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Introduction: With the widespread integration of distributed power sources,
the power grid is facing challenges such as increased losses, rising costs,
voltage fluctuations, and overload, resulting in greater operational complexity.
Traditional scheduling methods are no longer adequate, making reasonable
planning of distributed power generation and energy storage configurations
particularly crucial.

Methods: This article proposes a two-stage wind-storage coordination planning
method that considers source-load uncertainty. The approach is based on
an improved antlion algorithm and incorporates distributed energy storage
charging and discharging strategies. The first stage focuses on wind power
site selection and capacity determination, using voltage offset, network loss,
and comprehensive system cost as evaluation indicators. A multi-objective
function model is established to balance grid stability and economic efficiency.
The second stage introduces distributed energy storage devices to reduce
power fluctuations while minimizing the sum of operation, maintenance, and
storage investment costs, thereby optimizing the energy storage charging
and discharging strategy. The improved antlion algorithm, enhanced with
adaptive Leévy flight and golden sine theory, is used to solve the two-stage
planning model.

Results: The proposed method effectively improved system-level voltage
distribution, reduced network losses, and lowered overall system costs.
Specifically, it achieved a 27.95% increase in total capacity, a reduction of
32.14 kW in active power loss, and a total cost decrease of 221,200 yuan.
The improved antlion algorithm demonstrated strong search capability, fast
convergence speed, and high computational accuracy.

Discussion: The results indicate that the proposed method is better aligned with
practical requirements compared to traditional approaches. The improvements
in system performance and cost efficiency highlight the effectiveness of the
two-stage planning framework and the enhanced optimization algorithm. The
method offers a viable solution for the integrated planning of wind power and
energy storage systems under uncertainty.

distributed power generation, energy storage, adaptive levy flight, golden sine theory,
improved the antlion algorithm
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1 Introduction

The integration of distributed power sources injects new
voltage power into the distribution network, and the network
topology and power flow distribution will also change accordingly.
Unreasonable integration may result in problems such as reverse
transmission of branch power flow, voltage exceeding limits,
and increased line losses, affecting system operation (Fei, 2020).
Meanwhile, in distributed power generation, wind and photovoltaic
power generation, as the main distributed energy sources, have
the advantages of being renewable and environmentally friendly.
However, their output power is unstable due to changes in wind
speed and light intensity, which may lead to insufficient power
supply or resource waste. Therefore, optimizing the configuration
of distributed power sources and utilizing energy storage
technology to mitigate their adverse effects on the power grid is

10.3389/fenrg.2025.1633719

In terms of distributed power generation planning models,
Chu and Qiao considered the output efficiency and load rate of
distributed power generation units. They formulated a planning
model with the objective of minimizing the comprehensive
operational cost of the distribution network. Huang et al. calculated
power flow and network losses using Monte Carlo sampling and
applied a genetic algorithm to optimize costs, network losses,
and surplus electricity from distributed power sources. Cao et al.
addressed the uncertainties associated with wind, solar, and load
variations by employing Latin hypercube sampling combined
with an improved synchronous substitution method to generate
representative scenarios. The model was solved using an improved
particle swarm optimization algorithm, aiming to minimize the
annual comprehensive cost. Su etal. proposed a coordinated
optimization strategy for wind power, solar power, load demand,
and energy storage systems, focusing on determining the optimal
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FIGURE 1

Model diagram of two-stage wind storage coordination planning method
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Set parameters: number of ant lions and ants in the
population, variable range, fitness function dimension,
maximum iteration times n

10.3389/fenrg.2025.1633719
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Improved antlion algorithm solution flow chart
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FIGURE 3

Variation of fitness values of four intelligent optimization algorithms
with iteration times

objective function included distribution network investment costs,
maintenance costs, power purchase costs, and reliability costs, which
were optimized using the particle swarm optimization algorithm.
Other researchers have also used variables such as network loss
as objective functions for analysis and optimization. However,
most of the aforementioned studies focus on single-objective
optimization, which may overlook the complex interactions
in system operations and deviate from practical engineering
applications. To address this limitation, scholars both domestically
and internationally have conducted further research into multi-
objective optimization models. Mohammad etal. constructed a
multi-objective function based on indicators such as network
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loss, voltage deviation, and short-circuit current, and solved
it using optimization algorithms. Truong etal. introduced a
quasi-adversarial chaotic symbiotic biological search algorithm
to address multi-objective optimization problems. Banihashemi
etal. developed a multi-objective optimization model aimed at
minimizing voltage deviation, line loss, and operational costs, which
was solved using an improved genetic algorithm. Li et al. applied the
theory of chance-constrained programming and employed the non-
dominated sorting genetic algorithm (NSGA) to optimize objectives
including minimizing the operational risk of distribution networks
and minimizing annual comprehensive costs.

