
 

TYPE Methods
PUBLISHED 28 November 2025
DOI 10.3389/fenrg.2025.1628044

OPEN ACCESS

EDITED BY

Shuqing Zhang,
Tsinghua University, China

REVIEWED BY

Sami M. Ibn Shamsah,
University of Hafr Al Batin, Saudi Arabia
Muhammad Suhail,
Hanshan Normal University, China

*CORRESPONDENCE

Li Junjie,
lijj0408@126.com

RECEIVED 13 May 2025
REVISED 27 August 2025
ACCEPTED 03 November 2025
PUBLISHED 28 November 2025

CITATION

Junjie L, Xiaoshan W and Hongyue Z (2025) 
Research on parameter identification of 
high-head hydropower MMC-HVDC system 
based on Sobol sensitivity analysis and 
adaptive cuckoo search algorithm.
Front. Energy Res. 13:1628044.
doi: 10.3389/fenrg.2025.1628044

COPYRIGHT

© 2025 Junjie, Xiaoshan and Hongyue. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with 
these terms.

Research on parameter 
identification of high-head 
hydropower MMC-HVDC system 
based on Sobol sensitivity 
analysis and adaptive cuckoo 
search algorithm
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With the increasing complexity of high-head hydropower systems and the rapid 
development of flexible DC transmission technology, accurate electromagnetic 
transient (EMT) modeling of hydropower flexible DC systems is essential. To 
address the challenge of parameter acquisition, this manuscript proposes a 
method based on Sobol sensitivity analysis and an adaptive cuckoo search (ACS) 
algorithm for parameter identification. First, an EMT model is constructed, and 
Sobol sensitivity analysis is used to evaluate parameter influence. Key parameters 
with high sensitivity indices are selected for further optimization. Finally, the ACS 
algorithm identifies these parameters with high accuracy. The case study results 
show that ACS outperforms both standard cuckoo search and particle swarm 
optimization (PSO) algorithms in terms of convergence speed and identification 
accuracy. Simulation results confirm the validity of the identified parameters 
across various operating conditions, demonstrating the method’s effectiveness 
and generalizability.
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 1 Introduction

With the continuous growth of global energy demand and the tightening 
of environmental protection regulations, hydropower—characterized by its clean, 
renewable, and sustainable nature—has increasingly become a vital component of 
strategic infrastructure in modern power systems (Bladh, 2012). To enhance energy 
utilization efficiency and optimize the configuration of the AC power grid, hydropower 
transmission via modular multilevel converter-based high-voltage direct current (MMC-
HVDC) systems has gained considerable attention. In addition, with the continuous 
expansion of hydropower development capacity, numerous high-head and large-
capacity hydropower units have been commissioned, posing new challenges to the 
reliable operation of hydropower transmission systems. To accurately describe the 
dynamic characteristics of high-head hydropower transmission via MMC-HVDC
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systems, an electromagnetic transient (EMT) simulation model 
is required rather than a simplified phasor-domain model. 
Phasor-domain models, although computationally efficient and 
suitable for long-term electromechanical studies, neglect high-
frequency switching harmonics, fast control dynamics, and 
electromagnetic interactions that are prominent in MMC-based 
HVDC systems—particularly during fault transients and rapid 
control actions. The EMT model, by resolving sub-millisecond 
time steps, captures detailed converter switching behavior, 
control-loop dynamics, and the coupling between electrical 
and mechanical subsystems, which are critical for accurately 
assessing transient stability and dynamic performance under severe 
disturbances. Although EMT simulations incur substantially higher 
computational costs compared to phasor-domain models, the 
computational burden in this study is mitigated through Sobol 
sensitivity analysis for parameter space reduction and the use 
of an Adaptive Cuckoo Search (ACS) algorithm optimized for 
faster convergence. As a dominant part of the EMT model, the 
parameters in the model have a significant impact on the accuracy 
of the simulated response (Barros et al., 2003). Consequently, 
conducting high-precision identification of these parameters is 
not only theoretically significant for constructing accurate hydro-
mechanical-electrical coupled models, but also of substantial 
practical value in enabling frequency regulation and peak shaving 
(Alvarez, 2020), fault prediction (Quintana and Van Cutsem, 1988), 
and stability analysis (Zarco and Exposito, 2000).

The main technical bottlenecks in parameter identification 
stem from the following complex characteristics: The foremost 
challenge lies in the inherently multi-physical coupling of unit 
dynamics, wherein dynamic responses are governed by the interplay 
among hydraulic, mechanical, and electrical domains (Zarco 
and Exposito, 2000), compounded by variations in operating 
conditions and coordinated control strategies (Rakpenthai et al., 
2012). In high-head hydropower systems, such coupling is further 
complicated by phenomena like the water hammer effect in 
long penstocks, where rapid load changes induce pressure waves 
that interact with both the turbine and the electrical control 
system. These factors introduce significant uncertainty into 
model-based inverse parameter estimation. Furthermore, the 
control systems of hydropower units exhibit strong nonlinearity 
and hysteresis (Guo et al., 2014), for example, the nonlinear 
dead zones and rate-dependent hysteresis in turbine-governor 
servomotors, making traditional frequency-domain-based linear 
system identification approaches inadequate for capturing the unit’s 
dynamic stiffness matrix, thereby compromising identification 
fidelity (Rakpenthai et al., 2012; Petra et al., 2017). In addition, 
random disturbances in operational environments—such as 
non-stationary hydrological inputs and stochastic power grid 
load fluctuations—result in multi-source, non-stationary noise 
contamination of measured data (Zeng and Teng, 2011), greatly 
reducing the signal-to-noise ratio of input–output data pairs. A 
particularly critical challenge is the time-varying drift of system 
parameters, which poses a serious threat to model robustness 
(Milojević et al., 2018). Studies suggest the need for time-varying 
parameter identification frameworks with dynamic tracking 
capabilities (Mukherjee et al., 2020). By integrating online adaptive 
algorithms, continuous rolling updates to model parameters can 
be achieved, thereby enhancing identification accuracy over the 

entire lifecycle of the unit (Regulski et al., 2015). Addressing these 
issues necessitates the development of high-performance parameter 
identification methodologies.

