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A collaborative analysis based on 
multi-objective programming 
method for energy consumption 
reduction and governance 
investment

Yige Sun* and  Hanlin Wang

School of Economics, Shandong University of Technology, Zibo, China

This paper delves into how to collaboratively reduce emissions of sulfur dioxide, 
nitrogen oxides, and carbon dioxide through rational energy consumption 
and governance investment strategies with limited funds. The main research 
contents include: employing the Granger causality test to analyze the causal 
relationship between air quality and pollutant emissions; using functional 
analysis to determine the quantitative relationship between energy consumption 
and the emissions of various pollutants; applying multi-objective programming 
method to establish an integrated model for collaborative emission reduction 
optimization that considers both energy consumption and governance 
investment, and analyzing the optimality conditions of the model; and 
conducting an empirical analysis of the model using Tianjin’s social development 
data from 2005 to 2021. The optimal carbon dioxide emissions calculated by 
the model are significantly lower than the actual emissions, with an average 
optimization efficiency of 38.43%. Through reasonable energy allocation and 
governance investment strategies, it is possible to effectively reduce pollutant 
emissions while ensuring production demands. The research results of this paper 
provide a theoretical basis and practical guidance for formulating rational energy 
use and governance investment strategies.
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 1 Introduction

In most cities, the air quality primarily depends on the levels of air pollutant 
concentrations. As an industrial country, the development of Chinese cities 
largely relies on energy-intensive secondary industries. This development pattern, 
while driving rapid economic growth, has also led to the massive amount of 
pollutant emission into the air. In particular, exhaust gases emitted from fossil fuel 
combustion, which cannot disperse efficiently in urban areas, pose a significant 
threat to air quality. To evaluate air environmental quality, China has successively 
implemented the Air Pollution Index (API) and the Air Quality Index (AQI). 
According to the calculation criteria of these two indices, sulfur dioxide (SO2) 
and nitrogen oxides (NOx) are recognized as key determinants of air quality.
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Since the signing of the Kyoto Protocol, China has prioritized 
the reduction of green-house gases such as carbon dioxide (CO2) 
in government work. In recent years, fine particulate matter 
(PM2.5) has increasingly garnered attention, with its harmful 
substances mainly originating from human activities such as 
energy combustion, power generation, metallurgy, petroleum, and 
chemical engineering. According to recent research by the Chinese 
Academy of Sciences (Huang et al., 2014), when considering coal 
burning, industrial pollution, and secondary inorganic aerosols 
together, emissions from fossil fuel combustion have become the 
primary source of PM2.5 pollution in Beijing. Furthermore, PM2.5 
can also be converted from sulfur and nitrogen oxides, which are 
largely produced when humans burn fossil fuels (such as coal and 
oil) and waste.

It is evident that these severe environmental issues primarily 
stem from the combustion of fossil fuels to meet the demands of 
human social development and ensure people’s living. Although 
people have fully recognized the severity of the problem and 
have actively explored and practiced various approaches, including 
improving combustion technology, developing new energy sources, 
adjusting lifestyles, and restructuring industries, it cannot be denied 
that fossil fuels remain the primary energy support for China’s 
current social development. However, fossil fuels are diverse in types 
and vary in usage ways. Under different usage conditions, different 
types of energy produce varying amounts of pollutants, but there are 
also certain correlations among them.

Since sulfur dioxide (SO2) in the atmosphere mainly originates 
from the combustion of sulfur-containing fuels such as coal and 
oil, with more than 90% of SO2 emissions in China contributed by 
coal-fired activities (Sun, 2003). Since the 1980s, China has focused 
on con-trolling SO2 emissions through various technical measures, 
including optimizing the coal structure, increasing the use of cleaned 
coal, adopting clean combustion technologies, and encouraging 
key emitting sectors to install flue gas desulfurization facilities. At 
the economic management level, measures such as shutting down 
small thermal power units, formulating strict emission standards for 
coal-fired power plants, and implementing total emission control 
have been adopted. Nitrogen oxides (NOx) play a crucial role 
in the formation of photochemical smog and are also a major 
factor driving the transition of acid rain types from sulfuric acid 
to nitric acid in China. This is partly attributed to the late start 
of NOx control efforts in China, leading to a rapid increase in 
nitrogen dioxide (NO2) emissions during the “11th Five-year Plan” 
period. In the national “12th Five-year Plan”, NOx following SO2
was listed as another important air pollutant subject to total 
emission control. Currently, China’s NOx prevention and control 
strategies encompass promoting low-NOx combustion technologies, 
flue gas denitrification technologies, and implementing production 
capacity control, and so on. Furthermore, both SO2 and NOx
are considered precursors of PM2.5. Therefore, their collaborative 
emission reduction holds far-reaching significance for preventing 
haze weather and effectively controlling PM2.5 concentrations.

Carbon dioxide (CO2), recognized globally as a greenhouse gas, 
has become a top priority for governments in their efforts to mitigate 
climate change since the issue of global warming has become 
increasingly prominent. According to the Fourth Assessment Report 
of the Intergovernmental Panel on Climate Change (IPCC), CO2 is 
the most critical anthropogenic greenhouse gas, and the continuous 

rise of global CO2 concentrations is mainly attributed to the 
extensive use of fossil fuels (IPCC, 2007). Statistical data from the 
International Energy Agency (IEA) also show that China’s total 
carbon emissions surpassed those of the United States in 2007, 
becoming the largest contributor to global carbon emissions. In 
2016, China accounted for 19.12% of the world’s total carbon 
dioxide emissions (Quire et al., 2015). At the 2015 World Climate 
Conference, China submitted its nationally determined contribution 
report to committing to reduce carbon intensity by 60%–65% below 
2005 levels by 2030. This will accelerate China’s green and low-
carbon transition and provide a foundation for achieving the global 
temperature rise control target of 2 °C. China’s target of cutting 
carbon dioxide emissions per unit of GDP by 40%–45% from 2005 
levels by 2020 was achieved ahead of schedule in 2019.

