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Background: PRRT with [177Lu]Lu-DOTA-TATE improves survival in advanced

GEP-NETs, but fixed-activity dosing may result in undertreatment or

unnecessary toxicity. Individualized dosimetry and tandem-PRRT with 90Y/177Lu

have been proposed, but prospective randomized evidence is lacking.

Methods: DUONEN is an ongoing multicenter, randomized phase 3 trial (N = 92

planned; 56 analyzed) comparing standard fixed-activity [177Lu]Lu-DOTA-TATE (arm

A) with three dosimetry-guided regimens: arm B (177Lu+90Y, variable 90Y); armC (177Lu

+90Y, variable 177Lu); armD (variable 177Lu). Organ dosimetrywas performed after each

cycle, with per-cycle activity modifications to respect kidney (23 Gy) and marrow (2

Gy) thresholds. Safety was assessed by laboratory, renal, and hepatic parameters.

Results: Activity reductions predominated in arms B and C, while increases were

common in armD.Median cumulative kidney andmarrow doses were highest in arm

C (29.1 Gy and 0.79 Gy, respectively), driven by 90Y contribution. Hematologic

declines were observed across all arms, most prominently in lymphocytes and
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platelets, and correlated with marrow dose but not with categorical dose

modifications. Renal function remained stable, and no clinically relevant

hepatotoxicity occurred.

Conclusions: This interim analysis demonstrates the feasibility and safety of

dosimetry-guided PRRT strategies, including individualized 177Lu escalation

and tandem 90Y/177Lu. DUONEN provides the first randomized prospective

evidence for isotope- and patient-tailored PRRT dosing. Long-term follow-up

will clarify their impact on efficacy.

Clinical trial registration: https://www.clinicaltrialsregister.eu/ctr-search/

search?query=eudract_number:2020-006068-99, identifier 2020-

006068-99.
KEYWORDS

NET, RLT, PRRT, dosimetry, tandem therapy, [177Lu]Lu-DOTA-TATE, [90Y]Y-DOTA-
TATE, GEP-NET
1 Introduction

Although gastroenteropancreatic neuroendocrine tumors

(GEP-NETs) are still considered rare, numerous reports and

epidemiological studies in recent years have demonstrated a

substantial increase in their incidence and detection (1, 2). In

most cases, GEP-NETs are characterized by an indolent, long-

term clinical course. A hallmark of this group of tumors is the

overexpression of somatostatin receptors on the cell surface, which

enables the use of long-acting somatostatin analogs (SSA) as first-

line therapy (3, 4). According to both Polish and European

guidelines, patients who experience disease progression during

SSA therapy (and are not eligible for surgical treatment) are

recommended to receive peptide receptor radionuclide therapy

(PRRT, also referred to as radioligand therapy, RLT) as a second-

line treatment (5–8). The NETTER-1 trial demonstrated the

superiority of [177Lu]Lu-DOTA-TATE over standard therapy with

respect to disease control and improvement in quality of life, which led

to the approval of this therapy in the United States and Europe (9, 10).

Due to the heterogeneity of metastatic disease typically observed

in GEP-NETs (coexistence of bulky lesions and small metastases),

standard PRRT with [177Lu]Lu-DOTA-TATE may show limited

effectiveness in some patients. Furthermore, there is evidence that a

fixed regimen of four cycles of [177Lu]Lu-DOTA-TATE administered

to all patients, without accounting for individual variability in

radiosensitivity, may lead to undertreatment (11). This highlights

the need for continuous development of PRRT methods and the

search for optimal strategies regarding activity dosing and isotope

selection. Retrospective studies have explored the combination of

somatostatin analogs labeled with isotopes of different physical

properties—such as lutetium-177 (177Lu), which has a maximum b-

particle tissue penetration range of approximately 2 mm, and yttrium-
02
90 (90Y), with a range of 10–12 mm. This approach, referred to as

“tandem-PRRT,” may theoretically improve tumor coverage across

lesions of varying size (12–16). In the era of personalized medicine,

prospective studies are warranted to compare different dosing

strategies and the use of alternative isotopes in the treatment of

GEP-NETs, as well as to evaluate the toxicity profiles of such

approaches. Currently, no randomized trials have investigated the

impact of tandem-PRRT on overall survival in GEP-NET patients, nor

compared this method with conventional therapy based solely on

[177Lu]Lu-DOTA-TATE. Importantly, the available evidence from

non-randomized studies and clinical experience suggests a potential

advantage of combining isotopes over monoisotope therapy.

DUONEN is the first Polish, randomized, multicenter clinical trial

comparing different PRRT regimens. The aim of the study is to

optimize treatment of GEP-NET patients by improving therapeutic

efficacy while minimizing adverse events, particularly in critical organs

such as bone marrow and kidneys. The novelty of DUONEN lies in a

prospective, randomized, multicenter comparison of fixed-activity

[177Lu]Lu-DOTA-TATE versus multiple dosimetry-guided PRRT

strategies (including tandem-PRRT), with per-cycle adaptation. It is

the first study to test several dosimetry algorithms head-to-head while

quantifying isotope-specific contributions to organ doses.
2 Materials and methods

The DUONEN study (“The Use of Tandem LutaPol/ItraPol

Therapy (177Lu/90Y-DOTATATE) as an Effective Approach in the

Treatment of Neuroendocrine Tumors”) is ongoing, multicenter,

open-label, phase 3 trial conducted at four clinical centers in

Poland. The study was funded by the Medical Research Agency,

Poland (project number 2019/ABM/01/00077). All procedures
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performed in this study involving human participants were conducted

in accordance with the ethical standards of the institutional and/or

national research committee and with the 1964 Declaration of

Helsinki and its later amendments. The protocol was reviewed and

approved by the Bioethics Committee of the Jagiellonian University,

Kraków, Poland (approval no. 1072.61201.24.2020, dated January 20,

2021). Written informed consent was obtained from all individual

participants included in the study. The study was registered in

EudraCT 2020-006068-99 (September 20, 2021).

