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Renewable energy sources (RES) depend on location and weather conditions, 
which can negatively impact the transmission system operator’s active power 
losses. This paper proposes a method that operates between the day-
ahead market clearing and real-time operation. It enables transmission system 
operators (TSOs) to procure supplemental reactive power from generator 
companies (GenCos) in order to minimize active power losses. To achieve this, 
a multi-objective, bi-level optimization model is proposed. The leader’s goal 
is to find a fair reactive power price that leads to the best trade-off between 
the two conflicting objectives of maximizing the savings for the TSO and the 
extra reactive power income for GenCos. The follower problem considers an 
optimal power flow model and minimizes the costs for the TSO by selecting 
the appropriate control action. The method was evaluated using the Nordic 44 
test case. Results indicate a potential price range starting from 0$/MVarh, which 
is the preferable price for the TSO, up to 1.08$/MVarh, representing the best 
possible price for the GenCos. Using the Tchebycheff scalarization method, the 
reactive power price of 0.28$/MVarh is found to be the best trade-off for both 
parties. However, these prices depend on multiple factors related to the case 
study. Overall, the method can improve the interaction between GenCos and 
the TSO by proposing a fair remuneration for GenCos, which is still profitable 
for the TSO.
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 1 Introduction

 1.1 Motivation and problem formulation

Active power losses in transmission lines are caused by the flow of current through the 
ohmic resistance inherent to each line. They, therefore, depend on the load connected, the 
associated voltages, and the line resistance. Whereby the resistance increases linearly with 
the line length.

Renewable energy sources (RES) are constructed in locations that provide 
high returns for the owner companies and where the geography facilitates their 
development. Therefore, the locations where the power plants are built are not 
necessarily where the power is consumed.
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In the Nordic grid, for example, many essential hydropower 
plants are located in the north of Norway and Sweden or the 
southwest of Norway (Energinet and Kraftnät, 2021). At the same 
time, the main load centers are situated in the southeast of Norway 
or in the south of Sweden (Energinet and Kraftnät, 2021). This leads 
to power flows over long distances to the consumers, resulting in 
considerable losses even at high voltages.

This challenge is not confined to the Nordic grid; it also applies 
to the Great Britain transmission system operator, National Grid 
ESO. According to a report (Transmission, 2019), it is believed that 
the primary cause of future active losses in its grid is geographically 
distributed generation.

The fundamental issue that arises from this is that the network 
operator must purchase the active power losses at the spot market 
price for the associated hour (Statnett, 2024), which ultimately leads 
to higher costs for the end consumer (i.e., society).

One solution to reduce losses is to upgrade the existing 
equipment. However, this leads to considerable investment that 
often cannot be justified by considering active power losses 
exclusively; furthermore, local improvements may reduce losses 
at a particular location while also leading to an overall increase 
in losses due to changes in power flows (Transmission, 2019). 
Another measure, explored in this paper, is optimizing reactive 
power procurement and dispatch to minimize losses by properly 
coordinating reactive power sources.

Reactive power is unavoidable when transmitting active power, 
and its inappropriate handling can lead to serious security 
problems, including stability issues and reduced transfer capacity 
(El-Samahy et al., 2008). However, reactive power has some specific 
technical characteristics. The most dominant aspects relevant to 
this paper are that it does not require fuel for generation, and 
it cannot be transferred over long distances (Wolgast et al., 
2022). Determining the price of reactive power is therefore 
non-trivial; however, since reactive power is vital for system 
operation, it also has an associated value that must be determined 
appropriately. Furthermore, a reactive power price set too low or 
too high can lead to false incentives and, ultimately, to critical 
technical issues (Rabiee et al., 2009). 

1.2 Literature review

When dealing with optimal reactive power procurement and 
dispatch, it is essential to determine the temporal specifications, such 
as when the optimization is executed and based on what data. For 
example (El-Samahy et al., 2008), proposes procuring the optimal 
reactive power in a first step on a seasonal basis and later dispatching 
it shortly before the actual application. Zhang and Ren (2005), on 
the other hand, follows a more real-time dispatch approach, where 
it is assumed that the loading conditions are approximately constant 
over a specific time interval (e.g., 1 h). Time-critical aspects of 
reactive power redispatch using optimal power flow (OPF) were 
emphasized and investigated in a specifically tailored real-time 
laboratory setup in Martín et al. (2024).

This article implements the dispatch optimization algorithm 
in the period between the closed day-ahead market and real-
time application, and therefore refers to it as reactive power
pre-dispatch.