To this end, researchers have explored a range of algorithms 
for parameter identification in hydro-turbine generator units, 
achieving notable progress. The majority of these approaches focus 
on improving global search capabilities, yet their time and space 
complexity remain largely unexplored.

For instance, an improved particle swarm optimization 
(PSO) algorithm introduced in Fang et al. (2011) leverages 
adaptive learning factors to enhance global search capability, 
significantly improving the tuning of PID controllers. However, 
the time complexity of this algorithm remains high, which 
limits its scalability for large systems. Another study (Liu et al., 
2010) combined PSO with the uniform design method to 
optimize turbine governor parameters, demonstrating superior 
performance in complex systems. This approach has proven 
effective in improving parameter accuracy but struggles with higher 
computational demands, especially in systems with a large number
of parameters.

Recent hybrid optimization strategies attempt to address 
these limitations. The hybrid moth-flame-PSO (HMFPSO) 
approach in Shaikh et al. (2023) integrates exploration-
exploitation balancing mechanisms, achieving faster convergence 
in transmission line parameter estimation. While effective for 
mid-scale systems, its O(N2) complexity and sensitivity to 
control parameters hinder deployment in real-time large-grid 
scenarios. Similarly, grey wolf optimization (GWO) in Shaikh et al. 
(2021) reduces parameter dependencies but exhibits premature 
convergence when handling non-convex landscapes in three-phase
power system.

Genetic Algorithms (GAs), as well-established global 
optimizers, have also found wide application in this domain. The 
method proposed in Gao et al. (2009), based on an enhanced GA 
incorporating chaotic mutation, achieved improved global search 
capability and was successfully applied to fluid transient process 
modeling. However, the time complexity for this method is O(N^2), 
which may limit its real-time application in large-scale systems. 
Similarly (Jiang et al., 2006), highlighted the GA’s effectiveness 
in PID parameter optimization, particularly in enhancing system 
stability and responsiveness. For multimodal optimization problems 
in hydro units, the Bacterial Foraging Optimization Algorithm 
(BFOA)—an algorithm inspired by bacterial foraging behavior—has 
demonstrated strong performance. In Kou et al. (2010), BFOA 
was used to identify turbine governor parameters, showing high 
robustness in handling complex scenarios, but its performance 
deteriorates when applied to large-scale systems due to its 
exponential time complexity.

Recently, Gravitational Search Algorithms (GSA) and their 
improved variants (IGSA) have emerged as efficient solutions for 
parameter identification. IGSA, as proposed in Chen et al. (2014a), 
integrates PSO’s velocity update mechanism with chaotic mutation, 
resulting in accelerated convergence and improved global search. 
The time complexity of IGSA is O(N log N), similar to PSO, yet 
it has shown faster convergence in practice. To address system 
uncertainties (Chen et al., 2017), proposed three novel identification 
approaches using distinct parameter observers based on system 
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FIGURE 1
Large-capacity high-head hydropower units with MMC-HVDC transmission system.

stability theorems, as well as an Ant Lion Optimizer (ALO)-
based method. In this work, the ALO-based method demonstrated 
superior accuracy compared to PSO and GA-based methods, with 
the added benefit of reducing computational time, making it more 
efficient in real-time applications.

In turbine control system modeling (Zhang et al., 2018), 
presented a hybrid approach combining white-box mapping 
with a radial basis function (RBF) neural network. This 
method, particularly effective under data-scarce conditions, 
minimized reliance on large-scale testing, demonstrating practical 
viability. Finally (Chen et al., 2014b), focused on designing 
fractional-order PID controllers for turbine governor systems and 
employed a chaotic NSGA-II algorithm to optimize controller 
parameters. Results showed that fractional-order PID controllers 
outperformed traditional PID controllers in terms of control 
precision and response time, although the optimization process 
exhibits O(MN2) complexity, primarily dominated by its non-
dominated sorting mechanism.

Collectively, these studies reveal three persistent challenges: (1) 
the complexity-accuracy trade-off in population-based algorithms, 
(2) poor generalization of hybrid strategies across varying power 
system topologies, and (3) limited theoretical guarantees for 
convergence in non-convex landscapes. This work addresses these 
gaps through a computationally constrained co-evolutionary 
framework, systematically optimizing time complexity while 
maintaining solution robustness for large-scale hydro-turbine 
systems. To address this critical gap, this work systematically 
reviews and analyzes existing PI algorithms for hydro-turbine units, 
focusing on identifying their inherent computational complexities 
and scalability limitations. We then propose a novel parameter 
identification method that integrates Sobol sensitivity analysis and 
an Adaptive Cuckoo Search (ACS) algorithm. The Sobol sensitivity 
analysis is used to calculate the sensitivity index of candidate 
parameters, from which dominant parameters with high sensitivity 
are selected for identification. Subsequently, ACS is employed 
to identify these dominant parameters efficiently. Finally, the 
accuracy of the proposed method is validated through a case study 
conducted on the CloudPSS simulation platform, demonstrating its 
effectiveness in reducing computational burden while maintaining 
high accuracy for high-head hydropower MMC-HVDC EMT model 
identification.

