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A collaborative analysis based on
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method for energy consumption
reduction and governance
Investment

Yige Sun* and Hanlin Wang

School of Economics, Shandong University of Technology, Zibo, China

This paper delves into how to collaboratively reduce emissions of sulfur dioxide,
nitrogen oxides, and carbon dioxide through rational energy consumption
and governance investment strategies with limited funds. The main research
contents include: employing the Granger causality test to analyze the causal
relationship between air quality and pollutant emissions; using functional
analysis to determine the quantitative relationship between energy consumption
and the emissions of various pollutants; applying multi-objective programming
method to establish an integrated model for collaborative emission reduction
optimization that considers both energy consumption and governance
investment, and analyzing the optimality conditions of the model; and
conducting an empirical analysis of the model using Tianjin's social development
data from 2005 to 2021. The optimal carbon dioxide emissions calculated by
the model are significantly lower than the actual emissions, with an average
optimization efficiency of 38.43%. Through reasonable energy allocation and
governance investment strategies, it is possible to effectively reduce pollutant
emissions while ensuring production demands. The research results of this paper
provide a theoretical basis and practical guidance for formulating rational energy
use and governance investment strategies.

energy consumption, governance investment, collaborative emission reduction, multi-
objective programming method, optimization model

1 Introduction

In most cities, the air quality primarily depends on the levels of air pollutant
concentrations. As an industrial country, the development of Chinese cities
largely relies on energy-intensive secondary industries. This development pattern,
while driving rapid economic growth, has also led to the massive amount of
pollutant emission into the air. In particular, exhaust gases emitted from fossil fuel
combustion, which cannot disperse efficiently in urban areas, pose a significant
threat to air quality. To evaluate air environmental quality, China has successively
implemented the Air Pollution Index (API) and the Air Quality Index (AQI).
According to the calculation criteria of these two indices, sulfur dioxide (SO,)
and nitrogen oxides (NO,) are recognized as key determinants of air quality.
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Since the signing of the Kyoto Protocol, China has prioritized
the reduction of green-house gases such as carbon dioxide (CO,)
in government work. In recent years, fine particulate matter
(PM2.5) has increasingly garnered attention, with its harmful
substances mainly originating from human activities such as
energy combustion, power generation, metallurgy, petroleum, and
chemical engineering. According to recent research by the Chinese
Academy of Sciences (Huang et al., 2014), when considering coal
burning, industrial pollution, and secondary inorganic aerosols
together, emissions from fossil fuel combustion have become the
primary source of PM2.5 pollution in Beijing. Furthermore, PM2.5
can also be converted from sulfur and nitrogen oxides, which are
largely produced when humans burn fossil fuels (such as coal and
oil) and waste.

It is evident that these severe environmental issues primarily
stem from the combustion of fossil fuels to meet the demands of
human social development and ensure people’s living. Although
people have fully recognized the severity of the problem and
have actively explored and practiced various approaches, including
improving combustion technology, developing new energy sources,
adjusting lifestyles, and restructuring industries, it cannot be denied
that fossil fuels remain the primary energy support for Chinas
current social development. However, fossil fuels are diverse in types
and vary in usage ways. Under different usage conditions, different
types of energy produce varying amounts of pollutants, but there are
also certain correlations among them.

Since sulfur dioxide (SO,) in the atmosphere mainly originates
from the combustion of sulfur-containing fuels such as coal and
oil, with more than 90% of SO, emissions in China contributed by
coal-fired activities (Sun, 2003). Since the 1980s, China has focused
on con-trolling SO, emissions through various technical measures,
including optimizing the coal structure, increasing the use of cleaned
coal, adopting clean combustion technologies, and encouraging
key emitting sectors to install flue gas desulfurization facilities. At
the economic management level, measures such as shutting down
small thermal power units, formulating strict emission standards for
coal-fired power plants, and implementing total emission control
have been adopted. Nitrogen oxides (NO,) play a crucial role
in the formation of photochemical smog and are also a major
factor driving the transition of acid rain types from sulfuric acid
to nitric acid in China. This is partly attributed to the late start
of NO, control efforts in China, leading to a rapid increase in
nitrogen dioxide (NO,) emissions during the “11th Five-year Plan”
period. In the national “12th Five-year Plan”, NO, following SO,
was listed as another important air pollutant subject to total
emission control. Currently, China’s NO, prevention and control
strategies encompass promoting low-NO, combustion technologies,
flue gas denitrification technologies, and implementing production
capacity control, and so on. Furthermore, both SO, and NO,
are considered precursors of PM2.5. Therefore, their collaborative
emission reduction holds far-reaching significance for preventing
haze weather and effectively controlling PM2.5 concentrations.

Carbon dioxide (CO,), recognized globally as a greenhouse gas,
has become a top priority for governments in their efforts to mitigate
climate change since the issue of global warming has become
increasingly prominent. According to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change (IPCC), CO, is
the most critical anthropogenic greenhouse gas, and the continuous
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rise of global CO, concentrations is mainly attributed to the
extensive use of fossil fuels (IPCC, 2007). Statistical data from the
International Energy Agency (IEA) also show that China’s total
carbon emissions surpassed those of the United States in 2007,
becoming the largest contributor to global carbon emissions. In
2016, China accounted for 19.12% of the world’s total carbon
dioxide emissions (Quire et al., 2015). At the 2015 World Climate
Conference, China submitted its nationally determined contribution
report to committing to reduce carbon intensity by 60%-65% below
2005 levels by 2030. This will accelerate Chinas green and low-
carbon transition and provide a foundation for achieving the global
temperature rise control target of 2 °C. Chinas target of cutting
carbon dioxide emissions per unit of GDP by 40%-45% from 2005
levels by 2020 was achieved ahead of schedule in 2019.