All three aforementioned gases originate from the combustion 
of fossil fuels. However, given the current technological limitations 
that prevent a complete substitution of fossil fuels, they will continue 
to be an important part of China’s energy structure in the near 
future. The primary fossil fuels used in China include coal, oil, 
and natural gas. Although all three produce these pollutants when 
burned, due to differences in combustion mechanisms, there are 
significant variations in the emissions of these gases for the same 
energy output. For instance, coal, with its higher sulfur content, 
produces much more sulfur dioxide (SO2) when burned compared 
to oil and natural gas. Oil combustion, on the other hand, generates 
significantly more nitrogen oxides (NOx) than the other two fuels. 
Natural gas is considered a clean energy source, but its combustion 
produces more carbon dioxide (CO2) than coal and oil. Additionally, 
different energy usage ways can also influence the proportion of gas 
emissions. For example, in the industrial sector, due to relatively 
advanced desulfurization and denitrification technologies for waste 
gases, the production of sulfur dioxide from coal combustion is 
relatively low. However, when oil is used, the higher temperatures 
result in higher nitrogen oxides emissions compared to other sectors.

Given these differences in energy types and usage ways, the 
topic of collaborative emission reduction studied in this paper 
focuses on how to rationally optimize the reasonable arrangement 
of different energies across various sectors, ensuring that production 
demands are met while minimizing energy consumption as much as 
possible. Currently, the issue of collaborative emission reduction has 
garnered considerable attention from some scholars. For example, 
Bollen et al. (2009) conducted an in-depth analysis of the co-benefits 
of collaborative governance for air pollution and global warming 
from an economic perspective. Rafaj et al. (2013) compared changes 
in emissions of atmospheric pollutants such as sulfur dioxide (SO2) 
and nitrogen oxides (NOx) before and after the implementation of 
global greenhouse gas control agreements. Their research results 
indicated that policy measures aimed at controlling greenhouse 
gas emissions have a positive impact on reducing emissions of 
atmospheric pollutants. Gu et al. (2016) selected three important 
industries in China, namely electric power, steel and cement, to 
analyze and calculate the SO2 emission reduction effect in the first 
2 years of “11th Five-Year Plan” and “12th Five-Year Plan”, as well 
as the synergistic effect of CO2 emission reduction. Zhang et al. 
(2018) established a quantitative model for the effectiveness 
of energy conservation and emission reduction policies, and 
explored the differences in the impact of energy conservation and 
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emission reduction policies on their effects in Beijing-Tianjin-
Hebei. Wang et al. (2019) constructed an intergovernmental 
emission reduction evolution model to simulate the evolution 
process of strategy selection of independent emission reduction and 
cooperative emission reduction by local governments in the region, 
and then put forward relevant policy suggestions for improving 
the relationship of regional cooperation on emission reduction. 
Gao et al. (2021) constructed a synergistic effect evaluation method 
for pollutant control and greenhouse gas emission reduction, and 
evaluated the synergistic effect of greenhouse gas emission reduction 
caused by pollution control effects produced by energy structure 
adjustment and industrial structure adjustment in China from 
2013 to 2017. Li et al. (2022) developed an evaluation model 
for coordinated control of PM2.5 and O3 in the Beijing-Tianjin-
Hebei region, and identified the optimal project for NOx and 
VOCs co-reduction that minimizes abatement costs under different 
air quality targets. Zhao et al. (2023) used multi-period double 
difference to analyze and evaluate the synergistic effect and influence 
mechanism of China’s low-carbon city policies on CO2 emission 
reduction and PM2.5 pollution control at the urban scale from 2007
to 2019.

However, most of these studies have approached the issue 
from an economic or technical perspective, failing to delve into 
the rational allocation of energy and its corresponding emission 
reduction benefits based on the pollution-generating characteristics 
of different energy sources. This paper provides an in-depth 
analysis of collaborative emission reduction strategies for sulfur 
dioxide (SO2), nitrogen oxides (NOx), and carbon dioxide (CO2) 
based on their shared characteristics. Furthermore, as people’s 
awareness of environmental protection continues to rise and 
government governance efforts intensify, effective waste gas 
governance mechanisms have been widely established for major 
industrial pollution sources in China. The implementation of 
these emission reduction measures often requires government 
investment or government-guided private investment. Therefore, 
formulating optimal emission reduction strategies under limited 
funding has become a critical issue that needs to be addressed 
urgently. This paper aims to explore how to balance various 
pollutant emissions and energy usage projects for pollution 
control investment on the basis of emission reduction, in 
order to achieve the best results in collaborative emission
reduction. 

2 Methods and theories

This section elucidates the application of three mathematical 
methods. Firstly, the Granger causality test is mentioned, which aims 
to explore potential causal relationships between air quality and 
pollutant emissions. Secondly, functional analysis techniques are 
employed, focusing on revealing quantitative links between energy 
consumption and emissions of various pollutants. Lastly, the multi-
objective optimization method is introduced, which is utilized to 
construct a comprehensive optimization model that considers both 
energy consumption and governance investment, with the goal of 
achieving collaborative emission reduction and further facilitating 
extended optimization. 

2.1 Granger causality test model

The Granger causality test model, an analytical tool in the 
field of econometrics, was established by Granger (1969), a Nobel 
laureate in economics. Its kernel principle can be articulated as 
follows: when considering the historical data of variables X and 
Y comprehensively, if the prediction accuracy of variable Y is 
significantly improved compared to predictions based solely on Y’s 
own historical data, it indicates that variable X provides additional 
explanatory power for the future changes of variable Y. Therefore, 
we can conclude that variable X is the Granger cause of variable 
Y. The key step of the Granger test involve constructing a specific 
model (Equation 1), where ut represents a white noise sequence, p,q
are lag orders, αi,βj (i = 1,⋯,p, j = 1,⋯,q) are all coefficients of the 
regression model (Granger, 1969).

Yt = α+
p

∑
i=1

αiXt−i +
q

∑
j=1

βjYt−j + ut . (1)

This paper will utilize the econometric software Eviews7 to verify 
the causal relationship between pollutant emissions and air quality 
by using the Granger causality test method. 

