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Lightweight state-of-charge
estimation method for
lithium-ion batteries based on
lumped semi-empirical model
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Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China

Efficient and accurate state-of-charge (SOC) estimation of lithium-ion batteries
under complex conditions is challenging. To address this, we develop a battery
performance prediction framework using a lumped semi-empirical model,
incorporating three critical factors: state-of-health (SOH), depth of discharge
(DOD), and operational load. Systematic evaluations, including hybrid pulse
power characterization (HPPC) tests and new European driving cycle (NEDC)
simulations, were conducted to validate the model’s predictive capability across
varying SOH and DOD levels. Building on this foundation, we pro-pose an SOC
estimation methodology that leverages the model’s framework, analyzing three
distinct aging states (unaged, mildly aged, and seriously aged) and comparing
offline versus online parameter identification approaches. To enhance accuracy
in low SOC regimes, a segmented training strategy is introduced. Additionally,
a comparison was made between four different SOC estimation methods.
Experimental results show that the lumped semi-empirical model is suitable
for complex working conditions of lithium-ion batteries, and the proposed
method exhibits high accuracy and robustness in SOC estimation across
typical discharge ranges, and it effectively balances estimation accuracy and
computational burden, making it beneficial for engineering applications.
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lithium-ion battery, complex working conditions, lumped semi-empirical model, state-
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1 Introduction

The worldwide natural environment has deteriorated in recent years, and resources
have been severely depleted. Energy conservation and emissions reduction are important
resolutions for each country’s development. The transportation industry is also speeding
up its research on the zero carbon economy. New energy electric vehicles and electric
air-craft become the new direction and hotspot domains of future development. As the
optimum selection for the current new energy electric vehicles and aircraft power reserves,
the performance and service reliability of lithium-ion batteries (LIBs) are essential variables
and bottlenecks affecting the development of the new energy industry. To accuratelymanage
the endurance and health conditions of lithium-ion batteries for efficient management
and intelligent maintenance, the battery management system (BMS) evaluates the SOC,
SOH, state-of-power (SOP), and state-of-function (SOF) of the battery by collecting
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and analyzing external parameters such as current and voltage
(Wang et al., 2012; Verbrugge, 2008; Ge et al., 2021).

The SOCof lithium-ion batteries reflects the remaining available
power inside the battery (Hannan et al., 2017). Accurate estimation
of the SOC batteries helps maximize the capabilities of the battery,
improves the service safety and extends battery life. Popular
estimation methods currently include the open-circuit voltage
method, discharge experiment method, ampere hour integration
method, Kalman filtering method, data-driven method, and fusion
model estimation method. The open-circuit voltage (Gong et al.,
2021) method and discharge experiment method (Li-ping et al.,
2014) are mostly used for laboratory offline tests to estimate
SOC; the ampere-hour integration method (Luo et al., 2020) is
a relatively simple and practical online SOC estimation method,
but this method cannot accurately obtain the initial SOC, which is
prone to cumulative errors, resulting in low estimation accuracy.
The Kalman filter method (Wei et al., 2018) uses the closed-loop
estimation to estimate SOC and corrects the initial SOC value
to enhance the robustness of the estimation results. However, the
algorithm used in this method is complex, with a large number of
calculations and a long calculation period, whichmakes the filtering
effect not ideal (Bizeray et al., 2015). Compared with the Kalman
filter algorithm, the data-driven algorithm (Ren et al., 2018) does
not require the establishment of an accurate lithium-ion battery
model, and it can better deal with complex nonlinear systems
when estimating SOC. The data-driven algorithm requires large-
scale and high-quality data for training which is computer storage
and central processors demanding. Due to the high computational
resources and computational time, it is difficult to popularize and
apply in engineering (He et al., 2021). In general, the above methods
are mainly divided into three categories: experimental method,
model estimation method, and data-driven method. Although the
experimental method can easily obtain the values of SOC state
variables of the lithium-ion battery, the prediction results are
heavily affected by the initial value of SOC, temperature, and
aging state of the lithium-ion battery, making it unpractical in
engineering (Nejad et al., 2016). The data-driven method has a high
computational cost and is difficult to be applied to SOC online
estimation. The training results directly affect the accuracy of SOC
estimation and have weak robustness. To achieve high-precision
online identification and prediction of lithium-ion battery SOC
under complex working conditions, the model-based estimation
method is more suitable for engineering applications and effective.

The performance of lithium-ion batteries model directly
determines the prediction accuracy of SOC (Chen L. et al.,
2018). Commonly used lithium-ion battery models include:
the mechanism model (Zheng, 2018), neural network model
(Wang et al., 2020), and equivalent circuit model (ECM) (Sung and

Abbreviations: BMS, Battery management system; CC-CV, Constant
current and constant voltage; DOD, Depth of discharge; du-al-EKF, Dual
Extended Kalman Filter; DLS, Damped Least Squares; EC, Equivalent circuit;
EOL, End of life; ECM, Equivalent circuit model; HPPC, Hybrid pulse
power characterization; LIBs, Lithium-ion batteries; MAPE, Mean absolute
percentage error; NEDC, New European driving cycle; OCV, Open circuit
voltage; RC, Resistance-capacitance; RMSE, Root mean square error; RE,
Relative error; SOC, State-of-charge; SOH, State-of-health; SOP, State-
of-power; SOF, State-of-function; USABC, United States Advanced Battery
Consortium.

Shin, 2015). Among them, the mechanism model, also known as
the electrochemical model, is based on the porous electrode theory
and the concentrated solution theory, and it describes the charge
and discharge behavior of lithium-ion batteries by quantifying
the internal electrochemical reaction kinetics, mass transfer, heat
transfer, and other microscopic reactions (Gambhire et al., 2014).
The electrochemical model can capture the dynamic behavior of
lithium-ion batteries and has high prediction accuracy.However, the
establishment of a model usually requires dozens of parameters. Not
only is themodel complex and the amount of calculation is large, but
the majority of the parameters can only be determined through in-
situ technical measurement.Themodeling task is complex, resulting
in a significant reduction in engineering feasibility (Jannesari et al.,
2011; Xu et al., 2021; Gao et al., 2022; Liu, 2020).

