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With the increasing complexity of high-head hydropower systems and the rapid
development of flexible DC transmission technology, accurate electromagnetic
transient (EMT) modeling of hydropower flexible DC systems is essential. To
address the challenge of parameter acquisition, this manuscript proposes a
method based on Sobol sensitivity analysis and an adaptive cuckoo search (ACS)
algorithm for parameter identification. First, an EMT model is constructed, and
Sobol sensitivity analysis is used to evaluate parameter influence. Key parameters
with high sensitivity indices are selected for further optimization. Finally, the ACS
algorithm identifies these parameters with high accuracy. The case study results
show that ACS outperforms both standard cuckoo search and particle swarm
optimization (PSO) algorithms in terms of convergence speed and identification
accuracy. Simulation results confirm the validity of the identified parameters
across various operating conditions, demonstrating the method's effectiveness
and generalizability.

adaptive cuckoo search, parameter identification, high-head hydropower, Sobol
sensitivity analysis, MMC-HVDC

1 Introduction

With the continuous growth of global energy demand and the tightening
of environmental protection regulations, hydropower—characterized by its clean,
renewable, and sustainable nature—has increasingly become a vital component of
strategic infrastructure in modern power systems (Bladh, 2012). To enhance energy
utilization efficiency and optimize the configuration of the AC power grid, hydropower
transmission via modular multilevel converter-based high-voltage direct current (MMC-
HVDC) systems has gained considerable attention. In addition, with the continuous
expansion of hydropower development capacity, numerous high-head and large-
capacity hydropower units have been commissioned, posing new challenges to the
reliable operation of hydropower transmission systems. To accurately describe the
dynamic characteristics of high-head hydropower transmission via MMC-HVDC
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systems, an electromagnetic transient (EMT) simulation model
is required rather than a simplified phasor-domain model.
Phasor-domain models, although computationally efficient and
suitable for long-term electromechanical studies, neglect high-
frequency switching harmonics, fast control dynamics, and
electromagnetic interactions that are prominent in MMC-based
HVDC systems—particularly during fault transients and rapid
control actions. The EMT model, by resolving sub-millisecond
time steps, captures detailed converter switching behavior,
control-loop dynamics, and the coupling between -electrical
and mechanical subsystems, which are critical for accurately
assessing transient stability and dynamic performance under severe
disturbances. Although EMT simulations incur substantially higher
computational costs compared to phasor-domain models, the
computational burden in this study is mitigated through Sobol
sensitivity analysis for parameter space reduction and the use
of an Adaptive Cuckoo Search (ACS) algorithm optimized for
faster convergence. As a dominant part of the EMT model, the
parameters in the model have a significant impact on the accuracy
of the simulated response (Barros et al, 2003). Consequently,
conducting high-precision identification of these parameters is
not only theoretically significant for constructing accurate hydro-
mechanical-electrical coupled models, but also of substantial
practical value in enabling frequency regulation and peak shaving
(Alvarez, 2020), fault prediction (Quintana and Van Cutsem, 1988),
and stability analysis (Zarco and Exposito, 2000).

The main technical bottlenecks in parameter identification
stem from the following complex characteristics: The foremost
challenge lies in the inherently multi-physical coupling of unit
dynamics, wherein dynamic responses are governed by the interplay
among hydraulic, mechanical, and electrical domains (Zarco
and Exposito, 2000), compounded by variations in operating
conditions and coordinated control strategies (Rakpenthai et al,
2012). In high-head hydropower systems, such coupling is further
complicated by phenomena like the water hammer effect in
long penstocks, where rapid load changes induce pressure waves
that interact with both the turbine and the electrical control
system. These factors introduce significant uncertainty into
model-based inverse parameter estimation. Furthermore, the
control systems of hydropower units exhibit strong nonlinearity
and hysteresis (Guo et al., 2014), for example, the nonlinear
dead zones and rate-dependent hysteresis in turbine-governor
servomotors, making traditional frequency-domain-based linear
system identification approaches inadequate for capturing the unit’s
dynamic stiffness matrix, thereby compromising identification
fidelity (Rakpenthai et al., 2012; Petra et al., 2017). In addition,
random disturbances in operational environments—such as
non-stationary hydrological inputs and stochastic power grid
load fluctuations—result in multi-source, non-stationary noise
contamination of measured data (Zeng and Teng, 2011), greatly
reducing the signal-to-noise ratio of input-output data pairs. A
particularly critical challenge is the time-varying drift of system
parameters, which poses a serious threat to model robustness
(Milojevic¢ et al,, 2018). Studies suggest the need for time-varying
parameter identification frameworks with dynamic tracking
capabilities (Mukherjee et al., 2020). By integrating online adaptive
algorithms, continuous rolling updates to model parameters can
be achieved, thereby enhancing identification accuracy over the

Frontiers in Energy Research

02

10.3389/fenrg.2025.1628044

entire lifecycle of the unit (Regulski et al., 2015). Addressing these
issues necessitates the development of high-performance parameter
identification methodologies.

To this end, researchers have explored a range of algorithms
for parameter identification in hydro-turbine generator units,
achieving notable progress. The majority of these approaches focus
on improving global search capabilities, yet their time and space
complexity remain largely unexplored.

