2 Construction of equipment failure probability 
function based on multidimensional non electrical 
variables

In addition to electrical variables, non electrical factors 
particularly environmental conditions—also play a significant role 
in equipment safety assessment. Different types of extreme weather 
events impact power equipment through distinct mechanisms. For 
example, under prolonged high temperature conditions prevalent in 
southern China, excessive transformer hot spot temperatures can 
significantly shorten insulation life and accelerate equipment aging. 
Therefore, this section focuses on modeling the failure probability 
function of transformers under temperature stress.

The hot spot temperature of a transformer is a key indicator of 
insulation deterioration. However, due to measurement difficulties, 
it is often estimated indirectly using the more accessible top 
oil temperature. According to the IEC 60076 7 standard and 
methodologies adopted by (Yang et al., 2019), the transformer hot 
spot temperature θhst is calculated as Equation 14:

θhst = Δθhst,R · (
1+ |RLtr|

2k
1+ k

)
m

+ θoil (14)

Where, RLtr is the transformer load ratio; Δθhst,R is the 
temperature rise of transformer winding relative to the top oil 
temperature under rated power; θoil is the top oil temperature of the 
transformer; k is the ratio of load loss to no load loss, which is taken 
as 0.5; and m = 0.8 is the correction factor for temperature rise of 
IEC standard.

According to the Arrhenius thermal aging model (Ma et al., 
2025), the expected operating life αtr

j,t of transformer j at time t is 
calculated as Equation 15:

αtr
j,t = Ltr1 exp( B

θhst + 273
− B

T1 + 273
) (15)

Where T1 = 110 is the reference hot spot temperature 
corresponding to a relative aging rate of 1, B = 15000K is the 
empirical constant, and Ltr1 = 180,000h is the insulation life at the 
benchmark hot spot temperature.

Employing the Weibull distribution (Liu et al., 2025), the non 
electrical failure rate λtr

j,t and non electrical failure probability pstr
j,t of 

the transformer j at time t are derived based on the temperature and 
the operating state of the equipment life parameter αtr

j,t, as follows 
(Equations 16, 17):

λtr
j,t = (

αtr0
j

αtr
j,t
)

βj−1

(16)

pstr
j,t = 1− exp(− ∑

t∈ΩT

λtr
j,tΔt) (17)

Where αtr0
j  is the rated service life of transformer j, which is 

set as 30 years in this study; βj is the Weibull shape parameter of 
transformer j, taken as 2; Δt is the time step and ΩT denoted the set of 
all sampled time points between the taken moments and t moments. 

3.1.2 Probability functions for cable line and 
busbar failures

To account for both cable line overloading and inherent aging 
mechanisms, the fault probability function pline

j,t  for cable line j at time 
t is defined as Equation 18:

pline
j,t = 1− (1− peline

j,t )(1− psline
j,t ) (18)

Where peline
j,t  and psline

j,t  are the failure probabilities of the cable 
line j in the electrical dimension and non-electrical dimension at 
time t, respectively, which are calculated as follows. 

3.1.2.1 Construction of equipment failure probability 
function based on multidimensional electrical variables

Cable line failure likelihood increases with current overloads, 
where the relationship between failure severity and its consequences 
is typically nonlinear. Specifically, more severe overloads tend to 
result in exponentially greater risks. To reflect this characteristic, 
a risk preferred utility based function is used to define the current 
related failure rate λeiline

j,t  as Equation 19 (Kang and Kim, 2006).

λeiline
j,t =

{{{{{{{
{{{{{{{
{

0 ij,t < Irate
j

exp(
ij,t−I

rate
j

Iset
j −I

rate
j
)− 1

e− 1
else

1 ij,t ≥ Iset
j

(19)

Where: ij,t is the RMS value of load current of equipment j in 
the cycle at t moment, Irate

j  is the rated current of equipment j, Iset
j

is the setting value of overcurrent protection of equipment j. If the 
current is sent backward, the negative value of current indicates the 
reverse direction of current, then the current fault rate is as the 
following equation.