The neural network model is independent of the internal
chemical reaction of lithium-ion batteries. The external
characteristic parameters of the battery, such as current, voltage,
and temperature, are directly used as network input in the black-
box modeling method to train the network structure until the
network output error is reduced to an acceptable level or meets
other termination conditions (Huang et al., 2014). The neural
network model is efficient as it can distribute, store, and process
data information in parallel. However, since the model requires a
considerable amount of training to obtain the relationship between
input and output, the model’s accuracy requires a large quantity
and quality of training data, and it has prominent problems such
as poor generalization ability and insufficient model stability
(Chen et al., 2018b; Li and Xiao, 2022).

The ECM is composed of some simple circuit components such
as ideal voltage source, resistance, and parallel coupling resistance-
capacitance. At present, mature models widely used include the
Rint model, RC model, Thevenin model, PNGV model, and GNL
model (Jia et al., 2011). Compared with the mechanism model, the
ECM can also simulate the dynamic characteristics of the battery.
The model parameters are less, and the parameter identification is
easy to implement, which is one of the commonly used models
in the BMS (Waag et al., 2013; Fotouhi et al., 2016; Sun, 2021).
Compared with the neural network model, the ECM does not
rely on a large amount of experimental data, which balances the
model accuracy and real-time calculation, and opens the door to
online SOC estimation (Sun, 2021). However, the equivalent circuit
(EC) used in the ECM cannot correspond to the internal structure
of the battery. The electrochemical reaction in-side the battery is
difficult to display and reflect precisely (Bute et al., 2018). The key
problem of SOC estimation accuracy caused by the ECM needs to
be solved (Ouyang et al., 2014).

In summary, to fully exploit the benefits of various models
while addressing their flaws, hybrid models have emerged as a
powerful tool and a research hotspot in contemporary modeling
research. Many relevant scholars have explored and constructed a
battery lumped model with certain internal mechanism explanation
ability and external characteristic representation ability. The model
offers high computational efficiency while improving the accuracy
of battery SOC representation. Tan et al. (2010) established the
lumped model of solid oxide fuel cells based on ohmic loss, active
polarization loss, and concentration polarization loss, and deduced
the mathematical function relationship of single-cell voltage, gas
partial pressure, and current. They also analyzed the feasibility and
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reliability of the lumped model. In order to further explored the
adaptability of the lumped model, Nejad et al. (2016) systematically
expounded on the ECM structure of 10 lumped parameters
including the RC model, and performed online identification of
model parameters and states based on dual Extended Kalman Filter
(dual-EKF) algorithm. Lithium-ion batteries with two different
electrode chemical characteristics, lithium-ion iron phosphate
(LiFePO4) and lithium nickel manganese cobalt oxide (LiNMC)
were used to verify the universality of each model structure in
the temperature range of 5°C–45°C. In addition, each model
structure’s dynamic performance in SOC and SOP joint estimation
was discussed. Though the accuracy of the lumped ECM below
zero and the performance of SOC estimation had not been
thoroughly investigated. In order to achieved the convenient and
wide application of the lumped model in all-weather BMS and
achieved high SOC estimation accuracy, Seo et al. (2021) introduced
an innovative lumped battery model to estimate SOC at different
ambient temperatures while analyzing the error caused by the
lumped ECM. Based on the change in battery characteristics,
SOC can be accurately estimated in a wide temperature range
(−10°C–30°C) with a long sampling period. To further improved
the prediction efficiency of the lumped model, Ekström et al.
(2018) used circuit components based on generalized particle
diffusion replace the traditional RC components for concentration
polarization prediction. They studied three lumped models (RC
model, model, and Kmodel) that all contain linear ohmic resistance,
nonlinear charge transfer resistance, and diffusion impedance,
and defined them as the lumped semi-empirical model. This
model described the diffusion process in lithium-ion batteries
with fewer model fitting parameters, which considerably improves
computational efficiency. Compared with the model without
diffusion, all diffusion models had improved the voltage prediction
ability. The prediction ability and applicability of the lumped semi-
empirical battery model with diffusion impedance were analyzed
based on the load data of dynamic cycle experiment. However, the
influence factors such as dynamic conditions, DOD, and battery
aging in actual scenarios are not comprehensively considered. The
applicability of the lumped semi-empirical battery model needs
to be further analyzed, and the engineering application of SOC
estimation (Xu et al., 2019) needs to be further analyzed.

Based on this, this paper develops a battery performance
prediction framework using a lumped semi-empirical model,
incorporating three critical factors: state-of-health (SOH), depth of
discharge (DOD), and operational load. And we further propose an
SOC estimationmethodology that leverages themodel’s framework,
analyzing three distinct aging states (unaged, mildly aged, and
seriously aged) and comparing offline versus online parameter
identification approaches. On this premise, aiming at the poor
prediction ability of the model under a low SOC state, a segmented
training prediction method is proposed, which considerably
enhances the accuracy of the estimation results while reducing
the calculation load. Finally, by comparing four different SOC
estimationmethods, a comprehensive evaluation of the performance
of the proposed SOC estimationmethodwas conducted, confirming
its superiority.The rest of this paper is organized as follows. Section 2
briefly describes the mathematical theory and construction process
of the lumped semi-empirical model. In Section 3, the lithium-ion
battery experiment and model parameter estimation are carried out

to obtain model input data. Section 4 analyzes the characteristics
of the model according to the root mean square error and mean
absolute percentage error between the actual load voltage and
the predicted value of the model. Section 5 compares the SOC
estimation ability of offline and online identification methods based
on the lumped semi-empirical model. In addition, the segmented
training idea is adopted for SOC pre-diction of lithium-ion batteries
with low initial SOC, and the superiority of the proposed method
was demonstrated through validation against other SOC estimation
algorithms. Finally, in Section 6, some conclusions are drawn.