For instance, an improved particle swarm optimization
(PSO) algorithm introduced in Fang et al. (2011) leverages
adaptive learning factors to enhance global search capability,
significantly improving the tuning of PID controllers. However,
the time complexity of this algorithm remains high, which
limits its scalability for large systems. Another study (Liu et al.,
2010) combined PSO with the uniform design method to
optimize turbine governor parameters, demonstrating superior
performance in complex systems. This approach has proven
effective in improving parameter accuracy but struggles with higher
computational demands, especially in systems with a large number
of parameters.

Recent hybrid optimization strategies attempt to address
these limitations. The hybrid moth-flame-PSO (HMFPSO)
approach in Shaikh al.  (2023)
exploitation balancing mechanisms, achieving faster convergence

et integrates exploration-
in transmission line parameter estimation. While effective for
mid-scale systems, its O(N?) complexity and sensitivity to
control parameters hinder deployment in real-time large-grid
scenarios. Similarly, grey wolf optimization (GWO) in Shaikh et al.
(2021) reduces parameter dependencies but exhibits premature
convergence when handling non-convex landscapes in three-phase
power system.
Genetic

Algorithms  (GAs), well-established ~ global

optimizers, have also found wide application in this domain. The

as

method proposed in Gao et al. (2009), based on an enhanced GA
incorporating chaotic mutation, achieved improved global search
capability and was successfully applied to fluid transient process
modeling. However, the time complexity for this method is O(N"2),
which may limit its real-time application in large-scale systems.
Similarly (Jiang et al., 2006), highlighted the GA’s effectiveness
in PID parameter optimization, particularly in enhancing system
stability and responsiveness. For multimodal optimization problems
in hydro units, the Bacterial Foraging Optimization Algorithm
(BFOA)—an algorithm inspired by bacterial foraging behavior—has
demonstrated strong performance. In Kou et al. (2010), BFOA
was used to identify turbine governor parameters, showing high
robustness in handling complex scenarios, but its performance
deteriorates when applied to large-scale systems due to its
exponential time complexity.

Recently, Gravitational Search Algorithms (GSA) and their
improved variants (IGSA) have emerged as efficient solutions for
parameter identification. IGSA, as proposed in Chen et al. (2014a),
integrates PSO’s velocity update mechanism with chaotic mutation,
resulting in accelerated convergence and improved global search.
The time complexity of IGSA is O(N log N), similar to PSO, yet
it has shown faster convergence in practice. To address system
uncertainties (Chen et al., 2017), proposed three novel identification
approaches using distinct parameter observers based on system
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FIGURE 1

Large-capacity high-head hydropower units with MMC-HVDC transmission system.

stability theorems, as well as an Ant Lion Optimizer (ALO)-
based method. In this work, the ALO-based method demonstrated
superior accuracy compared to PSO and GA-based methods, with
the added benefit of reducing computational time, making it more
efficient in real-time applications.

In turbine control system modeling (Zhang et al, 2018),
presented a hybrid approach combining white-box mapping
with a radial basis function (RBF) neural network. This
method, particularly effective under data-scarce conditions,
minimized reliance on large-scale testing, demonstrating practical
viability. Finally (Chen et al, 2014b), focused on designing
fractional-order PID controllers for turbine governor systems and
employed a chaotic NSGA-II algorithm to optimize controller
parameters. Results showed that fractional-order PID controllers
outperformed traditional PID controllers in terms of control
precision and response time, although the optimization process
exhibits O(MN?) complexity, primarily dominated by its non-
dominated sorting mechanism.

Collectively, these studies reveal three persistent challenges: (1)
the complexity-accuracy trade-off in population-based algorithms,
(2) poor generalization of hybrid strategies across varying power
system topologies, and (3) limited theoretical guarantees for
convergence in non-convex landscapes. This work addresses these
gaps through a computationally constrained co-evolutionary
framework, systematically optimizing time complexity while
maintaining solution robustness for large-scale hydro-turbine
systems. To address this critical gap, this work systematically
reviews and analyzes existing PI algorithms for hydro-turbine units,
focusing on identifying their inherent computational complexities
and scalability limitations. We then propose a novel parameter
identification method that integrates Sobol sensitivity analysis and
an Adaptive Cuckoo Search (ACS) algorithm. The Sobol sensitivity
analysis is used to calculate the sensitivity index of candidate
parameters, from which dominant parameters with high sensitivity
are selected for identification. Subsequently, ACS is employed
to identify these dominant parameters efficiently. Finally, the
accuracy of the proposed method is validated through a case study
conducted on the CloudPSS simulation platform, demonstrating its
effectiveness in reducing computational burden while maintaining
high accuracy for high-head hydropower MMC-HVDC EMT model
identification.

The remainder of the manuscript is presented in five sections. In
Section 2, the EMT model of high-head hydropower transmission
MMC-HVDC system is constructed. Section 3 introduces the
screening method of dominant parameters according to the Sobol
sensitivity analysis. The traditional CSA method and the ACS
method are dis-cussed in Section 4. In Section 5, a simulation case
is conducted. Section 6 concludes the manuscript.
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2 Modeling of high-head hydropower
MMC-HVDC system

2.1 System structure of large-capacity
high-head hydropower units

As shown in Figure 1, large-capacity, high-head hydropower
units integrated with an MMC-HVDC transmission system
comprise a hydraulic turbine power generation system and a
subsequent MMC-HVDC system. The hydro-turbine governing
system, as a critical subsystem of the hydropower unit, is a typical
closed-loop control system that mitigates the impact of internal and
external disturbances on controlled variables while maintaining
high control precision. This governing system can be further
subdivided into three main components: the governor, the hydraulic
servo system, and the unit-penstock system.