Besides the temporal aspects of the reactive power procurement 
and dispatch approach, the modeling and optimization methods 
used are also relevant. Many authors model the process using a 
two-step or bi-level optimization approach, as seen for example in 
the works (El-Samahy et al., 2008; Bhattacharya and Zhong, 2001; 
Almeida and Senna, 2011; Almeida et al., 2016). In one level or 
the first step, they calculate the dual variables that they use later in 
the upper-level or second step as a price indicator. El-Samahy et al. 
(2008), Bhattacharya and Zhong (2001) use the duals directly to 
determine the value of reactive power. While (Bhattacharya and 
Zhong, 2001) examines sensitivity concerning active power losses, 
(El-Samahy et al., 2008), also considers security aspects in its 
optimization process. In the second optimization step, the calculated 
duals are used to maximize a societal advantage function (SAF). The 
authors in Almeida and Senna (2011), Almeida et al. (2016), on the 
other hand, utilize the duals of the follower problem as active power 
price sensitivities, which are then applied in the leader problem to 
minimize the opportunity costs. Dual variables also play a role in 
Feng et al. (2024), where the authors analyze three different scenarios 
for minimizing active power losses with reactive power support and 
map these scenarios to dual variable configurations. A stochastic 
two-stage model was proposed by the authors of Jiang et al. (2022). 
They present a day-ahead market mechanism for reactive power 
ancillary services and propose a modified version of the Vickrey-
Clark-Groves mechanism, specifically designed for reactive power 
services in systems with high RES penetration.

Besides generators, the grid owner itself typically has equipment 
for controlling reactive power flows. The switching action of such 
reactive power control devices, such as capacitor banks, leads to 
costs, for example, a reduction in the device’s lifespan. Therefore, 
Zhang and Ren (2005) proposes to find a trade-off between active 
power losses and these switching costs. Such costs for reactive 
power-controlled devices are also considered in the work of Lamont 
and Fu (1999). The objective of Lamont and Fu (1999) is to dispatch 
the reactive power of generators as well as the reactive power-
controlled equipment to minimize real power losses. The optimal 
power flow problem is iteratively solved, with the prices for the 
various reactive sources being calculated and adjusted in each 
iteration. These prices comprise explicit costs (capital and operating 
costs) and opportunity costs, utilizing a triangular relationship 
and probability distribution. The use of the triangular relationship 
proposed by Lamont and Fu (1999) to determine the value of 
reactive power was followed by the authors of De and Goswami 
(2014). Furthermore, De and Goswami (2014) proposed three 
different formulations of an OPF for reactive power procurement 
and compared them with two classic formulation approaches, one of 
which takes into account the L index (first published in (Kessel and 
Glavitsch, 1986)) to determine the proximity to voltage instability, 
and the other minimizes system losses. Hao (2003) proposes that 
generation companies should be obligated to provide reactive 
power free of charge in proportion to their active power output 
(an approach already implemented in countries such as Norway 
Statnett (2022)). In addition, Hao (2003) suggests that any provision 
of reactive power beyond this proportional obligation should be 
financially compensated.

This paper adopts a similar principle to that proposed by Hao 
(2003), but instead considers compensation for any deviation from 
the initially scheduled reactive power set point. Furthermore, to 
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determine both the optimal change in reactive power set point 
and the corresponding reactive power price, a strategy hereafter 
called pre-dispatch is formulated based on a bi-level optimization 
problem. At the lower level, the objective is to minimize costs related 
to active power losses, along with costs for supplemental reactive 
power injections from the generators, which is a relatively standard 
approach. However, this paper does not utilize the dual variables of 
the lower-level; instead, it varies the unknown reactive power price 
within a specific cost interval and calculates the power flow solution 
for each price separately. The authors chose this method because 
it enables the analysis of the Pareto front of the two conflicting 
objectives in the upper-level (leader problem). Consequently, this 
helps to find the best trade-off between the two objectives in the 
upper-level problem.

In addition to the modeling and temporal aspects of optimal 
reactive power dispatch and procurement, the choice of solving 
strategy often plays an essential role. Several of the optimization 
models mentioned involve AC power flow equations, resulting 
in nonlinear and nonconvex optimization problems. If no binary 
variables are included, techniques such as those used in Lamont and 
Fu (1999) can be applied. These techniques allow for an iterative 
solution by linearizing the problem at each step. Another method 
that can be utilized is semidefinite programming, as discussed 
in Davoodi et al. (2019). However, a common challenge with 
conventional solvers is that they may converge to a local minimum 
(Kumar et al., 2023). To address this issue, many authors apply 
metaheuristic methods, which can help overcome these limitations 
and potentially converge to the global minimum. For example, 
Zhang and Ren (2005), uses a cataclysmic genetic algorithm; (De 
and Goswami, 2014), on the other hand, uses an artificial bee 
colony algorithm (Cabezas Soldevilla et al., 2019); uses a particle 
swarm technique; and the authors of Salimin et al. (2024) present a 
hybrid algorithm named integrated accelerated clonal evolutionary 
programming. Enhanced differential evolutionary algorithms are 
proposed in Kumar et al. (2023), Kar et al. (2023). The performance 
of the algorithms is compared to other metaheuristics using two 
statistical analysis methods: the Wilcoxon signed-rank test and the 
Friedman-Nemenyi statistical test (Kar et al., 2024). proposes a 
modified whale optimization algorithm for solving the OPF-based 
optimization problem for minimizing active power losses using 
FACTS devices.