All three aforementioned gases originate from the combustion
of fossil fuels. However, given the current technological limitations
that prevent a complete substitution of fossil fuels, they will continue
to be an important part of Chinas energy structure in the near
future. The primary fossil fuels used in China include coal, oil,
and natural gas. Although all three produce these pollutants when
burned, due to differences in combustion mechanisms, there are
significant variations in the emissions of these gases for the same
energy output. For instance, coal, with its higher sulfur content,
produces much more sulfur dioxide (SO,) when burned compared
to oil and natural gas. Oil combustion, on the other hand, generates
significantly more nitrogen oxides (NO,) than the other two fuels.
Natural gas is considered a clean energy source, but its combustion
produces more carbon dioxide (CO,) than coal and oil. Additionally,
different energy usage ways can also influence the proportion of gas
emissions. For example, in the industrial sector, due to relatively
advanced desulfurization and denitrification technologies for waste
gases, the production of sulfur dioxide from coal combustion is
relatively low. However, when oil is used, the higher temperatures
result in higher nitrogen oxides emissions compared to other sectors.

Given these differences in energy types and usage ways, the
topic of collaborative emission reduction studied in this paper
focuses on how to rationally optimize the reasonable arrangement
of different energies across various sectors, ensuring that production
demands are met while minimizing energy consumption as much as
possible. Currently, the issue of collaborative emission reduction has
garnered considerable attention from some scholars. For example,
Bollen etal. (2009) conducted an in-depth analysis of the co-benefits
of collaborative governance for air pollution and global warming
from an economic perspective. Rafaj et al. (2013) compared changes
in emissions of atmospheric pollutants such as sulfur dioxide (SO,)
and nitrogen oxides (NO) before and after the implementation of
global greenhouse gas control agreements. Their research results
indicated that policy measures aimed at controlling greenhouse
gas emissions have a positive impact on reducing emissions of
atmospheric pollutants. Gu et al. (2016) selected three important
industries in China, namely electric power, steel and cement, to
analyze and calculate the SO2 emission reduction effect in the first
2 years of “11th Five-Year Plan” and “12th Five-Year Plan”, as well
as the synergistic effect of CO, emission reduction. Zhang et al.
(2018) established a quantitative model for the effectiveness
of energy conservation and emission reduction policies, and
explored the differences in the impact of energy conservation and
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emission reduction policies on their effects in Beijing-Tianjin-
Hebei. Wang et al. (2019) constructed an intergovernmental
emission reduction evolution model to simulate the evolution
process of strategy selection of independent emission reduction and
cooperative emission reduction by local governments in the region,
and then put forward relevant policy suggestions for improving
the relationship of regional cooperation on emission reduction.
Gao et al. (2021) constructed a synergistic effect evaluation method
for pollutant control and greenhouse gas emission reduction, and
evaluated the synergistic effect of greenhouse gas emission reduction
caused by pollution control effects produced by energy structure
adjustment and industrial structure adjustment in China from
2013 to 2017. Li et al. (2022) developed an evaluation model
for coordinated control of PM2.5 and O3 in the Beijing-Tianjin-
Hebei region, and identified the optimal project for NO, and
VOC:s co-reduction that minimizes abatement costs under different
air quality targets. Zhao et al. (2023) used multi-period double
difference to analyze and evaluate the synergistic effect and influence
mechanism of China’s low-carbon city policies on CO, emission
reduction and PM2.5 pollution control at the urban scale from 2007
to 2019.

However, most of these studies have approached the issue
from an economic or technical perspective, failing to delve into
the rational allocation of energy and its corresponding emission
reduction benefits based on the pollution-generating characteristics
of different energy sources. This paper provides an in-depth
analysis of collaborative emission reduction strategies for sulfur
dioxide (SO,), nitrogen oxides (NO,), and carbon dioxide (CO,)
based on their shared characteristics. Furthermore, as people’s
awareness of environmental protection continues to rise and
government governance efforts intensify, effective waste gas
governance mechanisms have been widely established for major
industrial pollution sources in China. The implementation of
these emission reduction measures often requires government
investment or government-guided private investment. Therefore,
formulating optimal emission reduction strategies under limited
funding has become a critical issue that needs to be addressed
urgently. This paper aims to explore how to balance various
pollutant emissions and energy usage projects for pollution
control investment on the basis of emission reduction, in
in collaborative emission

order to achieve the best results

reduction.

2 Methods and theories

This section elucidates the application of three mathematical
methods. Firstly, the Granger causality test is mentioned, which aims
to explore potential causal relationships between air quality and
pollutant emissions. Secondly, functional analysis techniques are
employed, focusing on revealing quantitative links between energy
consumption and emissions of various pollutants. Lastly, the multi-
objective optimization method is introduced, which is utilized to
construct a comprehensive optimization model that considers both
energy consumption and governance investment, with the goal of
achieving collaborative emission reduction and further facilitating
extended optimization.
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2.1 Granger causality test model

The Granger causality test model, an analytical tool in the
field of econometrics, was established by Granger (1969), a Nobel
laureate in economics. Its kernel principle can be articulated as
follows: when considering the historical data of variables X and
Y comprehensively, if the prediction accuracy of variable Y is
significantly improved compared to predictions based solely on Y’s
own historical data, it indicates that variable X provides additional
explanatory power for the future changes of variable Y. Therefore,
we can conclude that variable X is the Granger cause of variable
Y. The key step of the Granger test involve constructing a specific
model (Equation 1), where u, represents a white noise sequence, p,q
are lag orders, Otl-,ﬁj (i=1,---,p,j=1,---,9) are all coefficients of the
regression model (Granger, 1969).

P q
Yt=cx+Z(xiXt_,-+Zﬁth_j+ut. (1)
=1

i=1

This paper will utilize the econometric software Eviews7 to verify
the causal relationship between pollutant emissions and air quality
by using the Granger causality test method.

