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Introduction: With the widespread integration of distributed power sources, 
the power grid is facing challenges such as increased losses, rising costs, 
voltage fluctuations, and overload, resulting in greater operational complexity. 
Traditional scheduling methods are no longer adequate, making reasonable 
planning of distributed power generation and energy storage configurations 
particularly crucial.
Methods: This article proposes a two-stage wind-storage coordination planning 
method that considers source-load uncertainty. The approach is based on 
an improved antlion algorithm and incorporates distributed energy storage 
charging and discharging strategies. The first stage focuses on wind power 
site selection and capacity determination, using voltage offset, network loss, 
and comprehensive system cost as evaluation indicators. A multi-objective 
function model is established to balance grid stability and economic efficiency. 
The second stage introduces distributed energy storage devices to reduce 
power fluctuations while minimizing the sum of operation, maintenance, and 
storage investment costs, thereby optimizing the energy storage charging 
and discharging strategy. The improved antlion algorithm, enhanced with 
adaptive Lévy flight and golden sine theory, is used to solve the two-stage 
planning model.
Results: The proposed method effectively improved system-level voltage 
distribution, reduced network losses, and lowered overall system costs. 
Specifically, it achieved a 27.95% increase in total capacity, a reduction of 
32.14 kW in active power loss, and a total cost decrease of 221,200 yuan. 
The improved antlion algorithm demonstrated strong search capability, fast 
convergence speed, and high computational accuracy.
Discussion: The results indicate that the proposed method is better aligned with 
practical requirements compared to traditional approaches. The improvements 
in system performance and cost efficiency highlight the effectiveness of the 
two-stage planning framework and the enhanced optimization algorithm. The 
method offers a viable solution for the integrated planning of wind power and 
energy storage systems under uncertainty.
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distributed power generation, energy storage, adaptive levy flight, golden sine theory, 
improved the antlion algorithm 

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2025.1633719
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2025.1633719&domain=pdf&date_stamp=
2025-09-19
mailto:jiez_whu@whu.edu.cn
mailto:jiez_whu@whu.edu.cn
https://doi.org/10.3389/fenrg.2025.1633719
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1633719/full
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1633719/full
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1633719/full
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1633719/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Su et al. 10.3389/fenrg.2025.1633719

 

1 Introduction

The integration of distributed power sources injects new 
voltage power into the distribution network, and the network 
topology and power flow distribution will also change accordingly. 
Unreasonable integration may result in problems such as reverse 
transmission of branch power flow, voltage exceeding limits, 
and increased line losses, affecting system operation (Fei, 2020). 
Meanwhile, in distributed power generation, wind and photovoltaic 
power generation, as the main distributed energy sources, have 
the advantages of being renewable and environmentally friendly. 
However, their output power is unstable due to changes in wind 
speed and light intensity, which may lead to insufficient power 
supply or resource waste. Therefore, optimizing the configuration 
of distributed power sources and utilizing energy storage 
technology to mitigate their adverse effects on the power grid is
crucial.

In terms of distributed power generation planning models, 
Chu and Qiao considered the output efficiency and load rate of 
distributed power generation units. They formulated a planning 
model with the objective of minimizing the comprehensive 
operational cost of the distribution network. Huang et al. calculated 
power flow and network losses using Monte Carlo sampling and 
applied a genetic algorithm to optimize costs, network losses, 
and surplus electricity from distributed power sources. Cao et al. 
addressed the uncertainties associated with wind, solar, and load 
variations by employing Latin hypercube sampling combined 
with an improved synchronous substitution method to generate 
representative scenarios. The model was solved using an improved 
particle swarm optimization algorithm, aiming to minimize the 
annual comprehensive cost. Su et al. proposed a coordinated 
optimization strategy for wind power, solar power, load demand, 
and energy storage systems, focusing on determining the optimal 
power and capacity configuration of energy storage devices. Their 

FIGURE 1
Model diagram of two-stage wind storage coordination planning method.
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FIGURE 2
Improved antlion algorithm solution flow chart.