2 The lumped semi-empirical model
of LIB

2.1 Model theory analysis

While a lithium-ion battery is charged and discharged, internal
losses such as ohmic loss, activation loss, and concentration loss take
place. Ekström et al. (2018) established a lumped semi-empirical
model and described the loss inside the battery by defining the
battery load voltage Ebatt , Ebatt is calculated by Equation 1.

Ebatt = Eocv(SOC) + ηohm + ηact + ηconc (1)

Where ηohm is ohmic overpotential, ηact is activation overpotential,
ηconc is concentration overpotential. Eocv(SOC) is the open circuit
voltage (OCV) of the battery, which has a functional relationship
with the SOC of the battery. The relationship curve between OCV
and SOC can be obtained through HPPC test in engineering. The
size of SOC depends on the charge and discharge of the battery,
which can be expressed by Equation 2.

dSOC
dt
=

Ibatt
Qbatt

(2)

Where Qbatt is battery capacity, Ibatt is battery load current.
Ohmic overpotential which is used to characterize the ohmic

loss is caused by the resistance of the electrolyte when the current
passes through the lithium-ion battery (Ni et al., 2015). Referring to
the first-order ECM, it can be expressed by Equation 3.

ηohm = RohmIbatt (3)

Where Rohm is ohmic resistance.
Activation overpotential is the loss induced by the charge

transfer process in the battery, which represents the overpotential
required for electrochemical reaction. It can be expressed as
follows through the Butler-Volmer equation (Gebregergis et al.,
2009), which is used to characterize the activation loss, it is
calculated by Equation 4.

ηact =
2RT
F

arcsin h(
Ibatt
2I0
) (4)

Where R is the gas molar constant (8.31J/(molk)); T is the
working temperature; F is Faraday’s constant (96,485 C/mol); I0 is
exchange current.

Concentration overpotential which is used to characterize the
concentration loss is caused by themass transfer resistance of battery
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reactants and products as they pass through the porous electrode.
The RC model, or the particle diffusion model based on idealized
particle diffusion behavior, can be used to model the concentration
overpotential in the lumped semi-empirical model. Following are
descriptions of the two modeling methods.

(1) Concentration overpotential representation method based on
the RC model

The RC model is modeled by the parallel-coupled resistance-
capacitance (RC). The change in the concentration overpotential
of a lithium-ion battery is described using the partial
differential Equation 5.

τc
dηconc
dt
+ ηconc = RcIbatt (5)

Applicable Where Rc is the resistance in RC parallel circuit; τc is
the diffusion time constant of RC lumped model, τc = RcC.

(2) Concentration overpotential representation method based on
the particle diffusion model

The particle diffusionmodel is used to simulate themovement of
lithium ions in a single electrode, relying on the idealized diffusion
behavior of particles. This model can be considered a lumped
model derived from a single particle approach defined by partial
differential Equation 6. Using particle diffusion, the Fick diffusion of
the dimensionless SOC variable under a unit concentration gradient
is calculated by applying the spherical gradient operator along the X-
axis (where the X-axis represents the particle radius direction and
the origin is the particle center) with a length of 1 in unit time.

τ∂SOC
∂t
+∇(−∇SOC) = 0 (6)

Where τ is the diffusion time constant of the particle diffusionmodel
and the inverse of the diffusion coefficient (about the function of
battery concentration and temperature). When X = 0, the ∇SOC of
the particle center is 0, X = 1 represents the particle surface, the
∇SOC can be obtained by the current, capacity and τ calculation of
lithium battery, as shown in Equation 7:

−∇SOC =
τIbatt
Qbattd

(7)

Where d is the dimension number of the particle, being either
1 for Cartesian, 2 for cylindrical or 3 for spherical coordinates,
respectively. This paper selects spherical coordinates, d = 3.

The surface charge state SOCsurface is defined at the particle
surface (X = 1). The average charge state SOCaverage is defined by
integrating over the particle volume, as shown in Equation 8:

SOCaverage = d
1

∫
0

SOCXd−1dX = 3
1

∫
0

SOCX2dX (8)

The total set voltage loss associated with the concentration
overpotential is defined by Equation 9:

ηconc = EOCV(SOCsur face) −EOCV(SOCaverage) (9)

FIGURE 1
The process of lumped semi-empirical modeling.

2.2 Construction process of model

According to the above modeling procedures, the lumped semi-
empirical model can be divided into the lumped semi-empirical
model based on RC form (hereinafter referred to as the RC lumped
model) and the lumped semi-empirical model based on particle
diffusion (hereinafter referred to as the KL lumped model). Among
them, the model parameters of the RC lumped model include Rohm,
I0, τc, Rc, and the model parameters of the KL lumped model
include Rohm, I0, τ. The identification of the above parameters and
the acquisition of the lithium-ion battery model are the basis for
the subsequent SOC estimation of lithium-ion batteries. To this
end, the process of the lumped semi-empirical modeling is given
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as shown in Figure 1. Firstly, the HPPC test is performed to identify
the characteristic parameters of the battery, such as the OCV-SOC
curve. Secondly, the initial SOC (SOC0) of lithium-ion battery is
set to carry out the cycle discharge experiment under working
condition, and the state parameters such as Qbatt , Ebatt , Ibatt and
discharge time t are obtained. These data are used as model input,
and the least square method is used to perform model parameter
identification. Finally, the internal loss parameters of lithium-ion
batteries are calculated using two lumped semi-empirical models.

It can be found from the above process that the battery model is
affected by input variables such asQbatt , Ibatt , t, SOC0 andOCV-SOC
curve, which are related to aging state and DOD. HPPC testing of
various aging states and cycle tests of various depths of discharge are
detailed in this paper.The parameter identification and performance
analysis of the lumped semi-empirical model of lithium-ion battery
are carried out. The DOD is the ratio of a lithium-ion battery’s
discharge amount to its nominal capacity. The greater the value,
the higher the discharge degree is. The DOD is closely related to
the battery voltage and current, and it affects the battery life and
performance. To study the prediction accuracy of the model for the
subsequent performance of the battery under different DOD, the
initial SOC (SOC0) is used to characterize the battery state under
different depths of discharge, and SOC0 = 1-DOD. The aging state
is measured by the SOH parameter of the lithium-ion battery. The
lower the value is, the more serious the battery aging state is, and it
is mainly reflected by a drop in the usable capacity of the lithium-
ion battery and an increase in the internal resistance. In this paper,
the SOH is defined by the capacity decline of the lithium-ion battery,
which can be expressed by Equation 10:

SOH =
Cn

Co
× 100% (10)

Where C0 is the nominal capacity of lithium-ion battery in the
initial state, andCn is themaximumavailable capacity of lithium-ion
battery after n cycles.