This paper aims to develop a method for optimal pre-dispatch 
of reactive power, rather than comparing different solvers with 
each other. A conventional interior-point method was used here as 
an example. However, the code is publicly available, including the 
used power system model (Baltensperger, 2025), and solvers can be 
modified using the Pyomo environment. 

1.3 Objective, contribution and paper 
organization

The key objective of the proposed method is to reduce the costs 
for society by lowering active power losses and fairly procuring 
reactive power from generator companies. For doing so, the paper 
proposes an optimal pre-dispatch method based on a two-level 
optimization formulation. The method serves as an intermediary 
step between day-ahead scheduling and real-time application, 

enabling the TSO to procure extra reactive power from (GenCos) 
in order to minimize active power losses. The cash-flow diagram of 
Figure 1 shows, in the most fundamental way, the objective of the 
method. The left side illustrates the situation without the proposed 
reactive power pre-dispatch step, whereas the right side shows the 
problem with the pre-dispatch step. Without pre-dispatch (left), the 
TSO pays $Ploss,0 for additional active power support of the GenCos 
due to system losses. With the pre-dispatch step (right), the TSO 
pays an extra amount of money for supplemental reactive power 
$QGen

Cos  (red arrow), intended to reduce the cost for active power losses 
$Ploss,1 (blue arrow). Compared to the situation without the pre-
dispatch step, reducing active power losses leads to extra income for 
GenCos since reactive power is now remunerated ($QGen

Cos ). However, 
it also reduces revenues from active power support as written in 
(Equation 1).

$PGenCos
Rev.Red. = Δ$P0,1 = $Ploss,0 − $Ploss,1 (1)

$TSO,0
Tot.Cost = $Ploss,0, $

TSO,1
Tot.Cost = $Ploss,1 + $QGen

Cos (2)

$TSO
Saving = Δ$P0,1 − $QGen

Cos = $
TSO,0
Tot.Cost − $

TSO,1
Tot.Cost (3)

From a TSO point of view, the total costs include not only the 
expenses for active power losses but also the extra costs associated 
with reactive power, as it is written in (Equation 2). Therefore, the 
savings for the TSO can be defined as the difference in total costs 
between the situation without and with the pre-dispatch step as 
written in (Equation 3).

When discussing optimal pre-dispatch, it is necessary to address 
the meaning of ‘‘optimal’ specifically. With ‘optimal’ pre-dispatch, 
the objective is to determine a new price for supplemental reactive 
power, represented as c∗g , that reduces the active power losses and 
maximizes the savings for the TSO ($TSO

Saving) and reactive power 
income of the GenCos ($QGen

Cos ). These two objectives are conflicting 
as written in (Equation 3).

In the context of the mentioned pre-dispatch strategy, this paper 
addresses two key research questions: 

1. What is the reasonable economic value of reactive power when 
considering active power losses?

2. What is the most equitable price for reactive power that 
considers all parties involved?

1.3.1 Contributions
• Method addressing TSO and GenCos needs: A method has 

been proposed for the pre-dispatch of reactive power, allowing 
the TSO to procure reactive power to minimize active power 
losses. The novelty of the suggested method lies in its capacity 
to consider the requirements of both the TSO and the GenCos 
to the greatest extent possible.

• Pricing procedure: For determining the economic value of 
reactive power, a multi-objective, bi-level optimization model 
is selected, which allows the determination of a fair trade-
off between the savings of the TSO due to the minimization 
of active power losses and the supplemental reactive power 
income of the GenCos.

The remainder of the paper is structured as follows: Section 2 
details the method and solving strategy used. Section 3 presents 
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FIGURE 1
Fundamental idea and objective of the proposed pre-dispatch process.

the test model along with simulation results. Sections 4, 5 provide 
a discussion of the results and the conclusions drawn. All relevant 
variables and their meanings are summarized in Table 1.

2 Methods

The primary algorithm discussed in this paper is specifically 
focused on the blue-bordered block labeled “pre-dispatch” 
illustrated in Figure 2. The green block’s primary purpose is to 
allocate resources by determining P0

G and Q0
G. It can be regarded as 

an initial estimate of the active power losses calculated by the TSO 
on the basis of the day-ahead market result.

Based on the output of the resource allocation block, the pre-
dispatch block minimizes active power losses with the proposed 
optimization technique. As shown in Figure 2, the pre-dispatch 
step occurs between the clearing of the day-ahead market and 
the real-time application. The loads are expected to be static, as 
scheduled in the day-ahead market. Therefore, the optimization 
must be performed for each time interval defined by the day-
ahead market structure, typically hourly or every 15 min. Once the 
set points are computed and the corresponding time interval is 
reached during real-time operation, the optimized set points are 
applied to the system. If the scheduled load or generation does not 
match in real time, the balancing market will intervene. It should 
be mentioned at that point that the optimizer keeps the active 
power set point unchanged. Consequently, no opportunity costs 
are taken into account. The change in active power resulting from 

the savings achieved by minimizing active power losses is modeled 
using a distributed slack bus. In addition to the set points, the pre-
dispatch block outputs the reactive power price per MVarh, where c∗g
represents the optimal economic value of the supplemental reactive 
power used to minimize active power losses.