FIGURE 3
Variation of fitness values of four intelligent optimization algorithms 
with iteration times.

objective function included distribution network investment costs, 
maintenance costs, power purchase costs, and reliability costs, which 
were optimized using the particle swarm optimization algorithm. 
Other researchers have also used variables such as network loss 
as objective functions for analysis and optimization. However, 
most of the aforementioned studies focus on single-objective 
optimization, which may overlook the complex interactions 
in system operations and deviate from practical engineering 
applications. To address this limitation, scholars both domestically 
and internationally have conducted further research into multi-
objective optimization models. Mohammad et al. constructed a 
multi-objective function based on indicators such as network 

loss, voltage deviation, and short-circuit current, and solved 
it using optimization algorithms. Truong et al. introduced a 
quasi-adversarial chaotic symbiotic biological search algorithm 
to address multi-objective optimization problems. Banihashemi 
et al. developed a multi-objective optimization model aimed at 
minimizing voltage deviation, line loss, and operational costs, which 
was solved using an improved genetic algorithm. Li et al. applied the 
theory of chance-constrained programming and employed the non-
dominated sorting genetic algorithm (NSGA) to optimize objectives 
including minimizing the operational risk of distribution networks 
and minimizing annual comprehensive costs.

Overall, many literature currently use simple deterministic 
models to model distributed power generation planning problems, 
without considering source load uncertainty or the impact of 
distributed energy storage (Zhenqi, 2021b; Paiva et al., 2017; 
Ganguly and Samajpati, 2015; Xu et al., 2017; Sivaram et al., 
2019; Deyi et al., 2011; Junyang et al., 2018; Chengshan et al., 
2006). Therefore, this article will establish a more comprehensive 
distributed power generation planning model, taking into account 
the uncertainty of distributed power generation output and the 
integration of energy storage, to ensure the safety, reliability, and 
economy of the power system. Therefore, this article proposes 
a distributed wind storage coordination planning method that 
takes into account the uncertainty of source load. Firstly, a multi-
objective model is established with the constraints of power flow, 
voltage, and power, aiming to minimize system network losses, 
voltage deviations, and overall system costs. Taking into account the 
uncertainty of source and load, a first stage distributed wind power 
coordination optimization strategy is proposed; Then, taking into 
account constraints such as power supply, energy storage capacity, 
and State of charging/discharge, combined with decision variables 
obtained in the previous stage, a model is established based on 
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FIGURE 4
Typical scenario of wind farm output.

FIGURE 5
Probability of typical output scenarios of coupled wind power.

system economic indicators, and a second stage distributed energy 
storage planning method is proposed; Finally, the improved antlion 
algorithm with adaptive Levy flight and golden sine theory as 
improvement factors was used to solve the proposed two-stage 
wind storage coordination planning method. Through simulation 
verification, it was proved that the proposed method can effectively 
improve the system voltage distribution level, reduce network losses, 
and further reduce the overall system cost, bringing good stability 
and economy to the system operation. 

2 Two stage wind storage 
coordination planning methods

This article considers distributed energy storage charging 
and discharging strategies and proposes a two-stage wind 

storage coordination planning method that takes into account 
source load uncertainty (Chuzhuang, 2017; Weiguo et al., 2016; 
Zhenqi, 2021a; Haifeng et al., 2016). The specific model diagram 
is shown in Figure 1. 

2.1 Distributed wind power planning model

2.1.1 Objective function
The connection of power supply to the distribution network 

can effectively improve the system voltage level and reduce 
network losses, but an unreasonable connection scheme can 
have a significant impact on the operation of the distribution 
network and disrupt the safe and reliable operation of the system. 
Therefore, in this section, a multi-objective system for distribution 
network operation is established based on three indicators of power 
grid stability and economy, namely, system network loss, node 
voltage deviation, and annual comprehensive cost, to coordinate 
and plan the integration of distributed power sources into the 
distribution network (Yurong et al., 2020). The specific model 
is as follows:

min f1 = α
floss

fl max
+ β fΔU + γ

fcb

fcb max
(1)

In the Formula 1, floss indicates the active power loss of the 
system; fΔU indicates the system voltage offset value; fcb indicates 
the comprehensive cost of the system; fl max indicates the maximum 
active power loss of the system; fcb max indicates the maximum 
comprehensive cost of the system; α,β,γ indicate the inertia weight 
coefficients of each indicator, determined by the Analytic Hierarchy 
Process, they are α = 0.6370,β = 0.0147, γ = 0.2583 ̥

1. System active power loss floss

floss =
L

∑
i=1

Gi,j(Ui
2 +Uj

2 − 2UiUj cos δij) (2)
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FIGURE 6
Probability of typical load output scenarios.

TABLE 1  Power planning methods under different methods.

Category Improved antlion 
algorithm

Antlion algorithm Particle swarm 
optimization 

algorithm

Not considering 
uncertainty

Wind power access location 
and capacity

12(722 KW)
31(427 KW)

8(567 KW)
24(406 KW)

14(450 KW)
26(496 KW)

4(410 KW)
19(488 KW)

Total capacity 1149 KW 973 KW 946 KW 898 KW

FIGURE 7
IEEE33 node distribution network.