2.2 Functional relation among energy 
consumption, pollutant gas emissions, and 
investment

In this paper, energy refers to fossil fuels, and energy 
consumption involves the combustion of fossil fuels, which emits 
carbon dioxide (CO2) and various atmospheric pollutants into the 
atmosphere, mainly including sulfur dioxide (SO2), nitrogen oxides 
(NOx), smoke and dust, carbon monoxide, hydrocarbons, and so on. 

2.2.1 Relation of fossil fuel combustion and sulfur 
dioxide (SO2)

Both coal and oil contain a certain percentage of sulfur, with 
the sulfur content of coal in China generally ranging from 0.5% to 
3%, and that of oil approximately between 0.06% and 0.8%. Under 
normal combustion condition, the sulfur contained in the fuel is 
oxidized into sulfur dioxide (SO2). Referencing the scientific method 
for predicting pollutant emissions outlined in the “National 12th 
Five-year Plan Resource (Energy) and Environmental Economic 
Forecast Research Report of China” (hereinafter referred to as the 
“Report”) (Ministry of Environmental Protection of China, 2011), 
this study subdivides the whole society into several sectors with 
energy consumption, based on which it derives a functional 
relationship between energy consumption and sulfur dioxide (SO2) 
emission, specifically expressed in Equation 2.

ESO2
=∑

i
∑

j
2αjβj(1− γ1i)xij, (2)

where, xij represents the amount of the j-th type of energy consumed 
by the i-th sector, αj represents the sulfur content corresponding to 
the j-th type of energy, βj represents the conversion rate of sulfur in 
the j-th type of energy, and γ1i represents the removal rate, i.e., the 
desulfurization efficiency, when the i-th sector consumes energy. 
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2.2.2 Relation of fossil fuel combustion and 
nitrogen oxides (NOx)

The generation of sulfur oxide mainly originates from the sulfur 
content in fuels, which is relatively straightforward. In contrast, the 
production of nitrogen oxides (NOx) involves more complex factors. 
According to the “Report”, the primary sources of nitrogen oxides 
(NOx) include the oxidation reaction of nitrogen molecules in the 
combustion-supporting air under high-temperature conditions and 
the partial oxidation process of nitrogen compounds contained in 
fuels during burning. The functional relationship between energy 
consumption and nitrogen oxides (NOx) emissions is described 
by Equation 3, where xij is defined as above, ηij represents the 
nitrogen oxides emission factor corresponding to the consumption 
of the j-th type of energy by the i-th sector, and γ2i represents 
the removal rate, i.e., the denitrification efficiency, when the i-th 
sector consumes energy (Ministry of Environmental Protection of
China, 2011).

ENOx
=∑

i
∑

j
ηij(1− γ2i)xij. (3)

From a mathematical perspective, Equations 2, 3 can be 
equivalently expressed in logarithmic form as Equation 4 (Yue, 
2003), where E represents the total pollutant emissions, X represents 
the total energy consumption, γ represents the removal rate of 
pollutants, α represents the constant term, and ε represents the 
random error.

ln E = α+ ln X+ ln (1− γ) + ε . (4)
 

2.2.3 Relation of fossil fuel combustion and 
carbon dioxide (CO2)

During the combustion process of fossil fuels, their core 
function is to convert the energy stored within them into 
thermal energy through the oxidation of carbon elements, 
while emitting large amount of carbon dioxide (CO2) in 
the process. By referring to the calculation method provided 
in the “Report,” we can establish a functional relationship 
between the carbon dioxide (CO2) emissions generated from 
fuel combustion and its related factors, specifically expressed in 
Equation 5 (Ministry of Environmental Protection of China, 2011). 
In this equation, xij is defined as before, cj represents the carbon 
emission factor for the j-th type of energy source as given by 
the Intergovernmental Panel on Climate Change (IPCC), and ωj
represents the combustion loss rate for the j-th type of energy source.

ECO2
=∑

i
∑

j
0.98cj(1−ωj)xij . (5)

From the aforementioned formulas for sulfur dioxide (SO2), 
nitrogen oxides (NOx), and carbon dioxide (CO2) emissions, we 
can observe that although the generation mechanisms of these three 
gases differ, their emissions are all predominantly influenced by the 
total social energy consumption. More specifically, there exists a 
positive and linear correlation between the emissions of these three 
pollutants and energy consumption. 

2.2.4 Relation of governance investment and gas 
emissions

From the emission calculation formulas for various pollutants 
listed earlier, we can understand that in addition to carbon 

dioxide (CO2), waste gases generated from energy combustion 
also contain harmful substances such as sulfur dioxide (SO2) and 
nitrogen oxides (NOx). These waste gases must undergo purification 
processes such as desulfurization and denitrification before being 
emitted into the atmospheric environment. The costs required to 
implement these purification measures are commonly referred to as 
governance investments. In Equations 2–4, the efficiency of waste 
gas governance, namely the removal rate of each pollutant, plays a 
decisive role in pollution emissions. It should increase along with 
greater governance investments. Meanwhile, ac-cording to the law 
of diminishing marginal returns in economics, as the amount of 
investment increases, the rate of improvement in the removal rate 
should gradually slow down. Therefore, the functional relationship 
between governance investment and removal rate should conform 
to Equation 6; (Xu, 1999).

γ = 1+ ̃α
Y
+ ε . (6)

Where, γ represents the removal efficiency of the pollutant, Y
represents the funds invested in treating the pollutant, ̃α represents 
the coefficient to be determined, and ε represents the random 
error. Substituting (Equation 6) into (Equation 4), we obtain the 
following (Equation 7).

ln E = α+ ln X+ ln( ̃α
Y
)+ ε. (7)

This results in a mathematical model (Equation 8) representing 
the relation among the pollutant emissions, energy consumption 
and governance investment.

E = CX
Y
. (8)

where C is a coefficient to be determined. This equation indicates 
that the total emission of pollutants has a positive linear relationship 
with energy consumption and a negative reciprocal relationship with 
governance investment, which aligns with theoretical expectations. 