Overall, many literature currently use simple deterministic
models to model distributed power generation planning problems,
without considering source load uncertainty or the impact of
distributed energy storage (Zhengqi, 2021b; Paiva et al, 2017;
Ganguly and Samajpati, 2015; Xu et al., 2017; Sivaram et al.,
2019; Deyi et al,, 2011; Junyang et al., 2018; Chengshan et al,,
2006). Therefore, this article will establish a more comprehensive
distributed power generation planning model, taking into account
the uncertainty of distributed power generation output and the
integration of energy storage, to ensure the safety, reliability, and
economy of the power system. Therefore, this article proposes
a distributed wind storage coordination planning method that
takes into account the uncertainty of source load. Firstly, a multi-
objective model is established with the constraints of power flow,
voltage, and power, aiming to minimize system network losses,
voltage deviations, and overall system costs. Taking into account the
uncertainty of source and load, a first stage distributed wind power
coordination optimization strategy is proposed; Then, taking into
account constraints such as power supply, energy storage capacity,
and State of charging/discharge, combined with decision variables
obtained in the previous stage, a model is established based on

frontiersin.org
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Typical scenario of wind farm output.
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FIGURE 5
Probability of typical output scenarios of coupled wind power.

system economic indicators, and a second stage distributed energy
storage planning method is proposed; Finally, the improved antlion
algorithm with adaptive Levy flight and golden sine theory as
improvement factors was used to solve the proposed two-stage
wind storage coordination planning method. Through simulation
verification, it was proved that the proposed method can effectively
improve the system voltage distribution level, reduce network losses,
and further reduce the overall system cost, bringing good stability
and economy to the system operation.

2 Two stage wind storage
coordination planning methods

This article considers distributed energy storage charging
and discharging strategies and proposes a two-stage wind
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storage coordination planning method that takes into account
source load uncertainty (Chuzhuang, 2017; Weiguo et al., 2016;
Zhengi, 2021a; Haifeng et al., 2016). The specific model diagram
is shown in Figure 1.

2.1 Distributed wind power planning model

2.1.1 Objective function

The connection of power supply to the distribution network
can effectively improve the system voltage level and reduce
network losses, but an unreasonable connection scheme can
have a significant impact on the operation of the distribution
network and disrupt the safe and reliable operation of the system.
Therefore, in this section, a multi-objective system for distribution
network operation is established based on three indicators of power
grid stability and economy, namely, system network loss, node
voltage deviation, and annual comprehensive cost, to coordinate
and plan the integration of distributed power sources into the
distribution network (Yurong et al, 2020). The specific model
is as follows:

min f, =« flf’ By
max

1
f cb max

In the Formula 1, f; . indicates the active power loss of the
system; f,; indicates the system voltage offset value; f,, indicates
the comprehensive cost of the system; f; indicates the maximum

active power loss of the system; f, indicates the maximum

cb max
comprehensive cost of the system; «, 3, y indicate the inertia weight
coeflicients of each indicator, determined by the Analytic Hierarchy

Process, they are & = 0.6370, 5 = 0.0147, y = 0.2583,

1. System active power loss f;

floss Z G (

—2UU cos §; ) (2)
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Probability of typical load output scenarios.

TABLE 1 Power planning methods under different methods.

Category Improved antlion Antlion algorithm Particle swarm Not considering
algorithm optimization uncertainty
algorithm
Wind power access location 12(722 KW) 8(567 KW) 14(450 KW) 4(410 KW)
and capacity 31(427 KW) 24(406 KW) 26(496 KW) 19(488 KW)
Total capacity 1149 KW 973 KW 946 KW 898 KW
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/ \ O Option 2
119120 21 22 O ontton 3
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FIGURE 7
IEEE33 node distribution network.
In the Formula 2, f; . indicates Line loss; G; j indicates the N U.
: J
conductivity value between node i and node j; L indicates the fav= z U 1‘ (3)
jsrlb=n

number of system lines; U;, U; indicate the voltage values of nodes
iand j; cos §;; indicates the voltage phase angle difference between
nodes i and j (Ping et al., 2018).