In scenarios involving reverse power flow, a negative current 
indicates reversed direction. In such cases, the current failure rate 
is calculated as Equation 20:

λeiline
j,t =

{{{{{{{
{{{{{{{
{

0 ij,t > −I
rate
j

exp(
−Irate

j −ij,t

Iset
j −I

rate
j
)− 1

e− 1
else

1 ij,t ≤ −I
set
j

(20)

In addition to current stress, voltage deviations also contribute 
to failure risk. The voltage related failure rate λeuline

j,t  of equipment j
at the moment t is expressed as Equation 21:

λeuline
j,t =
{{{
{{{
{

uj,t −Urate
j,t

Urate
j,t

uj,t > Urate
j,t

0 uj,t ≤ Urate
j,t

(21)
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In the formula, uj,t is the RMS voltage of equipment j in the cycle 
at t, and Urate

j  is the rated operating voltage of equipment j.
Taking the cumulative damage caused by prolonged electrical 

stress into account, the total electrical dimension failure 
probability is modeled using a modified exponential function 
as shown in Equation 22:

peline
j,t = 1− exp(− ∑

t∈ΩT

(−wline
i · λeiline

j,t −wline
u · λeuline

j,t )Δt) (22)

Here, wline
i  and wline

u  are the weight coefficients associated with 
the current and voltage related failure rates, respectively, and the sum 
of the two is 1. Δt is the time step for accumulation and ΩT represents 
the evaluated time window. 

3.1.2.2 Construction of equipment failure probability 
function based on multidimensional non electrical 
variables

According to the Arrhenius model, the operational 
lifetime of a cable line is temperature dependent and can be 
expressed as formula 23:

αline
j,t = χexp(−γθline

j,t ) (23)

Where αline
j,t  is the remaining operational life of cable line j at 

moment t; θline
j,t  is the real time operating temperature of line j, 

obtained via monitoring of temperature sensors; χ is a coefficient, set 
to 1,000,000; γ = b/m, where b is a constant related to the properties 
of the conductor material, and m is the mass of the line.

Based on the Weibull distribution, the non electrical failure 
rate λsline

j,t  and cumulative failure probability psline
j,t  of the cable line 

are determined by incorporating the dynamic aging effect reflected 
through αline

j,t  as shown in Equations 24, 25, which accounts for both 
ambient temperature and operating stress:

λsline
j,t =

βj

αline
j,t

(
αline0

j

αline
j,t

)
βj−1

(24)

psline
j,t = 1− exp(− ∑

t∈ΩT

λline
j,t Δt) (25)

Where: αline0
j  is the nominal service life of cable line j, taken as 

25 years based on equipment specifications. βj is the Weibull shape 
parameter reflecting the aging characteristics of equipment, with a 
typical value of 2.5 for cable lines. Δt is the time interval for discrete 
evaluation, and ΩT is the set of all the value moments between the 
moment of the beginning of the evaluation and the moment t. 

3.1.3 Circuit breaker failure probability function
Considering both the operational state of electrical dimensions 

and non electrical dimensions of the circuit breaker, the circuit 
breaker failure probability function pbr

j,t  for breaker j at time t is 
defined as Equation 26:

pbr
j,t = 1− (1− pebr

j,t)(1− psbr
j,t) (26)

Where pebr
j,t  and psbr

j,t  represent the failure probabilities attributed 
to the electrical operation condition and non electrical operation 
condition, respectively. These are calculated as follows. 

3.1.3.1 Construction of equipment failure probability 
function based on multidimensional electrical variables

Firstly, the current induced fault rate λeubr
j,t  of the circuit breaker 

based on forward and reverse currents are constructed as shown in 
Equations 27, 28, respectively.