2.2 Functional relation among energy
consumption, pollutant gas emissions, and
investment

In this paper, energy refers to fossil fuels, and energy
consumption involves the combustion of fossil fuels, which emits
carbon dioxide (CO,) and various atmospheric pollutants into the
atmosphere, mainly including sulfur dioxide (SO,), nitrogen oxides
(NO,), smoke and dust, carbon monoxide, hydrocarbons, and so on.

2.2.1 Relation of fossil fuel combustion and sulfur
dioxide (SO,)

Both coal and oil contain a certain percentage of sulfur, with
the sulfur content of coal in China generally ranging from 0.5% to
3%, and that of oil approximately between 0.06% and 0.8%. Under
normal combustion condition, the sulfur contained in the fuel is
oxidized into sulfur dioxide (SO,). Referencing the scientific method
for predicting pollutant emissions outlined in the “National 12th
Five-year Plan Resource (Energy) and Environmental Economic
Forecast Research Report of China” (hereinafter referred to as the
“Report”) (Ministry of Environmental Protection of China, 2011),
this study subdivides the whole society into several sectors with
energy consumption, based on which it derives a functional
relationship between energy consumption and sulfur dioxide (SO,)
emission, specifically expressed in Equation 2.

Ego, = Z Z 20‘jﬁj(l - yli)xij)
j

i

(@)

where, x;; represents the amount of the j-th type of energy consumed
by the i-th sector, a; represents the sulfur content corresponding to
the j-th type of energy, ; represents the conversion rate of sulfur in
the j-th type of energy, and y,; represents the removal rate, i.e., the
desulfurization efficiency, when the i-th sector consumes energy.
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2.2.2 Relation of fossil fuel combustion and
nitrogen oxides (NO,)

The generation of sulfur oxide mainly originates from the sulfur
content in fuels, which is relatively straightforward. In contrast, the
production of nitrogen oxides (NO,) involves more complex factors.
According to the “Report’, the primary sources of nitrogen oxides
(NO,) include the oxidation reaction of nitrogen molecules in the
combustion-supporting air under high-temperature conditions and
the partial oxidation process of nitrogen compounds contained in
fuels during burning. The functional relationship between energy
consumption and nitrogen oxides (NO,) emissions is described

ij
nitrogen oxides emission factor corresponding to the consumption

by Equation 3, where x; is defined as above, #; represents the

of the j-th type of energy by the i-th sector, and y,; represents
the removal rate, i.e., the denitrification efficiency, when the i-th
sector consumes energy (Ministry of Environmental Protection of
China, 2011).

Eno, = Z Z (1= ¥2:)%; 3)
i

From a mathematical perspective, Equations2, 3 can be
equivalently expressed in logarithmic form as Equation 4 (Yue,
2003), where E represents the total pollutant emissions, X represents
the total energy consumption, y represents the removal rate of
pollutants, a represents the constant term, and ¢ represents the
random error.

InE=a+InX+In(l-y)+e. (4)

2.2.3 Relation of fossil fuel combustion and
carbon dioxide (CO,)

During the combustion process of fossil fuels, their core
function is to convert the energy stored within them into
thermal energy through the oxidation of carbon elements,
while emitting large amount of carbon dioxide (CO,) in
the process. By referring to the calculation method provided
in the “Report] we can establish a functional relationship
between the carbon dioxide (CO,) emissions generated from
fuel combustion and its related factors, specifically expressed in
Equation 5 (Ministry of Environmental Protection of China, 2011).
In this equation, X is defined as before, ¢; represents the carbon
emission factor for the j-th type of energy source as given by
the Intergovernmental Panel on Climate Change (IPCC), and w;
represents the combustion loss rate for the j-th type of energy source.

Eco, = 220.989(1 — )y, -
J

From the aforementioned formulas for sulfur dioxide (SO,),
nitrogen oxides (NO,), and carbon dioxide (CO,) emissions, we
can observe that although the generation mechanisms of these three
gases differ, their emissions are all predominantly influenced by the
total social energy consumption. More specifically, there exists a
positive and linear correlation between the emissions of these three
pollutants and energy consumption.

2.2.4 Relation of governance investment and gas
emissions

From the emission calculation formulas for various pollutants
listed earlier, we can understand that in addition to carbon
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dioxide (CO,), waste gases generated from energy combustion
also contain harmful substances such as sulfur dioxide (SO,) and
nitrogen oxides (NO,). These waste gases must undergo purification
processes such as desulfurization and denitrification before being
emitted into the atmospheric environment. The costs required to
implement these purification measures are commonly referred to as
governance investments. In Equations 2-4, the efficiency of waste
gas governance, namely the removal rate of each pollutant, plays a
decisive role in pollution emissions. It should increase along with
greater governance investments. Meanwhile, ac-cording to the law
of diminishing marginal returns in economics, as the amount of
investment increases, the rate of improvement in the removal rate
should gradually slow down. Therefore, the functional relationship
between governance investment and removal rate should conform
to Equation 6; (Xu, 1999).

y=1+%+£. (6)

Where, y represents the removal efficiency of the pollutant, Y
represents the funds invested in treating the pollutant, & represents
the coefficient to be determined, and ¢ represents the random
error. Substituting (Equation 6) into (Equation 4), we obtain the
following (Equation 7).

mE=a+InX+In(<)+e (7)
Y

This results in a mathematical model (Equation 8) representing
the relation among the pollutant emissions, energy consumption
and governance investment.

X
- =

E ()
where C is a coefficient to be determined. This equation indicates
that the total emission of pollutants has a positive linear relationship
with energy consumption and a negative reciprocal relationship with
governance investment, which aligns with theoretical expectations.