2. System voltage offset value f,

Frontiers in Energy Research 05

In the Formula 3, f AU indicates the voltage offset value; U]
indicates the actual voltage value of the node; U, indicates the rated
voltage of the system; N indicates the number of system nodes.
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Voltage distribution diagram of different schemes.

3. Annual comprehensive cost of the system f,

N
fcb=ZIPL,w<s>(f;x+ﬁz+ et Lt fa-f) @

In the Formula 4, N indicates the number of typical scenarios;
Py (s) indicates probability of occurrence of typical wind load
scenarios; fsyx indicates operating costs in typical scenarios; f;,
indicates investment costs in typical scenarios; ﬁm indicates
Network loss cost in typical scenarios; f;c indicates Environmental
benefits and costs in typical scenarios; f; indicates under typical
scenarios, the cost of purchasing electricity online from a large
power company; f; indicates power generation subsidies in typical
scenarios. Among them, the cost expressions are as follows:

a. Running cost:

F=hy 3 TPy ()
ieN;

In the Formula 5, fyx indicates operating costs of wind power; h¢
indicates the unit cost coefficient for wind power operation is taken
as 0.045 yuan per kW hour; P;; indicates Selected ith wind power
generation power; T; indicates Annual duration of wind power
generation; N indicates A collection of nodes that can be connected
to wind power (Jungiang et al., 2016).

b. Investment cost:

ftZ:VfoZPf,i (6)

ieNf
In the Formula 6, ftz indicates Wind power investment cost; Yy
indicates investment coefficient for wind power, etc.,; ¢y indicates
unit capacity investment cost of wind power at 10,000 yuan per
kW hour; The expression for y is as follows Formula 7, and in the
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formula, d indicates annual interest rate which is 0.8, Tf indicates
The full life cycle of wind power is taken as 10 years:

d(1+d)r
S %)
Y da a1
c. Line loss cost:
b
fs =G ZleTmax (8)
=1

In the Formula 8, ¢, indicates unit length line loss cost, taken
as 0.6 yuan per kW hour; P; indicates maximum network loss
on line j; T,
taken as 4200 h.

indicates the maximum annual load loss time is

d. Environmental benefit cost:

fec = Cem Z Z €m (Pload + PZUSS - Pﬁi) (9)

m=1 ieNf

In the Formula 9 n indicates the number of environmental
pollutants, c,,,, indicates Unit cost of pollutant m; e,, indicates under
the traditional power generation mode, the emission indicators for
pollutant m are as follows: sulfur dioxide emission indicator is
4.5 g per kW hour, with a cost of 7.3 yuan per kilogram; nitrogen
dioxide emission indicator is 1.64 g per kW hour, with a cost
of 10 yuan per kilogram; carbon dioxide emission indicator is
90 g per kW hour, with a cost of 0.8 yuan per kilogram; P,
indicates total load of the line; P, indicates Network loss; all
emission indicators are based on typical data of the Chinese power
system (China Electricity Council, 2023; Ministry of Ecology and
Environment, 2022; Jinnan et al., 2019).

e. Electricity purchase cost:

fg = Ced Ploaadmax + Ploss - Z Tfpf,i Tl (10)
i€N,
s

In the Formula 10, ¢y, indicates the unit cost of purchasing

electricity is 0.5 yuan per kKW hour; indicates maximum

P loaad max
system load; T, indicates the maximum annual load utilization time

is taken as 4,200 h.

f. Power generation subsidy:

fbt:CthPf,i (€89)

i eNf

In the Formula 11, ¢;, indicates The unit government subsidy fee
is 0.4 yuan per kW hour.

2.1.2 Constraint condition
The main constraints considered by the distributed wind power
planning model are as follows (Kaiyuan, 2023):
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TABLE 2 Active loss and voltage deviation.