2.1.1 Governor model

According to different control requirements, the governor
has three operation modes under grid-connected conditions:
frequency regulation, gate opening regulation, and power
regulation. Frequency regulation is applied in no-load and isolated
grid operation. Power regulation converts power deviation into
flow setting through proportional-integral calculation to adjust
turbine output power. Gate opening regulation is generally used
in grid-connected operation. In high-head hydropower MMC-
HVDC systems, gate opening regulation is prioritized because
grid frequency stability is primarily maintained by the large
interconnected AC system, allowing the hydro unit to focus on
precise flow and torque control for optimal efficiency and rapid
response during transient events. This mode also provides a more
direct and measurable control input for parameter identification,
reducing the influence of external grid frequency fluctuations and
simplifying the modeling process. The turbine model established in
this manuscript mainly focuses on gate opening regulation mode.
While this choice enhances the accuracy and robustness of the
identified parameters under typical grid-connected conditions, it
should be noted that the model’s direct applicability to scenarios
dominated by frequency or power regulation may require additional
tuning of control loops to account for different feedback signals and
operating objectives. The following figure shows the PID governor
model of high-head turbine. In Figure 2, K, is the proportional
gain, K; is the integral gain, and K is the derivative gain, T, is
the differential time constant, E; is the artificial frequency dead
zone, by /e, is the permanent slip coefficient, Ypp is the regulator
output, Y, .., Y
frequency, F, is the frequency given, Y is the opening given, P, is

min 18 the regulator output limiting, F, is the machine

the power given, P is the unit power.
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FIGURE 4

Block diagram of nonlinear hydraulic servo system.

2.1.2 Hydraulic servo system model

The hydraulic servo system converts electrical signals into
mechanical displacement signals with operational force to drive the
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water guide mechanism. This adjusts the guide vanes’ opening (to

increase or decrease water flow) by controlling the water passage.

It typically employs a two-stage amplification configuration: the
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FIGURE 5
Simplified nonlinear unit water diversion system block diagram.
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FIGURE 6
Basic structure of MMC.

pilot valve-auxiliary servomotor assembly (first-stage amplification)
and the main distributor valve-main servomotor assembly (second-
stage amplification). When considering these two components
as an integrated system, a typical auxiliary servomotor-type
structure is generally adopted. The standard hydraulic servo
system incorporating both stages can be represented by the
model shown in Figure 3.
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To prevent water hammer effects, both the opening and closing
speeds of the servomotor are subject to certain limitations, and the
opening and closing rates are typically not identical. Additionally, for
simulation modeling purposes, a first-order integral amplification
component is sufficient to characterize the servomotor’s operational
behaviour. Therefore, the servo system can be represented by the

model illustrated in Figure 4. In Figure 4, K, K;, and K g, represent

py’
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FIGURE 7

Block diagram of the overall HSS model of MMC controllers.

proportional gain, integral gain and differential gain, respectively.
VEL and VEL

open
maximum closing speed of the hydraulic servo motor, respectively.

dose are the maximum opening speed and the
T. and T, represent the closing time constant of the hydraulic
actuator and the opening time constant of the hydraulic actuator,

respectively. P, and P, are the maximum output power of prime

max
mover and the minimum output power of prime mover, respectively.

T, is the power delay time.

2.1.3 Turbine-penstock system analytical model
It should be noted that an exact analytical model of hydraulic
turbines is currently unavailable. This is primarily due to the
highly nonlinear and multi-physics nature of turbine-waterway
interactions, where hydraulic transients, turbulence, cavitation, and
flow-structure coupling are difficult to capture in closed-form
equations. The governing equations of fluid motion (Navier-Stokes
equations) can be solved numerically via computational fluid
dynamics (CFD), and in recent years, data-driven models based
on machine learning have emerged as alternatives for capturing
turbine behavior from operational data. However, both CFD
and data-driven models present limitations for this study: CFD
requires significant computational resources, making it impractical
for iterative parameter identification in electromagnetic transient
simulations, while purely data-driven approaches may lack physical
interpretability and generalizability to off-design operating points.
Under specific conditions, the dynamic behaviour of hydraulic
turbines can be described by the following functional relationship,
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as shown in Equation 1.

m, = f(y,w,h)
q=_g(,w,h)

1

Including opening y, flow g, head h, torque m, speed w and other
variables, the turbine and diversion system can be modeled as a
nonlinear function, where the opening serves as the input and the
torque as the output.