2.3 Multi-objective optimization model for 
collaborative emission reduction

The concept of multi-objective optimization was initially 
proposed by economist Pareto in 1927. Its core lies in exploring 
how to find a solution within a specific decision-making space 
that optimizes multiple objectives that need to be considered 
simultaneously. These objectives often exhibit characteristics of the 
absence of unified criteria or measurement units and contradictory 
(Yue 2003). The difficulty in unified criteria refers to the lack of 
a common evaluation scale or unit of measurement among the 
objectives, while contradictory implies that in most cases, it is 
challenging to find a solution that simultaneously optimizes all 
objectives. Koopmans, 1951 introduced the concept of Pareto 
efficient solutions for multi-objective optimization problems. 
Meanwhile, Kuhn and Tucker (1950) also discussed the sufficient 
and necessary conditions for the existence of optimal solutions in 
multi-objective optimization. Johnsen (1968) published the first 
monograph on multi-objective optimization. Following in-depth 
explorations by numerous scholars during the 1970s and 1980s, 
the basic theoretical framework of multi-objective optimization 

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1611945
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Sun and Wang 10.3389/fenrg.2025.1611945

was established and gradually developed into an independent 
disciplinary field.

When solving multi-objective optimization problems, it is 
often necessary for decision-makers to provide information on the 
preference relationships among the various objectives in order to 
evaluate the merits and demerits of different solutions. Hwang 
and Masud (1979) classified the solution methods for multi-
objective optimization problems into three categories based on 
the manner of expressing preference information: prior evaluation 
methods, concurrent evaluation methods, and posterior evaluation 
methods. In recent years, concurrent and posterior evaluation 
methods have received increasing attention due to their flexibility 
and practicality. Multi-objective optimization techniques have been 
widely applied to numerous practical problems such as chemical 
production process optimization, material manufacturing process 
improvement, and logistics network design, demonstrating their 
powerful practical value.

From the above analysis of the amount of emissions for the 
three types of gases, this article will subsequently delve into the 
issue of collaborative emission reduction under different energy 
consumption patterns. Dividing the entire society into M different 
sectors, and assuming that there are N types of energy sources 
available for selection, we define the decision variable x = (xij), i =
1,⋯,M, j = 1,⋯,N as the amount of the j-th type of energy 
consumed by the i-th sector. Let Ei(x), i = 1,2,3 represent the amount 
of emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), and 
carbon dioxide (CO2), respectively. The objective function for the 
collaborative emission reduction problem is set to minimize the sum 
of these three emissions simultaneously, and can be expressed in the 
form (Equation 9) (Johnsen, 1968):

min E(x) = (E1(x),E2(x),E3(x)) . (9)

Regarding the consumption variables, they need to meet the 
following requirements. Firstly, energy supply must satisfy the 
essential needs of social development. Let ρj, j = 1,⋯,N represent 
the converting coefficient of the j-th type of energy into standard 
energy, and Di, i = 1,2,⋯,M represent the total amount of demand 
energy for the development of the i-th sector. The mathematical 
representation of the energy supply condition is as (Equation 10):

∑
j

ρj xij ≥ Di, i = 1,2,⋯,M. (10)

On the other hand, fossil fuels are exhaustible, and their supply 
is limited naturally. Furthermore, the current society’s capabilities 
of energy exploitation are also subject to various constraints. Hence, 
it is necessary to consider the important factor of energy limitation 
in our model. Let Sj, j = 1,2,⋯,N represent the supply upper limit 
for the j-th type of energy. The mathematical representation of the 
energy constraint is shown as follows:

∑
i

xij ≤ Sj, j = 1,2,⋯,N. (11)

Additionally, the consumption should be nonnegative, i.e. xij ≥
0, i = 1,2,⋯,M, j = 1,2,⋯,N.

Based on the above objective function and constraint 
conditions, the following multi-objective optimization model 

is obtained (Hwang, 1979):

min E(x) = (E1(x),E2(x),E3(x))

s. t.

{{{{{{
{{{{{{
{

∑
j

ρjxij ≥ Di, i = 1,2,⋯,M,

∑
i

xij ≤ Sj, j = 1,2,⋯,N,

xij ≥ 0, i = 1,2,⋯,M, j = 1,2,⋯,N.

. (12)

Herein, the decision variables xij (i = 1,⋯,M, j = 1,⋯,N)
represent the amount of the j-th type of energy consumed by 
the i-th sector, Ei(x) (i = 1,2,3) denote the emission amount of 
sulfur dioxide (SO2), nitrogen oxides (NOx), and carbon dioxide 
(CO2), respectively. The three inequalities are the constraints that 
the decision variables must satisfy. 

2.4 Analysis of optimality conditions for the 
model

To facilitate the analysis of the mathematical properties of model 
(Equation 12), we first convert it into a standard form. Let ρ =
(ρ1,ρ2,⋯,ρN) and Ei represent an N×M matrix (where the i-th row 
are entirely 1 and the rest are 0) and = (D1,⋯,DN,−S1,⋯,−SM) , 
respectively, and slack variable xd = (xd

1,⋯,x
d
M+N) . The constraint 

matrix can be written as (Equation 13) (Xu, 1999):

A (M+N)×MN =
((((

(

A1

⋮

Ap

⋮

AM+N

))))

)

=(

(

−ρ ⋯ 0

⋮ ⋱ 0

0 ⋯ −ρ

E1 ⋯ EN

)

)

. (13)

Then, model (Equation 12) is equivalent to the following 
standard form (Xu, 1999):

min E(x) = (
CT

1 x
Y1
,

CT
2 x

Y2
,

CT
3 x

Y3
)

s. t. 
{
{
{

Ax− b+ xd = 0,

xij ≥ 0,xd
p ≥ 0, i = 1,⋯,M, j = 1,⋯,N,p = 1,⋯,M+N.

(14)

Firstly, from Lemmas 3.1 and 3.2 in (Xu, 1999), the necessary 
conditions for the existence of Pareto efficient solutions for the 
optimization problem (Equation 14) are presented.

Theorem 1: If x is a weak Pareto efficient solution of model 
(Equation 14), then there exist nonnegative values of λ = (λ1,λ2,λ3),
v = (v1,⋯,vM+N) and u = (u1,⋯,uM+N) such that (Xu, 1999)

(λ,v) ≠ 0, . (15)

3

∑
k=1

λkC′k
Yk
+ vA = 0, (16)

uijxij = 0, vpxd
p = 0, i = 1,⋯,M, j = 1,⋯,N, p = 1,⋯,M+N. (17)
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Based on this, we can obtain the sufficient conditions for the 
existence of Pareto efficient solutions for model (Equation 14). 