10.3389/fenrg.2025.1633719

Category Improved antlion Antlion algorithm Particle swarm Not considering
algorithm Optimization uncertainty
algorithm
Active loss 62.17 KW 86.09 KW 89.24 KW 94.31 KW
Voltage deviation 0.1464p.u 0.1572p.u 0.1597p.u 0.1684p.u
400 T T T -
() v e e
350 - R /o Aoorinm -
Particle Swarm Optimization Algorithm
c
o Not considering the
2 300 - _un:ofulmy of source load 4
2
2
o 250 + 1
-t
c
o
[t
= 200 .
v
o
v
150 - T
100 1
50 1
0 . environmental Government Electricity
running cost Investment cost Line loss R o
pollution subsidies purchase cost
FIGURE 9
System cost chart for different solutions.
1. Trend constraints 3. Branch power constraint
N
AP;=P;-U; Z Uj(G,-j cos 0;; + By, sin 6,-]») =0
P P. . <P.<P. (14)
]_1\1] (12) ijmin = % ij = * jj max
AQ;= Q= U,y UGy sin 8, B, cos d;) =0
= In the Formula 14, P; indicates the active power of the line

In the Formula 12, P;, Q; indicate separately active and reactive
power of node i; U;, U; indicate separately actual voltage of node
and branches between them; ¢

Bj; indicate separately conductance and susceptance of nodes
;j indicates voltage phase angle
difference between nodes; N is the number of system nodes.

2. Node voltage constraint

U. <

1min—Ui£Uimax (13)

In the Formula 13, U; indicates the voltage amplitude of node i;
U, may indicates separately the upper and lower limits of the

voltage at node i.

U.

i min>

Frontiers in Energy Research

between nodes i and j; Py; n» Pjj may indicates separately the upper
and lower limits of active power of the line connecting nodes i and
J-

4. Wind turbine capacity constraint

Priin € Py < Priay (15)

In the Formula 15, P/ indicates maximum capacity of wind
turbines; Py, indicates maximum wind power capacity; Py,
indicates minimum capacity of wind power.
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https://doi.org/10.3389/fenrg.2025.1633719
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

Suetal 10.3389/fenrg.2025.1633719

TABLE 3 Comprehensive costs under different schemes.

Category Improved antlion Antlion algorithm Particle swarm Not considering
algorithm optimization uncertainty
algorithm
Operating cost (10,000 88.73 69.97 67.10 63.56
yuan/year)
Investment cost (10,000 145.86 128.96 126.72 121.04
yuan/year)
Network loss (RMB 18.71 29.29 30.16 27.43
10000/year)
Environmental pollution 56.48 67.31 62.13 69.18
(10,000 yuan/year)
Government subsidy (10,000 68.19 57.38 53.09 51.34
yuan/year)
Electricity purchase cost 257.85 273.71 284.73 291.65
(10,000 yuan/year)
Comprehensive cost (10,000 499.44 511.69 517.75 521.52
yuan/year)

TABLE 4 Distributed energy storage configuration schemes under different methods.

Category Improved antlion Antlion algorithm Particle swarm Not considering
algorithm optimization uncertainty
algorithm
Energy storage access location 33 (670 kW) 4 (732 kW) 10 (547 kW) 24 (494 kW)
and capacity

(:) Power schemel
O Power scheme2
O Power scheme3

//—\
|1‘9) 20 21 22 () Power schemed|

\\/ - -~ ~ —
/ /N /N /N
_ 304)5 6 7 18] 9|10/ 1111213114 15 16 17 18
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FIGURE 10
Wind storage coordination optimization model.
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2.2 Distributed energy storage planning
model

2.2.1 Objective function

In order to further optimize the system operation, this section
introduces energy storage devices with peak shaving, valley filling,
and flat wave suppression effects (Mohammad, 2014; Truong et al.,
2020; Banihashemi et al., 2011; Ke et al.,, 2017). The reasonable
introduction of it greatly improves the stability and performance
of the system. However, the cost of energy storage devices is
high, and a large amount of investment can also increase the
economic operating costs of the system, resulting in resource losses.
Therefore, this section focuses on the balance between energy
storage devices and power supply and demand, considering energy