3 LIB experiment and parameter
identification

3.1 Cycle experiment of LIB

A 18,650 ternary lithium-ion battery was selected for the
battery experiment, and its basic performance parameters
are shown in Table 1.

In this study, all experiments were performed on a computer
with a 12th Gen Intel(R) Core(TM) i5-12500 3.00 GHz and a 64-
bit OS.

According to the two-stage charging and discharging cycle. The
constant current and constant voltage (CC-CV) charging method
was used in the charging stage. The NEDC driving condition was
used in the discharge stage, as shown in Figure 2, which is composed
of four urban cycles and one suburban cycle (Karavalakis et al., 2009;
Liu et al., 2022). The charge and discharge test data were captured
every second using the BTS client. The charge and discharge
experiment steps are given in Table 2. For experiments, two groups
of lithium-ion batteries with SOH of 100% and 95% were selected.
Under normal temperature conditions, different initial SOC(SOC0)

TABLE 1 Basic parameters of ternary lithium-ion battery.

Battery parameter Specification

Nominal capacity (Ah) 2.4

Nominal voltage (V) 3.6

Ending voltage (V) 2.75/4.2

FIGURE 2
Driving conditions of NEDC.

values were obtained by applying different DOD.Then the discharge
experiments under NEDC conditions were carried out respectively.
The load current (Ibatt), load voltage (Ebatt) and discharge time t of
lithium-ion battery were collected and recorded as input data of the
lumped semi-empirical model.

3.2 HPPC test

To obtain the relationship curve between OCV and SOC
required for model training, the HPPC test scheme was developed
according to the Freedom CAR test manual (Doughty and Crafts,
2006). In the range of 0%–100% SOC, the test battery was charged
and discharged once every 10% SOC.The pulse current and voltage
curve are shown in Figure 3.The specific experiment procedure was
set as follows:

(1) The batteries were charged with a constant current at a
constant voltage;

(2) The batteries were rested for 1 h to maintain the stability of the
active material in the battery;

(3) The batteries were applied 1C discharge pulse current for 10 s,
and rested for 40 s;

(4) The batteries were applied 0.75C charging pulse current for
10 s, and the batteries rested for 40 s;
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TABLE 2 Charging and discharging experiment scheme of lithium-ion battery.

Experimental stage Step settings

Constant current and voltage charging
CC: 1C--4.2 V (End voltage)

CV: 4.2V--0.1C (End current)

Discharge at NEDC Calculation of discharge rate of lithium-ion battery at NEDC speed to 2.75 V

FIGURE 3
Pulse current and voltage profile of lithium-ion battery HPPC test.

(5) The batteries were discharged with CC (1C and 2.4A) until the
SOC was decreased by 10% (this process takes about 6 min),
and rested for 1 h;

(6) Steps (3)–(5) were repeated until SOC was reduced to 0%.

3.3 Model parameter identification

The input data required for battery model training was collected
in real-time through the above NEDC cycle experiment and HPPC
test, and then the model parameters were identified using the least
squaremethod to construct the lumped semi-empirical model of the
ternary lithium-ion battery. Whether applied to linear or nonlinear
systems, the least square method can improve statistical qualities
without requiring additional mathematical statistics knowledge
(Zhang et al., 2018). L-M algorithm also known as Damped Least
Squares (DLS) (Fang et al., 2024) was widely used as a classical
method for solving nonlinear equations and least-squares problems
(Budil et al., 1996; Fan, 2013; Chen, 2016; Fan, 2012). In this paper, it
is used for model training to estimate the battery model parameters
in RC form and particle diffusion form. Figure 4 shows the flowchart
of the DLS algorithm.

Based on the experimental data of the NEDC cycle experiment,
the L-M algorithm was used to identify the model parameters,
which the relevant parameters of the RC lumped model and KL
lumped model can be dynamically calculated. Based on the optimal

FIGURE 4
The flowchart of the DLS algorithm.

identification results of the parameters of the two types of lumped
semi-empirical models, the training model was used to predict the
load voltage. The prediction accuracy and robustness of the two
types of lumped semi-empirical models were evaluated by analyzing
the error between the predicted load voltage and the actual load
voltage. Furthermore, the feasibility of the lumped semi-empirical
model was verified, which provides a good theoretical basis for the
subsequent online estimation of OCV and SOC.

4 Model predictive capability analysis

According to the parameter identification results of the above
battery model, the parameter identification results were verified by
the experimental data obtained from theNEDC test under two states
of health and different depths of discharge, and the feasibility of
the analysis model was verified. The performance of the model was
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FIGURE 5
Predictive voltage and test voltage of RC and KL model when DOD = 0%. (a) Voltage curve comparison at SOH = 1; (b) Voltage curve comparison
at SOH = 95%.

FIGURE 6
Predictive voltage and test voltage of RC and KL model when DOD = 30%. (a) Voltage curve comparison at SOH = 1; (b) Voltage curve comparison
at SOH = 95%.

evaluated by the root mean square error (RMSE) andmean absolute
percentage error (MAPE) between the actual load voltage and the
predicted value of the model. The calculation formulas of the RMSE
and MAPE of this model are given in Equations 11, 12:

RMSE = √  1
N

n

∑
i=1
(Ûi −Ui)

2 (11)

MAPE = 100%
n

n

∑
i=1
|
Ûi −Ui

Ui
| (12)

Where Ûi is the predicted voltage value of the i test point, Ui is the
test voltage value of the i test point.