Theorem 2: Assuming that x ∈ S (S denotes a feasible region) is 
given, and there exist nonnegative values of λ and v such that 
Equations 15–17 hold, then x must be a weak Pareto efficient 
solution of model (Equation 14). Furthermore, if λ > 0, then x must 
be a Pareto efficient solution.

By comparing the optimality conditions of model (Equation 14) 
with the Kuhn-Tucker (K-T) conditions of the single-objective 
constrained optimization problem, it can be observed that the 
optimality conditions for their Pareto efficient solutions can both 
be regarded as adding a non-negative weight, namely λ in the 
theorem, to multiple objectives, thereby transforming them into 
the optimality conditions for the solution of a single-objective 
optimization problem.

Therefore, we can assign w1,w2,w3 as the weight of each 
pollutant, Emax

1 ,E
max
2 ,E

max
3  and Emin

1 ,E
min
2 ,E

min
3  as the maximum and 

minimum emission values of each pollutant, respectively. After 
normalizing the three objectives and summing them up with certain 
weights, the problem can be transformed into a single objective 
expressed by (Equation 18):

F(x) = w1(
E1(x) −Emin

1

Emax
1 −Emin

1
)+w2(

E2(x) −Emin
2

Emax
2 −Emin

2
)+w3(

E3(x) −Emin
3

Emax
3 −Emin

3
).

(18)

Then, the model (Equation 12) is transformed into the following 
model (Equation 19) (Hwang, 1979; Xu, 199):

min F(x)

s. t.

{{{{{{
{{{{{{
{

∑
j

ρjxij ≥ Di, i = 1,2,⋯,M,

∑
i

xij ≤ Sj, j = 1,2,⋯,N,

xij ≥ 0, i = 1,2,⋯,M, j = 1,2,⋯,N.

. (19)

3 Empirical analysis based on data in 
tianjin from 2005 to 2021

Tianjin, a historic industrial city, has long been dominated by 
coal consumption in its energy structure, leading to significant 
atmospheric pollution issues, particularly three major air 
pollutants--SO2, NOx and CO2. In this empirical section, we 
utilize data in Tianjin spanning from 2005 to 2021 to validate 
our model (Equation 19). 

3.1 Empirical study on granger causality 
test

Figure 1 presents the trend diagram of sulfur dioxide (SO2) 
emissions (in 107kg) (National Bureau of Statistics of China, 2024) 
and the annual average concentration of sulfur dioxide (SO2) in the 
air (in mg/m3) (NBS, 2005–2021) in Tianjin from 2005 to 2021. In 
this figure, the line represents the total emission data over the years, 

while the columnar data indicates the annual average concentrations 
of sulfur dioxide (SO2) in the air.

From this diagram, a certain correlation can be observed 
between the concentration of sulfur dioxide in the air and the 
emission of this pollutant. To more precisely reveal the causality 
between them, this paper employs a statistical method--the Granger 
causality test. Using the professional econometric analysis software 
Eviews7, we conducted a detailed Granger causality test and 
organized the results in Table 1.

The test results indicate that, under the condition of 
setting the lag term to 2, if we reject the null hypothesis that 
“SO2DISCHARGED is not a Granger cause of SO2INAIR,” 
the risk of committing Type I error is relatively high, reaching 
0.4741. Conversely, if we reject the alternative null hypothesis that 
“SO2INAIR is not a Granger cause of SO2DISCHARGED,” the risk 
of committing Type I error is relatively low, at only 0.0243. Therefore, 
based on this statistical inference, we have reason to believe that 
sulfur dioxide emissions are a Granger cause of changes in sulfur 
dioxide concentrations in the air. 

3.2 Actual parameters among energy 
consumption, polluting gas emission, and 
investment

3.2.1 Analysis of decision variables in the model
Based on the specific data of Tianjin, the conventional 

classification in the “Report” and statistical yearbooks, we have 
subdivided the whole society into 10 sectors, namely agriculture, 
power generation, heat supply, oil refining, gas manufacturing, 
industry, construction, transportation, commerce, and residential 
life. At the same time, fossil fuels are classified into 9 types: coal, coke, 
crude oil, gasoline, kerosene, diesel, fuel oil, natural gas, and coal 
gas. However, if this detailed classification is adopted, the standard 
form of the model will contain up to 90 variables, which undoubtedly 
leads to an extremely large calculation burden. In view of this, we 
have conducted appropriate merging and simplification. Specifically, 
based on the actual consumption scale of different energy sources 
by various sectors in Tianjin, we have reclassified Tianjin into 
five sectors: large-scale agriculture (covering agriculture, forestry, 
animal husbandry, fishery, and water conservancy), industry 
(including power generation and heat supply), transportation, retail 
and accommodation, and consumption of living. Furthermore, 
based on the similarity of emission coefficients when these sectors 
consume energy, the aforementioned 9 types of energy are further 
summarized into 3 main types: coal, oil, and natural gas. 

3.2.2 Emission parameters in the model objective
Based on the Report and statistical yearbooks, the emission 

coefficients (in 10−3kg/kg(m3)) for various energy sources are 
summarized in Table 2.

This study has decided to adopt the pollutant emission 
coefficient data from Tianjin in 2012, which is supported by 
sufficient reason. Firstly, there is considerable difficulty in obtaining 
emission coefficient data for the period from 2017 to 2021. These 
data are often considered sensitive information by government 
departments and are dispersed across various departments and 
systems, posing significant challenges for external researchers 
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FIGURE 1
Trend diagram of sulfur dioxide emission and sulfur dioxide concentration in Tianjin.

TABLE 1  Results of granger test.

Null hypothesis Obs F-statistic Prob.