Frontiers in Energy Research

09

storage charging and discharging strategies and the entire life cycle of
the devices. With the goal of minimizing energy storage investment
and operation costs, the optimal energy storage device charging and
discharging strategy is obtained. The objective function is as follows
(Formula 16) (D et al., 2020):

minfzzfye+fte (16)
1. Energy storage operation and maintenance costs f,,
fye = he(lnlscpec_Pefo/n2dt) 17)

frontiersin.org
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Inthe Formula 17, f, indicates operating costs of energy storage
devices; h, indicates the unit cost coefficient for energy storage

operation is set at 0.05 yuan per kW hour; P, P, indicate separately

o
Energy storage charging power, energy storage discharging power;
#;> 1, Indicates the charging and discharging efficiency of the
energy storage device, taken as 0.9; s, s, indicates the charging and
discharging state, with a value of 0 or 1, where 1 represents charging

and 0 represents discharging.

2. Energy storage investment cost f,,

fu= el e [ Pt [ 8.1 (18)

In the Formula 18, f,, indicates investment cost of energy
storage devices; y, indicates investment coefficient for energy storage
devices, etc. ¢, ¢,, indicate separately unit power and capacity cost
of energy storage, the energy storage power and capacity are 5,000
yuan per kilowatt or KW hour; P, indicates actual power of energy
storage; S, indicates energy storage capacity, The expression for y, is
as follows (Formula 19), where d indicates an annual interest rate of
0.8, T, indicates the full life cycle of energy storage and other devices
is taken as 10 years:

a1 +d)T

=— 19
YT da a1 ()

2.2.2 Constraint condition

For the above objective function, the constraints of this model
include energy storage device charging and discharging power,
capacity constraints, state constraints, as well as system power
balance constraints (Ibrahim et al., 2008).

1. Energy storage charging and discharging power constraint

P <

ecmin =

Pecgpecmax (20)
PefminSPefSPe

max

In the Formula 20 P, P, indicate separately energy

ec>

storage charging and discharging power; P indicate

ec max> Pefmax
separately maximum charging and discharging power of energy

storage; Py pins Pefmin indicate separately minimum charging and

discharging power for energy storage.
2. Energy storage capacity constraint

0<S,<S 1)

In the Formula 21, S, indicates capacity of energy storage
device; S, .., indicates maximum capacity of energy storage device
(Zechun et al., 2017).

e

3. The constraints on the storage charging and discharging states
are shown in Formula 22.

sc+sp=1
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4. System power balance constraint

PL+PECSC:Pf+Pefo (23)

In the Formula 23, P; indicates the power of the load.

3 Solution of two-stage wind storage
coordination planning method based
on improved antlion algorithm

3.1 Principle of antlion algorithm

The Ant Lion Optimization (ALO) algorithm, proposed by
Mirjalili in 2015, is a metaheuristic optimization approach inspired
by the hunting behavior of ant lions in nature (Jasim et al., 2023).
This algorithm simulates several core processes: random walking,
trap building, luring ants, capturing prey, and the implementation
of an elite mechanism (Assiri et al., 2020). The key innovation of
ALO lies in its adaptive boundary contraction strategy, wherein the
radius of the ant lion trap decreases progressively with each iteration.
This feature enables a smooth transition from global exploration
to local exploitation and helps prevent premature convergence.
The algorithm offers advantages such as fewer required parameters
and a strong capacity for balance (Abualigah et al., 2020). When
applied to solve the two-stage wind-storage coordinated planning
method presented in this paper, the specific solution procedure is as
follows:

3.1.1 Ant random walk model

(X,-,j,t — min (Xi,j,t)) X (max (X,-,j)t)t — min (X,-,j)t)t)

X =
max (Xi,j,t) —min (Xi,j,t)

Lt

(24)
+ min (Xi)j)t)t

In the Formula 24, X;;,' indicates ant random walk

Xija

indicates ants
along unnormalized routes; min(XZ-)j)t), max(Xi,N) indicate

normalization route; randomly walk
separately the i-th ant randomly walks the minimum and
maximum values in the j-dimensional variable; min (X,- )j,t)t,
max(Xi ,j,t)t indicate the i-th ant randomly walks to the
minimum and maximum values after the j-dimensional variable

iteration.