2.3 Multi-objective optimization model for
collaborative emission reduction

The concept of multi-objective optimization was initially
proposed by economist Pareto in 1927. Its core lies in exploring
how to find a solution within a specific decision-making space
that optimizes multiple objectives that need to be considered
simultaneously. These objectives often exhibit characteristics of the
absence of unified criteria or measurement units and contradictory
(Yue 2003). The difficulty in unified criteria refers to the lack of
a common evaluation scale or unit of measurement among the
objectives, while contradictory implies that in most cases, it is
challenging to find a solution that simultaneously optimizes all
objectives. Koopmans, 1951 introduced the concept of Pareto
efficient solutions for multi-objective optimization problems.
Meanwhile, Kuhn and Tucker (1950) also discussed the sufficient
and necessary conditions for the existence of optimal solutions in
multi-objective optimization. Johnsen (1968) published the first
monograph on multi-objective optimization. Following in-depth
explorations by numerous scholars during the 1970s and 1980s,
the basic theoretical framework of multi-objective optimization
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was established and gradually developed into an independent
disciplinary field.

When solving multi-objective optimization problems, it is
often necessary for decision-makers to provide information on the
preference relationships among the various objectives in order to
evaluate the merits and demerits of different solutions. Hwang
and Masud (1979) classified the solution methods for multi-
objective optimization problems into three categories based on
the manner of expressing preference information: prior evaluation
methods, concurrent evaluation methods, and posterior evaluation
methods. In recent years, concurrent and posterior evaluation
methods have received increasing attention due to their flexibility
and practicality. Multi-objective optimization techniques have been
widely applied to numerous practical problems such as chemical
production process optimization, material manufacturing process
improvement, and logistics network design, demonstrating their
powerful practical value.

From the above analysis of the amount of emissions for the
three types of gases, this article will subsequently delve into the
issue of collaborative emission reduction under different energy
consumption patterns. Dividing the entire society into M different
sectors, and assuming that there are N types of energy sources
available for selection, we define the decision variable x = (xij),i =
1,--,M,j=1,---,N as the amount of the j-th type of energy
consumed by the i-th sector. Let E;(x),i = 1,2,3 represent the amount
of emissions of sulfur dioxide (SO,), nitrogen oxides (NO,), and
carbon dioxide (CO,), respectively. The objective function for the
collaborative emission reduction problem is set to minimize the sum
of these three emissions simultaneously, and can be expressed in the
form (Equation 9) (Johnsen, 1968):

min E(x) = (E,(x), Ey(x), E5(x%)) . 9)

Regarding the consumption variables, they need to meet the
following requirements. Firstly, energy supply must satisfy the
essential needs of social development. Let p;,j=1,---,N represent
the converting coefficient of the j-th type of energy into standard
energy, and D;,i = 1,2,---,M represent the total amount of demand
energy for the development of the i-th sector. The mathematical
representation of the energy supply condition is as (Equation 10):

Y piX;j=Dyi=1,2,- M. (10)
7

On the other hand, fossil fuels are exhaustible, and their supply
is limited naturally. Furthermore, the current society’s capabilities
of energy exploitation are also subject to various constraints. Hence,
it is necessary to consider the important factor of energy limitation
in our model. Let §;,j=1,2,--+,N represent the supply upper limit
for the j-th type of energy. The mathematical representation of the
energy constraint is shown as follows:

Y x;<8pi=1,2,-4N. (11)
i
Additionally, the consumption should be nonnegative, i.e. x; >
0,i=1,2,--,M,j=1,2,---,N.

Based on the above objective function and constraint
conditions, the following multi-objective optimization model
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is obtained (Hwang, 1979):

min E(x) = (E,(x), Ey(x), E5(x))

Y piy 2 Dpi=1,2,,M,
d (12)

s.t. zxijgsj,j: 1,2, N,
f
X;20,i=1,2,Mj=12-N.

Herein, the decision variables x;j (i=1,--,M,j=1,---,N)
represent the amount of the j-th type of energy consumed by
the i-th sector, E;(x)(i=1,2,3) denote the emission amount of
sulfur dioxide (SO,), nitrogen oxides (NO,), and carbon dioxide
(CO,), respectively. The three inequalities are the constraints that
the decision variables must satisfy.

2.4 Analysis of optimality conditions for the
model

To facilitate the analysis of the mathematical properties of model
(Equation 12), we first convert it into a standard form. Let p =
(py>py>»py) and E; represent an N x M matrix (where the i-th row
are entirely 1 and the rest are 0) and = (D;,-,Dy, =S}, =Sy) >
respectively, and slack variable x = (x‘f,---,xi,f +N) . The constraint

matrix can be written as (Equation 13) (Xu, 1999):

Al
- 0
A(M+N)><MN: Ap = o . (13)
0 - —p
E, - Ey
AM+N

Then, model (Equation 12) is equivalent to the following
standard form (Xu, 1999):

ClTx CZTx C3Tx
min E(x)=| —,—,—
Y, Y, Y,

Ax—b+x?=0,
s.t.

d . .
X ZO,xI7 >0,i=1,---,M,j=1,-,N,p=1,--,M+N.

(14)

ij

Firstly, from Lemmas 3.1 and 3.2 in (Xu, 1999), the necessary
conditions for the existence of Pareto efficient solutions for the
optimization problem (Equation 14) are presented.

Theorem 1: If x is a weak Pareto eflicient solution of model
(Equation 14), then there exist nonnegative values of A = (1;,1,,1,),
V=V, V) and u = (4, -+, 1y, ) such that (Xu, 1999)

A,v)#0,. (15)

3 C!
Yy Tk va=o, (16)

k=1 "k

Uy =0, v,xd =0,i=1,--,M,j=1,--,\N,p=1,--,M+N. (17)

frontiersin.org


https://doi.org/10.3389/fenrg.2025.1611945
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

Sun and Wang

Based on this, we can obtain the sufficient conditions for the
existence of Pareto efficient solutions for model (Equation 14).