The turbine is approximated as the output of the valve, and
the nonlinear model of the turbine is given through the analytical
expression. The establishment of this model is usually based on the
following assumptions:

1. Flow rate is proportional to the guide vane opening and the
square root of the net head, as given in Equation 2:

q=kiyVh ()

2. Turbine output power is proportional to the product of head
and flow rate, as expressed in Equation 3:

P=kygh 3)
Expressing these equations in per-unit values:

q=yVh (4)
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Establish the EMT model of MCC-HVDC
integrated with high-head hydropower

Determine the candidate parameter sets for
sensitivity calculation
Select the dominant parameters based on the
Sobol sensitivity analysis

Initialize the host nests using the Tent
mapping
b
Calculate the corresponding fitness values and
select the optimal solution

Update the values of the ¢ and p, based
according to (32)-(33)
1

Update the positions of the nests based on the
(24)-(29) and (34)

End

FIGURE 8
Structure block diagram of constant DC voltage control system.

TABLE 1 The parameters of the MMC in the simulation.

Parameter Rectifier side Inverter side
MMC MMC
Number of submodules 76 76
Submodule capacitance 2.8 mF 2.8 mF
Bridge arm inductance 50 mH 50 mH
Rated DC voltage 640 kV 640 kV
Rated capacity 1,000 MV A 1,000 MV A
P=gqgh (5)

The relations in (2)-(5) are valid under steady or quasi-
steady operating conditions near the rated point, where rapid
transients, cavitation, and strong nonlinearities are minimal. These
simplifications reduce model fidelity for extreme off-design or
highly transient events but significantly improve computational
efficiency, which is critical for large-scale EMT simulations and
iterative parameter identification. The trade-off is a small loss in local
accuracy in exchange for faster simulation and easier integration
into system-level models. Equations 4 and 5, combined with the
flow-head relationship for the penstock system, form a simplified
nonlinear analytical model. The flow-head transfer function can
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be written as:
h(s)

q(s)

The simplified nonlinear analytical turbine-penstock system
block diagram is shown in Figure 5 below:

Gd(S) = (6)

The model described above does not need the model synthesis
curve, but it is derived based on two assumptions of the hydraulic
turbine, and the accuracy is slightly poor, but the model is relatively
simple and suitable for power system simulation applications.
A common analysis method for power system analysis is to
linearize the system to investigate its small signal characteristics.
The linearized model of the unit water diversion system in the
turbine and its governing system can be obtained by linearizing
the nonlinear model at the rated operating point. Equations 4-6 are
linearized to obtain Equation 7:

Agq=Ay+ %Ah
AP = Ag+ Ah @)
Ah = Gy(s)Aq

After simplifying and rearranging the above three equations, the
result can be expressed as:
AP 1+ Gy(s)

Ay 1-0.5G,(s)

Since the research object of this paper is high-head

(®)

Francis turbine and the diversion pipe is long, the traditional
rigid water hammer model cannot accurately express its
working characteristics. Therefore, this paper the
elastic water hammer model to model its water diversion

selects

system, and ignores the influence of surge shaft and draft
tube as:
T35
L +5
Gy(s)=-T,5— ©)
where, T, is the pipeline reflection time (s), also referred to
as the elastic water hammer time constant. It represents the
round-trip travel time of a pressure wave between the turbine
and the upstream surge boundary, and is determined by the
penstock length and the wave propagation velocity in water.
Typical values range from approximately 0.5 s-3 s in high-head
hydropower stations. T, is the water hammer time constant (s)
of the hydraulic turbine, characterizing the inertia effects of the
water column in the runner-penstock system. Its magnitude is
influenced by turbine design parameters and hydraulic conditions,
and usually falls in a similar range. In this study, both T,
and T, are calculated theoretically from design parameters such
as penstock length, cross-sectional area, and water wave speed,
and are cross-checked with plant design specifications to ensure
consistency.
By introducing Equation 9 into Equation 8, the transfer function
model of the high-head turbine unit diversion system can be
obtained, as shown in Equation 10:

2 23
AP %52+1—TW(T2'—i+s)
aP_ (10)
A ) s
Y IS +2+TW(7 +S)

At this stage, the speed control system model of high-head
hydropower units has been developed.
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TABLE 2 The identification ranges of the candidate parameters in MMC-HVDC.

Parameter Quantity ’ Identification range
Ky Proportional gain of the d-axis voltage outer-loop controller 0~10
K Integral time constant of the d-axis voltage outer-loop control system 0~0.1
K, Proportional gain of the d-axis voltage inner-loop controller 0~1
K, Integral time constant of the d-axis voltage inner-loop control system 0~0.1
K3 Proportional coefficient for the q-axis voltage outer-loop regulation 0~10
Kis Integral regulation time constant in the q-axis voltage outer loop 0~0.1
Ky Proportional coefficient for the q-axis voltage inner-loop regulation 0~1
Ki, Integral regulation time constant in the q-axis voltage inner loop 0~0.1
Kys D-axis circulation control proportional gain 0~1
Kis D-axis circulation control integral time constant 0~0.1
Ko Q-axis circulation control proportional gain 0~1
K6 Q-axis circulation control integral time constant 0~0.1

TABLE 3 The sensitivity indexes of the candidate parameters.

Parameter Total index (x107%) Parameter

Total index (x10™%)

K, 166.862 Ky 299.435
K, 23.662 K 241.565
K, 416.589 Kps 9.585
K, 202.533 K 10.227
K, 113.335 Kpe 8.391
K 9.176 K 5116

TABLE 4 The parameter identification results of the three optimization
algorithms.