In the Formula 2, floss indicates Line loss; Gi,j indicates the 
conductivity value between node i and node j; L indicates the 
number of system lines; Ui, Uj indicate the voltage values of nodes 
i and j; cos δij indicates the voltage phase angle difference between 
nodes i and j (Ping et al., 2018). 

2. System voltage offset value fΔU

fΔU =
N

∑
j=1
|

Uj

Un
− 1| (3)

In the Formula 3, fΔU indicates the voltage offset value; Uj
indicates the actual voltage value of the node; Un indicates the rated 
voltage of the system; N indicates the number of system nodes.
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FIGURE 8
Voltage distribution diagram of different schemes.

3. Annual comprehensive cost of the system fcb

fcb =
N

∑
s=1

PL,W(s)( fs
yx + fs

tz + fs
loss + fs

ec + fs
gd − fs

bt) (4)

In the Formula 4, N indicates the number of typical scenarios; 
PL,W(s) indicates probability of occurrence of typical wind load 
scenarios; fs

yx indicates operating costs in typical scenarios; fs
tz

indicates investment costs in typical scenarios; fs
loss indicates 

Network loss cost in typical scenarios; fs
ec indicates Environmental 

benefits and costs in typical scenarios; fs
gd indicates under typical 

scenarios, the cost of purchasing electricity online from a large 
power company; fs

bt indicates power generation subsidies in typical 
scenarios. Among them, the cost expressions are as follows:

a. Running cost:

fyx = h f ∑
i∈Nf

T fP f ,i (5)

In the Formula 5, fyx indicates operating costs of wind power; h f
indicates the unit cost coefficient for wind power operation is taken 
as 0.045 yuan per kW hour; P f ,i indicates Selected ith wind power 
generation power; T f  indicates Annual duration of wind power 
generation; N f  indicates A collection of nodes that can be connected 
to wind power (Junqiang et al., 2016). 

b. Investment cost:

ftz = γ fc f ∑
i∈Nf

P f ,i (6)

In the Formula 6, ftz indicates Wind power investment cost; γ f
indicates investment coefficient for wind power, etc.,; c f  indicates 
unit capacity investment cost of wind power at 10,000 yuan per 
kW hour; The expression for γ f  is as follows Formula 7, and in the 

formula, d indicates annual interest rate which is 0.8, T f  indicates 
The full life cycle of wind power is taken as 10 years:

γ f =
d(1+ d)Tf

d(1+ d)Tf − 1
(7)

c. Line loss cost:

fs = cs

b

∑
j=1

PjlTmax (8)

In the Formula 8, cs indicates unit length line loss cost, taken 
as 0.6 yuan per kW hour; Pjl indicates maximum network loss 
on line j; Tmax indicates the maximum annual load loss time is 
taken as 4200 h. 

d. Environmental benefit cost:

fec = cem

n

∑
m=1
∑
i∈Nf

em(Pload + Ploss − P f ,i) (9)

In the Formula 9 n indicates the number of environmental 
pollutants, cem indicates Unit cost of pollutant m; em indicates under 
the traditional power generation mode, the emission indicators for 
pollutant m are as follows: sulfur dioxide emission indicator is 
4.5 g per kW hour, with a cost of 7.3 yuan per kilogram; nitrogen 
dioxide emission indicator is 1.64 g per kW hour, with a cost 
of 10 yuan per kilogram; carbon dioxide emission indicator is 
90 g per kW hour, with a cost of 0.8 yuan per kilogram; Pload
indicates total load of the line; Ploss indicates Network loss; all 
emission indicators are based on typical data of the Chinese power 
system (China Electricity Council, 2023; Ministry of Ecology and 
Environment, 2022; Jinnan et al., 2019). 

e. Electricity purchase cost:

fgd = cgd(Ploaad max + Ploss − ∑
i∈Nf

T fP f ,i)T1 (10)

In the Formula 10, cgd indicates the unit cost of purchasing 
electricity is 0.5 yuan per kW hour; Ploaad max indicates maximum 
system load; T1 indicates the maximum annual load utilization time 
is taken as 4,200 h. 

f. Power generation subsidy:

fbt = cbt∑
i∈Nf

P f ,i (11)

In the Formula 11, cbt indicates The unit government subsidy fee 
is 0.4 yuan per kW hour. 