Theorem 2: Assuming that x € S (S denotes a feasible region) is
given, and there exist nonnegative values of A and v such that
Equations 15-17 hold, then X must be a weak Pareto efficient
solution of model (Equation 14). Furthermore, if A > 0, then x must
be a Pareto efficient solution.

By comparing the optimality conditions of model (Equation 14)
with the Kuhn-Tucker (K-T) conditions of the single-objective
constrained optimization problem, it can be observed that the
optimality conditions for their Pareto efficient solutions can both
be regarded as adding a non-negative weight, namely A in the
theorem, to multiple objectives, thereby transforming them into
the optimality conditions for the solution of a single-objective
optimization problem.

Therefore, we can assign w,w,,w; as the weight of each
pollutant, E’lm",E‘z‘“a",E;nax and E‘f‘i“,E‘Z“i“,E?i“ as the maximum and
minimum emission values of each pollutant, respectively. After
normalizing the three objectives and summing them up with certain
weights, the problem can be transformed into a single objective
expressed by (Equation 18):

F(x)=wl<El(X)_E1 >+w2< >+W3< >
1

Emax _ Erlnin
(18)
Then, the model (Equation 12) is transformed into the following
model (Equation 19) (Hwang, 1979; Xu, 199):

E,(x) - B

Emax _ Emin

Es(x) - EPin

max min
Emex _ o

min F(x)
ijxlsz i=1,2,---,M,
(19)
Zx,l_ i = 1,2, N,
xijZO,izl,Z,“ M,j=1,2,---,N.

3 Empirical analysis based on data in
tianjin from 2005 to 2021

Tianjin, a historic industrial city, has long been dominated by
coal consumption in its energy structure, leading to significant
atmospheric pollution issues, air
pollutants--SO,, NO,

utilize data in Tianjin spanning from 2005 to 2021 to validate

particularly three major
and CO,. In this empirical section, we

our model (Equation 19).

3.1 Empirical study on granger causality
test

Figure 1 presents the trend diagram of sulfur dioxide (SO,)
emissions (in 107kg) (National Bureau of Statistics of China, 2024)
and the annual average concentration of sulfur dioxide (SO,) in the
air (in mg/m?) (NBS, 2005-2021) in Tianjin from 2005 to 2021. In
this figure, the line represents the total emission data over the years,
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while the columnar data indicates the annual average concentrations
of sulfur dioxide (SO,) in the air.

From this diagram, a certain correlation can be observed
between the concentration of sulfur dioxide in the air and the
emission of this pollutant. To more precisely reveal the causality
between them, this paper employs a statistical method--the Granger
causality test. Using the professional econometric analysis software
Eviews7, we conducted a detailed Granger causality test and
organized the results in Table 1.

The test results indicate that,
setting the lag term to 2, if we reject the null hypothesis that
“SO2DISCHARGED is not a Granger cause of SO2INAIR
the risk of committing Type I error is relatively high, reaching

under the condition of

0.4741. Conversely, if we reject the alternative null hypothesis that
“SO2INAIR is not a Granger cause of SO2DISCHARGED)” the risk
of committing Type I error is relatively low, at only 0.0243. Therefore,
based on this statistical inference, we have reason to believe that
sulfur dioxide emissions are a Granger cause of changes in sulfur
dioxide concentrations in the air.

3.2 Actual parameters among energy
consumption, polluting gas emission, and
investment

3.2.1 Analysis of decision variables in the model
Based on the specific data of Tianjin, the conventional
classification in the “Report” and statistical yearbooks, we have
subdivided the whole society into 10 sectors, namely agriculture,
power generation, heat supply, oil refining, gas manufacturing,
industry, construction, transportation, commerce, and residential
life. At the same time, fossil fuels are classified into 9 types: coal, coke,
crude oil, gasoline, kerosene, diesel, fuel oil, natural gas, and coal
gas. However, if this detailed classification is adopted, the standard
form of the model will contain up to 90 variables, which undoubtedly
leads to an extremely large calculation burden. In view of this, we
have conducted appropriate merging and simplification. Specifically,
based on the actual consumption scale of different energy sources
by various sectors in Tianjin, we have reclassified Tianjin into
five sectors: large-scale agriculture (covering agriculture, forestry,
animal husbandry, fishery, and water conservancy), industry
(including power generation and heat supply), transportation, retail
and accommodation, and consumption of living. Furthermore,
based on the similarity of emission coefficients when these sectors
consume energy, the aforementioned 9 types of energy are further
summarized into 3 main types: coal, oil, and natural gas.

3.2.2 Emission parameters in the model objective
Based on the Report and statistical yearbooks, the emission

coefficients (in 107*kg/kg(m’

summarized in Table 2.

)) for various energy sources are

This study has decided to adopt the pollutant emission
coefficient data from Tianjin in 2012, which is supported by
sufficient reason. Firstly, there is considerable difficulty in obtaining
emission coefficient data for the period from 2017 to 2021. These
data are often considered sensitive information by government
departments and are dispersed across various departments and
systems, posing significant challenges for external researchers
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TABLE 1 Results of granger test.

Null hypothesis Obs F-statistic | Prob.
SO2INAIR does not Granger Cause 15 5.51183 0.0243
SO2DISCHARGED

SO2DISCHARGED does not Granger 0.80492 0.4741

Cause SO2INAIR

attempting to access them. Additionally, opting to use the emission
coefficient data of 2012 facilitates direct comparative analysis of
the study’s results with those of previous years (Meng et al., 2016),
thereby enabling a more accurate assessment of the evolutionary
trends in pollutant emission and governance investment over time.