The mathematical idea of the pre-dispatch block proposed 
in this paper is formulated as a bi-level problem, as stated in 
(Equations 4–7).

max
cg
(

$QGen
Cos (u(cg) ,x(cg) ,cg)

$TSO
Saving (u(cg) ,x(cg) ,cg)

) (4)

s.t. (u(cg) ,x(cg)) ∈ argmin
u,x
($TSO,1

Tot.Cost (u,x,cg)) (5)

s.t. g(u,x,cg) ≤ 0 (6)

h(u,x,cg) = 0 (7)

The main goal of the follower problem (Equations 5–7) is to 
minimize the total cost for the TSO ($TSO,1

Tot.Cost), which is the costs for 
active power losses and supplemental reactive power services. This 
is achieved by selecting the optimal vector for the control variables 
u and the state vector x, with the OPF being parametrized by a 
price cg. Equation 6 represents basic inequality constraints used in 
an OPF, such as the minimum and maximum limits of the nodal 
voltage magnitudes. Equation 7 includes the fundamental power 
flow equations.
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TABLE 1  Overview of the most relevant variables.

Variable Description Variable Description

Ploss,0 Active power losses without reactive power pre-dispatch Ploss,1 Active power losses with reactive power pre-dispatch

$Ploss,0 Costs for active power losses without reactive power pre-dispatch $Ploss,1 Costs for active power losses with reactive power pre-dispatch

ΔP0,1 Difference in active power losses between cases without and with 
reactive power pre-dispatch

Δ$P0,1 Cost change due to reducing active power losses

Q0
G,k Initial reactive power set point of synchronous generator k Q0

W,k Initial reactive power set point of wind power plant k

ΔQG,k Supplemental reactive power provided by synchronous generator k ΔQW,k Supplemental reactive power provided by wind power plant k

|ΔQGen
Cos | Sum of all supplemental absolute reactive powers $QGen

Cos Cost paid by the TSO for all supplemental reactive power services to 
the GenCos. It is the first objective function in the upper-level 
optimization (leader)

P0
G,k Initial active power set point of synchronous generator k P0

W,k Initial active power set point of wind power plant k

P1
G,k Active power set point of synchronous generator k after 

pre-dispatching reactive power
Kp,k Active power droop gain of machine k

$PGenCos
Rev.Red. Monetary reduction of active power revenues for GenCos $TSO,0

Tot.Cost The active power costs for the TSO without reactive power 
pre-dispatch

$TSO
Saving Cost savings for the TSO. It is the second objective function in the 

upper-level optimization (leader)
$TSO,1

Tot.Cost The active power costs for the TSO with reactive power pre-dispatch

V Terminal voltage magnitude zi Best achievable value of objective i

CDay
Ahead Day-ahead active power price cg Reacive power price

Cg Set of all reactive power prices considered x State vector

u vector with control variables Δ f Frequency deviation after pre-dispatch step

W Set of all wind power plant indices G Set of all synchronous generator indices

g(u,x) Basic OPF inequalities h(u,x) Basic power flow equations

FIGURE 2
The conceptual idea. The green block represents the TSO’s resource allocation based on the results from the power market. The blue-bordered block 
contains the main content of this paper. “FB-Controller” refers to the feedback controllers applied to the system in real time.

On the other hand, the leader problem is multi-objective. It 
aims to determine the best price for additional reactive power 
cg, maximizing savings for the TSO ($TSO

Saving) and income for 
supplemental reactive power services for the GenCos ($QGen

Cos ), as it 
is written in Equation 4.

The optimization method can be described in simple terms. 
Essentially, the price of reactive power cg is varied, and an 

OPF is calculated for each price point. The results of these 
calculations are then compared against the objectives of the GenCos 
and the TSO at the upper level. This process allows for an 
analysis of the trade-offs between the objectives of the GenCos
and the TSO.

The following subsections discuss how this framework is 
modeled and solved in detail. 
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2.1 Modeling the follower problem

Besides the objective function, the follower optimization model 
used in this paper is a classical OPF written in a general form in (8).

(u(cg) ,x(cg)) = arg min
u,x

$Ploss,1(u,x,cg)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞CDay
AheadPloss,1 +

$QGen
Cos (u,x,cg)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
cg (∑

k∈G
|ΔQG,k| + ∑

k∈W
|ΔQW,k|)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
|ΔQGen

Cos |

s.t. g (u,x) ≤ 0, h (u,x) = 0
(8)

The objective function contains the costs for active power losses 
in the transmission lines $Ploss,1 and the income of supplemental 
reactive power of the GenCos willing to participate in the pre-
dispatch service $QGen

Cos . At this point, clarifying the meaning of some 
variables is essential. |ΔQGen

Cos | represents the supplemental reactive 
power provided by the GenCos that compensates for active power 
losses. The sets G and W  consist of all synchronous machines 
and wind turbines of the GenCos that participate in the pre-
dispatch service.