2.1.2 Constraint condition
The main constraints considered by the distributed wind power 

planning model are as follows (Kaiyuan, 2023): 
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TABLE 2  Active loss and voltage deviation.

Category Improved antlion 
algorithm

Antlion algorithm Particle swarm
Optimization 

algorithm

Not considering 
uncertainty

Active loss 62.17 KW 86.09 KW 89.24 KW 94.31 KW

Voltage deviation 0.1464p.u 0.1572p.u 0.1597p.u 0.1684p.u

FIGURE 9
System cost chart for different solutions.

1. Trend constraints

{{{{{
{{{{{
{

ΔPi = Pi −Ui

N

∑
j=1

Uj(Gij cos δij +Bij sin δij) = 0

ΔQi = Qi −Ui

N

∑
j=1

Uj(Gij sin δij −Bij cos δij) = 0
(12)

In the Formula 12, Pi, Qi indicate separately active and reactive 
power of node i; Ui, Uj indicate separately actual voltage of node 
j; Gij, Bij indicate separately conductance and susceptance of nodes 
and branches between them; δij indicates voltage phase angle 
difference between nodes; N is the number of system nodes. 

2. Node voltage constraint

Ui min ≤ Ui ≤ Ui max (13)

In the Formula 13, Ui indicates the voltage amplitude of node i; 
Ui min, Ui max indicates separately the upper and lower limits of the 
voltage at node i. 

3. Branch power constraint

Pij min ≤ Pij ≤ Pij max (14)

In the Formula 14, Pij indicates the active power of the line 
between nodes i and j; Pij min,Pij max indicates separately the upper 
and lower limits of active power of the line connecting nodes i and 
j. 

4. Wind turbine capacity constraint

P f min ≤ P f ≤ P f max (15)

In the Formula 15, P f  indicates maximum capacity of wind 
turbines; P f max indicates maximum wind power capacity; P f min
indicates minimum capacity of wind power. 
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TABLE 3  Comprehensive costs under different schemes.

Category Improved antlion 
algorithm

Antlion algorithm Particle swarm 
optimization 

algorithm

Not considering 
uncertainty

Operating cost (10,000 
yuan/year)

88.73 69.97 67.10 63.56

Investment cost (10,000 
yuan/year)

145.86 128.96 126.72 121.04

Network loss (RMB 
10000/year)

18.71 29.29 30.16 27.43

Environmental pollution 
(10,000 yuan/year)

56.48 67.31 62.13 69.18

Government subsidy (10,000 
yuan/year)

68.19 57.38 53.09 51.34

Electricity purchase cost 
(10,000 yuan/year)

257.85 273.71 284.73 291.65

Comprehensive cost (10,000 
yuan/year)

499.44 511.69 517.75 521.52

TABLE 4  Distributed energy storage configuration schemes under different methods.

Category Improved antlion 
algorithm

Antlion algorithm Particle swarm 
optimization 

algorithm

Not considering 
uncertainty

Energy storage access location 
and capacity

33 (670 kW) 4 (732 kW) 10 (547 kW) 24 (494 kW)

FIGURE 10
Wind storage coordination optimization model.
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FIGURE 11
State of charging/discharge and power.

FIGURE 12
Typical daily wind load output.

2.2 Distributed energy storage planning 
model

2.2.1 Objective function
In order to further optimize the system operation, this section 

introduces energy storage devices with peak shaving, valley filling, 
and flat wave suppression effects (Mohammad, 2014; Truong et al., 
2020; Banihashemi et al., 2011; Ke et al., 2017). The reasonable 
introduction of it greatly improves the stability and performance 
of the system. However, the cost of energy storage devices is 
high, and a large amount of investment can also increase the 
economic operating costs of the system, resulting in resource losses. 
Therefore, this section focuses on the balance between energy 
storage devices and power supply and demand, considering energy 

FIGURE 13
System power before and after energy storage addition.

storage charging and discharging strategies and the entire life cycle of 
the devices. With the goal of minimizing energy storage investment 
and operation costs, the optimal energy storage device charging and 
discharging strategy is obtained. The objective function is as follows 
(Formula 16) (D et al., 2020):

min f2 = fye + fte (16)

1. Energy storage operation and maintenance costs fye

fye = he(∫η1scPec − Pe fs f/η2dt) (17)
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In the Formula 17, fye indicates operating costs of energy storage 
devices; he indicates the unit cost coefficient for energy storage 
operation is set at 0.05 yuan per kW hour; Pec, Pe f  indicate separately 
Energy storage charging power, energy storage discharging power; 
η1, η2 Indicates the charging and discharging efficiency of the 
energy storage device, taken as 0.9; sc, s f  indicates the charging and 
discharging state, with a value of 0 or 1, where 1 represents charging 
and 0 represents discharging. 