The remainder of the manuscript is presented in five sections. In 
Section 2, the EMT model of high-head hydropower transmission 
MMC-HVDC system is constructed. Section 3 introduces the 
screening method of dominant parameters according to the Sobol 
sensitivity analysis. The traditional CSA method and the ACS 
method are dis-cussed in Section 4. In Section 5, a simulation case 
is conducted. Section 6 concludes the manuscript.

2 Modeling of high-head hydropower 
MMC-HVDC system

2.1 System structure of large-capacity 
high-head hydropower units

As shown in Figure 1, large-capacity, high-head hydropower 
units integrated with an MMC-HVDC transmission system 
comprise a hydraulic turbine power generation system and a 
subsequent MMC-HVDC system. The hydro-turbine governing 
system, as a critical subsystem of the hydropower unit, is a typical 
closed-loop control system that mitigates the impact of internal and 
external disturbances on controlled variables while maintaining 
high control precision. This governing system can be further 
subdivided into three main components: the governor, the hydraulic 
servo system, and the unit-penstock system. 

2.1.1 Governor model
According to different control requirements, the governor 

has three operation modes under grid-connected conditions: 
frequency regulation, gate opening regulation, and power 
regulation. Frequency regulation is applied in no-load and isolated 
grid operation. Power regulation converts power deviation into 
flow setting through proportional-integral calculation to adjust 
turbine output power. Gate opening regulation is generally used 
in grid-connected operation. In high-head hydropower MMC-
HVDC systems, gate opening regulation is prioritized because 
grid frequency stability is primarily maintained by the large 
interconnected AC system, allowing the hydro unit to focus on 
precise flow and torque control for optimal efficiency and rapid 
response during transient events. This mode also provides a more 
direct and measurable control input for parameter identification, 
reducing the influence of external grid frequency fluctuations and 
simplifying the modeling process. The turbine model established in 
this manuscript mainly focuses on gate opening regulation mode. 
While this choice enhances the accuracy and robustness of the 
identified parameters under typical grid-connected conditions, it 
should be noted that the model’s direct applicability to scenarios 
dominated by frequency or power regulation may require additional 
tuning of control loops to account for different feedback signals and 
operating objectives. The following figure shows the PID governor 
model of high-head turbine. In Figure 2, Kp is the proportional 
gain, K i is the integral gain, and Kd is the derivative gain, T1v is 
the differential time constant, Ef is the artificial frequency dead 
zone, bp/ep is the permanent slip coefficient, YPID is the regulator 
output, Ymax, Ymin is the regulator output limiting, Ft is the machine 
frequency, Fg is the frequency given, Yg is the opening given, Pg is 
the power given, P is the unit power. 
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FIGURE 2
Overall block diagram of governor.

FIGURE 3
Overall block diagram of hydraulic servo system.

FIGURE 4
Block diagram of nonlinear hydraulic servo system.

2.1.2 Hydraulic servo system model
The hydraulic servo system converts electrical signals into 

mechanical displacement signals with operational force to drive the 

water guide mechanism. This adjusts the guide vanes’ opening (to 
increase or decrease water flow) by controlling the water passage. 
It typically employs a two-stage amplification configuration: the 
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FIGURE 5
Simplified nonlinear unit water diversion system block diagram.

FIGURE 6
Basic structure of MMC.

pilot valve-auxiliary servomotor assembly (first-stage amplification) 
and the main distributor valve-main servomotor assembly (second-
stage amplification). When considering these two components 
as an integrated system, a typical auxiliary servomotor-type 
structure is generally adopted. The standard hydraulic servo 
system incorporating both stages can be represented by the 
model shown in Figure 3.

To prevent water hammer effects, both the opening and closing 
speeds of the servomotor are subject to certain limitations, and the 
opening and closing rates are typically not identical. Additionally, for 
simulation modeling purposes, a first-order integral amplification 
component is sufficient to characterize the servomotor’s operational 
behaviour. Therefore, the servo system can be represented by the 
model illustrated in Figure 4. In Figure 4, Kpy, K iy and Kdy represent 
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FIGURE 7
Block diagram of the overall HSS model of MMC controllers.

proportional gain, integral gain and differential gain, respectively. 
VELopen and VELclose are the maximum opening speed and the 
maximum closing speed of the hydraulic servo motor, respectively. 
Tc and T0 represent the closing time constant of the hydraulic 
actuator and the opening time constant of the hydraulic actuator, 
respectively. Pmax and Pmin are the maximum output power of prime 
mover and the minimum output power of prime mover, respectively. 
T2 is the power delay time. 

2.1.3 Turbine-penstock system analytical model
It should be noted that an exact analytical model of hydraulic 

turbines is currently unavailable. This is primarily due to the 
highly nonlinear and multi-physics nature of turbine–waterway 
interactions, where hydraulic transients, turbulence, cavitation, and 
flow–structure coupling are difficult to capture in closed-form 
equations. The governing equations of fluid motion (Navier–Stokes 
equations) can be solved numerically via computational fluid 
dynamics (CFD), and in recent years, data-driven models based 
on machine learning have emerged as alternatives for capturing 
turbine behavior from operational data. However, both CFD 
and data-driven models present limitations for this study: CFD 
requires significant computational resources, making it impractical 
for iterative parameter identification in electromagnetic transient 
simulations, while purely data-driven approaches may lack physical 
interpretability and generalizability to off-design operating points. 
Under specific conditions, the dynamic behaviour of hydraulic 
turbines can be described by the following functional relationship, 

as shown in Equation 1.

{
{
{

mt = f(y,ω,h)

q = g(y,ω,h)
(1)

Including opening y, flow q, head h, torque m, speed w and other 
variables, the turbine and diversion system can be modeled as a 
nonlinear function, where the opening serves as the input and the 
torque as the output.