λeibr
j,t =
{{{{
{{{{
{

(
ij,t − Irate

j

Irate
j
)

k

ij,t > Irate
j

0 ij,t ≤ Irate
j

(27)

Here, Irate
j  is the rated current and k is the current stress factor, 

typically ranging from 2 to 6.
When the current flows in the reverse direction, the current fault 

rate λeubr
j,t  is given by:

λeibr
j,t =
{{{{
{{{{
{

(
−Irate

j − ij,t

Irate
j
)

k

ij,t ≤ −I
rate
j

0 ij,t > −I
rate
j

(28)

Unlike most other types of equipment, the failure probability 
of circuit breaker is also affected by the number of mechanical 
operations. And the operation based failure rate is given in the 
following equation 29.

λenbr
j,t =

Nj(t)

Nli fe
j

(29)

where Nj(t) is the cumulative number of operations up to time t and 
Nli fe

j  is the number of mechanical operation lifetimes.
Combining the current and mechanical operations, the failure 

probability in the electrical dimension of the circuit breaker is given 
by the following (Equation 30).

pebr
j,t = 1− exp(∑

t∈ΩT

(−wbr
i · λeibr

j,t −wbr
n · λenbr

j,t)Δt) (30)

where wbr
i  and wbr

n  are weighting coefficients, respectively, satisfying 
wbr

i +wbr
n = 1. 

3.1.3.2 Construction of equipment failure probability 
function based on multidimensional non-electrical 
variables

The performance of SF6 gas insulated circuit breakers is highly 
sensitive to gas pressure. Abnormally high pressure reduces will 
reduce the insulation and arc quenching performance, accelerating 
equipment aging. While excessively low pressure similarly degrades 
the dielectric strength and lead to the risk of failure will also 
increase. Based on the Weibull model (Wang Y. et al., 2020), the 
failure rate of SF6 pressure λspbr

j,t  related to the temperature is 
as follows (Equation 31).

λspbr
j,t = 1+ a · (

pt − P0

P0
)

β
(31)

where a is the pressure sensitivity coefficient, set to 2; β is the shape 
parameter, which takes the value of 2 for the shape parameter of the 
circuit breaker; pt is the SF6 gas pressure for real-time monitoring 
of t, and P0 is the rated pressure at the rated temperature T0 = 293K, 
which is 0.5 MPa.
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The Arrhenius model is used to construct the effect of 
temperature on circuit breaker faults, which is calculated 
as follows (Equation 32).

λstbr
j,t = exp(

Ea

R
( 1

T0
− 1

tempt
)) (32)

λstbr
j,t  is the failure rate due to temperature of circuit breaker. Ea is 

the activation energy of the material, which is generally 0.6 ∼ 1.2eV. 
R is Boltzmann’s constant, i.e., 8.617× 10−5eV/K. T0 is 293K, and 
tempt is the real-time measured operating temperature of the circuit 
breaker in Kelvin.

By combining pressure and temperature effects, the failure rate 
as well as the probability of failure for the non-electrical dimension 
of circuit breaker equipment can be obtained as Equations 33, 34,

λsbr
j,t = λspbr

j,t · λstbr
j,t (33)

psbr
j,t = 1− exp(− ∑

t∈ΩT

λsbr
j,tΔt) (34)

 

3.2 Integrated failure probability of 
equipment considering fault propagation

Taking the topological connectivity of substation equipment and 
the direction of the tidal current into account, the safety status of 
device is influenced by the operational states of the equipment in 
the direction of the source of the tidal current. The fault propagation 
influence matrix W is constructed, where each element wij quantifies 
the cascade effect of the fault in equipment x on equipment y. 
Higher weights are assigned to directly connected equipment based 
on empirical failure data.