Parameter References value PSO CSA ‘ ACS

Ky 6 5.85 6.11 5.99
K, 4 426 3.95 4.04
Ky 0.65 0.661 0.65 0.653
K, 0.01 0.0091 | 0014 | 0011
Ky 0.65 0.63 0659 | 0.651
K, 0.01 0.011 0.014 0.01

2.2 Modeling of MMC-HVDC system

MMC-HVDC systems are capable of integrating and
transmitting large-scale renewable energy and are therefore widely

Frontiers in Energy Research

adopted in modern power systems. The main topology of MMC
is shown in Figure 6. It includes six bridge arms. Each bridge
arm contains N sub modules and the corresponding bridge arm
resistance R, and bridge arm inductance L, . In Figure 6, u4.
and iy represent DC voltage and DC current, respectively. Zg4.
represents DC grid load impedance, and Z,,. represents AC grid
impedance.

In practical projects, MMC operates in a closed-loop mode, and
its modulation signal is generated by the control system. Therefore,
this section further derives the mathematical model of the MMC
integrated with the control system, building on the previous work.
The MMC control system mainly includes phase-locked loop, constant
voltage/power outer loop control, current inner loop control and
circulating current suppression. The outer loop control is divided
into constant DC voltage control and constant power control,
corresponding to the rectifier station and inverter station of MMC.

To facilitate modeling and analysis, the harmonic state-space
(HSS) model of the MMC control system, which is linear and
time-invariant, is presented in Figure 7.
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Comparison of rectifier active power under reference and identified parameters.
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2.2.1 PLL model

In Figure 7, the phase-locked loop (PLL) synchronizes
of the with
that of the AC grid, and the relationship is given in

the phase output three-phase AC voltage

Equations 11-13:

AB(w) = Gppp (0) A, (11)
Aty = Aty = Zgy iy (12)
—j| Kpprr + Kipro/ (je)
Gppr (@) = - [ p ] (13)

Jwp +Vy ei(p[KpPLL + KiPLL/(jw)]

where Gypy is the closed-loop transfer function of the PLL, Kpr;.
and Kjp;; are the proportional and integral parameters of the
internal PI control of the PLL.

Frontiers in Energy Research

2.2.2 Voltage outer loop and current inner loop
control model

In the constant-voltage outer loop, the following relation holds,
as given in Equation 14:

Amdm = _GIAiq - (GudCAudC + Ald)GI (14)

where G 4.(w) and G;(w) is defined in Equations 15, 16:
Gudc(w) = Kpudc + Kiudc/(jw) (15)
G(w) = Ky + Ky / (jw) (16)

As before, G 4. is the voltage outer loop transfer function. K
and K;

iudc

pudc
are the proportional and integral link parameters of the

constant voltage outer loop controller, respectively. K,,; and K;; are
the proportional and integral link parameters of the inner loop
current controller, respectively.
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2.2.3 Circulating current control modeling
During MMC operation, inter-phase circulating currents
are generated, which in-crease operational losses. Therefore, a
circulating current control loop must be implemented. This control
can be achieved via PI or PR controllers, whose output is the
common-mode modulation wave mcm. The relationship is given
by Equation 17:
Amy, =Gy Ai (17)

cm cm

where G, is the transfer function of the PI controller for circulating
current suppression. It can be expressed as Equation 18:

Gcir(w) = Kpicm + Kiicm/(jw) (18)

3 Dominant parameter selection
method based on Sobol sensitivity
analysis

There are a large number of parameters in the established
hydropower MMC-HVDC system model. They have different
impacts on the dynamic response of the system. If the
comprehensive parameter identification is directly carried out, it
is easy to lead to the problems of complex identification process,
large amount of calculation and poor convergence of identification
results. Therefore, it is necessary to select the dominant parameters
based on the sensitivity analysis before the parameter identification,
which can significantly improve the efficiency and accuracy of
identification.

As a well-known sensitivity analysis method, the Sobol global
sensitivity analysis is adopted in this manuscript to determine
the dominant parameters. It is a variance-based decomposition
technique, quantifies the influence of individual parameters and
their interactions on system dynamics by orthogonally decomposing
the out-put variance of a computational model. Compared with
alternative global sensitivity methods such as the Morris method
or the Fourier Amplitude Sensitivity Test (FAST), Sobol analysis
offers higher accuracy in quantifying both first-order effects and
higher-order interaction effects. This capability is particularly
critical in the context of high-head hydropower MMC-HVDC
EMT models, where strong multi-physical coupling (e.g., between
hydraulic transients, mechanical inertia, and converter control
loops) can lead to significant parameter interaction effects that
simpler screening methods may overlook. Although Sobol analysis
typically incurs higher computational costs than Morris or FAST,
this study mitigates the computational burden by first constraining
the candidate parameter set to those with potential physical
significance, and then applying parallelized simulations within the
CloudPSS environment to accelerate the variance decomposition
process. This work applies this methodology to dominant parameter
identification in power system EMT models, where the impedance
response Y = f(X) is modeled as a function of a d-dimensional
uncertain parameter vector X=(x,x,, ...,xq)€®Dg4, with @4 denoting
the parameter domain.

According to Sobol's decomposition theorem, when f(X)
satisfies square-integrability, the model output can be uniquely
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expressed as shown in Equation 19.