2. Energy storage investment cost ftz

fte = γe[cep∫Pedt+ ces∫Sedt] (18)

In the Formula 18, fte indicates investment cost of energy 
storage devices; γe indicates investment coefficient for energy storage 
devices, etc. cep, ces indicate separately unit power and capacity cost 
of energy storage, the energy storage power and capacity are 5,000 
yuan per kilowatt or kW hour; Pe indicates actual power of energy 
storage; Se indicates energy storage capacity, The expression for γe is 
as follows (Formula 19), where d indicates an annual interest rate of 
0.8, Te indicates the full life cycle of energy storage and other devices 
is taken as 10 years:

γe =
d(1+ d)Te

d(1+ d)Te − 1
(19)

 

2.2.2 Constraint condition
For the above objective function, the constraints of this model 

include energy storage device charging and discharging power, 
capacity constraints, state constraints, as well as system power 
balance constraints (Ibrahim et al., 2008). 

1. Energy storage charging and discharging power constraint

{
{
{

Pec min ≤ Pec ≤ Pec max

Pe f min ≤ Pe f ≤ Pe f max

(20)

In the Formula 20 Pec,  Pe f  indicate separately energy 
storage charging and discharging power; Pec max,  Pe f max indicate 
separately maximum charging and discharging power of energy 
storage; Pec min,  Pe f min indicate separately minimum charging and 
discharging power for energy storage. 

2. Energy storage capacity constraint

0 ≤ Se ≤ Se max (21)

In the Formula 21, Se indicates capacity of energy storage 
device; Se max indicates maximum capacity of energy storage device 
(Zechun et al., 2017). 

3. The constraints on the storage charging and discharging states 
are shown in Formula 22.

sc + s f = 1 (22)

4. System power balance constraint

PL + Pecsc = P f + Pe fs f (23)

In the Formula 23, PL indicates the power of the load. 

3 Solution of two-stage wind storage 
coordination planning method based 
on improved antlion algorithm

3.1 Principle of antlion algorithm

The Ant Lion Optimization (ALO) algorithm, proposed by 
Mirjalili in 2015, is a metaheuristic optimization approach inspired 
by the hunting behavior of ant lions in nature (Jasim et al., 2023). 
This algorithm simulates several core processes: random walking, 
trap building, luring ants, capturing prey, and the implementation 
of an elite mechanism (Assiri et al., 2020). The key innovation of 
ALO lies in its adaptive boundary contraction strategy, wherein the 
radius of the ant lion trap decreases progressively with each iteration. 
This feature enables a smooth transition from global exploration 
to local exploitation and helps prevent premature convergence. 
The algorithm offers advantages such as fewer required parameters 
and a strong capacity for balance (Abualigah et al., 2020). When 
applied to solve the two-stage wind-storage coordinated planning 
method presented in this paper, the specific solution procedure is as
follows: 

3.1.1 Ant random walk model

Xi,j,t
′ =
(Xi,j,t −min(Xi,j,t)) × (max(Xi,j,t)

t −min(Xi,j,t)
t)

max(Xi,j,t) −min(Xi,j,t)

+ min(Xi,j,t)
t

(24)

In the Formula 24, Xi,j,t
′ indicates ant random walk 

normalization route; Xi,j,t indicates ants randomly walk 
along unnormalized routes; min(Xi,j,t), max(Xi,j,t) indicate 
separately the i-th ant randomly walks the minimum and 
maximum values in the j-dimensional variable; min(Xi,j,t)

t, 
max(Xi,j,t)

t indicate the i-th ant randomly walks to the 
minimum and maximum values after the j-dimensional variable
iteration. 

3.1.2 Antlion trap model
Simulate the process using the roulette wheel selection 

mechanism and define it as:

{
{
{

min(Xi,j,t)
t = ALj

t +min (X)t

max(Xi,j,t)
t = ALj

t +max (X)t
(25)

In the Formula 25, ALj
t indicates the position of the jth 

antlion in the t-th iteration; min (X)t, max (X)t indicate separately 
the minimum and maximum values of all ants after the t-th
iteration.
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3.1.3 Ant trapped in trap model
The trap range is defined as follows (Formula 26):

{{{
{{{
{

[max (X)t]′ =
max (X)t

I

[min (X)t]′ =
min (X)t

I

(26)

I = 10wt
T

(27)

In the Formula 27, I indicates the size of the trap range; w
indicates the calibration coefficient is related to the number of 
iterations; T indicates maximum number of iterations. 