The turbine is approximated as the output of the valve, and 
the nonlinear model of the turbine is given through the analytical 
expression. The establishment of this model is usually based on the 
following assumptions: 

1. Flow rate is proportional to the guide vane opening and the 
square root of the net head, as given in Equation 2:

q = k1y√h (2)

2. Turbine output power is proportional to the product of head 
and flow rate, as expressed in Equation 3:

P = k2qh (3)

Expressing these equations in per-unit values:

q = y√h (4)
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FIGURE 8
Structure block diagram of constant DC voltage control system.

TABLE 1  The parameters of the MMC in the simulation.

Parameter Rectifier side 
MMC

Inverter side 
MMC

Number of submodules 76 76

Submodule capacitance 2.8 mF 2.8 mF

Bridge arm inductance 50 mH 50 mH

Rated DC voltage 640 kV 640 kV

Rated capacity 1,000 MV A 1,000 MV A

P = qh (5)

The relations in (2)–(5) are valid under steady or quasi-
steady operating conditions near the rated point, where rapid 
transients, cavitation, and strong nonlinearities are minimal. These 
simplifications reduce model fidelity for extreme off-design or 
highly transient events but significantly improve computational 
efficiency, which is critical for large-scale EMT simulations and 
iterative parameter identification. The trade-off is a small loss in local 
accuracy in exchange for faster simulation and easier integration 
into system-level models. Equations 4 and 5, combined with the 
flow-head relationship for the penstock system, form a simplified 
nonlinear analytical model. The flow-head transfer function can 

be written as:

Gd(s) =
h(s)
q(s)

(6)

The simplified nonlinear analytical turbine-penstock system 
block diagram is shown in Figure 5 below:

The model described above does not need the model synthesis 
curve, but it is derived based on two assumptions of the hydraulic 
turbine, and the accuracy is slightly poor, but the model is relatively 
simple and suitable for power system simulation applications. 
A common analysis method for power system analysis is to 
linearize the system to investigate its small signal characteristics. 
The linearized model of the unit water diversion system in the 
turbine and its governing system can be obtained by linearizing 
the nonlinear model at the rated operating point. Equations 4–6 are 
linearized to obtain Equation 7:

{{{{
{{{{
{

Δq = Δy+ 1
2
Δh

ΔP = Δq+Δh

Δh = Gd(s)Δq

(7)

After simplifying and rearranging the above three equations, the 
result can be expressed as:

ΔP
Δy
=

1+Gd(s)
1− 0.5Gd(s)

(8)

Since the research object of this paper is high-head 
Francis turbine and the diversion pipe is long, the traditional 
rigid water hammer model cannot accurately express its 
working characteristics. Therefore, this paper selects the 
elastic water hammer model to model its water diversion 
system, and ignores the influence of surge shaft and draft
tube as:

Gd(s) = −Tw

T2
r s3

24
+ s

T2
r

8
s2 + 1

(9)

where, Tr is the pipeline reflection time (s), also referred to 
as the elastic water hammer time constant. It represents the 
round-trip travel time of a pressure wave between the turbine 
and the upstream surge boundary, and is determined by the 
penstock length and the wave propagation velocity in water. 
Typical values range from approximately 0.5 s–3 s in high-head 
hydropower stations. Tw   is the water hammer time constant (s) 
of the hydraulic turbine, characterizing the inertia effects of the 
water column in the runner–penstock system. Its magnitude is 
influenced by turbine design parameters and hydraulic conditions, 
and usually falls in a similar range. In this study, both Tr
and Tw are calculated theoretically from design parameters such 
as penstock length, cross-sectional area, and water wave speed, 
and are cross-checked with plant design specifications to ensure
consistency.

By introducing Equation 9 into Equation 8, the transfer function 
model of the high-head turbine unit diversion system can be 
obtained, as shown in Equation 10:

ΔP
Δy
=

T2
r

8
s2 + 1−TW(

T2
r s3

24
+ s)

T2
r

4
s2 + 2+TW(

T2
r s3

24
+ s)

(10)

At this stage, the speed control system model of high-head 
hydropower units has been developed. 
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TABLE 2  The identification ranges of the candidate parameters in MMC-HVDC.

Parameter Quantity Identification range

Kp1 Proportional gain of the d-axis voltage outer-loop controller 0∼10

K i1 Integral time constant of the d-axis voltage outer-loop control system 0∼0.1

Kp2 Proportional gain of the d-axis voltage inner-loop controller 0∼1

K i2 Integral time constant of the d-axis voltage inner-loop control system 0∼0.1

Kp3 Proportional coefficient for the q-axis voltage outer-loop regulation 0∼10

K i3 Integral regulation time constant in the q-axis voltage outer loop 0∼0.1

Kp4 Proportional coefficient for the q-axis voltage inner-loop regulation 0∼1

K i4 Integral regulation time constant in the q-axis voltage inner loop 0∼0.1

Kp5 D-axis circulation control proportional gain 0∼1

K i5 D-axis circulation control integral time constant 0∼0.1

Kp6 Q-axis circulation control proportional gain 0∼1

K i6 Q-axis circulation control integral time constant 0∼0.1

TABLE 3  The sensitivity indexes of the candidate parameters.

Parameter Total index (×10−4) Parameter Total index (×10−4)

Kp1 166.862 Kp4 299.435

K i1 23.662 K i4 241.565

Kp2 416.589 Kp5 9.585

K i2 202.533 K i5 10.227

Kp3 113.335 Kp6 8.391

K i3 9.176 K i6 5.116

TABLE 4  The parameter identification results of the three optimization 
algorithms.