3.1.2 Antlion trap model
Simulate the process using the roulette wheel selection
mechanism and define it as:
min (X,-,j t)t = ALJ-’ +min (X)" (25)
’ 25
max (Xi’j,t)t = ALJ-' +max (X)*

In the Formula 25, AL/ indicates the position of the jth
antlion in the t-th iteration; min (X)’, max(X) indicate separately
the minimum and maximum values of all ants after the ¢-th
iteration.
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3.1.3 Ant trapped in trap model

The trap range is defined as follows (Formula 26):

[max (X))’ = w
- (26)

[min(X)"]" = w
I= &th 27)

In the Formula 27, I indicates the size of the trap range; w
indicates the calibration coefficient is related to the number of
iterations; T indicates maximum number of iterations.

3.1.4 Elite antlion model
The antlion with the highest fitness during each iteration is called
the elite antlion, In the ¢ iteration, the position of the i ant is:

f t
At_PAL+PALE
it 5

(28)
In the Formula 28, Af indicates the position of the ith ant in
the t-th iteration; P, , P!

AL VALE
randomly walking around the antlion and elite antlion in the ¢-th

indicate separately the step size of ants

iteration; (5) Antlions prey on ants and reconstruct new trap models

When the fitness of ants is higher than that of antlions, ants are

captured. At this point, the antlion sets the capture location as the

reconstruction trap location. The formula for this model is:

t_ gt t t

AL = A} if f(A})> f(AL}) (29)

In the Formula 29, AE indicates the position of the i-th ant in the

t-th iteration; AL; indicates the position of the j-th antlion in the t-th
iteration.

3.2 Improvement of antlion algorithm

Actual tests demonstrate that although the traditional ant
lion algorithm employs a diversified search strategy, it suffers
from limited local search capability and is prone to becoming
trapped in local optima, thereby constraining improvements in
solution quality. Furthermore, conventional algorithms exhibit
inadequate convergence accuracy in high-precision application
scenarios. To address these limitations, this study proposes
an adaptive Levy flight mechanism. Leveraging its long-step-
length jumping characteristic, this mechanism effectively enables
individuals to escape local optimal regions, thereby enhancing the
algorithm’s global exploration capability and mitigating premature
convergence. Additionally, the golden sine theory is incorporated.
Utilizing its refined search and rapid convergence properties, this
approach facilitates more precise and efficient local exploitation
within promising solution regions, significantly improving the
algorithm’s convergence accuracy. By integrating an adaptive
strategy that dynamically adjusts the balance between Levy
flight-based exploration and golden sine-based exploitation, the
proposed method intelligently coordinates global search and local
development processes, ensuring high-precision convergence while
effectively avoiding local optima (Jianfang et al., 2025).
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3.2.1 Adaptive levy flight (Tanyildizi and Demir,
2017)
The random walk pattern of Levis flight follows the Levi
distribution shown in Equation 30:
X
P, (x)= %j exp (mn®) cos (qz)dn (30)
0
In the Formula 30, a represents the peak height of
the Levi distribution. When a is a non integer positive
real number, the position update is performed using the
method shown in Formula 31 below:

Al = Al+a-Levy(6) (31)

In the Formula 31, A}, A!*! indicate the position of the i-th ant in
the ¢-th and ¢ +Ist iterations; Levy(0) indicates a random search path
that follows the Levy distribution. Levy(6) conforms to the following
constraints:

ou
| v['/2

Levy(6) ~ (32)
In the Formula 32, 6 indicates levy parameter, usually setting at

1.5; pand v indicate random numbers that follow a standard normal

distribution; The expression for ¢ is as follows (Formula 33):

[(1+0)sin(z6/2) 1Y°
T[(1+6)/2]620 />

(33)

In this section, an adaptive Levy flight mechanism is introduced
to mutate ants in their position updates, making their updated
positions more diverse. The introduction of this improvement
factor makes the search scope more comprehensive, the overall
optimization efficiency of the population higher, and effectively
avoids the solution results from falling into local optima.