Based on the NEDC cycle load data with different SOH and
DOD, the characteristics of the model were analyzed. The test data

and the final parameter identification results of themodel were input
into the RC model and the KL model, respectively. The comparison
curves of the actual load voltage and the predicted voltage obtained
are shown in Figures 5–9. As shown in Figures 5–7, it can be revealed
that the overall trend of the predicted voltage of the two models
is consistent with the experimental voltage, and the numerical
agreement is favorable, under the same SOH and DOD in the range
of 0%–50%.Themaximumabsolute error is around 25 mV,while the
maximum prediction deviation is only 0.6%.The results suggest that
the prediction accuracy of the two kinds of lumped semi-empirical
models is higher.

The comparison between the predicted voltage and the test
voltage of the two lumped semi-empirical models when the
DOD = 60% is shown in Figure 8. As shown in the figure,
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FIGURE 7
Predictive voltage and test voltage of RC and KL model when DOD = 50%. (a) Voltage curve comparison at SOH = 1; (b) Voltage curve comparison
at SOH = 95%.

FIGURE 8
Predictive voltage and test voltage of RC and KL model when DOD = 60%. (a) Voltage curve comparison at SOH = 1; (b) Voltage curve comparison
at SOH = 95%.

the overall trend of the two models is satisfactory and the
numerical consistency is fair. However, there is a large error in
the prediction voltage at the end of the cycle in the suburbs of
NEDC. The SOH = 1 model predicted a significant fluctuation
in the voltage curve, with a maximum prediction error of
492 mV.

The comparison between the predicted voltage and the test
voltage of two lumped semi-empirical models when DOD = 70%
is shown in Figure 9. The graph reveals that the overall trend of
the prediction of the two models is unsatisfactory when DOD
= 70% and the initial SOC is low. The model predicts a violent
overall fluctuation of the voltage curve when the SOH = 1.
The predicted voltage is feebly consistent with the test voltage

under NEDC conditions, and the maximum prediction error is
around 576 mV.

To analyze the performance of the two lumped semi-empirical
models more intuitively, the RMSE and MAPE values of the two
models under different aging conditions and different depths of
discharge are presented in Table 3.

According to the RMSE and MAPE values in Table 3, it can
be seen that:

(1) The RMSE values of the two models are less than 0.13 V
when the lithium-ion battery varied at different depths of
discharge, and the MAPE values are all less than 3%. The
prediction accuracy results are excellent, with high voltage
prediction accuracy.

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1626630
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Li 10.3389/fenrg.2025.1626630

FIGURE 9
Predictive voltage and test voltage of RC and KL model when DOD = 70%. (a) Voltage curve comparison at SOH = 1; (b) Voltage curve comparison
at SOH = 95%.

(2) The KL lumped model performs well with high prediction
accuracy when the DOD of a lithium-ion battery in the same
SOH fluctuated between 0% and 50%. The least difference
in RMSE value is 24 mV, and the minimum difference in
MAPE value is roughly 0.03% when compared to the RC
lumped model. When the DOD varied from 60% to 70%,
the performance of the RC lumped model is better and the
prediction accuracy is higher. Compared with KL lumped
model, the minimum difference of RMSE is 41 mV and the
minimum difference of MAPE is 0.06%.

(3) Nevertheless, in Figures 4–8, as the DOD of the model
increased, there is a significant difference between the
predicted voltage of the model and the actual load voltage,
and the prediction error value of the model also gradually
increases. In addition, the error value is greater in the
stage of dramatic change of load current and the end of
discharge in NEDC working conditions. Due to the instability
of chemical substances in the lithium-ion battery at this
time, the identification parameters are unable to meet the
low SOC variation range, resulting in a large inaccuracy in
model prediction. Deep discharge of lithium-ion batteries will
not be performed in order to avoid excessive discharge in
practical applications. As a result, the lumped semi-empirical
model offers a higher predictive ability for NEDC operating
conditions based on achieving the SOC required for actual
battery work.

5 SOC estimation of LIB based on the
lumped semi-empirical model

Lithium-ion battery SOC is a critical evaluation index and one
of the core components of BMS. Accurate SOC estimation can not
only improve the efficiency of lithium-ion battery utilization, but
also improve the performance of new energy vehicles. The state
of charge of a lithium-ion battery can be defined from a variety

of perspectives, including power and energy. More uniform is the
SOC defined by the United States Advanced Battery Consortium
(USABC) in the ‘Electric Vehicle Battery Experiment Manual’ from
the point of view of power (Plett, 2019; Laboratory, 1996), that
is, the ratio of the remaining power consumption of the battery
at a certain discharge rate to the rated power under the same
conditions. The corresponding calculation formula is given in
Equation 13:

SOC =
Qr

Q0
× 100% (13)

Where Qr is the remaining available electricity of the battery after
a certain discharge rate discharge, Q0 is the nominal capacity of
the battery given by the battery manufacturer, namely, the rated
capacity of the battery. This SOC concept, however, cannot be
applied properly to lithium-ion batteries for long-termuse (Liu et al.,
2019). The available capacity of the battery steadily diminishes as
the battery charge-discharge cycle increases under actual operating
conditions. Reference (Wang et al., 2013) proposed a more accurate
SOC definition, which can be expressed by Equation 14:

SOC =
Qr

QT
× 100% (14)

Where QT is the constant current discharge lithium-ion battery
discharge real-time capacity.

However, current experimental equipment and data acquisition
devices cannot generate an accurate SOC value, and certain
methods can only be used to estimate the data value. The lumped
semi-empirical model provides a better overall prediction effect,
according to the analysis above. Therefore, SOC can be predicted
based on load voltage and current data and identified model
parameters. The procedure is shown in Figure 10.

As shown in the SOCestimationmethod procedure in Figure 10,
the parameter identification is affected by the load training
data set and the OCV-SOC curve. The load training data
set and the OCV-SOC curve are connected to the battery’s
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TABLE 3 Model prediction error values under different DOD.