As shown in Table2, the meanings of the subscripts
corresponding to parameter C, = (cf;.),k =1,2,3; i=1,2,--,5,j =
1,2,3 in model (Equation 14) are as follows: k represents 3 different
gases, namely sulfur dioxide (SO,), nitrogen oxides (NO,), and
carbon dioxide (CO,); i corresponds to 5 different social sectors;
j corresponds to 3 different energy sources, namely coal, oil, and
natural gas. Taking c;, as an example, it represents 1.462x 107
nitrogen oxides (NO,) is emitted by the retail and accommodation
industry (product No. 4) when consuming the third energy source,
natural gas, perlm?.

3.2.3 Governance investment parameter in the
model objective

Given the lack of statistical data on nitrogen oxides (NO,) and
carbon dioxide (CO,) emissions in Tianjin prior to 2010, this study
decided to utilize the aggregate data on emissions of SO,, NO, and
CO, from 2011 to 2021 (China Emission Accounts and Datasets,
2023), combined with concurrent governance investment data of
waste gas, to jointly create a trend diagram depicting the changes in
governance investment data of waste gas versus emissions in Tianjin,
as shown specifically in Figure 2.

Specifically, we selected data on the total emissions of SO,,
NO,, and CO,, as well as concurrent energy usage (China
energy statistical yearbook, 2017-2021) and waste gas governance
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investment in Tianjin from 2011 to 2021, and incorporated these
data into our model to estimate the model parameter C in
Equation 8. However, upon observing scatter plots of the product
of waste gas emissions and waste gas governance investment
versus energy usage, calculated based on historical data, we
noted significant deviations in the data points for 2013, 2014,
2015, and 2021. These anomalies may be attributed to numerical
fluctuations caused by specific events or factors. To ensure the
accuracy and rationality of the model, we decided to exclude
potentially anomalous year data from the regression analysis.
Therefore, we selected data from 2011, 2012, and from 2016
to 2020 as our samples and utilized the professional statistical
software SPSS to conduct regression analysis, in order to accurately
estimate the model parameters. The specific functional relationship
obtained in Equation 8 is derived as follows:

~120407.9X
—

E (20)

And the regression results are shown in Table 3 below:

The regression analysis results presented in Table 3 reveal
that the R-value of this model reaches 0.717, which strongly
demonstrates a close and significant correlation between the model
and the actual observed data. Furthermore, the R-squared value of
the regression model is 0.514, indicating that the model is able to
capture and explain more than half of the variability in the data, thus
demonstrating the model’s excellent performance in data fitting.
Additionally, the significance level of variable X is 0.07, which is
a statistical result that enhances our confidence in the estimation
of the quantitative relationship between emissions and investments
described by the above equation, suggesting that the estimation
result is largely reliable.

3.2.4 Constraint parameters in the model

Based on the final consumption of 3 major energy products--
coal, crude oil products, and natural gas-by various sectors in
Tianjin from 2017 to 2021, as well as the coefficient for converting
various energies into standard coal, this paper compiles the final
consumption and the equivalent consumption in standard coal for
each sector in Tianjin from 2017 to 2021. Table 4 presents the data
for 2021 as an example.
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TABLE 2 Pollutant emission coefficient table.

10.3389/fenrg.2025.1611945

Product Sectors Type of energy SO, emission NOy emission CO, emission
[\[o} coefficient coefficient coefficient
(107kg) (107kg) (107kg)
Coal 12 375 1977.90
1 Large-scale Agriculture Oil 18 8.26 2984.75
Gas 0 1.462 2184.03
Coal 8.4 8 1977.90
2 Industry oil 126 8.86 2984.75
Gas 0 2.085 2184.03
Coal 12 75 1977.90
3 Transportation Oil 9 36.25 2984.75
Gas 0 2.085 2184.03
Coal 12 375 1977.90
4 Retail and accommodation Oil 9 5.77 2984.75
Gas 0 1.462 2184.03
Coal 12 1.88 1977.90
5 Consumption of living Oil 9 16.7 2984.75
Gas 0 0.736 2184.03
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FIGURE 2

I |nvestment in Waste Gas Treatment e====Total Emissions of Three Pollutants

Trend diagram of waste gas governance investment versus emissions in Tianjin.

From Table 4, we can obtain the energy demand constraints
in the model. Here, p; represents the coefficient for converting
the j-th type of energy product into standard coal, with
values of 0.71 for coal, 1.47 for oil products, and 13.3
for natural gas. D; denotes the energy demand of the i-th
industry, with its value corresponding to the third column in
Table 4.
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Further considering the energy supply constraints of the model,
since the three types of energy cannot be supplied unlimitedly and
have a certain degree of complementarity under the premise of
meeting energy consumption, the supply of the j-th type of energy
product is set to 150% of Tianjin’s consumption for that year. The
reason for this setting is that if it is set too low, there will be less
room for adjustment in the energy structure.
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TABLE 3 Regression analysis results.

R square Adjusted R square

10.3389/fenrg.2025.1611945

Standard error of the estimate

0.717 0.514 0.416 80665349.76

Unstandardized coefficients

Standardized coefficients

Std. Error Beta ‘
1 (Constant) ~146206997 402119461.1 ~0.364 0.731
X 120407.939 52408.771 0.717 2.297 0.07

TABLE 4 Statistics of final energy consumption in Tianjin in 2021.

Product no. Sectors Standard coal D; (107kg) Final consumption
Coal Qil Natural gas
(107kg) (107kg) (107kg)
1 Large-scale Agriculture 62.8419 5.61 40.40 0
2 Industry 1775.75 480.15 692.89 31.30
3 Transportation 432.39 0.01 258.31 3.96
4 Retail and accommodation 152.04 0 31.59 7.94
5 Consumption of living 532.90 22.00 234.09 13.02
Total 2955.92 507.77 1256.92 56.22

TABLE 5 Comparison of optimized emission with actual emission of
carbon dioxide in Tianjin.