Taking the probability of failure of the equipment’s own 
electrical non electrical dimensions as well as the equipment’s direct 
interactions into account, the combined failure probability pcom

j,t  of 
the equipment j is therefore formulated as Equation 35:

pcom
j,t = 1− (1− psel f

j,t )(1−∑
i∈Ij

rij ·wij · p
sel f
i,t ) (35)

Where psel f
j  denoted the intrinsic failure probability of device j, 

i.e., it is mentioned in the above section to ptr
j , pline

j , pbre
j . Ij is the 

set of all devices flowing to device j according to the direction of 
the tide, and rij is the element of the adjacency matrix indicating 
connection between device i and j. wij is the associated weight in the 
propagation matrix W. 

4 Safety assessment of substation 
systems under high penetration of 
distributed renewable energy

4.1 Substation safety condition assessment 
framework

The safety condition of the substation system is affected by a 
multitude of factors. In this study, critical primary transmission 

FIGURE 3
Flowchart of substation system safety status assessment methodology.

substation equipment, along with their key influencing variables 
are selected as the core indicators for safety assessment. The 
specific process of substation system security status assessment is 
illustrated in Figure 3.

The progress begins by analyzing real time substation monitoring 
data to determine the direction of power flow and the supply status of 
each device, thereby identifying the substation’s operating state. Based 
on this, the internal connection topology of the equipment under 
current operating conditions is analyzed to construct the equipment 
connectivity matrix. Then, by integrating the connectivity relationships 
and intrinsic multidimensional variables of individual devices, the 
failure probability functions of single equipment are established. These 
are further aggregated using a series system model to derive the 
overall failure probability of the substation system, which quantitatively 
reflects substation’s safety status and enables classification into safety 
levels. Finally, a substation system dynamics model is developed to 
evaluate the safety status of the substation under varying operational 
and environmental conditions. 

The substation system safety status assessment model proposed in 
this paper focuses on the operational status of substation equipment, 
and intuitively reacts to the safety condition of both individual devices 
and substation system by real-time multidimensional monitoring data 
and relationship of equipment. This method not only enables the 
integrated evaluation of device level and multi-device joint safety 
status but also facilitates real-time reflection of the overall substation 
safety level. In doing so, it effectively addresses the challenge of 
information occlusion caused by the complexity of multidimensional 
data sources within substations. 

4.2 Construction of failure probability 
functions for substation systems based on 
cascade characteristics

Substation system can be characterized as the multi component 
series system, where the failure of a single component may 
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FIGURE 4
Schematic diagram of the series system model.

TABLE 2  Substation safety status classification.

Security status Failure probability pcom
sub,t

Normal 0 ≤ pcom
sub,t ≤ 0.2

Attention 0.2 < pcom
sub,t ≤ 0.4

Abnormal 0.4 < pcom
sub,t ≤ 0.6

Severe pcom
sub,t > 0.6

propagate and compromise the operational safety of the entire 
system. Therefore, the failure probability of the substation is 
modeled using a series system approach. As shown in Figure 4, the 
system is divided into several interconnected subunits, and the safe 
operation of the overall system requires all individual subunits to 
function properly (Xie et al., 2024).

Due to the integration of distributed photovoltaic (PV) sources, 
power flow directions within the substation become uncertain. As 
illustrated in Figure 4, the forward power flow is represented by 
black arrows, while the reverse flow is indicated by blue arrows. 
Based on the connectivity and energization status of substation 
components, the failure probabilities of individual devices along 
each possible power path are evaluated. The comprehensive failure 
probability of the substation under a given operating condition is 
then calculated using the series system model. According to this 
model, an increase in the number of series connected components 
leads to a higher overall system failure probability.

pcom
sub,t = 1− ∏

j∈Et,sub

(1− pcom
j,t ) (36)

Where pcom
sub,t in Equation 36 is the comprehensive failure 

probability of the substation at time t, Et,sub represents the set of all 
energized primary equipment in the operating state of the substation 
at the moment t, and pcom

j,t  denoted the integrated fault probability of 
the equipment j at time t.

In accordance with expert knowledge and industry standards, 
the safety status of a substation is classified into four categories: 
Normal, Attention, Abnormal, and Severe. The classification criteria 
are defined as follow Table 2.