Z fij(xi’xj) oot fro (XX xg)

1<i<j<d

d
Y= f0+Zfi(xi)+
(19)

where f, represents the constant term, f,(x;) captures the
independent effect of x;, and f;(x;x) quantifies pairwise
These components the

condition given in Equation 20.

interactions. satisfy orthogonality

Lﬂpm,z‘s(’“n’ cooox; ) =0, Vk €y, i (20)
The total variance decomposition is given in Equation 21.
d
Var(V) =) Vi+ Y Vit 4 Vi, 4 (21)
i=1 1<i<j<d

where V,=Var[E(Y]x;)] denotes the first-order contribution
of x;, and Vij = Var[IE(YIxi,xj)] -V- VJ characterizes pairwise
interactions, and higher-order terms account for multi-parameter
synergies.

The first-order Sobol index S; and total Sobol index Sp; are
defined in Equation 22:

V.

1

. . IEx_i[Varx‘(YIxfi)]
7 var(y)’ -

Var(Y)

where S; represents the individual influence of x; and Sy

(22)

incorporates all higher-order interactions involving x; (Spall, 2003).
For numerical implementation, an enhanced Monte Carlo
sampling scheme is adopted:

1. Generate an Nx2d sample matrix, splitting it into submatrices
A (first d columns) and B (last d columns).

2. Construct hybrid matrices A} by replacing the i-th column of
A with the corresponding column in B.

3. The sensitivity indices are computed via Equation 23.

_w2i= 1y A4 - )
. Var(Y)

This algorithm achieves unbiased estimation of parameter

S

(23)

sensitivity through N model evaluations, demonstrating particular
efficacy for high-dimensional nonlinear systems like power system
EMT models. In this manuscript, the X denotes the parameters
requiring identification within the hydropower MMC-HVDC
system, primarily the PI controller settings; Y corresponds to the
active and reactive power observed during a phase-to-phase short
circuit. Based on the Sobol index analysis, parameters associated
with larger Sp; values are selected as dominant and subsequently
identified using the proposed parameter identification method.

4 Adaptive cuckoo search algorithm
for parameter identification

4.1 Cuckoo search algorithm

The Cuckoo search algorithm (CSA) is a nature-inspired
metaheuristic optimization method that mimics the brood
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parasitism behavior of certain cuckoo species. Utilizing Levy flight as
its global stochastic search mechanism, CSA demonstrates superior
optimization performance compared to genetic algorithms and
particle swarm optimization in terms of convergence precision
and exploration efficiency. Therefore, the CSA is well-suited for
high-dimensional optimization problems.

The algorithm operates under three idealized biological
principles:

1. Uniparous Reproduction: Each cuckoo lays one egg in a
randomly selected host nest.

2. Elitist Preservation: Only nests with the highest fitness values
are retained for subsequent generations.

3. Probabilistic Replacement: Hosts detect and abandon alien
eggs with probability p,€[0,1], triggering nest replacement.

The position update mechanism for host nests
is given by Equation 24.
xikﬂ) = xl(.k) +a®Levy(f) (24)

where a > 0 controls the step size, ® denotes element-wise
multiplication, and Levy(f) represents the stochastic search path
governed by the stability index €(0,2].

The Levy flight step sl(,k) is calculated using Equation 25.

s®=0.01. & (xgk) —xopt)

L m
where u ~ N (0,02) and v~ N(0,1), with the scale parameter o,
defined in Equation 26.

(25)

1/
sin (73/2) - T(1 + B)

2(B-1)/2 B- r(l%ﬁ) (26)

Here, I'(-) denotes the gamma function.
If an egg is detected by the host, the nest position can be
updated through Equation 27.
xgkﬂ) — xl(.k) + r~s§k), r~Uu(0,1) (27)
where 7 is a uniformly distributed random number.
The adaptive step-length mechanism introduces dynamic
exploration via Equation 28.

' =rand- (xis[l,n] —xje[l’n]) (28)
Then, the updated position is obtained from Equation 29.
x;+7 if P, >
x, — 1 a pa (29)

X otherwise

i

4.2 Adaptive cuckoo search algorithm

The traditional CSA shows advantages in solving the normal
optimization problems, but it is insufficient for direct application
in parameter identification of the hydropower MMC-HVDC system
EMT model. Due to the model’s strong nonlinearity and parameter
coupling, the CSA often suffers from slow convergence, local
optima entrapment, and limited identification accuracy. Therefore,
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this manuscript pro-poses an adaptive CSA for the parameter
identification of the selected dominant parameters in Section 3. The
improvements include the following three aspects.

4.2.1 Tent chaotic mapping strategy

The diversity of initial populations critically influences the
global search capability and convergence efficiency of optimization
algorithms. studies demonstrate that
distributed initial populations significantly enhance convergence

Empirical uniformly
speed and solution accuracy compared to traditional random
initialization methods. However, the conventional CSA often
suffers from population clustering and dimensional correlation
during initialization due to its pseudo-random sampling strategy,
which may reduce search efficiency. To address this limitation, this
manuscript intro-duces a chaotic mapping strategy with ergodicity
and stochasticity for population initialization.