The vector x contains all states, such as nodal voltage magnitudes 
at load buses, and u is the vector with all control variables, for 
example, generator terminal voltages. In the given problem, CDay

Ahead
is the active power price (e.g., the day-ahead price) used to consider 
the losses in terms of costs. cg is the decision variable of the leader 
problem and represents the price for supplemental reactive power. 
The constraints g(u,x) represent the set of inequalities such as line-
flow limits, and h(u,x) are, for example, power flow equations.

The modeling aspects of the reactive power sources considered 
in the OPF are explained below. However, a more detailed 
description of the fundamental aspects of conventional OPFs, such 
as written in (Equation 8), is not provided as it is commonly known. 
For more information on this topic, the reader is referred to the 
relevant literature such as Conejo and Baringo (2018). 

2.1.1 Synchronous machines
All synchronous machines are modeled as round-rotor 

machines following the capability curve illustrated in Figure 3. Each 
machine out of the set G is modeled with the constraints shown in 
(Equations 9–13).

The delta reactive power output ΔQG, the active and apparent 
power output after the pre-dispatch step (P1

G,S
1
G) are state variables. 

At the same time, the generator terminal voltage V is the 
control variable.

Considering (Equation 11), the maximum machine apparent 
power output is assumed to be constant and not dependent on 
the terminal voltage. The turbine limit represents the upper active 
power limit (see (Equation 10)). The resource allocation algorithm 
used by the TSO in the first green block shown in Figure 2 selects 
the set points from the light green area, whereas the pre-dispatch 
optimizer can choose set points from the blue-bordered area of 
the capability curve depicted in Figure 3. As the associated grid 
code dictates, the green area represents a power factor between 
0.86 (capacitive) and 0.95 (inductive). The pre-dispatch optimization 
procedure has relaxed restrictions, allowing the optimizer more 
freedom to select the suitable set points to minimize losses. Since the 
pre-dispatch optimization problem minimizes active power losses, 

FIGURE 3
Capability curve of round-rotor synchronous machines. Superscript 0 
describes the set points determined in the allocation block, and 
superscript 1 is the final set points applied to the system.

there will consequently be a change in the active power set point 
of the machines that are implemented based on the policy of a 
distributed slack bus as it is written in (Equation 9). It is essential 
to understand that the optimizer cannot simply choose the active 
power set point to minimize losses. The only permissible adjustment 
is made through the distributed slack, which is used solely to 
appropriately compensate for the new active power losses due to 
changes in terminal voltage and reactive power set points. The field 
current limit is assumed to depend on the terminal voltage and 
the quadrature component’s internal voltage behind the EMF, as 
described in Machowski et al. (2020), written in (Equation 13) and 
illustrated in Figure 3. The synchronous reactance is assumed to be 
equal for all machines connected (xd = 2.23 p.u.). The constraints for 
absorbing reactive power are written in Equation 12.

P1
G,k = P0

G,k −Kp,kΔ f ∀k ∈ G (9)

Pmin
G,k ≤ P1

G,k ≤ Pmax
G,k ∀k ∈ G (10)

0 ≤ √(P1
G,k)

2 + (Q0
G,k +ΔQG,k)

2 ≤ Smax
G,k ∀k ∈ G (11)

−P1
G,k tan(φmax

lead) ≤ Q0
G,k +ΔQG,k (12)

0 ≤ (P1
G,k)

2 +(Q0
G,k +ΔQG,k +

V2

xd
)

2
≤ (

VEq,max

xd
)

2

(13)

 

2.1.2 Wind power plants
In this paper, the reactive power output of a wind power plant 

is modeled in such a way that, firstly, the active power remains 
constant, and, in this respect, the reactive power must be chosen so 
that the power factor of each plant is between 0.85 (capacitive) and 
0.95 (inductive). Equations 14, 15 describe the used constraint for 
each plant in the optimization model.

−P0
W,k tan(cos−1 (0.95)) ≤ Q0

W,k +ΔQW,k ∀k ∈W (14)
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Q0
W,k +ΔQW,k ≤ P0

W,k tan(cos−1 (0.85)) ∀k ∈W (15)

 

2.2 Modeling the leader problem

The leader problem model, as stated in (Equation 4), aims to 
maximize the TSO’s savings ($TSO

Saving) and the GenCos supplemental 
reactive power income ($QGen

Cos ). Therefore, it is modeled as a 
multi-objective problem and is solved here using the Tchebycheff 
scalarization method as described, for example, in Pardalos et al. 
(2017). The aspects relevant to understanding the definitions, 
approaches, and scalarization method are briefly explained in this
section.