4.3 Construction of substation system 
dynamics model

Given its suitability for analyzing complex, nonlinear, and large 
scale systems, System Dynamics (SD) is employed in this study 
to evaluate the dynamic safety status of substations. Originally 
proposed by Professor J. W. Forrester, SD is an interdisciplinary 

methodology that integrates various interacting subsystems into a 
unified model, enabling the analysis of how internal feedback and 
interactions influence overall system behavior (Wang, 2009).

The establishment of a system dynamics model begins with the 
decomposition of the research objective into multiple independent 
elements, followed by the identification of causal relationships 
among these components (Li et al., 2015; Wang et al., 2011).

Based on this process, the modeling process begins with the 
construction of a system dynamics flow diagram for the substation, 
which outlines the relationships between safety indicators, 
equipment status, and system level safety. Next, the fault probability 
relationship derived in previous sections are mathematically 
formalized as system dynamics equations. These equations are 
implemented within the Vensim software environment to construct 
the complete System Dynamic safety assessment model for the 
substation. Due to the extensive scale of the full system model, only 
the subsystem the System Dynamics model diagrams corresponding 
to transformers (Figure 5A), cable lines (Figure 5B), circuit breakers 
(Figure 5C), and the overall substation system (Figure 5D) are 
presented for clarity. Due to the extensive scale of the full system 
model, only the subsystem the System Dynamics model diagrams 
corresponding to transformers, cable lines, circuit breakers, and the 
overall substation system are presented for clarity.

5 Calculus analysis

5.1 Parameters determination

The proposed methodology is based on the following 
assumptions regarding the substation system: 

5.1.1 Data completeness
Real-time monitoring data (e.g., current, voltage, temperature, 

dissolved gas analysis) for critical equipment (e.g., main 
transformers, circuit breakers, disconnectors) are assumed to be 
fully and accurately available via the data bus without missing or 
anomalous values. 

5.1.2 Communication reliability
The communication channels between the substation 

monitoring system and the assessment center are assumed to be 
ideally reliable, ensuring real-time synchronization of multi-source 
data with no transmission delays or packet loss. 

5.1.3 Deterministic topological connectivity
The electrical topology of the substation (e.g., double-bus, 

breaker-and-a-half) is assumed to be deterministic and known 
during each assessment interval, with fixed electrical connections 
between equipment. 

5.1.4 Ideal protection system operation
Protective relays and automation devices are assumed to 

operate ideally according to their designated logic and time 
settings, ensuring accurate and rapid isolation of faulty components. 
Cascading risks arising from secondary system failures (e.g., 
protection refusal or maloperation) are not considered in this study. 
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FIGURE 5
System dynamics modeling of substation equipment and systems.

5.1.5 Simplified external grid boundary conditions
The substation is treated as a relatively independent assessment 

entity. The external transmission and distribution grids are assumed 
to remain stable during the assessment period, with their interaction 
represented solely by the magnitude and direction of power flow at 
the transformer terminals.

To validate the proposed method under these assumptions, 
a case study is conducted on a substation located in a region 
of China characterized by frequent bidirectional power flow 
variations due to high penetration of distributed photovoltaic 
(PV) generation. The substation is configured with two 110 kV 
buses, four 10 kV buses, two 80 MVA oil immersed transformers, 
and multiple switchgear units. Among the two transformers, 

only the load side of transformer T1 is connected to distributed 
photovoltaic (PV) generation. For simplification, this study assumes 
identical operational characteristics for busbar and transformers 
of the same voltage level, and all switchgear devices are treated 
homogeneously. The parameters of the key equipment are detailed
as follows.

The average service life of the transformer is 30 years 
(approximately 262,800 h). Its maximum allowable load ratio is 
set to 0.8. The ratio of load loss to no load loss under rated current 
is 5:1. The temperature rise of the winding temperature for the top 
oil temperature at rated power is 20 °C. The shape parameter of 
transformer is taken as 2.0.