Chaotic mapping generates pseudo-random sequences through
deterministic ~equations, effectively —mitigating dimensional
correlation issues inherent in conventional random number
generators. Among various chaotic maps, the Tent mapping offers
distinct advantages, including superior uniformity in sequence
distribution compared to the Logistic mapping, reduced sensitivity
to initial values, avoidance of iteration failures observed in some
other mappings, and high computational efficiency, making it
well-suited for high-dimensional optimization problems.

The mathematical formulation of the Tent chaotic mapping is
defined in Equation 30:

10

7yu’

%yu(l -,)> otherwise

y,<0.7

yu+1 = (30)

The population initialization process based on this mapping
proceeds as follows:

1. Generate a d-dimensional initial vector y, = [y41,Y02> ---Yodl>
where y;¢{0,0.5,1} to avoid fixed points.

2. Iterate the chaotic sequence {y;,y,, ....yp}or T cycles using
Equation 30.

3. Map the chaotic sequence to the solution space in Equation 31:

Xi = Xmin TVy~ (xmax - xmin) (31)

where x,;, and x,,, represent the minimum and maximum

min X
limits of the optimization variables, respectively. This strategy
produces an initial population with uniform spatial distribution,
effectively avoiding dimensional coupling issues common in

traditional methods.

4.2.2 Introducing improvement strategies for
factor a and p

To accelerate the convergence and improve the solution accuracy
of the CSA, this paper introduces dynamic adaptation mechanisms
for two critical parameters: the step-size control factor «, and the
discovery probability p,.

CSA algorithm employs fixed values for «, and pa, which
often lead to premature convergence or excessive computational
overhead. To address this limitation, this manuscript proposes
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linearly decaying formulations that adaptively adjust these
parameters throughout iterations. The step-size control factor «,
is governed by Equation 32.

(32)

(k)
&y = (“O_max - “O_min)<1 - ) + &0_min

k

max

where o .. and & ;,, denote the maximum and minimum step-
size boundaries, k represents the current iteration number, and k.
is the maximum iteration count. This linear decay strategy ensures
gradual transition from large steps to small steps which enabling
precise local refinement near optimal regions.

Simultaneously, the discovery probability pa follows a similar
adaptation rule given in Equation 33.

( a_max _pa_min)<1 -

where p, .. and p, ., define the upper and lower bounds

(k)
Pa =

) +Pa_min (33)

max

for nest replacement probability. The coupled evolution of «
and p, creates synergistic optimization dynamics for higher
values in initial phases promote exploration of new solutions,
while reduced values in later stages intensify exploitation of
promising regions.

4.2.3 Introducing boundary conditions
Conventional boundary treatment in CSA forces out-of-
bounds solutions to remain at the search space boundaries.
While  this it
significantly slows convergence as boundary-trapped individuals

prevents infinite search space expansion,

require excessive iterations to approach optimal

To address this limitation, a boundary reset strategy is

regions.

proposed to leverage current search information for accelerating
convergence.

The improved boundary handling mechanism relocates out-
of-bounds individuals to random positions between the current
best solution and violated boundaries. This is mathematically
expressed in Equation 34.

C-x{)est+(1—C)-ub, xf>ub

+(1-D)-Ib, x<Ib

t+1 _
;=

X (34)

t
D- Fhest
where C, D€[0,1] are uniform random numbers, xtbest denotes the
best solution of current iteration, ub and Ib represent upper and
lower bounds, respectively.

This approach provides two critical advantages over traditional

methods: the proposed scheme can accelerate convergence by
t
best

reducing the required convergence steps in benchmark testing;

redirecting individuals to inherit directional information from x

In addition, the proposed scheme can enhance exploration by
introducing controlled diversity near the boundary with random
coefficients C and D, pre-venting population stagnation.

The overall procedure for parameter identification employed
in this study is illustrated in Figure 8. First, the electromagnetic
transient (EMT) model of the high-head hydropower MMC-HVDC
system is developed to serve as the foundation for subsequent
sensitivity analysis and parameter estimation. Candidate parameters
are then selected, and their Sobol indices are computed using
the Sobol sensitivity analysis method. Based on the sensitivity
results, the dominant parameters are determined. The Adaptive
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Cuckoo Search (ACS) algorithm is subsequently applied to estimate
the values of these dominant parameters. The integration of tent
mapping and adaptive parameter updates further enhances the
algorithm’s global search capability and convergence performance.
After the maximum number of iterations is reached, the nest
position corresponding to the optimal fitness value is taken as the
final identified parameter set.

5 Experimental results and discussion
5.1 Simulation-based validation results

To validate the effectiveness of the proposed approach for
identifying dominant system parameters, a high-head hydropower
MMC-HVDC model was developed using the CloudPSS simulation
platform, with its structure and control strategies outlined
previously. All simulations were conducted on a desktop computer
equipped with 32GB RAM and a 2.10 GHz Intel Core i7-
12700 processor. The simulation parameters of the MMC
are listed in Table 1. In practical applications, the MMC-HVDC
system may encounter operational faults, during which the control
systems function to maintain system stability. Thus, parameter
identification under fault conditions holds greater practical
significance. In the simulation scenario, a phase-to-phase short-
circuit fault lasting 0.1 s was introduced at t = 3s on the rectifier side
of the MMC.