Parameter References value PSO CSA ACS

Kp1 6 5.85 6.11 5.99

Kp3 4 4.26 3.95 4.04

Kp2 0.65 0.661 0.65 0.653

K i2 0.01 0.0091 0.014 0.011

Kp4 0.65 0.63 0.659 0.651

K i4 0.01 0.011 0.014 0.01

2.2 Modeling of MMC-HVDC system

MMC-HVDC systems are capable of integrating and 
transmitting large-scale renewable energy and are therefore widely 

adopted in modern power systems. The main topology of MMC 
is shown in Figure 6. It includes six bridge arms. Each bridge 
arm contains N sub modules and the corresponding bridge arm 
resistance Rarm and bridge arm inductance Larm. In Figure 6, udc
and idc represent DC voltage and DC current, respectively. Zgdc
represents DC grid load impedance, and Zgac represents AC grid 
impedance.

In practical projects, MMC operates in a closed-loop mode, and 
its modulation signal is generated by the control system. Therefore, 
this section further derives the mathematical model of the MMC 
integrated with the control system, building on the previous work. 
The MMC control system mainly includes phase-locked loop, constant 
voltage/power outer loop control, current inner loop control and 
circulating current suppression. The outer loop control is divided 
into constant DC voltage control and constant power control, 
corresponding to the rectifier station and inverter station of MMC. 

To facilitate modeling and analysis, the harmonic state-space 
(HSS) model of the MMC control system, which is linear and 
time-invariant, is presented in Figure 7. 
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FIGURE 9
Comparison of rectifier active power under reference and identified parameters.

FIGURE 10
Rectifier reactive power responses based on reference and identified parameters.

2.2.1 PLL model
In Figure 7, the phase-locked loop (PLL) synchronizes 

the phase of the output three-phase AC voltage with 
that of the AC grid, and the relationship is given in
Equations 11–13:

Δθ(ω) = GPLL(ω)Δuac (11)

Δuac = Δugac −ZgacΔiac (12)

GPLL(ω) =
−j[KpPLL +KiPLL/(jω)]

jωp +V1ejφ[KpPLL +KiPLL/(jω)]
(13)

where GPLL is the closed-loop transfer function of the PLL, KpPLL
and K iPLL are the proportional and integral parameters of the 
internal PI control of the PLL. 

2.2.2 Voltage outer loop and current inner loop 
control model

In the constant-voltage outer loop, the following relation holds, 
as given in Equation 14:

Δmdm = −GIΔiq − (GudcΔudc +Δid)GI (14)

where Gudc(ω) and GI(ω) is defined in Equations 15, 16:

Gudc(ω) = Kpudc +Kiudc/(jω) (15)

GI(ω) = KpI +KiI/(jω) (16)

As before, Gudc is the voltage outer loop transfer function. Kpudc
and K iudc are the proportional and integral link parameters of the 
constant voltage outer loop controller, respectively. KpI and K iI are 
the proportional and integral link parameters of the inner loop 
current controller, respectively. 
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FIGURE 11
DC voltage profiles obtained using the reference and identified parameters.

FIGURE 12
The simulation results obtained with the reference and identified parameters. (a) Single-phase short circuit; (b) three-phase short circuit.
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2.2.3 Circulating current control modeling
During MMC operation, inter-phase circulating currents 

are generated, which in-crease operational losses. Therefore, a 
circulating current control loop must be implemented. This control 
can be achieved via PI or PR controllers, whose output is the 
common-mode modulation wave mcm. The relationship is given 
by Equation 17:

Δmcm = −GicmΔicm (17)

where Gcir is the transfer function of the PI controller for circulating 
current suppression. It can be expressed as Equation 18:

Gcir(ω) = Kpicm +Kiicm/(jω) (18)
 

3 Dominant parameter selection 
method based on Sobol sensitivity 
analysis

There are a large number of parameters in the established 
hydropower MMC-HVDC system model. They have different 
impacts on the dynamic response of the system. If the 
comprehensive parameter identification is directly carried out, it 
is easy to lead to the problems of complex identification process, 
large amount of calculation and poor convergence of identification 
results. Therefore, it is necessary to select the dominant parameters 
based on the sensitivity analysis before the parameter identification, 
which can significantly improve the efficiency and accuracy of 
identification.

As a well-known sensitivity analysis method, the Sobol global 
sensitivity analysis is adopted in this manuscript to determine 
the dominant parameters. It is a variance-based decomposition 
technique, quantifies the influence of individual parameters and 
their interactions on system dynamics by orthogonally decomposing 
the out-put variance of a computational model. Compared with 
alternative global sensitivity methods such as the Morris method 
or the Fourier Amplitude Sensitivity Test (FAST), Sobol analysis 
offers higher accuracy in quantifying both first-order effects and 
higher-order interaction effects. This capability is particularly 
critical in the context of high-head hydropower MMC-HVDC 
EMT models, where strong multi-physical coupling (e.g., between 
hydraulic transients, mechanical inertia, and converter control 
loops) can lead to significant parameter interaction effects that 
simpler screening methods may overlook. Although Sobol analysis 
typically incurs higher computational costs than Morris or FAST, 
this study mitigates the computational burden by first constraining 
the candidate parameter set to those with potential physical 
significance, and then applying parallelized simulations within the 
CloudPSS environment to accelerate the variance decomposition 
process. This work applies this methodology to dominant parameter 
identification in power system EMT models, where the impedance 
response Y = f (X) is modeled as a function of a d-dimensional 
uncertain parameter vector X=(x1,x2, …,xd)∈Φd, with Φd denoting 
the parameter domain.