According to the IEC 60502 2 standard, the rated load current 
of the cable line is 800A, with the protection overcurrent setting of 
1200A. The material aging constant is 1.2× 104. The stress coefficient 
γ is 0.05. The average service lifetime is set to 25 years, while 
the actual duration is set to 10 years. The shape parameter for the 
cable is 2.5.

The rated current of the110 kV circuit breaker is 2000A. 
The current stress coefficient is 4. The number of mechanical 
lifetimes operations is 20,000. The shape parameter of its 
failure probability model is set to 2. And the activation energy 
for the temperature accelerated aging model is assumed to
be 0.8ev.

To determine the fault influence weights used in Equations 13, 
22, 30, a hybrid approach combining the entropy weight 
method and the ordinal priority approach (OPA) is employed. 
This integrated method balances subjective expert judgment 
with objective data driven analysis. Detailed derivation of the 
methodology can be found in the referenced literature (Xie et al., 
2021) and will not be repeated here. The final fault influence 
weight factors derived using this approach are summarized
in Table 3.

During normal operation of the substation, the node topology 
of the equipment in the station is shown in Figure 6. Based 
on the sequential node numbering from smallest to largest, 
the corresponding adjacency matrix and the fault propagation 
probability matrix are constructed.

In this study, faults in adjacent equipment are assumed 
to have a stronger mutual influence, thus, the weight of fault 
propagation between neighboring equipment are assigned higher 
values. According to the value of the reachable matrix, the value of 
the fault propagation probability matrix is derived, as expressed by 
the following Equation 37.

wxy =
{{{{
{{{{
{

0.4, dxy = 1

0.1, 1 < dxy ≤ 3

0, dxy = 0∪ dxy > 3

(37)

Based on the aforementioned parameter configuration, 
the proposed method was implemented and evaluated on 
a computer with the following specifications. Windows 10 
Operating System; Intel Core i7-8565U CPU @ 1.8 GHz; and 
8 GB RAM. All algorithms were developed using Python 
3.10 with scientific computing libraries such as NumPy and 
Pandas, alongside Vensim PLE x64 for system dynamics
modeling.

A 24-h operational cycle was simulated for the case study, with a 
time step of 15 min, resulting in a total of 96 evaluation time points. 
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TABLE 3  Table of values of fault influence factors.

Equipment type Failure impact factor 1 Failure impact factor 2

Transformers wtr
s = 0.76 wtr

u = 0.24

Cable routes and busbars wline
i = 0.68 wline

u = 0.32

Circuit breaker wbr
i = 0.85 wbr

n = 0.15

FIGURE 6
Substation node diagram.

The simulation incorporated intra-day load variations and power 
flow fluctuations caused by distributed photovoltaic generation to 
assess the dynamic security state. The total computational time for 
the complete simulation was approximately 1.8 s, corresponding 
to an average of about 0.02 s per time point. The specific 
computational results are presented as follows. These computation 
times demonstrate that the proposed system dynamics-based 
assessment method achieves second level overall assessment and 
millisecond level real-time evaluation on a standard personal 
computing platform. The computational time is significantly shorter 
than the data sampling interval, ensuring the system can consistently 
complete assessments using the latest data. This performance 
fulfills the requirements for real-time evaluation and provides a 
solid foundation for the online and quasi-real-time application of 
the method. 

5.2 Analysis of substation safety status 
under normal power flow conditions

For the forward tidal current case, the substation equipment 
connectivity is analyzed to obtain the corresponding adjacency 
matrix R+. Due to the large number of nodes, only the adjacency 

matrices elements corresponding to nodes 1, 2, 5, 6, 9, 12, 14, 16, 18, 
and 19 are presented here as follows for brevity.