Year Optimized Actual Optimization
emission emission efficiency
amount amount
(107kg) (10kg)
2017 9176.7659 13215 30.56%
2018 8044.2486 13836 41.86%
2019 8444.7823 13772 38.68%
2020 7938.1368 12849 38.22%
2021 8061.2175 14101 42.83%

3.3 Analysis of the solution to the
optimization model

In recent years, the focus of China’s environmental protection
efforts has increasingly shifted to the management of carbon dioxide
(CO,) emission. Especially during the period from 2017 to 2021,
the two major goals of “Carbon Peak” and “Carbon Neutrality”
were established as the country’s core strategic orientations. This was
followed by a series of policy releases, such as the “2023 Carbon Peak
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Action Plan” (State Council of China, 2021) and the “National 14th
Five-Year Plan for Modern Energy System” (National Development
and Reform Commission of China, 2022), which have endowed
carbon dioxide governance with unprecedented policy significance
and urgency. In view of this background, this paper closely examines
the policy framework and established emission reduction targets,
combining a meticulously constructed model to deeply analyse
optimization strategies for carbon emission reduction. The aim is
to provide solid theoretical support and practical guidance for the
realization of the “Dual-carbon” goals.

In the specific research, based on the actual data provided
in Sections 3.2.1 to 3.2.3, we substituted them into model
(Equation 19) to construct a single-objective emission reduction
optimization model that includes 15 non-negative decision variables
and 8 linear inequality constraints. To solve this model, we fully
utilized the established model parameters and efficient algorithms,
with the aid of Matlab software for implementation. We present the
solution process of the model in detail. Firstly, we set the weights of
various pollutant emissions in the objective function of the model to
w; =w, = w; = 1 and substituted the data on energy consumption
by various sectors in Tianjin from 2017 to 2021 into the model.
We then obtained the optimized carbon dioxide (CO,) emission
in Tianjin under the corresponding conditions of different years
and compared the optimized emission with the actual emission,
as shown in Table 5.

Here, this paper defines the optimization efficiency as follows:

09 frontiersin.org


https://doi.org/10.3389/fenrg.2025.1611945
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

Sun and Wang

10.3389/fenrg.2025.1611945

TABLE 6 Variation of optimized carbon dioxide emissions under different weight scenarios.

Year\Weights 1:1:3 ‘ Relative change rate Relative change rate
2017 9176.7659 9176.7612 0.00005% 9176.7564 0.00010%
2018 8044.2486 8044.2472 0.00002% 8044.2457 0.00004%
2019 8444.7823 8444.7764 0.00007% 8444.7704 0.00014%
2020 7938.1368 7938.1308 0.00008% 7938.1248 0.00015%
2021 8061.2175 8061.2155 0.00002% 8061.2134 0.00005%
Year\Weights Relative Change Rate Relative Change Rate
2017 9176.7659 9176.7517 0.00015% 9176.7445 0.00020%
2018 8044.2486 8044.2443 0.00005% 8044.2421 0.00010%
2019 8444.7823 8444.7643 0.00021% 8444.7553 0.00030%
2020 7938.1368 7938.1188 0.00023% 7938.1097 0.00030%
2021 8061.2175 8061.2114 0.00008% 8061.2083 0.00010%

TABLE 7 Statistics of optimized carbon dioxide emissions in Tianjin.

Year Optimized emission

Optimized emission

amount at 1:1:1 ratio amount at 1:1:10 ratio

(107kg) (107kg)
2017 9176.7659 9176.7445
2018 8044.2486 8044.2421
2019 8444.7823 8444.7553
2020 7938.1368 7938.1097
2021 8061.2175 8061.2083

actual emission — optimized emission
% 100%.

Optimization efficiency = —
actual emission

From the table, it can be seen that under the conditions
corresponding to different years, the optimized carbon dioxide
(CO,) emission calculated by the model are generally lower than the
actual emission for that year. Based on the above data and formulas,
the average optimization efficiency of carbon di-oxide emissions in
Tianjin from 2017 to 2021 was calculated to be 38.43%.

The following discussion focuses on the variation of optimized
carbon dioxide (CO,) emissions under different weight scenarios,
specifically the results when the weight ratio of the three gases in the
model is set to 1:1: a (wherea =1, 3, 5, 7, 10), as shown in Table 6.

When the weight ratio of the three gases in the model is set to
1: 1: a (where a = 3, 5, 7, 10), the optimized carbon dioxide (CO,)
emissions show minimal changes compared to when the weight
ratio is set to 1:1:1. The relative change rates all fall within 0.001%.
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Therefore, variations in the weight a of carbon dioxide in the model
within the range of 1-10 have a relatively small impact on the results.

To focus on the analysis of carbon dioxide (CO,) emission,
the weights of various pollutant emissions in the objective function
of the model were adjusted to w; =w, =1,w; =10 The data on
energy consumption by various sectors in Tianjin from 2017 to 2021
were substituted into the model to solve for the optimal carbon
dioxide emission in Tianjin under the corresponding conditions
of different years. These results were then compared with the
optimization results obtained when the weights were w, =w, =
wy = 1, as shown in Table 7.

Upon closely examining the table data, we can observe that even
when the weight of carbon dioxide (CO,) emission is substantially
increased to 10 times its original value in the model, the room for
improvement in the optimization results remains relatively limited.
This phenomenon suggests that when the weights are set to 1:1:1,
the model has already demonstrated considerable optimization
efficiency.

Next, let us further analyze the investment situation
corresponding to emission reduction. Firstly, when the weights
are set to 1:1:1, we calculate the cumulative optimized sulfur
dioxide (SO,), nitrogen oxides (NO,), and carbon dioxide (CO,)
emission in Tianjin from 2017 to 2021. Subsequently, we combine
this cumulative value with the actual total energy consumption in
Tianjin during the same period and substitute it into the function-al
relationship between waste gas emissions, energy usage, and waste
gas governance in-vestment mentioned in Section 3.2.3. By this
step, we are able to estimate the amount of governance investment
required to achieve optimized waste gas emissions at real energy
consumption levels. The following Table 8 details the comparison
between the optimized governance investment amount and the
actual governance investment amount:

It can be observed from the table that the actual investment
amount for waste gas governance in Tianjin from 2017 to 2021
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was lower than the investment required to achieve optimal waste
gas emission.