The fundamental idea of the Tchebycheff scalarization method is 
first to define a so-called utopia point. In literature, the utopia point 
is defined as a point slightly better than the best achievable value 
(i.e., zi <mincg∈Cg

fi(cg)) (Pardalos et al., 2017; Eichfelder, 2008). To 
be consistent with the literature, the two utopia points are defined 
here as written in (Equations 16) and (17), where ϵ is set to 1.001 to 
make sure that the utopia point is not on the solution of the vector-
valued objective function:

z1 = (max
cg∈Cg

$QGen
Cos (u(cg),x(cg),cg)) ⋅ ϵ (16)

z2 = (max
cg∈Cg
$TSO

Saving (u(cg),x(cg),cg)) ⋅ ϵ (17)

The point (z1,z2) is fictitious because the two goals are in 
conflict and cannot therefore be reached together. The set Cg includes 
all considered prices and will be explained in more detail in
Section 2.3.

Taking into account the defined utopia point, the best possible 
compromise of both functions can be found using the calculation, 
according to Tchebycheff, written in (Equation 18):

min
cg∈Cg

max{w1 ($QGen
Cos (u(cg),x(cg),cg) − z1),

w2 ($
TSO
Saving (u(cg),x(cg),cg) − z2)} (18)

This paper sets weights w1 and w2 equally to avoid any preference 
between the objectives. 

2.3 Solving procedure

This section is devoted to the method used to solve the presented 
multi-objective bi-level problem. First, the effect of the two special 
prices (cg = 0) and (cg =∞) on the follower optimization problem 
is examined.

Equation 19 shows the follower problem for the case (cg = 0). It 
is apriori clear that the OPF would minimize the losses optimally 
since supplemental reactive support of GenCos is free. Therefore, it 
can be concluded that (Ploss,1 ≤ Ploss,0) and ($QGen

Cos = 0).

lim
cg→0

arg min
u,x
(CDay

Ahead (Ploss,1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤Ploss,0

+cg⏟
0

|ΔQGen
Cos |⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

),

s.t. g (u,x) ≤ 0, h (u,x) = 0 (19)

The second extreme case is the price (cg =∞), 
represented in (Equation 20). In this case, the OPF would choose 
the opposite since any extra reactive power would lead to extremely 
high prices. The OPF now chooses (|ΔQGen

Cos | = 0), which would lead 
to (Ploss,0 = Ploss,1) and ($QGen

Cos = 0). Therefore, in both cases, (cg = 0), 
and (cg =∞) would lead to no extra income for the GenCos, which 
will be suboptimal for the leader problem.

lim
cg→∞

arg min
u,x
(CDay

Ahead (Ploss,1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Ploss,0

+ cg⏟
∞

|ΔQGen
Cos |⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

0

),

s.t. g (u,x) ≤ 0, h (u,x) = 0 (20)

Consequently, it is essential to find the interval between these 
two boundaries where the cost for additional reactive power $QGen

Cos
is larger than zero. Moreover, finding the largest cost-value $QGen

Cos
will be relevant for the utopia point z1.

The proposed procedure for solving the problem is shown in 
the flowchart in Figure 4. The first step in the pre-dispatch block is 
to initialize five list variables C̃g, Ũ, X̃, $̃QGen

Cos  and $̃TSO
Saving. The second 

step is to solve the follower OPF problem using the parameters Q0
G, 

P0
G, and the reactive power price cg. The resulting control and state 

vectors ucg, xcg are stored in the list Ũ and X̃, and the reactive power 
price is updated by incrementally increasing the previous price by 
δ. This process is repeated until |ΔQGen

Cos | becomes zero. The set Cg
includes all price values for which 0 < |ΔQGen

Cos |.
The objective function values of the leader problem are 

computed for all previously obtained solutions at each price in Cg, 
and these values are stored in the two lists $̃QGen

Cos  and $̃TSO
Saving. Finally, 

the best trade-off in the two-objective function of the leader problem 
is computed using the Tchebycheff scaling method. 

3 Test model and simulation results

The model used for testing the proposed technique is the Nordic 
44, which can be found in its original form in Jakobsen (2018). The 
model simplifies the Nordic grid and is today a benchmark for this 
region. The original model has been slightly modified for this article. 
To ensure comprehensibility, the full code of the optimizer and the 
used model is available on GitHub (Baltensperger, 2025).

The optimization in the resource allocation block 
(green) in Figure 2 is implemented to minimize the generator’s 
reactive power output.

The results presented here are based on a day-ahead price of 
CDay

Ahead = 70$/MWh (a rule of thumb in the Nordics), which is used 
for calculating the costs of active power losses.

Figure 5 depicts the active power losses Ploss,1 and supplemental 
reactive power |ΔQGen

Cos | determined by the optimizer. The left y-
axis graph (blue) shows how the active power losses Ploss,1 change 
with the price cg. Similarly, the right y-axis graph (red) shows 
the additional reactive power support |ΔQGen

Cos | needed to reduce 
the losses accordingly. As described in Section 2.2, for cg = 0, the 
reactive power support is maximal, and therefore, the active power 
losses are minimal. Increasing the price decreases the reactive power 
support until it reaches zero when the exit criteria of the loop in the 
flowchart of Figure 4 becomes true. The active power losses increase 
until they reach the initially observed active power losses Ploss,0.
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FIGURE 4
Flowchart of the solving procedure.