In this study, the real-time monitoring data were obtained from a 
110 kV substation accessing distributed PV generation in China. The 
data corresponds to a cloudy day, during which the different loads 
composition connected to transformer T1 is illustrated in Figure 7. 
Specifically, residential electricity consumption accounts for about 
35%, administration, education, healthcare loads accounts for 
approximately 20%, industrial loads accounts for about 30%, 
commercial usage comprises the remaining 15%. Due to the reduced 
solar irradiance under cloud cover, the PV output was relatively 
low and did not result in any reverse power flow through 110 kV 
substation.

Taking transformer T1 as an example, the net load curve 
exhibits a typical “duck curve” (Denholm et al., 2015). The 
monitoring data sampled at 15 min intervals as described 
above are input into the system dynamics model. Based on 
the direction of the power flow and the associated fault 
propagation probabilities, the failure probability of individual 
equipment and the substation system are computed, as shown in
Figure 8.

In Figures 8, 9, the dotted lines represent the aggregated failure 
probability of a single device and the substation, considering 
the correlation between different devices. It is observed that 
the comprehensive failure probability accounting for the failures 
propagation among interconnected components is notably higher 
than the failure probability calculated for single equipment in 
isolation.

5.3 Analysis of substation safety status 
under power flow reversal

On clear sunny days, sufficient photovoltaic output combined 
with low midday load can result in reverse power flow within the 
110 kV substation. Under such conditions, the substation equipment 
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FIGURE 7
Graph of variation of different loads.

FIGURE 8
Probability of failure graph for equipment.

connectivity is reanalyzed to derive the reverse adjacency matrix R−, 
corresponding to the forward direction adjacency matrix.

Monitoring data from a 110 kV substation accessing to 
distributed photovoltaic in China, recorded on a day characterized 
by power flow reversal, are shown in Figure 10.

The failure probability of transformer1 is presented in Figure 11. 
In the right figure, T1_P represents the transformer failure probability 
derived using the methodology of this paper, while T1_P1 corresponds 
to the methodology where reverse overloading is not considered. The 
left figure illustrates the failure probability of the electrical dimension 
as well as non electrical dimension. It is evident that the failure 
probability of the electrical dimension due to reverse overloading 
cannot be adequately judged using only a single forward threshold. 
The methodology proposed in this study enables effectively estimation 
of the failure probability induced by reverse overloading conditions.
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FIGURE 9
Probability of failure graph for substation.

FIGURE 10
Graph of T1 real-time monitoring data.

The 24 h fault probabilities of the substation and individual 
current carrying components under reverse power flow conditions 
are depicted in Figure 12. The dashed line indicates the fault 
probability considering the fault propagation factor among 
interconnected devices.

As shown in Figures 12, 13, the failure probability of different 
devices increases gradually along the direction of the current path. 
Furthermore, when inter device failure correlations are accounted 
for, the overall failure probability is significantly higher than the 
values computed for each device in isolation. This indicates that the 
proposed model can more effectively capture the compounded impact 
of fault propagation, thus providing enhanced sensitivity in detecting 
system vulnerabilities. 

6 Conclusion and future work

6.1 Summary of findings

In this study, a System Dynamics approach is utilized to evaluate 
the safety status of the substation system. The grid operational 

characteristics, the non electrical factors of the equipment and 
the coupling effects between different equipment are considered. 
A regional substation is selected as a case study to validate the 
proposed methodology. The results demonstrate the following:

The impact of distributed renewable energy integration on 
the current direction within the substation is fully taken into 
account. Thus, the neighbor matrix is constructed to characterize the 
interconnection of equipment. The proposed method can effectively 
support safety status assessment in substation system with high 
penetration of distributed energy resources.

The method addresses the limitations of traditional approaches 
that assume mutual independence among equipment condition 
indicators. It enables real-time safety evaluation by integrating multi 
factor coupling effects of equipment itself and others. This allows 
the transition from independent assessments of equipment health 
status and grid operational status to a comprehensive evaluation 
framework. Electrical and non-electrical failure propagation 
between devices can also be captures by this framework.