In the parameter identification process based on the ACS
algorithm, each nest represents the value vector of the dominant
parameter set. The corresponding fitness function calculation
formula is given in Equation 35.

1 1
P g PP Q- )

where K denotes the number of sampling points. P, and Q

(35)

ref
represent the reference values of active and reactive power,

respectively, on the rectifier side during the time interval from 3 s to
3.5 s, while P and Q correspond to the simulated active and reactive
power outputs.

First, Sobol sensitivity analysis was conducted to determine
the most influential parameters. Parameters within the MMC-
HVDC control systems were selected as candidate sets based
on their influence on system performance. The corresponding
identification ranges for these candidates are provided in Table 2.
Following the sensitivity analysis method detailed in Section 3, the
total Sobol indices for these parameters were computed and are
summarized in Table 3. It can be seen that Kpl’ sz, K, Kp3,
K, and K;, have higher sensitivity indexes compared with other
parameters. Therefore, these six parameters are selected as the
dominant parameters for the following identification.

Following the sensitivity analysis, the dominant parameters were
identified using the proposed approach. The identification ranges
for these six parameters remained consistent with those specified
in Table 2. The population size was set to 30, which represents a
balanced choice between exploration capability and computational
efficiency. Preliminary trials with different population sizes (e.g.,
20, 40, and 50) indicated that increasing the size beyond 30
yielded only marginal improvements in identification accuracy
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while significantly increasing computation time, whereas smaller
sizes occasionally led to premature convergence. Therefore, 30
was adopted as a suitable compromise for this study. To further
evaluate the effectiveness of the proposed method, CSA, PSO,
and ACS algorithms were employed for the identification task.
The final identification outcomes obtained by each algorithm are
summarized in Table 4. It is evident that the ACS method yields
the smallest error, clearly demonstrating its superior accuracy in
parameter identification.

To verify the accuracy of the identification results shown
in Table 4, simulations were conducted using both the reference
parameters and the parameters identified by the proposed method.
The corresponding simulation results are presented in Figures 9-11.
As observed, the outputs derived from the identified parameters
exhibit close agreement with the reference results, demonstrating
the effectiveness of the ACS algorithm in model parameter
identification.

Additionally, to assess the generalization capability of the
identified parameters, further simulations were performed under
single-phase and three-phase short-circuit conditions. The results,
presented in Figure 12, show high consistency between the identified
and reference responses, underscoring the robustness and reliability
of the proposed parameter identification approach across diverse
fault conditions.

5.2 Limitations

While the proposed Sobol-ACS method has shown superior
performance in accurately identifying the six dominant parameters
of the high-head hydropower MMC-HVDC EMT model, several
aspects warrant further investigation to fully establish its broader
applicability. In this study, the case analysis was conducted on a
parameter set of moderate size, which is representative of many
practical engineering scenarios. Nevertheless, some large-scale
power system models or highly detailed component representations
may involve significantly more parameters, potentially numbering
in the dozens or hundreds. Although the Sobol sensitivity
analysis effectively reduces dimensionality by isolating dominant
parameters, the computational cost of the sensitivity evaluation itself
increases with the size of the candidate set. Similarly, the ACS
algorithm’s performance in very high-dimensional search spaces
(e.g., beyond 20 parameters) should be examined more rigorously,
as increased dimensionality can influence convergence speed and
identification accuracy.

The current validation focused on a specific EMT model
with operational and structural characteristics typical of high-head
hydropower MMC-HVDC systems. While this provides a strong
proof of concept, additional testing under different optimization
landscapes would help confirm the robustness of the method. For
example, evaluating its performance on problems with stronger non-
convexity, lower signal-to-noise ratios, or more intricate parameter
couplings could yield further insights. Extending the Sobol-ACS
framework to other component models—such as synchronous
generators with saturation effects, composite load models, or wide-
area measurement system calibration—may also provide a broader
assessment of its adaptability. These potential directions do not
diminish the method’s demonstrated strengths but instead highlight
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opportunities for future research to further enhance its scope and
applicability.

6 Conclusion

A parameter identification method for a high-head hydropower
flexible DC transmission system, based on Sobol sensitivity analysis
and an adaptive cuckoo search algorithm, is presented in this
manuscript. Our theoretical framework and simulation studies
demonstrate that the proposed method can effectively achieve
accurate parameter identification for the system model. The
simulation indicates that the introduced approach can obtain the
better optimization results when compared with other optimization
algorithms. Moreover, the simulation results verify that the
identified parameters remain accurate under different operational
conditions. The proposed method enables precise modeling of the
high-head hydropower flexible DC system, ensuring that simulation
outcomes faithfully reflect the behavior of the actual physical system.
This contributes to improved stability and reliability in flexible
DC grid-connected hydropower operations. Future research will
focus on extending the proposed approach to larger-scale systems
and more complex parameter sets, assessing its performance in
higher-dimensional search spaces and under diverse optimization
landscapes. This may include applying the method to different
power system component models, incorporating distributed or
parallel computing strategies to enhance efficiency, and evaluating
its robustness in scenarios with stronger non-convexity or lower
signal-to-noise ratios. Additionally, further investigation into real-
time stability analysis methods based on the identified parameters,
especially under fluctuating hydraulic conditions, would provide
added value to the robustness of system operation.
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