3.4 Test the waste gas governance
investment in 2022

The collaborative emission reduction model (Equation 20)
mentioned above can calculate the emission levels of waste gases and
their corresponding governance investment. Below, we conduct a
validation test on the emission-governance investment relationship
for 2022. To ensure consistency with actual data, the waste
gas emission E and total energy consumption X for 2022 are
derived from regression-based predictions using historical data
from previous years. We proceed with the following 3 steps.

Step 1. Prediction of emission data for three kinds of waste gases.

The trend extrapolation method is adopted below to predict the
emissions of major pollutants. Based on the historical data from 2017
to 2021, a linear regression model is established.

SO,, the
following Equation 22:

For regression equation obtained is the

Egp, =2.8720 - 042001 (21)

where f is the year index, ¢ = 1 for 2017, t =2 for 2018, ..., t =5 for
2021. Furthermore, the predicted emissions for 2022 are calculated
as 0.3520 ten thousand tons. The goodness of fit is R? = 0.9542.

For NO,, the regression equation obtained is the following
(Equation 22):

Exo, = 12.3880 - 0.28001, (22)

where ¢ is defined the same as in (Equation 21). The predicted
emissions for 2022 are calculated as 10.7080 ten thousand tons. The
goodness of fit is R* = 0.7365.

For CO,, its emissions data from China energy statistical
yearbook (2017-2021) are shown in Figure 3.

There are significant fluctuations. Therefore, the average value
of emissions from 2017 to 2021 is considered to be used as the
emissions for 2022, which is 13554.60 ten thousand tons.

Step 2. Prediction of total energy consumption.

Considering the volatility of energy consumption data, the
Exponential Smoothing method is used for short-term forecasting.
This method is suitable for short-term forecasting of volatile data and
can assign higher weights to recent data. The calculation formula is
as (Equation 23):

X,=aX,_ +(1-0)X,_,, (23)

where t is defined the same as in (Equation 21). A smoothing
constant of a =0.5 is adopted to assign higher weights to recent
data. X, represents the total energy consumption value in the
t-th year (see Table9), and X, represents the predicted energy
consumption value in the t-th year, and we set the following
(Equation 24)

Xy017 = Xop17 = 3068.18. (24)
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TABLE 8 Comparison of waste gas governance investment in Tianjin.

Optimized Actual investment
investment (10* Yuan)
(10* Yuan)
2017 100085.5 59536
2018 117578.0 56879
2019 116869.5 55280
2020 123503.6 73987
2021 121419.5 9014
14500
£ » 14000
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8 < 13500
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w © 13000
NS
9 < 12500
12000
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Year
FIGURE 3
Trend diagram of carbon dioxide emissions from 2017 to 2021
in Tianjin.

TABLE 9 Annual total energy consumption from 2017 to 2021.

Year Total energy consumption (10000 tons) ‘
2017 3068.18
2018 2846.851
2019 2990.193
2020 2835.191
2021 2955.92

By substituting the data into the aforementioned formula, the
calculated predicted value of total energy consumption for 2022 is
2930.22 ten thousand tons.

Step 3. Prediction of waste gas governance investment in
2022.

By substituting the total energy consumption in 2022
and the predicted values of the total emissions of three
types of waste gases into Formula 20, the predicted value
of investment in waste gas treatment in 2022 is obtained
as 260.0844 million yuan. However, after consulting the
National Data (National Bureau of Statistics of China, 2024), the
actual value of investment in waste gas treatment in Tianjin in 2022
is 477.46 million yuan, which is higher than the predicted value. This
indicates that there is still room for a decrease in the investment in
waste gas treatment in 2022, or that enterprises have increased their

frontiersin.org


https://doi.org/10.3389/fenrg.2025.1611945
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

Sun and Wang

investment in waste gas treatment due to the impact of relevant
policies.

4 Discussion

The model results show that the optimized CO, emission
amount of each year is significantly lower than the actual emission,
with an average optimization efficiency of 38.43%, indicating
that there is still considerable room for emission reduction
in Tianjin under the current policy framework. However, the
actual environmental investment amount is far below the model
recommendation (for example, the actual investment in 2021
was only 7.4% of the optimized value), which directly constrains
the achievement of emission reduction targets. Additionally, the
sensitivity analysis of pollutant weights in the model shows
that weight settings have a certain impact on the optimization
results.

Based on the model results, we give the following suggestions:

1. Increaseinvestment: It is suggested that the government should
increase financial support, establish special funds for clean
energy technology upgrading and “oil to gas” transformation
in the transportation industry, and introduce social capital
to participate in the project through PPP mode to ease the
financial pressure.

2. Optimize energy structure: It is recommended to combine
regional environmental carrying capacity, regularly assess
and adjust weights to balance the needs of multi-pollutant
co-governance. Promote the optimization of the energy
structure, increase the proportion of clean energy usage,
and reduce the dependence on fossil fuels. This not only
helps to reduce exhaust emissions but also improves energy
efficiency.

3. Improve energy efficiency: Improve energy efficiency through
technological innovation and management optimization,
reduce energy consumption per unit output, so as to reduce
waste gas emissions.

4. Policy support: The government should introduce more
incentive policies to encourage enterprises and individuals
to adopt clean energy and efficient energy utilization
technologies, while imposing stricter supervision and
restrictions on highly polluting emission enterprises.

5. Public participation: Strengthen public education and
participation, raise the awareness of the importance of waste
gas treatment in the society, and encourage the public to
adopt energy-saving and emission reducing lifestyles and
consumption patterns.
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