3.1.4 Elite antlion model
The antlion with the highest fitness during each iteration is called 

the elite antlion, In the t iteration, the position of the i ant is:

At
i =

Pt
AL + Pt

ALE

2
(28)

In the Formula 28, At
i indicates the position of the ith ant in 

the t-th iteration; Pt
AL, Pt

ALE indicate separately the step size of ants 
randomly walking around the antlion and elite antlion in the t-th 
iteration; (5) Antlions prey on ants and reconstruct new trap models

When the fitness of ants is higher than that of antlions, ants are 
captured. At this point, the antlion sets the capture location as the 
reconstruction trap location. The formula for this model is:

ALt
j = At

i i f  f(At
i  ) > f(ALt

j) (29)

In the Formula 29, At
i indicates the position of the i-th ant in the 

t-th iteration; ALt
j  indicates the position of the j-th antlion in the t-th 

iteration. 

3.2 Improvement of antlion algorithm

Actual tests demonstrate that although the traditional ant 
lion algorithm employs a diversified search strategy, it suffers 
from limited local search capability and is prone to becoming 
trapped in local optima, thereby constraining improvements in 
solution quality. Furthermore, conventional algorithms exhibit 
inadequate convergence accuracy in high-precision application 
scenarios. To address these limitations, this study proposes 
an adaptive Levy flight mechanism. Leveraging its long-step-
length jumping characteristic, this mechanism effectively enables 
individuals to escape local optimal regions, thereby enhancing the 
algorithm’s global exploration capability and mitigating premature 
convergence. Additionally, the golden sine theory is incorporated. 
Utilizing its refined search and rapid convergence properties, this 
approach facilitates more precise and efficient local exploitation 
within promising solution regions, significantly improving the 
algorithm’s convergence accuracy. By integrating an adaptive 
strategy that dynamically adjusts the balance between Levy 
flight-based exploration and golden sine-based exploitation, the 
proposed method intelligently coordinates global search and local 
development processes, ensuring high-precision convergence while 
effectively avoiding local optima (Jianfang et al., 2025). 

3.2.1 Adaptive levy flight (Tanyildizi and Demir, 
2017)

The random walk pattern of Levi’s flight follows the Levi 
distribution shown in Equation 30:

Pa,b(x) =
1
π
∫

x

0
exp (mna)cos (qz)dn (30)

In the Formula 30, a represents the peak height of 
the Levi distribution. When a is a non integer positive 
real number, the position update is performed using the 
method shown in Formula 31 below:

At+1
i = At

i + a · Levy(θ) (31)

In the Formula 31, At
i, A

t+1
i  indicate the position of the i-th ant in 

the t-th and t +1st iterations; Levy(θ) indicates a random search path 
that follows the Levy distribution. Levy(θ) conforms to the following 
constraints:

Levy(θ) ∼
φu

∣ v∣1/2
(32)

In the Formula 32, θ indicates levy parameter, usually setting at 
1.5; μ and ν indicate random numbers that follow a standard normal 
distribution; The expression for φ is as follows (Formula 33):

φ = [
Γ(1+ θ) sin (πθ/2)

Γ[(1+ θ)/2]θ2(θ−1)/2
]

1/θ
(33)

In this section, an adaptive Levy flight mechanism is introduced 
to mutate ants in their position updates, making their updated 
positions more diverse. The introduction of this improvement 
factor makes the search scope more comprehensive, the overall 
optimization efficiency of the population higher, and effectively 
avoids the solution results from falling into local optima. 

3.2.2 Golden sine algorithm (Ghaemi et al., 2009)
The position update process of the Golden Sine Algorithm is 

shown in the following Formula 34:

XT+1
i = XT

i ∣ sin (R1) ∣ +R2 sin (R1) ∣ x1PT
i − x2XT

i ∣ (34)

During the position update process, s individual positions 
are randomly generated first, and XT

i = {Xi1,Xi2,Xi3, · · · · ··,Xin} is 
used to represent the position of the i-th particle in the Tth 
iteration in n-dimensional space, among them i = 1,2,⋯, s, Use PT

i =
{Pi1,Pi1,Pi1, ......,Pin} to represent the historical best position of the 
i-th particle in the Tth iteration. R1 and R2 are random number, 
R1 ∈ [0,2π], R2 ∈ [0,π]. x1 and x2 are coefficients obtained through 
the golden ratios, and golden ratios are τ = (√5− 1)/2, x1 = − π+
2π(1− τ), x2 = − π+ 2πτ.