Figure 6 shows the results of the vector-valued objective 
function of the leader problem. The black trajectory illustrates the 
objective function values for all considered prices (cg ∈ Cg). The 
green points indicate the Pareto front and the red star is the optimal 
solution according to the Tchebycheff scalarization. The x-axis 
represents the objective for the GenCos, and the y-axis represents 
the objective for the TSO.

Figure 7 shows the behavior of the costs for supplementary 
reactive power $QGen

Cos  (red) and the costs for active power losses 
$Ploss,1 (blue). The green curve in the top subplot represents the 
savings for the TSO, denoted as $TSO

Saving. This curve reaches its 
maximum at cg = 0, indicating the optimal outcome for the TSO.

The price cg = 1.08$/MVarh leads to the highest 
value of $QGen

Cos  and is the best possible option for 
the GenCos.

An interesting point is cg = 3.16$/MVarh, since it is the first 
point where $QGen

Cos  becomes zero again. This marks the first 
instance where additional reactive power support does not lead 

to a profit for either the transmission system operator or the 
generation companies. This is also confirmed when comparing to 
the savings $TSO

Saving (green) as well as the costs for active power losses 
$Ploss,1 (blue).

Consequently, all prices (cg < 3.16$/MVarh) benefit the TSO, 
as improving active losses can compensate for additional reactive 
power costs. From the point of view of the GenCos, these 
prices represent additional revenue from reactive power income. 
Consequently, all prices in the price range (0,3.16)$/MVarh are 
valuable for both parties (i.e., all cg ∈ Cg). The final optimal trade-off 
of the leader problem, shown as a red star in Figure 6, is illustrated 
by the intersection point of the two black lines in Figure 7. The 
best possible trade-off price found for the given scenario is c∗g =
0.28 $/MVarh.

Figure 8 shows the capability curves of all machines within the 
study case. The green marker represents the set points (Q0

G,P
0
G)

determined by the resource allocation block, and the blue markers 
show the newly determined optimal set point for all machines 
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FIGURE 5
Transmission losses (blue) and reactive power support (red) plotted 
over reactive power price.

FIGURE 6
Vector-valued function of the leader objective (black), Pareto front 
(green), utopia point (black star) and optimal trade-off (red star).

(Q1
G,P

1
G). As can be seen, the conceptual idea presented is fully 

realized, and all green and blue dots lie within the boundaries 
initially introduced in Figure 3. Note that this diagram shows all 
the constraints of the various machines. Individual constraints are 
shown as thin lines, whereas limits that are the same for multiple 
machines are automatically shown as thicker due to their overlap.

4 Discussion

When considering the follower problem of the pre-dispatch 
technique and varying the reactive power price cg, which is the 
decision variable of the leader problem, there is a set of possible 
prices that are profitable for the TSO and simultaneously lead to 
extra reactive power income for the GenCos. In the considered 
study case, this interval was (0,3.16)$/MVarh. Even though the 
negotiation of the optimizer will lead to additional income for 
GenCos due to the remuneration of reactive power, it will never 

lead to an overall profit for GenCos. This is simply because it is a 
zero-sum game. The savings of the TSO are the total economic losses 
of the GenCos (i.e., $TSO

Saving = − $
GenCos
Saving ) as written in (Equation 21). 

Therefore, as soon as the TSO makes savings, the GenCos will gain 
less than without the pre-dispatch step. However, the pre-dispatch 
method proposes maximum savings for the TSO while offering the 
GenCos a fair remuneration for reactive power support.

$TSO
Saving = Δ$P0,1 − $QGen

Cos = ($Ploss,0 − $Ploss,1) − c∗g |ΔQGen
Cos | = −$

GenCos
Saving

(21)

The scenario where $TSO
Saving = 0 and $QGen

Cos > 0 can theoretically be 
necessary for calculating the utopia point z1. However, it will never 
be the final solution, as the leader’s objective is to identify the optimal 
trade-off between TSO savings and GenCos reactive power incomes.

This discussion briefly addresses the value of cg at which the 
maximum of $QGen

Cos  occurs and which is relevant for determining the 
utopia point z1, considering the result in Figure 7. When considering 
the result in Figure 5, it can be seen that |ΔQGen

Cos (cg)| decreases (for 
almost all points) as cg increases, which means its derivative is 
essentially negative. Using the product rule, the derivative of the 
extra reactive power for GenCos can be written as in Equation 22.

d$QGen
Cos (cg)
dcg

= cg⏟
0≤

d|ΔQGen
Cos (cg) |

dcg⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤0

+|ΔQGen
Cos (cg) |⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

0≤

(22)

The derivative |ΔQGen′
Cos (cg)| is weighted with a positive price cg. 