DOD The lumped model SOH = 1 SOH = 95%

RMSE (V) MAPE (%) RMSE (V) MAPE (%)

DOD = 0
RC 0.0154 0.31 0.0179 0.35

KL 0.0130 0.27 0.0137 0.27

DOD = 10%
RC 0.0154 0.31 0.0194 0.38

KL 0.0126 0.26 0.0116 0.22

DOD = 20%
RC 0.0169 0.32 0.0227 0.47

KL 0.0144 0.28 0.0151 0.30

DOD = 30%
RC 0.0192 0.34 0.0244 0.49

KL 0.0139 0.31 0.0143 0.32

DOD = 40%
RC 0.0183 0.37 0.0248 0.52

KL 0.0133 0.32 0.0198 0.42

DOD = 50%
RC 0.0200 0.47 0.0244 0.57

KL 0.0161 0.38 0.0218 0.53

DOD = 60%
RC 0.0806 1.02 0.0555 1.11

KL 0.0847 1.15 0.0584 1.17

DOD = 70%
RC 0.0910 1.44 0.1243 2.08

KL 0.0946 1.69 0.1292 2.26

FIGURE 10
SOC estimation flow chart of lumped semi-empirical model.

aging state. Hence, this paper conducts experiments on the
batteries in three states: unaging, mild aging, and serious
aging, further explores the influence of battery aging factors
on SOC estimation, and studies the high-precision SOC
estimation method.

End of life (EOL) given that the battery capacity decays to 80%or
70% of its original capacity (Tang et al., 2019).The battery with SOH
= 74% is selected to reflect the serious aging state, and the batteries
with SOH= 100% and SOH= 95% are selected to reflect the unaging
and mild aging state of the battery. HPPC test and NEDC discharge
experiment were carried out for lithium-ion batteries in the above
three states (each discharge experiment included twoNEDC cycles).
Based on the HPPC test, the OCV-SOC curve of different states of
health is shown in Figure 11. The graph reveals that the relationship
curves of the three states of health are relatively close under the

medium and high SOC (about 0.4–1), and the deviation of the three
relationship curves is greater under the low SOC (about 0–0.4). The
lower the SOH is, the smaller the OCV value is under the same
SOC.Apart from that, to facilitate the description of theNEDC cycle
test of different healthy batteries, the NEDC cycle test at SOH =
100% is recorded as condition 1, the NEDC cycle test at SOH = 95%
is recorded as condition 2, the NEDC cycle test at SOH = 74% is
recorded as condition 3, and SOC prediction is carried out for the
batteries in three states.

In the procedure of lithium-ion battery SOC prediction, it is
necessary to identify the parameters of the lumped semi-empirical
model. At present, the commonly used lithium-ion battery model
parameter identificationmethods are mainly divided into two types:
offline identification and online identification. Offline parameter
identification mainly uses the experimental data collected after
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FIGURE 11
OCV-SOC curves of different states of health.

TABLE 4 SOC estimation scheme of lumped semi-empirical model.

Scheme State-of-health OCV-SOC Training conditions Predicting conditions

Scheme 1 Unaging SOH = 100% ① ①

Scheme 2 Mild aging SOH = 95% ② ②

Scheme 3

Serious aging

SOH = 100% ① ③

Scheme 4 SOH = 100% ③ ③

Scheme 5 SOH = 74% ③ ③

the battery cycle test and obtains the relevant parameters of the
battery model through the optimization algorithms such as the
genetic algorithm (Zhu et al., 2019) and particle swarm optimization
algorithm (Chen and Li, 2021). In the SOC prediction, it is not
necessary to adaptively adjust the parameters according to the real-
time data, and the prediction efficiency is serviceable. By collecting
voltage, current, and other data during the working cycle, the online
parameter identification updates the parameters in the model in
real-time, resulting in state variables that are close to the real state
of the battery at any given time. The SOC value of the lithium-ion
battery can be effectively predicted by using online identification to
update the parameters (Tong et al., 2015; Tang et al., 2022).

Consequently, this paper investigates the SOC prediction
method using both offline and online identifying methods.The load
data set of the initial state of the lithium-ion battery and the OCV-
SOC curve are selected for training the model based on the offline
identification method to predict the SOC value of the aging battery
in real-time during the offline identification process. To study SOC
prediction methods of different aging states in detail, this paper

proposes two different model training schemes. The first training
scheme selects the real-time load data of the lithium-ion battery and
the real-time OCV-SOC curve data to identify the parameters of the
lumped semi-empirical model online and predict the SOC value of
the real state of the battery. Considering the impracticality of the
HPPC test in the actual use process, theOCV-SOC curve is generally
not adjusted after the battery was set out from the factory, the second
training scheme selects theOCV-SOC curve of the unaged state, and
uses the load data of the original working condition and the real-
time working condition to train, respectively. The offline and online
models of the battery are constructed to predict the SOC value of the
lithium-ion battery in the actual state. The specific research scheme
is shown in Table 4.

Multiple sampling points are chosen to analyze the SOC
estimate performance in the time dimension to evaluate the model
prediction ability of the entire NEDC cycle process. The first
sampling point is the end time of the four urban cycles of the
first NEDC cycle (marked as a), and the second sampling point is
the end time of the first NEDC cycle (marked as b); To further

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1626630
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Li 10.3389/fenrg.2025.1626630

FIGURE 12
Real SOC curves of different SOH lithium-ion batteries.

FIGURE 13
Relative error of SOC estimation at each sampling point.

analyze the SOC estimation accuracy of a low state of charge,
for the second NEDC cycle, four urban cycle ending times are
selected as the sampling points (marked as c, d, e, f), and the
second NEDC cycle ending time is denoted as the sampling
point g.

Based on the accurate definition of SOC in the actual working
condition, combined with the discharge experimental data of the
NEDC working condition, the experimental SOC value (SOCE)
of the lithium-ion battery is calculated as the real SOC result.
Compared with the predicted SOC value (SOCP) by the lumped
semi-empirical model, the relative error (RE) of the two is calculated
by Equation 15, as shown in Figure 13.