The steps of the improved antlion algorithm based on adaptive 
Levy flight and golden sine algorithm are shown in Figure 2: 

4 Example analysis

4.1 Validation of the superiority of the 
improved antlion algorithm

Based on the objective function and corresponding constraints 
mentioned in Section 2, this section adopts the antlion algorithm, 
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improved antlion algorithm, and particle swarm algorithm for 
optimization and solution. The number of iterations for each 
algorithm mentioned above is set to 100, with a population size of 
40. This example uses the MATLAB 2021a simulation platform, with 
a computer model of Thinkpad X13, a processor model of Intel (R) 
Core (TM) i5-10210U CPU @ 1.60 GHz, and a memory capacity of 
8 GB. The resulting running results are shown in the following figure
(Zhou et al., 2024).

From the comparative analysis of Figure 3, it can be seen 
that compared to the other two algorithms, the improved Antlion 
algorithm has a longer computation time due to the addition of 
adaptive Levy flight and golden sine algorithm modules. The initial 
iteration curves of the three algorithms all approximate a linear 
descent, indicating that all three algorithms have fast optimization 
speeds in the initial stage. However, after multiple iterations, the 
convergence speed of particle swarm optimization algorithm and 
antlion algorithm is significantly slower than that of the improved 
antlion algorithm. The improved antlion algorithm obtained the 
optimal solution in the 18th iteration, the antlion algorithm 
obtained the optimal solution in the 44th iteration, and the particle 
swarm optimization algorithm obtained the optimal solution in 
the 56th iteration. Therefore, it can be seen that the introduction 
of the improvement factor in the improved antlion algorithm 
accelerates its convergence speed, enhances its optimization ability, 
and correspondingly increases its convergence accuracy. Therefore, 
it can be verified that the improved antlion algorithm used in this 
article has the advantages of strong search ability, fast convergence 
speed, and high accuracy in dealing with distributed power planning
problems. 

4.2 Example parameter settings

This section refers to the IEEE 33 node standard distribution 
network model, and the power flow calculation adopts the forward 
backward method. The system consists of 33 nodes, 32 branches, a 
reference voltage level of 12.66KV, a three-phase reference power 
value of 10MVA, and a balance node that is not connected 
to distributed power sources. The total load size of the system 
is 3,715 + j2300KVA, with nodes 1–8 and 17–26 selected for 
industrial load, and the total load size is 2,150 + j1045KVA; The 
residential load is taken from nodes 9–16 and 27–33, with a total 
load size of 1,565 + j1255KVA. Typical wind load scenarios are 
generated using the couple function and k-means clustering method, 
as shown in Figure 4.

The probabilities of each scenario are shown in Figures 5, 6, 
and the typical wind load scenario is taken as 10 for solving wind 
power planning. 

4.3 Phase 1 distributed wind power 
planning and solution

Based on the above distribution network model and the output 
probability of the source load scenario, this section adopts the 
improved antlion algorithm mentioned in Section 2.2, selects 40 
individual antlions, and performs optimization operations with a 
maximum iteration of 100 times. To verify the effectiveness of the 

proposed method, this section introduces three additional planning 
methods for comparative analysis. The results of the four solutions 
are shown in Table 1 and Figure 7.

Compared with the other three schemes, the planning method 
solved by the improved antlion algorithm has the highest power 
access capacity and penetration rate, laying a good foundation 
for the economic and reliable operation of the system. To further 
verify the effectiveness of the method proposed in this article, 
this section will analyze it one by one from three aspects: voltage 
distribution, active power loss and voltage deviation, and system 
comprehensive cost. 

4.3.1 System voltage distribution
Figure 8 shows the system voltage distribution diagrams 

corresponding to the four schemes. As shown in the figure, the 
improved antlion algorithm results in the most significant voltage 
increase effect, further verifying the superiority of the planning 
method based on the improved antlion algorithm. 