3.2.2 Golden sine algorithm (Ghaemi et al., 2009)

The position update process of the Golden Sine Algorithm is
shown in the following Formula 34:

X1 =XT | sin(R,) | +R, sin(R,) | x,PT —x, X | (34)

During the position update process, s individual positions
are randomly generated first, and X! = {X;;, X, X;3, -+ X} is
used to represent the position of the i-th particle in the Tth
iteration in n-dimensional space, among them i = 1,2,---,s, Use Pl.T =
{Pi> P> Py
i-th particle in the Tth iteration. R, and R, are random number,
R, €0,27], R, € [0,7]. x; and x, are coefficients obtained through
the golden ratios, and golden ratios are 7= (\/5 - 1)/2, X, = -+
2n(l - 1), x, = —m+ 27T

,P,,} to represent the historical best position of the

The steps of the improved antlion algorithm based on adaptive
Levy flight and golden sine algorithm are shown in Figure 2:

4 Example analysis

4.1 Validation of the superiority of the
improved antlion algorithm

Based on the objective function and corresponding constraints
mentioned in Section 2, this section adopts the antlion algorithm,
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improved antlion algorithm, and particle swarm algorithm for
optimization and solution. The number of iterations for each
algorithm mentioned above is set to 100, with a population size of
40. This example uses the MATLAB 2021a simulation platform, with
a computer model of Thinkpad X13, a processor model of Intel (R)
Core (TM) i5-10210U CPU @ 1.60 GHz, and a memory capacity of
8 GB. The resulting running results are shown in the following figure
(Zhou et al., 2024).

From the comparative analysis of Figure 3, it can be seen
that compared to the other two algorithms, the improved Antlion
algorithm has a longer computation time due to the addition of
adaptive Levy flight and golden sine algorithm modules. The initial
iteration curves of the three algorithms all approximate a linear
descent, indicating that all three algorithms have fast optimization
speeds in the initial stage. However, after multiple iterations, the
convergence speed of particle swarm optimization algorithm and
antlion algorithm is significantly slower than that of the improved
antlion algorithm. The improved antlion algorithm obtained the
optimal solution in the 18th iteration, the antlion algorithm
obtained the optimal solution in the 44th iteration, and the particle
swarm optimization algorithm obtained the optimal solution in
the 56th iteration. Therefore, it can be seen that the introduction
of the improvement factor in the improved antlion algorithm
accelerates its convergence speed, enhances its optimization ability,
and correspondingly increases its convergence accuracy. Therefore,
it can be verified that the improved antlion algorithm used in this
article has the advantages of strong search ability, fast convergence
speed, and high accuracy in dealing with distributed power planning
problems.

4.2 Example parameter settings

This section refers to the IEEE 33 node standard distribution
network model, and the power flow calculation adopts the forward
backward method. The system consists of 33 nodes, 32 branches, a
reference voltage level of 12.66KV, a three-phase reference power
value of 10MVA, and a balance node that is not connected
to distributed power sources. The total load size of the system
is 3,715 + j2300KVA, with nodes 1-8 and 17-26 selected for
industrial load, and the total load size is 2,150 + j1045KVA; The
residential load is taken from nodes 9-16 and 27-33, with a total
load size of 1,565 + j1255KVA. Typical wind load scenarios are
generated using the couple function and k-means clustering method,
as shown in Figure 4.

The probabilities of each scenario are shown in Figures 5, 6,
and the typical wind load scenario is taken as 10 for solving wind
power planning.

4.3 Phase 1 distributed wind power
planning and solution

Based on the above distribution network model and the output
probability of the source load scenario, this section adopts the
improved antlion algorithm mentioned in Section 2.2, selects 40
individual antlions, and performs optimization operations with a
maximum iteration of 100 times. To verify the effectiveness of the
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proposed method, this section introduces three additional planning
methods for comparative analysis. The results of the four solutions
are shown in Table 1 and Figure 7.

Compared with the other three schemes, the planning method
solved by the improved antlion algorithm has the highest power
access capacity and penetration rate, laying a good foundation
for the economic and reliable operation of the system. To further
verify the effectiveness of the method proposed in this article,
this section will analyze it one by one from three aspects: voltage
distribution, active power loss and voltage deviation, and system
comprehensive cost.

4.3.1 System voltage distribution

Figure 8 shows the system voltage distribution diagrams
corresponding to the four schemes. As shown in the figure, the
improved antlion algorithm results in the most significant voltage
increase effect, further verifying the superiority of the planning
method based on the improved antlion algorithm.