RE = |
SOCE − SOCP

SOCE
| (15)

From Figures 12, 13:

(1) During the experiment, from full to low state of charge, the
SOC of the three types of batteries decline. The more serious
the battery’s aging state is, the more visible the decreasing
trend is. With the decrease of SOC and the DOD of the
battery increases, the relative error of SOCprediction increases
gradually. The worse the SOH of the battery is, the greater the
overall prediction error is.

(2) At sampling points a, b, c and d, the SOC prediction results of
the five schemes are in terrific agreementwith the experimental
results, and the prediction error is comparatively small. Among
them, for 100% and 95% of SOH batteries, the relative error
values of the four sampling points are kept within 5%; for
74% of SOH batteries, the relative error values of the four
sampling points are kept within 7%. In the middle and high
charge intervals during this sampling stage of the battery,
the SOC declined from 100% to nearly 50%, showing that
the prediction approach based on the lumped semi-empirical
model has better SOC prediction accuracy.

(3) At the sampling points e, f, and g, the SOC prediction results of
the five schemes are in weak agreement with the experimental
results, and the prediction error is larger. For 100% and 95%
healthy batteries, the relative error of SOC prediction at times
e and f is within 9%, and the relative error at g has reached
13.96%. For 74% healthy battery, the SOC prediction error at
times e and f is within 12%, and the relative error at g has
reached 15.38%. In this sampling stage, the SOC of 100% and
95% healthy state batteries have decreased from 50% to 35%,
and the SOC of 74% healthy state batteries has decreased from
42% to 12%. The battery has a high DOD and a low charge
state and the lumped semi-empirical model’s SOC prediction
error is higher.

According to the battery reaction mechanism, the chemical
instability of the battery increases, and the internal loss of the battery
increases primarily when the battery DODwas high. As shown from
Figures 4–8 the calculation results of the lumped semi-empirical
model fluctuate greatly and the prediction error is relatively large
in the low-charge interval, indicating that the model identification
parameters had restricted accuracy for the characterization of the
low SOC of the battery, which led to a significant increase in the
prediction error of the battery SOC under the low state of charge.
Therefore, the unified model parameter identification results are
used to define the battery lumped semi-empirical model. Although
it can better reflect the overall performance of the battery, the SOC
prediction accuracy at different times is constrained due to the
limited local representation ability.

This paper utilizes the idea of segmented training and offers
a SOC prediction method based on segmented identification to
increase local SOC prediction accuracy, particularly low state of
charge prediction accuracy. Namely, the data set of the battery is
partitioned according to the SOC. In different charge intervals, the
corresponding load data are used for training to obtain the battery
model parameters suitable for the current charge interval, then the
SOC of the corresponding charge interval is predicted. Considering
that point c is approximately corresponding to the 60% SOC, the
SOC prediction error before the point is little and the prediction
error after the point is large, the sampling point c is selected as the
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TABLE 5 The calculation results of the SOC prediction method.

Scheme Segmented identification Relative error (%)

a b c d e f g

Scheme 1
No 1.11 3.16 4.12 4.89 5.72 6.71 13.72

Yes — — 0.71 1.35 1.73 2.47 6.82

Scheme 2
No 1.21 3.22 4.76 5.26 7.41 8.56 13.96

Yes — — 0.58 1.28 2.01 2.87 7.14

Scheme 3
No 1.76 5.23 6.13 6.60 9.84 12.01 15.29

Yes — — 3.05 5.09 7.31 9.04 13.25

Scheme 4
No 1.55 3.61 5.76 6.01 9.09 11.45 13.21

Yes — — 2.26 3.90 5.36 7.02 12.96

Scheme 5
No 1.23 3.23 5.57 5.48 8.85 10.66 15.38

Yes — — 0.61 1.81 2.75 2.82 16.25

FIGURE 14
Segmented training model predictive voltage.

segmentation point of the model SOC prediction. Therefore, the
data after point c are trained and predicted. The calculation results
before and after the improvement of the SOC prediction method
are shown in Table 5.

It can be found from the relative error value in Table 5 that:

(1) After segmented training and prediction, the SOC prediction
error values of each scheme are significantly reduced. After
segmented training, the SOC estimation accuracy for 100%
and 95% of SOH batteries is significantly improved. With
improved prediction accuracy, the smallest estimation error is
less than 1%, and the maximum estimation error is less than

8%. For 74% of the SOH battery, the SOC prediction accuracy
has also been significantly improved after segmented training,
especially in Scheme 5. It demonstrates that segmented
training can improve the accuracy and robustness of SOC
prediction while also being well-adapted to the online
identification model.

(2) Although the prediction method based on segmented
identification effectively improves the SOC prediction
accuracy, the prediction error at the sampling point g is still
large, especially for 74% of the SOH battery. The relative
prediction error is more than 10%. At this time, the actual
SOC of the battery is about 12%, which is in the deep state of
discharge. The electrochemical reaction fluctuates extremely,
causing the model prediction performance to be unstable, and
the aging state of the battery further aggravates the problem.
As shown in Figure 14, there is a significant difference between
the predicted voltage of the model and the actual voltage near
the g point, indicating that the characterization accuracy of the
lumped semi-empirical model is inadequate at that moment,
which leads to a higher SOC prediction error.

(3) It should be noted that to improve the battery life, according
to the calculations and operation experience, the battery
works in the middle and low DOD range for a long time in
practical work. Corresponding to this experiment, the best
working range of the battery is before the d sampling point.
In this interval, the prediction error of each method is greatly
improved by segment identification. For 100%and 95%of SOH
batteries, the maximum prediction error is only 1.35%. For
74% of the SOH battery, method 3 has the largest prediction
error, which is controlled within 5.09%; method 5 has the
smallest prediction error, which is controlled within 1.81%.
It demonstrates that the lumped semi-empirical model based
on segmented identification is suitable for unaged, mildly
aged, and severely aged batteries, and that it has excellent
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TABLE 6 Comparison of errors and performance of different SOC estimation methods.