According to Sobol’s decomposition theorem, when f (X) 
satisfies square-integrability, the model output can be uniquely 

expressed as shown in Equation 19.

Y = f0 +
d

∑
i=1

fi(xi) + ∑
1≤i<j≤d

fij(xi,xj) +⋯+ f1,2,…,d(x1,x2,…,xd)

(19)

where f0 represents the constant term, fi(xi) captures the 
independent effect of xi, and fij(xi,xj) quantifies pairwise 
interactions. These components satisfy the orthogonality 
condition given in Equation 20.

∫
Φ

fi1,…,is
(xi1
,…,xis
)dxk = 0, ∀k ∈ i1,…, is (20)

The total variance decomposition is given in Equation 21.

Var(Y) =
d

∑
i=1

Vi + ∑
1≤i<j≤d

Vij +⋯+V1,2,…,d (21)

where Vi = Var[𝔼(Y|xi)] denotes the first-order contribution 
of xi, and Vij = Var[𝔼(Y|xi,xj)] −Vi −Vj characterizes pairwise 
interactions, and higher-order terms account for multi-parameter 
synergies.

The first-order Sobol index Si and total Sobol index STi are 
defined in Equation 22:

Si =
Vi

Var(Y)
, STi
=
𝔼x−i[Varxi

(Y|x−i)]
Var(Y)

(22)

where Si represents the individual influence of xi and STi
incorporates all higher-order interactions involving xi (Spall, 2003).

For numerical implementation, an enhanced Monte Carlo 
sampling scheme is adopted: 

1. Generate an N×2d sample matrix, splitting it into submatrices 
A (first d columns) and B (last d columns).

2. Construct hybrid matrices AB
i  by replacing the i-th column of 

A with the corresponding column in B.
3. The sensitivity indices are computed via Equation 23.

̂Si ≈

1
N
∑ j = 1N f(B)j[ f(A

B
i )j − f(A)j]

Var(Y)
(23)

This algorithm achieves unbiased estimation of parameter 
sensitivity through N model evaluations, demonstrating particular 
efficacy for high-dimensional nonlinear systems like power system 
EMT models. In this manuscript, the X denotes the parameters 
requiring identification within the hydropower MMC-HVDC 
system, primarily the PI controller settings; Y corresponds to the 
active and reactive power observed during a phase-to-phase short 
circuit. Based on the Sobol index analysis, parameters associated 
with larger STi values are selected as dominant and subsequently 
identified using the proposed parameter identification method. 

4 Adaptive cuckoo search algorithm 
for parameter identification

4.1 Cuckoo search algorithm

The Cuckoo search algorithm (CSA) is a nature-inspired 
metaheuristic optimization method that mimics the brood 
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parasitism behavior of certain cuckoo species. Utilizing Levy flight as 
its global stochastic search mechanism, CSA demonstrates superior 
optimization performance compared to genetic algorithms and 
particle swarm optimization in terms of convergence precision 
and exploration efficiency. Therefore, the CSA is well-suited for 
high-dimensional optimization problems.

The algorithm operates under three idealized biological 
principles: 

1. Uniparous Reproduction: Each cuckoo lays one egg in a 
randomly selected host nest.

2. Elitist Preservation: Only nests with the highest fitness values 
are retained for subsequent generations.

3. Probabilistic Replacement: Hosts detect and abandon alien 
eggs with probability pa∈[0,1], triggering nest replacement.

The position update mechanism for host nests 
is given by Equation 24.

x(k+1)i = x(k)i + α⊗ Levy(β) (24)

where α > 0 controls the step size, ⊗ denotes element-wise 
multiplication, and Levy(β) represents the stochastic search path 
governed by the stability index β∈(0,2].

The Levy flight step s(k)i  is calculated using Equation 25.

s(k)i = 0.01 · u
|v|1/β
(x(k)i − xopt) (25)

where u ∼N (0,σ2
u) and v ∼N (0,1), with the scale parameter σu

defined in Equation 26.

σu =
[[

[

sin (πβ/2) · Γ(1+ β)

2(β−1)/2 · β · Γ( 1+β
2
)
]]

]

1/β

(26)

Here, Γ(⋅) denotes the gamma function.
If an egg is detected by the host, the nest position can be 

updated through Equation 27.

x(k+1)i ← x(k)i + r · s(k)i , r ∼ U(0,1) (27)

where r is a uniformly distributed random number.
The adaptive step-length mechanism introduces dynamic 

exploration via Equation 28.

r′ = rand · (xi∈[1,n] − xj∈[1,n]) (28)

Then, the updated position is obtained from Equation 29.

x′ =
{
{
{

xi + r′ if Pa > pa

xi otherwise
(29)

 

4.2 Adaptive cuckoo search algorithm

The traditional CSA shows advantages in solving the normal 
optimization problems, but it is insufficient for direct application 
in parameter identification of the hydropower MMC-HVDC system 
EMT model. Due to the model’s strong nonlinearity and parameter 
coupling, the CSA often suffers from slow convergence, local 
optima entrapment, and limited identification accuracy. Therefore, 

this manuscript pro-poses an adaptive CSA for the parameter 
identification of the selected dominant parameters in Section 3. The 
improvements include the following three aspects. 

4.2.1 Tent chaotic mapping strategy
The diversity of initial populations critically influences the 

global search capability and convergence efficiency of optimization 
algorithms. Empirical studies demonstrate that uniformly 
distributed initial populations significantly enhance convergence 
speed and solution accuracy compared to traditional random 
initialization methods. However, the conventional CSA often 
suffers from population clustering and dimensional correlation 
during initialization due to its pseudo-random sampling strategy, 
which may reduce search efficiency. To address this limitation, this 
manuscript intro-duces a chaotic mapping strategy with ergodicity 
and stochasticity for population initialization.