4.3.2 System active power loss and voltage
deviation

The active losses and voltage deviations of each scheme
are shown in Table 2. From the table, it can be seen that the improved
antlion algorithm has the smallest active power loss and voltage
deviation compared to the other three schemes, which can effectively
improve the economy and stability of power system operation
compared to other schemes,

4.3.3 System comprehensive cost
The

are shown in Figure 9:

system cost diagrams for different schemes

The improved antlion algorithm planning method has the
highest power supply capacity and penetration rate, resulting
in higher power investment and operating costs compared to
other schemes. However, due to the reasonable planning of
this scheme, the system line losses, environmental pollution,
and power purchase costs are significantly reduced, effectively
offsetting the high investment and operation costs. Table 3
shows the comparison of comprehensive costs under different
schemes.

The cost of line loss for improving the antlion algorithm
planning method is 187,100 yuan, which is the smallest compared
to the other three schemes. This indicates that the proposed
improved antlion algorithm can effectively assist distributed power
generation in reducing line network loss and improving the
systemy’s economic efficiency. In terms of purchasing electricity
costs, due to the integration of distributed power sources, the
self supply level of the system has increased, and the demand for
purchasing electricity from the power grid has correspondingly
decreased, thereby reducing the cost of purchasing electricity.
Compared with the other three schemes, the introduction of
the improved antlion algorithm further reduces the system’s
electricity purchase cost, verifying the superiority of this

algorithm.
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4.4 Phase 2 distributed energy storage
planning and solution

Based on the planning model described in Section 1, combined
with the improved Antlion algorithm, the following energy storage
charging and discharging and configuration planning strategies can
be obtained. Table 4 and Figure 10 show the layout results of the
energy storage device.

According to the particle swarm algorithm and planning
methods that do not consider source load uncertainty, the energy
storage installation capacity is relatively small. In the solution based
on the antlion algorithm, although the energy storage access capacity
is large, due to the proximity of the 4 nodes to the front end
of the line and the higher economic cost of large energy storage
capacity, the antlion algorithm solution is not suitable as the optimal
processing method compared to the improved antlion algorithm.
The introduction of improved antlion algorithm makes the energy
storage installation capacity moderate, with good economic benefits,
and the installation location close to distributed power sources,
which is in line with the original intention of energy storage
installation, that is, to suppress real-time power fluctuations caused
by the integration of distributed power sources.

Figure 11 shows the charging and discharging status of energy
storage and the charging and discharging power situation. It can be
seen from the figure that energy storage is not always working, but
indirectly charging and discharging based on the real-time operating
status of the system. In order to verify the effectiveness of energy
storage access, this section selects typical days as shown in Figure 12
for validity verification.

As shown in Figure 13, with the addition of distributed energy
storage devices, the load curve fluctuation of the system on typical
days shows a significant easing trend compared to before the
addition of energy storage devices, and the peak valley difference of
load output is significantly reduced, suppressing power fluctuations.

Based on the energy storage charging and discharging
strategy in Figure 11, it can be seen that during peak load operation,
the energy storage device serves as a power source to assist
distributed wind power in providing electricity to the system.
However, during low load periods, the energy storage device acts
as a load and plays a charging role. The integration of distributed
energy storage devices is coordinated with distributed wind power
generation. When wind power output is low, energy storage serves
as a power source to supply power to the load, achieving reliable
operation of the system.

5 Summary

This article introduces a distributed energy storage charging
and discharging strategy, and proposes a two-stage wind storage
coordination planning method, which is solved by an improved
antlion algorithm. The main conclusions are as follows: (1) The
improved antlion algorithm with adaptive Levy flight and golden
sine algorithm can effectively improve the voltage distribution
level of the system, reduce network losses, and further reduce the
overall cost of the system, bringing good stability and economy
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to the system operation. (2) The integration of distributed energy
storage effectively suppresses power fluctuations caused by the
uncertainty of distributed power generation output, and cooperates
with distributed wind power to provide power supply. Although
the cost of the method proposed in this paper is not optimal,
it combines economy and reliability, providing decision-makers
with more diverse and reasonable planning methods to choose
from.

This study is subject to certain limitations. First, the cost-benefit
trade-off of the proposed method in specific application scenarios
needs to be more accurately quantified. Second, the algorithm’s
solution efficiency and its application potential in large-scale systems
require further in-depth validation. Future research will focus
on the coordinated planning of wind power and energy storage
systems, incorporating multi-time-scale and multi-type flexible
resources. Additionally, the adaptability of the planning framework
to uncertainties and extreme operating conditions will be
enhanced.
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