Therefore, for small cg the large |ΔQGen
Cos (cg)| dominates and leads to 

a positive $QGen′
Cos (cg). The larger cg becomes, the higher the influence 

of the negative derivative |ΔQGen′
Cos (cg)| and consequently $QGen′

Cos (cg)
becomes first zero (i.e., it reaches its maximum) and later becomes 
negative. Therefore, the maximum of $QGen

Cos  depends significantly on 
the sensitivity concerning the price cg and on the function value of 
|ΔQGen

Cos (cg)|.
To solve the formulated bi-level optimization problem, 

the technique described in Section 2.3 is used. The method is 
characterized by its simplicity and transparency. However, some 
points need to be addressed. The variation of the price cg requires 
a step size δ as shown in Figure 4. The choice of this step size is 
essential because optima may not be found or be imprecise if it is 
too large. On the other hand, the smaller the chosen δ, the higher 
the computational cost since, for each price, the OPF in the lower 
problem has to be computed separately.

One technical aspect that should be considered in future studies 
is reactive power reserves. These are relevant and have not been 
taken into account in this paper. If critical contingencies occur, the 
TSO must ensure that sufficient reserves are available.

The most considerable advantage of the pre-dispatch step is 
that the TSO can save money by reducing system losses and even 
financially compensate GenCos fairly.

As mentioned in Section 3, the optimal reactive power price 
found is c∗g = 0.28 $/MVarh, which is 0.4 % of the considered day-
ahead price.

According to Wolgast et al. (2022), the value of reactive power is 
usually less than 1% of the cost of active power. This estimate is based 
on the experience with nodal reactive power prices, representing 
the sensitivity of generation costs calculated in an OPF (Hao 
and Papalexopoulos, 1997). However, (Hao and Papalexopoulos, 
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FIGURE 7
Cost of transmission losses (blue), cost of reactive power support (red), and savings for the TSO (green) plotted over reactive power price.

FIGURE 8
Machine operation points plotted in the various capability curves.
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1997) also emphasizes that this price reflects only variable costs. 
Nevertheless, it is interesting that this article’s optimal price of 
reactive power is also smaller than 1 %, even though the proposed 
method does not consider shadow prices. 

5 Conclusion

The paper answers the first research question: “What is the 
reasonable economic value of reactive power when considering 
active power losses?” as follows: a range of reasonable economic 
values exists, enabling extra income from reactive power for 
GenCos and profit for the TSO. Within this price interval (cg ∈ Cg), 
specific prices contribute to objective values along the Pareto front, 
representing a fair trade-off between the interests of different 
parties. In the study case examined, the lower limit of this 
range indicates the optimal outcome for the TSO, which occurs 
when reactive power is freely available (i.e., cg = 0 $/MVarh). 
Conversely, the upper limit is determined by the maximum 
additional income GenCos can achieve for reactive power, set at cg =
1.08 $/MVarh.

The second research question is: “What is the most equitable 
price for reactive power that considers all parties involved?” The 
leader in the bi-level problem described in this article aims to 
find the best trade-off for GenCos and TSO by choosing the 
most equitable price for the candidates on the Pareto front. In 
the considered study case, the price that fulfills all these criteria 
was c∗g = 0.28 $/MVarh. It is essential to mention that the price 
compensates the GenCos for the additional reactive power. Due to 
the minimization of active power losses, this represents an overall 
loss for GenCos as they can sell less active power. For the TSO, on 
the other hand, the solution is profitable. However, the best possible 
price cg depends on several factors, including the initial set points, 
the price sensitivity of $QGen

Cos , and the prevailing market conditions 
for that day.

A key contribution of this paper is that the method tries to 
find a trade-off between the objectives of the GenCos and the 
TSO. These objectives are in conflict with each other and are 
formulated as a multiobjective optimization problem in the upper-
level problem. Additionally, it provides a transparent procedure 
for determining the value of reactive power in relation to active 
power losses.

Reducing active power losses offers considerable benefits to 
society, as the associated costs are typically passed on to the end-
user. The algorithm discussed is not limited to the Nordic grid, but 
is also relevant in other areas where a similar market design exists.

The challenges and limitations of using the proposed method 
are related to the solving approach presented, which is simple and 
easy to understand but requires the user to define a step size of the 
prices, which has clear disadvantages. However, the efficient solving 
of the problem was out of the scope of this paper. Another challenge 
is model accuracy. It is assumed here that the Y-bus matrix of the 
system is sufficiently precise to perform this type of optimization. 
In reality, although the TSO has an idea of the model, it cannot be 
ruled out that there are errors in the model. Since the presented 
method is model-based, this could lead to calculation errors. The 
third challenge of this article is the reactive power reserves that, 
ideally, should be considered to operate the system securely.

All three topics are relevant for further studies. Another relevant 
topic that is of interest for a future publication is the extent to which 
shunt-controlled elements of the TSO affect the optimal price c∗g . 
Furthermore, stochastic optimization methods would be interesting 
to implement in the presented algorithm.
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