4.3.2 System active power loss and voltage 
deviation

The active losses and voltage deviations of each scheme 
are shown in Table 2. From the table, it can be seen that the improved 
antlion algorithm has the smallest active power loss and voltage 
deviation compared to the other three schemes, which can effectively 
improve the economy and stability of power system operation 
compared to other schemes ̥  

4.3.3 System comprehensive cost
The system cost diagrams for different schemes 

are shown in Figure 9:
The improved antlion algorithm planning method has the 

highest power supply capacity and penetration rate, resulting 
in higher power investment and operating costs compared to 
other schemes. However, due to the reasonable planning of 
this scheme, the system line losses, environmental pollution, 
and power purchase costs are significantly reduced, effectively 
offsetting the high investment and operation costs. Table 3 
shows the comparison of comprehensive costs under different
schemes.

The cost of line loss for improving the antlion algorithm 
planning method is 187,100 yuan, which is the smallest compared 
to the other three schemes. This indicates that the proposed 
improved antlion algorithm can effectively assist distributed power 
generation in reducing line network loss and improving the 
system’s economic efficiency. In terms of purchasing electricity 
costs, due to the integration of distributed power sources, the 
self supply level of the system has increased, and the demand for 
purchasing electricity from the power grid has correspondingly 
decreased, thereby reducing the cost of purchasing electricity. 
Compared with the other three schemes, the introduction of 
the improved antlion algorithm further reduces the system’s 
electricity purchase cost, verifying the superiority of this
algorithm. 

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1633719
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Su et al. 10.3389/fenrg.2025.1633719

4.4 Phase 2 distributed energy storage 
planning and solution

Based on the planning model described in Section 1, combined 
with the improved Antlion algorithm, the following energy storage 
charging and discharging and configuration planning strategies can 
be obtained. Table 4 and Figure 10 show the layout results of the 
energy storage device.

According to the particle swarm algorithm and planning 
methods that do not consider source load uncertainty, the energy 
storage installation capacity is relatively small. In the solution based 
on the antlion algorithm, although the energy storage access capacity 
is large, due to the proximity of the 4 nodes to the front end 
of the line and the higher economic cost of large energy storage 
capacity, the antlion algorithm solution is not suitable as the optimal 
processing method compared to the improved antlion algorithm. 
The introduction of improved antlion algorithm makes the energy 
storage installation capacity moderate, with good economic benefits, 
and the installation location close to distributed power sources, 
which is in line with the original intention of energy storage 
installation, that is, to suppress real-time power fluctuations caused 
by the integration of distributed power sources.

Figure 11 shows the charging and discharging status of energy 
storage and the charging and discharging power situation. It can be 
seen from the figure that energy storage is not always working, but 
indirectly charging and discharging based on the real-time operating 
status of the system. In order to verify the effectiveness of energy 
storage access, this section selects typical days as shown in Figure 12 
for validity verification.

As shown in Figure 13, with the addition of distributed energy 
storage devices, the load curve fluctuation of the system on typical 
days shows a significant easing trend compared to before the 
addition of energy storage devices, and the peak valley difference of 
load output is significantly reduced, suppressing power fluctuations.

Based on the energy storage charging and discharging 
strategy in Figure 11, it can be seen that during peak load operation, 
the energy storage device serves as a power source to assist 
distributed wind power in providing electricity to the system. 
However, during low load periods, the energy storage device acts 
as a load and plays a charging role. The integration of distributed 
energy storage devices is coordinated with distributed wind power 
generation. When wind power output is low, energy storage serves 
as a power source to supply power to the load, achieving reliable 
operation of the system. 

5 Summary

This article introduces a distributed energy storage charging 
and discharging strategy, and proposes a two-stage wind storage 
coordination planning method, which is solved by an improved 
antlion algorithm. The main conclusions are as follows: (1) The 
improved antlion algorithm with adaptive Levy flight and golden 
sine algorithm can effectively improve the voltage distribution 
level of the system, reduce network losses, and further reduce the 
overall cost of the system, bringing good stability and economy 

to the system operation. (2) The integration of distributed energy 
storage effectively suppresses power fluctuations caused by the 
uncertainty of distributed power generation output, and cooperates 
with distributed wind power to provide power supply. Although 
the cost of the method proposed in this paper is not optimal, 
it combines economy and reliability, providing decision-makers 
with more diverse and reasonable planning methods to choose
from.

This study is subject to certain limitations. First, the cost-benefit 
trade-off of the proposed method in specific application scenarios 
needs to be more accurately quantified. Second, the algorithm’s 
solution efficiency and its application potential in large-scale systems 
require further in-depth validation. Future research will focus 
on the coordinated planning of wind power and energy storage 
systems, incorporating multi-time-scale and multi-type flexible 
resources. Additionally, the adaptability of the planning framework 
to uncertainties and extreme operating conditions will be
enhanced.
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