SO2INAIR does not Granger Cause 
SO2DISCHARGED

15 5.51183 0.0243

SO2DISCHARGED does not Granger 
Cause SO2INAIR

0.80492 0.4741

attempting to access them. Additionally, opting to use the emission 
coefficient data of 2012 facilitates direct comparative analysis of 
the study’s results with those of previous years (Meng et al., 2016), 
thereby enabling a more accurate assessment of the evolutionary 
trends in pollutant emission and governance investment over time.

As shown in Table 2, the meanings of the subscripts 
corresponding to parameter Ck = (c

k
ij),k = 1,2,3; i = 1,2,⋯,5, j =

1,2,3 in model (Equation 14) are as follows: k represents 3 different 
gases, namely sulfur dioxide (SO2), nitrogen oxides (NOx), and 
carbon dioxide (CO2); i corresponds to 5 different social sectors; 
j corresponds to 3 different energy sources, namely coal, oil, and 
natural gas. Taking c2

43 as an example, it represents 1.462× 10−3

nitrogen oxides (NOx) is emitted by the retail and accommodation 
industry (product No. 4) when consuming the third energy source, 
natural gas, per1m3. 

3.2.3 Governance investment parameter in the 
model objective

Given the lack of statistical data on nitrogen oxides (NOx) and 
carbon dioxide (CO2) emissions in Tianjin prior to 2010, this study 
decided to utilize the aggregate data on emissions of SO2, NOx and 
CO2 from 2011 to 2021 (China Emission Accounts and Datasets, 
2023), combined with concurrent governance investment data of 
waste gas, to jointly create a trend diagram depicting the changes in 
governance investment data of waste gas versus emissions in Tianjin, 
as shown specifically in Figure 2.

Specifically, we selected data on the total emissions of SO2, 
NOx, and CO2, as well as concurrent energy usage (China 
energy statistical yearbook, 2017–2021) and waste gas governance 

investment in Tianjin from 2011 to 2021, and incorporated these 
data into our model to estimate the model parameter C in 
Equation 8. However, upon observing scatter plots of the product 
of waste gas emissions and waste gas governance investment 
versus energy usage, calculated based on historical data, we 
noted significant deviations in the data points for 2013, 2014, 
2015, and 2021. These anomalies may be attributed to numerical 
fluctuations caused by specific events or factors. To ensure the 
accuracy and rationality of the model, we decided to exclude 
potentially anomalous year data from the regression analysis. 
Therefore, we selected data from 2011, 2012, and from 2016 
to 2020 as our samples and utilized the professional statistical 
software SPSS to conduct regression analysis, in order to accurately 
estimate the model parameters. The specific functional relationship 
obtained in Equation 8 is derived as follows:

E = 120407.9X
Y
. (20)

And the regression results are shown in Table 3 below:
The regression analysis results presented in Table 3 reveal 

that the R-value of this model reaches 0.717, which strongly 
demonstrates a close and significant correlation between the model 
and the actual observed data. Furthermore, the R-squared value of 
the regression model is 0.514, indicating that the model is able to 
capture and explain more than half of the variability in the data, thus 
demonstrating the model’s excellent performance in data fitting. 
Additionally, the significance level of variable X is 0.07, which is 
a statistical result that enhances our confidence in the estimation 
of the quantitative relationship between emissions and investments 
described by the above equation, suggesting that the estimation 
result is largely reliable. 

3.2.4 Constraint parameters in the model
Based on the final consumption of 3 major energy products--

coal, crude oil products, and natural gas-by various sectors in 
Tianjin from 2017 to 2021, as well as the coefficient for converting 
various energies into standard coal, this paper compiles the final 
consumption and the equivalent consumption in standard coal for 
each sector in Tianjin from 2017 to 2021. Table 4 presents the data 
for 2021 as an example.
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TABLE 2  Pollutant emission coefficient table.

Product
No.

Sectors Type of energy SO2 emission 
coefficient 
(107kg)

NOX emission 
coefficient 
(107kg)

CO2 emission 
coefficient 
(107kg)

1 Large-scale Agriculture

Coal 12 3.75 1977.90

Oil 18 8.26 2984.75

Gas 0 1.462 2184.03

2 Industry

Coal 8.4 8 1977.90

Oil 12.6 8.86 2984.75

Gas 0 2.085 2184.03

3 Transportation

Coal 12 7.5 1977.90

Oil 9 36.25 2984.75

Gas 0 2.085 2184.03

4 Retail and accommodation

Coal 12 3.75 1977.90

Oil 9 5.77 2984.75

Gas 0 1.462 2184.03

5 Consumption of living

Coal 12 1.88 1977.90

Oil 9 16.7 2984.75

Gas 0 0.736 2184.03

FIGURE 2
Trend diagram of waste gas governance investment versus emissions in Tianjin.

From Table 4, we can obtain the energy demand constraints 
in the model. Here, ρj represents the coefficient for converting 
the j-th type of energy product into standard coal, with 
values of 0.71 for coal, 1.47 for oil products, and 13.3 
for natural gas. Di denotes the energy demand of the i-th 
industry, with its value corresponding to the third column in
Table 4.

Further considering the energy supply constraints of the model, 
since the three types of energy cannot be supplied unlimitedly and 
have a certain degree of complementarity under the premise of 
meeting energy consumption, the supply of the j-th type of energy 
product is set to 150% of Tianjin’s consumption for that year. The 
reason for this setting is that if it is set too low, there will be less 
room for adjustment in the energy structure. 
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TABLE 3  Regression analysis results.

R R square Adjusted R square Standard error of the estimate

0.717 0.514 0.416 80665349.76

Unstandardized coefficients Standardized coefficients

B Std. Error Beta t Sig.

1 (Constant) −146206997 402119461.1 −0.364 0.731

X 120407.939 52408.771 0.717 2.297 0.07

TABLE 4  Statistics of final energy consumption in Tianjin in 2021.

Product no. Sectors Standard coal Di (107kg) Final consumption

Coal
(107kg)

Oil
(107kg)

Natural gas
(107kg)

1 Large-scale Agriculture 62.8419 5.61 40.40 0

2 Industry 1775.75 480.15 692.89 31.30

3 Transportation 432.39 0.01 258.31 3.96

4 Retail and accommodation 152.04 0 31.59 7.94

5 Consumption of living 532.90 22.00 234.09 13.02

Total 2955.92 507.77 1256.92 56.22

TABLE 5  Comparison of optimized emission with actual emission of 
carbon dioxide in Tianjin.