Leveraging System Dynamics as a carrier, the proposed 
approach extends equipment assessments to substation system safety 
evaluations. It significantly enhances the real-time and effectiveness 
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FIGURE 11
Comparison of T1 failure probability.

FIGURE 12
Probability of failure for equipment.

FIGURE 13
Probability of failure for substation systems.
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of substation safety status monitoring through multi departmental 
data sharing. 

6.2 Limitations of the study

The validation based on a single case study presents certain 
limitations, primarily manifested in the following aspects: 

6.2.1 Specificity of substation topology
The case substation employs a specific main electrical 

configuration (e.g., single-bus arrangement). Different 
configurations (such as double-bus, breaker-and-a-half, or 
bridge schemes) directly alter the complexity of the equipment 
interconnection network and risk propagation paths. While the 
method proves effective for simpler layouts, its direct applicability 
to highly complex hub substations requires further validation. For 
ultra-high voltage (UHV) substations with greater equipment count 
and more intricate electrical connections, the scale and complexity 
of the resulting adjacency matrices and system dynamics equations 
may grow significantly, potentially challenging computational 
efficiency and model stability. 

6.2.2 Limited representativeness of operational 
characteristics and renewable penetration

The load profiles, types of distributed energy resources 
(e.g., PV, wind), installed capacity, and penetration levels 
in the case study region are location-specific. The intensity 
and frequency of bidirectional power flow variations differ 
substantially between, for instance, a substation serving primarily 
commercial/industrial loads with moderate PV penetration and 
one serving agricultural loads with very high wind penetration. 
The range of power flow fluctuations validated in the case 
study may not encompass all extreme operating scenarios. The 
method’s effectiveness under more severe and frequent power 
flow reversals needs testing in more diversified operational
environments. 

6.2.3 Limitations regarding equipment types and 
aging states

The equipment models, service years, and aging status within 
the case substation are specific. The parameters and models for 
equipment aging likely rely heavily on the failure history data of 
the primary equipment (e.g., transformers of specific models) at 
this particular site. The general applicability of the method depends 
on the accuracy of its equipment aging sub-models. Applying the 
method to substations with vastly different equipment portfolios 
(e.g., predominantly GIS, SF6 circuit breakers) or different average 
equipment ages might necessitate model adjustments and could 
potentially reduce assessment accuracy. 

6.3 Directions for future research

Based on the present work, several promising directions for 
future research can be identified:

Model Enhancement and Physics Data Integration. While the 
current model integrates multi dimensional factors including grid 

operation, equipment aging, and interdependencies, future work 
could further incorporate microscopic physical failure models of 
equipment (e.g., the thermal aging model of transformer insulation 
paper) with data driven approaches. Introducing machine learning 
techniques to adaptively calibrate key parameters within the System 
Dynamics model would facilitate the development of a hybrid 
“physics data” driven model. This integration would enhance 
predictive accuracy and adaptability while preserving the model’s 
interpretability.

Expansion of Assessment Scale and System Resilience Analysis. 
This study primarily focuses on risk assessment within a single 
substation. Future research could expand the assessment boundary 
to encompass coordinated distribution network source load systems. 
By constructing a regional “critical infrastructure interdependence 
network,” it would be possible to simulate cascading failure 
scenarios where substation risks propagate through transmission 
and distribution lines. This approach would enable evaluating the 
vulnerabilities and critical nodes of substations from a system 
wide perspective, providing decision support for enhancing grid 
resilience.

Development of Digital Twins and Proactive Safety Defense. 
Leveraging the dynamic simulation capability of the model 
established in this study, it can serve as the core computational 
model embedded within a substation digital twin platform. 
This would enable rolling prediction and early warning of 
security status. Building upon this, developing proactive defense 
strategies based on model predictions (e.g., optimizing power 
flow, switching reactive power compensation devices) would shift 
the paradigm from “passive assessment” to “active defense.” 
Furthermore, exploring its potential for participating in ancillary 
service markets under electricity market environments could 
unlock opportunities for coordinating security and economic
objectives.
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