Chaotic mapping generates pseudo-random sequences through 
deterministic equations, effectively mitigating dimensional 
correlation issues inherent in conventional random number 
generators. Among various chaotic maps, the Tent mapping offers 
distinct advantages, including superior uniformity in sequence 
distribution compared to the Logistic mapping, reduced sensitivity 
to initial values, avoidance of iteration failures observed in some 
other mappings, and high computational efficiency, making it 
well-suited for high-dimensional optimization problems.

The mathematical formulation of the Tent chaotic mapping is 
defined in Equation 30:

yu+1 =
{{
{{
{

10
7

yu, yu < 0.7

10
3

yu(1− yu), otherwise
(30)

The population initialization process based on this mapping 
proceeds as follows: 

1. Generate a d-dimensional initial vector y0 = [y01,y02, …,y0d], 
where y0i∉{0,0.5,1} to avoid fixed points.

2. Iterate the chaotic sequence {y1,y2, …,yT}for T cycles using 
Equation 30.

3. Map the chaotic sequence to the solution space in Equation 31:

xi = xmin + yu · (xmax − xmin) (31)

where xmin and xmax represent the minimum and maximum 
limits of the optimization variables, respectively. This strategy 
produces an initial population with uniform spatial distribution, 
effectively avoiding dimensional coupling issues common in 
traditional methods. 

4.2.2 Introducing improvement strategies for 
factor α and p

To accelerate the convergence and improve the solution accuracy 
of the CSA, this paper introduces dynamic adaptation mechanisms 
for two critical parameters: the step-size control factor α0 and the 
discovery probability pa.

CSA algorithm employs fixed values for α0 and pa, which 
often lead to premature convergence or excessive computational 
overhead. To address this limitation, this manuscript proposes 
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linearly decaying formulations that adaptively adjust these 
parameters throughout iterations. The step-size control factor α0
is governed by Equation 32.

α(k)0 = (α0_max − α0_min)(1−
k

kmax
)+ α0_min (32)

where α0_max and α0_min denote the maximum and minimum step-
size boundaries, k represents the current iteration number, and kmax
is the maximum iteration count. This linear decay strategy ensures 
gradual transition from large steps to small steps which enabling 
precise local refinement near optimal regions.

Simultaneously, the discovery probability pa follows a similar 
adaptation rule given in Equation 33.

p(k)a = (pa_max − pa_min)(1−
k

kmax
)+ pa_min (33)

where pa_max and pa_min define the upper and lower bounds 
for nest replacement probability. The coupled evolution of α0
and pa creates synergistic optimization dynamics for higher 
values in initial phases promote exploration of new solutions, 
while reduced values in later stages intensify exploitation of
promising regions. 

4.2.3 Introducing boundary conditions
Conventional boundary treatment in CSA forces out-of-

bounds solutions to remain at the search space boundaries. 
While this prevents infinite search space expansion, it 
significantly slows convergence as boundary-trapped individuals 
require excessive iterations to approach optimal regions. 
To address this limitation, a boundary reset strategy is 
proposed to leverage current search information for accelerating
convergence.

The improved boundary handling mechanism relocates out-
of-bounds individuals to random positions between the current 
best solution and violated boundaries. This is mathematically 
expressed in Equation 34.

xt+1
i =
{
{
{

C · xt
best + (1−C) · ub, xt

i > ub

D · xt
best + (1−D) · lb, xt

i < lb
(34)

where C, D∈[0,1] are uniform random numbers, xt
best denotes the 

best solution of current iteration, ub and lb represent upper and 
lower bounds, respectively.

This approach provides two critical advantages over traditional 
methods: the proposed scheme can accelerate convergence by 
redirecting individuals to inherit directional information from xt

best
reducing the required convergence steps in benchmark testing; 
In addition, the proposed scheme can enhance exploration by 
introducing controlled diversity near the boundary with random 
coefficients C and D, pre-venting population stagnation.

The overall procedure for parameter identification employed 
in this study is illustrated in Figure 8. First, the electromagnetic 
transient (EMT) model of the high-head hydropower MMC-HVDC 
system is developed to serve as the foundation for subsequent 
sensitivity analysis and parameter estimation. Candidate parameters 
are then selected, and their Sobol indices are computed using 
the Sobol sensitivity analysis method. Based on the sensitivity 
results, the dominant parameters are determined. The Adaptive 

Cuckoo Search (ACS) algorithm is subsequently applied to estimate 
the values of these dominant parameters. The integration of tent 
mapping and adaptive parameter updates further enhances the 
algorithm’s global search capability and convergence performance. 
After the maximum number of iterations is reached, the nest 
position corresponding to the optimal fitness value is taken as the 
final identified parameter set. 

5 Experimental results and discussion

5.1 Simulation-based validation results

To validate the effectiveness of the proposed approach for 
identifying dominant system parameters, a high-head hydropower 
MMC-HVDC model was developed using the CloudPSS simulation 
platform, with its structure and control strategies outlined 
previously. All simulations were conducted on a desktop computer 
equipped with 32 GB RAM and a 2.10 GHz Intel Core i7-
12700 processor. The simulation parameters of the MMC 
are listed in Table 1. In practical applications, the MMC-HVDC 
system may encounter operational faults, during which the control 
systems function to maintain system stability. Thus, parameter 
identification under fault conditions holds greater practical 
significance. In the simulation scenario, a phase-to-phase short-
circuit fault lasting 0.1 s was introduced at t = 3s on the rectifier side 
of the MMC.