Year Optimized 
emission 
amount 
(107kg)

Actual 
emission 
amount 
(107kg)

Optimization 
efficiency

2017 9176.7659 13215 30.56%

2018 8044.2486 13836 41.86%

2019 8444.7823 13772 38.68%

2020 7938.1368 12849 38.22%

2021 8061.2175 14101 42.83%

3.3 Analysis of the solution to the 
optimization model

In recent years, the focus of China’s environmental protection 
efforts has increasingly shifted to the management of carbon dioxide 
(CO2) emission. Especially during the period from 2017 to 2021, 
the two major goals of “Carbon Peak” and “Carbon Neutrality” 
were established as the country’s core strategic orientations. This was 
followed by a series of policy releases, such as the “2023 Carbon Peak 

Action Plan” (State Council of China, 2021) and the “National 14th 
Five-Year Plan for Modern Energy System” (National Development 
and Reform Commission of China, 2022), which have endowed 
carbon dioxide governance with unprecedented policy significance 
and urgency. In view of this background, this paper closely examines 
the policy framework and established emission reduction targets, 
combining a meticulously constructed model to deeply analyse 
optimization strategies for carbon emission reduction. The aim is 
to provide solid theoretical support and practical guidance for the 
realization of the “Dual-carbon” goals.

In the specific research, based on the actual data provided 
in Sections 3.2.1 to 3.2.3, we substituted them into model 
(Equation 19) to construct a single-objective emission reduction 
optimization model that includes 15 non-negative decision variables 
and 8 linear inequality constraints. To solve this model, we fully 
utilized the established model parameters and efficient algorithms, 
with the aid of Matlab software for implementation. We present the 
solution process of the model in detail. Firstly, we set the weights of 
various pollutant emissions in the objective function of the model to 
w1 = w2 = w3 = 1 and substituted the data on energy consumption 
by various sectors in Tianjin from 2017 to 2021 into the model. 
We then obtained the optimized carbon dioxide (CO2) emission 
in Tianjin under the corresponding conditions of different years 
and compared the optimized emission with the actual emission, 
as shown in Table 5.

Here, this paper defines the optimization efficiency as follows:
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TABLE 6  Variation of optimized carbon dioxide emissions under different weight scenarios.

Year\Weights 1:1:1 1:1:3 Relative change rate 1:1:5 Relative change rate

2017 9176.7659 9176.7612 0.00005% 9176.7564 0.00010%

2018 8044.2486 8044.2472 0.00002% 8044.2457 0.00004%

2019 8444.7823 8444.7764 0.00007% 8444.7704 0.00014%

2020 7938.1368 7938.1308 0.00008% 7938.1248 0.00015%

2021 8061.2175 8061.2155 0.00002% 8061.2134 0.00005%

Year\Weights 1:1:1 1:1:7 Relative Change Rate 1:1:10 Relative Change Rate

2017 9176.7659 9176.7517 0.00015% 9176.7445 0.00020%

2018 8044.2486 8044.2443 0.00005% 8044.2421 0.00010%

2019 8444.7823 8444.7643 0.00021% 8444.7553 0.00030%

2020 7938.1368 7938.1188 0.00023% 7938.1097 0.00030%

2021 8061.2175 8061.2114 0.00008% 8061.2083 0.00010%

TABLE 7  Statistics of optimized carbon dioxide emissions in Tianjin.

Year Optimized emission 
amount at 1:1:1 ratio 
(107kg)

Optimized emission 
amount at 1:1:10 ratio 

(107kg)

2017 9176.7659 9176.7445

2018 8044.2486 8044.2421

2019 8444.7823 8444.7553

2020 7938.1368 7938.1097

2021 8061.2175 8061.2083

Optimizationefficiency =
actualemission− optimizedemission

actualemission
× 100%.

From the table, it can be seen that under the conditions 
corresponding to different years, the optimized carbon dioxide 
(CO2) emission calculated by the model are generally lower than the 
actual emission for that year. Based on the above data and formulas, 
the average optimization efficiency of carbon di-oxide emissions in 
Tianjin from 2017 to 2021 was calculated to be 38.43%.

The following discussion focuses on the variation of optimized 
carbon dioxide (CO2) emissions under different weight scenarios, 
specifically the results when the weight ratio of the three gases in the 
model is set to 1:1: a (where a = 1, 3, 5, 7, 10), as shown in Table 6.

When the weight ratio of the three gases in the model is set to 
1: 1: a (where a = 3, 5, 7, 10), the optimized carbon dioxide (CO2) 
emissions show minimal changes compared to when the weight 
ratio is set to 1:1:1. The relative change rates all fall within 0.001%. 

Therefore, variations in the weight a of carbon dioxide in the model 
within the range of 1–10 have a relatively small impact on the results.

To focus on the analysis of carbon dioxide (CO2) emission, 
the weights of various pollutant emissions in the objective function 
of the model were adjusted to w1 = w2 = 1,w3 = 10 The data on 
energy consumption by various sectors in Tianjin from 2017 to 2021 
were substituted into the model to solve for the optimal carbon 
dioxide emission in Tianjin under the corresponding conditions 
of different years. These results were then compared with the 
optimization results obtained when the weights were w1 = w2 =
w3 = 1, as shown in Table 7.

Upon closely examining the table data, we can observe that even 
when the weight of carbon dioxide (CO2) emission is substantially 
increased to 10 times its original value in the model, the room for 
improvement in the optimization results remains relatively limited. 
This phenomenon suggests that when the weights are set to 1:1:1, 
the model has already demonstrated considerable optimization 
efficiency.