Method RMSE (%) MAPE (%) Execution time (s) Memory usage (KB)

RC-SOC 2.10 1.99 0.155 57

KL-SOC 2.70 2.22 0.159 66

ECM-SOC 4.04 3.34 0.149 53

RC-EKF 1.06 1.09 0.331 695

accuracy and robustness in SOC prediction, meeting the
engineering needs.

(4) For 74% of SOH battery, SOC estimation accuracy of schemes
3, 4, and 5 increases in turn. It shows that compared with
offline identification, the SOC prediction method based on
online identification had better accuracy, fewer identification
parameters of lumped semi-empirical model, and higher
efficiency of online identification. Based on the real-time
OCV-SOC curve and load data for online identification,
the obtained lumped semi-empirical model reflects the real-
time state of the battery more accurately, which is conducive
to the improvement of SOC prediction accuracy. However,
considering that the real-time OCV-SOC curve of the battery
is difficult to obtain in the actual working process, although
scheme 5 has the highest accuracy, it is not conducive to
engineering application. In contrast, although the prediction
accuracy of scheme 4 is slightly lower than that of scheme 5,
it is not necessary to obtain the OCV-SOC curve in real-time.
Online identification based on real-time load data can receive
more accurate SOC prediction results, which is more suitable
for engineering applications.

To comprehensively evaluate the performance of the SOC
estimation method proposed in this paper, four different SOC
estimationmethods were used for verification. Unaged batteries and
real-time OCV-SOC curve data were selected for online parameter
identification of the lumped semi-empirical model. To simplify the
description of the various SOC estimation methods, the method
based on the RC lumped model and the OCV-SOC curve is
designated as RC-SOC. Similarly, the methods based on the KL
lumped model and the first-order ECM for SOC estimation are
designated as KL-SOC and ECM-SOC, respectively. The method
based on the RC lumped model and EKF is designated as RC-
EKF. True SOC values were calculated using the ampere-hour
integration method. Table 6 provides a comparison of the error and
performance of different SOC estimation methods.

According to Table 6:

(1) The RC-SOC and KL-SOC methods proposed in this paper,
compared to the ECM-SOC method, in estimation accuracy:
RMSE is reduced by 48.02% and 33.17%, andMAPE is reduced
by 40.42% and 33.53%, respectively. In terms of computational
burden: execution time increases by 0.06 s and 0.01 s, while
memory usage increases by 4 KB and 13KB, respectively.
This may be because the ECM-SOC method uses a first-
order ECM model, which only considers ohmic polarization

and concentration polarization during model construction,
without accounting for activation polarization.

(2) The RC-EKF-based method demonstrates the highest
accuracy, with the RMSE value improving by 49.52% at least
compared to the other three methods. However, the accuracy
improvement is due to the introduction of the Kalman
filtering algorithm, which reduces errors through iterative
optimization. Due to the integration of Kalman filtering,
execution time and memory usage increase significantly,
resulting in the highest computational burden. In contrast, the
method proposed in this paper maintains practical accuracy
while avoiding the additional consumption associated with
filtering algorithms.

6 Conclusion

In this paper, the lumped semi-empirical model is used to study
the SOC predictionmethod for lithium-ion batteries under complex
conditions. Considering the three influencing factors of SOH, DOD,
and working load, the NEDC experiment of ternary lithium-ion
batteries under different states of health and depths of discharge
is carried out, and the universality and robustness of the lumped
semi-empirical model are analyzed. On this basis, a SOC prediction
method based on a lumped semi-empirical model is proposed, and
the proposed method’s accuracy and applicability are demonstrated
using unaging, mild aging, and serious aging batteries as application
objects. At the same time, aiming at the problem of large SOC
prediction error in a low state of charge, the proposed method is
improved by using the segmented identification method. The main
conclusions are as follows:

(1) The two lumped semi-empirical models are applicable to the
NEDC cycle of ternary lithium-ion batteries under different
states of health and depths of discharge. Not only are themodel
parameters smaller, but the online identification efficiency
is also higher, making it more suitable for engineering
applications. Relatively speaking, for lithium-ion batteries with
different states of health, the model based on particle diffusion
has better prediction ability and fewer required parameters at
lower DOD. When the DOD was above 60%, the model based
on RC form has better prediction ability.

(2) The SOC prediction method based on the lumped semi-
empirical model has better SOC estimation accuracy in
the medium and high state of charge of the battery.
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Among them, the online identification based on real-
time OCV-SOC curve and load data has the highest SOC
prediction accuracy. Based on the initial OCV-SOC curve
and real-time load data, more accurate SOC prediction
results can also be obtained. Considering that the OCV-
SOC curve is not easy to obtain in the actual working
process, the second method has stronger engineering
applicability.

(3) The improved SOC prediction method based on segmented
identification can significantly improve the SOC prediction
accuracy of each sampling point. This approach provides
higher calculation accuracy for unaged and mildly aged
batteries at high, medium, and low charge states. For seriously
aged batteries, the prediction accuracy of this method is
better under high and medium states of charge, but it still
has to be improved under a low state of charge. Since the
operation range of the battery is usually in the middle and
low DOD, the proposed method still has high engineering
applicability.

(4) Verification was performed using various SOC estimation
methods. The results indicate that the proposed method not
only requires less computational power compared to filtering
methods but also achieves higher accuracy than traditional
lightweight methods, thereby striking an optimal balance
between “accuracy and efficiency.”

This paper focuses on various influencing factors in the
actual working conditions, analyzes the characteristics of the
lumped semi-empirical model, and studies the SOC prediction
method on this basis, which provides a feasible path for the
state estimation of lithium-ion batteries under complex working
conditions. However, the segmentation identification research
is insufficient. Artificial segmentation is currently primarily
based on experience. Adaptive segmentation identification and
prediction based on machine learning will be tested in the
future. Simultaneously, the accuracy of battery SOC prediction
under a low state of charge will be continually investigated.
Furthermore, future research will focus on investigating the effects
of extreme temperatures and calendar-cycle coupled aging, as well
as assessing the practical applicability of the proposed method in
actual BMS.
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