In the parameter identification process based on the ACS 
algorithm, each nest represents the value vector of the dominant 
parameter set. The corresponding fitness function calculation 
formula is given in Equation 35.

F = √ 1
K
(Pre f − P)2 +√ 1

K
(Qre f −Q)2 (35)

where K denotes the number of sampling points. Pref and Qref
represent the reference values of active and reactive power, 
respectively, on the rectifier side during the time interval from 3 s to 
3.5 s, while P and Q correspond to the simulated active and reactive 
power outputs.

First, Sobol sensitivity analysis was conducted to determine 
the most influential parameters. Parameters within the MMC-
HVDC control systems were selected as candidate sets based 
on their influence on system performance. The corresponding 
identification ranges for these candidates are provided in Table 2. 
Following the sensitivity analysis method detailed in Section 3, the 
total Sobol indices for these parameters were computed and are 
summarized in Table 3. It can be seen that Kp1, Kp2, K i2, Kp3, 
Kp4 and K i4 have higher sensitivity indexes compared with other 
parameters. Therefore, these six parameters are selected as the 
dominant parameters for the following identification.

Following the sensitivity analysis, the dominant parameters were 
identified using the proposed approach. The identification ranges 
for these six parameters remained consistent with those specified 
in Table 2. The population size was set to 30, which represents a 
balanced choice between exploration capability and computational 
efficiency. Preliminary trials with different population sizes (e.g., 
20, 40, and 50) indicated that increasing the size beyond 30 
yielded only marginal improvements in identification accuracy 

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1628044
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Junjie et al. 10.3389/fenrg.2025.1628044

while significantly increasing computation time, whereas smaller 
sizes occasionally led to premature convergence. Therefore, 30 
was adopted as a suitable compromise for this study. To further 
evaluate the effectiveness of the proposed method, CSA, PSO, 
and ACS algorithms were employed for the identification task. 
The final identification outcomes obtained by each algorithm are 
summarized in Table 4. It is evident that the ACS method yields 
the smallest error, clearly demonstrating its superior accuracy in 
parameter identification.

To verify the accuracy of the identification results shown 
in Table 4, simulations were conducted using both the reference 
parameters and the parameters identified by the proposed method. 
The corresponding simulation results are presented in Figures 9–11. 
As observed, the outputs derived from the identified parameters 
exhibit close agreement with the reference results, demonstrating 
the effectiveness of the ACS algorithm in model parameter 
identification.

Additionally, to assess the generalization capability of the 
identified parameters, further simulations were performed under 
single-phase and three-phase short-circuit conditions. The results, 
presented in Figure 12, show high consistency between the identified 
and reference responses, underscoring the robustness and reliability 
of the proposed parameter identification approach across diverse 
fault conditions. 

5.2 Limitations

While the proposed Sobol–ACS method has shown superior 
performance in accurately identifying the six dominant parameters 
of the high-head hydropower MMC-HVDC EMT model, several 
aspects warrant further investigation to fully establish its broader 
applicability. In this study, the case analysis was conducted on a 
parameter set of moderate size, which is representative of many 
practical engineering scenarios. Nevertheless, some large-scale 
power system models or highly detailed component representations 
may involve significantly more parameters, potentially numbering 
in the dozens or hundreds. Although the Sobol sensitivity 
analysis effectively reduces dimensionality by isolating dominant 
parameters, the computational cost of the sensitivity evaluation itself 
increases with the size of the candidate set. Similarly, the ACS 
algorithm’s performance in very high-dimensional search spaces 
(e.g., beyond 20 parameters) should be examined more rigorously, 
as increased dimensionality can influence convergence speed and 
identification accuracy.

The current validation focused on a specific EMT model 
with operational and structural characteristics typical of high-head 
hydropower MMC-HVDC systems. While this provides a strong 
proof of concept, additional testing under different optimization 
landscapes would help confirm the robustness of the method. For 
example, evaluating its performance on problems with stronger non-
convexity, lower signal-to-noise ratios, or more intricate parameter 
couplings could yield further insights. Extending the Sobol–ACS 
framework to other component models—such as synchronous 
generators with saturation effects, composite load models, or wide-
area measurement system calibration—may also provide a broader 
assessment of its adaptability. These potential directions do not 
diminish the method’s demonstrated strengths but instead highlight 

opportunities for future research to further enhance its scope and 
applicability. 

6 Conclusion

A parameter identification method for a high-head hydropower 
flexible DC transmission system, based on Sobol sensitivity analysis 
and an adaptive cuckoo search algorithm, is presented in this 
manuscript. Our theoretical framework and simulation studies 
demonstrate that the proposed method can effectively achieve 
accurate parameter identification for the system model. The 
simulation indicates that the introduced approach can obtain the 
better optimization results when compared with other optimization 
algorithms. Moreover, the simulation results verify that the 
identified parameters remain accurate under different operational 
conditions. The proposed method enables precise modeling of the 
high-head hydropower flexible DC system, ensuring that simulation 
outcomes faithfully reflect the behavior of the actual physical system. 
This contributes to improved stability and reliability in flexible 
DC grid-connected hydropower operations. Future research will 
focus on extending the proposed approach to larger-scale systems 
and more complex parameter sets, assessing its performance in 
higher-dimensional search spaces and under diverse optimization 
landscapes. This may include applying the method to different 
power system component models, incorporating distributed or 
parallel computing strategies to enhance efficiency, and evaluating 
its robustness in scenarios with stronger non-convexity or lower 
signal-to-noise ratios. Additionally, further investigation into real-
time stability analysis methods based on the identified parameters, 
especially under fluctuating hydraulic conditions, would provide 
added value to the robustness of system operation.
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