Next, let us further analyze the investment situation 
corresponding to emission reduction. Firstly, when the weights 
are set to 1:1:1, we calculate the cumulative optimized sulfur 
dioxide (SO2), nitrogen oxides (NOx), and carbon dioxide (CO2) 
emission in Tianjin from 2017 to 2021. Subsequently, we combine 
this cumulative value with the actual total energy consumption in 
Tianjin during the same period and substitute it into the function-al 
relationship between waste gas emissions, energy usage, and waste 
gas governance in-vestment mentioned in Section 3.2.3. By this 
step, we are able to estimate the amount of governance investment 
required to achieve optimized waste gas emissions at real energy 
consumption levels. The following Table 8 details the comparison 
between the optimized governance investment amount and the 
actual governance investment amount:

It can be observed from the table that the actual investment 
amount for waste gas governance in Tianjin from 2017 to 2021 
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was lower than the investment required to achieve optimal waste 
gas emission. 

3.4 Test the waste gas governance 
investment in 2022

The collaborative emission reduction model (Equation 20) 
mentioned above can calculate the emission levels of waste gases and 
their corresponding governance investment. Below, we conduct a 
validation test on the emission-governance investment relationship 
for 2022. To ensure consistency with actual data, the waste 
gas emission E and total energy consumption X for 2022 are 
derived from regression-based predictions using historical data 
from previous years. We proceed with the following 3 steps. 

Step 1. Prediction of emission data for three kinds of waste gases.

The trend extrapolation method is adopted below to predict the 
emissions of major pollutants. Based on the historical data from 2017 
to 2021, a linear regression model is established.

For SO2, the regression equation obtained is the 
following Equation 22:

ESO2
= 2.8720− 0.4200 t (21)

where t is the year index, t = 1 for 2017, t = 2 for 2018, …, t = 5 for 
2021. Furthermore, the predicted emissions for 2022 are calculated 
as 0.3520 ten thousand tons. The goodness of fit is R2 = 0.9542.

For NOx, the regression equation obtained is the following 
(Equation 22):

ENOx
= 12.3880− 0.2800 t, (22)

where t is defined the same as in (Equation 21). The predicted 
emissions for 2022 are calculated as 10.7080 ten thousand tons. The 
goodness of fit is R2 = 0.7365.

For CO2, its emissions data from China energy statistical 
yearbook (2017–2021) are shown in Figure 3.

There are significant fluctuations. Therefore, the average value 
of emissions from 2017 to 2021 is considered to be used as the 
emissions for 2022, which is 13554.60 ten thousand tons. 

Step 2. Prediction of total energy consumption.

Considering the volatility of energy consumption data, the 
Exponential Smoothing method is used for short-term forecasting. 
This method is suitable for short-term forecasting of volatile data and 
can assign higher weights to recent data. The calculation formula is 
as (Equation 23):

X̃t = αXt−1 + (1− α)X̃t−1, (23)

where t is defined the same as in (Equation 21). A smoothing 
constant of α = 0.5 is adopted to assign higher weights to recent 
data. Xt represents the total energy consumption value in the 
t-th year (see Table 9), and X̃t represents the predicted energy 
consumption value in the t-th year, and we set the following
(Equation 24)

X̃2017 = X2017 = 3068.18. (24)

TABLE 8  Comparison of waste gas governance investment in Tianjin.

Year Optimized 
investment 
(104 Yuan)

Actual investment 
(104 Yuan)

2017 100085.5 59536

2018 117578.0 56879

2019 116869.5 55280

2020 123503.6 73987

2021 121419.5 9014

FIGURE 3
Trend diagram of carbon dioxide emissions from 2017 to 2021 
in Tianjin.

TABLE 9  Annual total energy consumption from 2017 to 2021.

Year Total energy consumption (10000 tons)

2017 3068.18

2018 2846.851

2019 2990.193

2020 2835.191

2021 2955.92

By substituting the data into the aforementioned formula, the 
calculated predicted value of total energy consumption for 2022 is 
2930.22 ten thousand tons. 

Step 3. Prediction of waste gas governance investment in
2022.

By substituting the total energy consumption in 2022 
and the predicted values of the total emissions of three 
types of waste gases into Formula 20, the predicted value 
of investment in waste gas treatment in 2022 is obtained 
as 260.0844 million yuan. However, after consulting the 
National Data (National Bureau of Statistics of China, 2024), the 
actual value of investment in waste gas treatment in Tianjin in 2022 
is 477.46 million yuan, which is higher than the predicted value. This 
indicates that there is still room for a decrease in the investment in 
waste gas treatment in 2022, or that enterprises have increased their
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investment in waste gas treatment due to the impact of relevant
policies. 

4 Discussion

The model results show that the optimized CO2 emission 
amount of each year is significantly lower than the actual emission, 
with an average optimization efficiency of 38.43%, indicating 
that there is still considerable room for emission reduction 
in Tianjin under the current policy framework. However, the 
actual environmental investment amount is far below the model 
recommendation (for example, the actual investment in 2021 
was only 7.4% of the optimized value), which directly constrains 
the achievement of emission reduction targets. Additionally, the 
sensitivity analysis of pollutant weights in the model shows 
that weight settings have a certain impact on the optimization
results.

Based on the model results, we give the following suggestions: 

1. Increase investment: It is suggested that the government should 
increase financial support, establish special funds for clean 
energy technology upgrading and “oil to gas” transformation 
in the transportation industry, and introduce social capital 
to participate in the project through PPP mode to ease the 
financial pressure.

2. Optimize energy structure: It is recommended to combine 
regional environmental carrying capacity, regularly assess 
and adjust weights to balance the needs of multi-pollutant 
co-governance. Promote the optimization of the energy 
structure, increase the proportion of clean energy usage, 
and reduce the dependence on fossil fuels. This not only 
helps to reduce exhaust emissions but also improves energy
efficiency.

3. Improve energy efficiency: Improve energy efficiency through 
technological innovation and management optimization, 
reduce energy consumption per unit output, so as to reduce 
waste gas emissions.

4. Policy support: The government should introduce more 
incentive policies to encourage enterprises and individuals 
to adopt clean energy and efficient energy utilization 
technologies, while imposing stricter supervision and 
restrictions on highly polluting emission enterprises.

5. Public participation: Strengthen public education and 
participation, raise the awareness of the importance of waste 
gas treatment in the society, and encourage the public to 
adopt energy-saving and emission reducing lifestyles and 
consumption patterns.
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