The protocol-defined sample size was 92 patients. Recruitment

began in 2022. This pre-specified interim analysis, representing one
Frontiers in Endocrinology 03
of the study milestones, includes 56 patients (approximately 60% of

the planned cohort) who completed PRRT according to their

randomized assignment. PRRT administration in the last enrolled

patient is expected to be completed in September 2027, with the final

follow-up visit for the last patient scheduled for September 2032.
2.1 Baseline characteristics

A total of 56 DUONEN trial patients (Table 1) were included in

the interim analysis, with 16 assigned to arm A (standard RLT with
TABLE 1 Characteristics of DUONEN trial patients enrolled in the interim analysis.

Characteristic Total (N = 56) Arm A (N = 16) Arm B (N = 16) Arm C (N = 12) Arm D (N = 12)

Median age, years (range) 69 (27-86) 68 (54-81) 73 (49-86) 69 (50-81) 62 (27-74)

Sex, n (%)

male 26 (46.4%) 5 (31.3%) 5 (31.3%) 7 (58.3%) 9 (75.0%)

female 43 (53.6%) 11 (68.7%) 11 (68.7%) 5 (41.7%) 3 (25.0%)

Ethnicity, n (%)

Caucasian 56 (100%) 16 (100%) 16 (100%) 12 (100%) 12 (100%)

Black 0 (0%) 0 (0%) 0 (0)% 0 (0%) 0 (0%)

Asian 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Median BMI, kg/m2 (range) 25.9 (17.7 - 36.6) 24.1 (20.1 - 30.1) 23.9 (19.9 - 33.3) 25.3 (17.7 - 33.2) 24.9 (20.2 - 36.6)

Primary site, n (%)

Midgut 35 (62.5%) 10 (62.5%) 11 (68.8%) 7 (58.3%) 7 (58.3%)

Pancreas 16 (28.6%) 5 (31.5%) 4 (25.0%) 2 (16.7%) 5 (41.7%)

Stomach 1 (1.8%) 0 (0%) 1 (6.3%) 0 (0%) 0 (0%)

Hindgut 3 (5.4%) 0 (0%) 0 (0%) 3 (25.0%) 0 (0%)

Other/unknown 1 (1.8%) 1 (6.3%) 0 (0%) 0 (0%) 0 (0%)

Histological grade, n (%)

NET G1 22 (39.3%) 8 (50.0%) 6 (37.5%) 2 (16.7%) 6 (50.0%)

NET G2 34 (60.7%) 8 (50.0%) 10 (62.5%) 10 (83.3%) 6 (50.0%)

Sites of metastases, n (%)

Liver 52 (92.9%) 15 (93.8%) 14 (87.5%) 12 (100%) 11 (91.7%)

Lymph nodes 33 (58,9%) 8 (50.0%) 9 (56.3%) 7 (58.3%) 6 (50.0%)

Bone 22 (39.3%) 5 (31.3%) 6 (37.5%) 6 (50.0%) 5 (41.7%)

Other 37 (60.1%) 9 (56.3%) 11 (68.8%) 10 (83.3%) 7 (58.3%)

Median time from diagnosis, months (range) 69 (12–125) 69 (12–101) 71 (20–89) 66 (18–91) 70 (15–125)

Karnofsky performance status ≥80, n (%) 51 (91.1%) 14 (87.5%) 14 (87.5%) 12 (100.0%) 11 (91.7%)

Baseline labs (median, range)

Hemoglobin, g/dL 12.9 (10.0 -16.2) 12.5 (10.0 -15.0) 13.3 (11.9 -15.7) 12.7 (10.6 -14.0) 13.1 (11.3 -16.2)

Platelets, ×109/L 229 (148 –381) 266 (148 -377 248 (141 - 371 183 (168 - 296) 219 (162 - 343)

WBC, ×109/L 6.62 (3.73 –10.81) 5.95 (3.89 - 10.04) 6.98 (5.74 - 10.93) 5.37 (5.08 - 10.51) 7.18 (3.73 - 10.81)

eGFR, mL/min/1.73 m² 82 (48 – 153) 81 (60 - 118) 76 (49 - 110) 81 (53 - 102) 82 (48 - 153)
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[177Lu]Lu-DOTA-TATE), 16 to arm B, 12 to arm C, and 12 to arm

D (dosimetry-modified arms). The median age at enrollment was 69

years (range: 27–86), and 46.4% of patients were male. The majority

of patients presented with gastroenteropancreatic NETs originating

from the midgut (62.5%) and pancreas (28.6%), with smaller

proportions from the hindgut, stomach, or other primary sites.

Most tumors were well-differentiated G2 GEP-NETs (60.7%),

followed by G1 (39.3%). At the baseline, all patients

demonstrated somatostatin receptor–positive disease on imaging.

Across the four study arms, the baseline demographic and

disease characteristics were broadly comparable, with no clinically

significant imbalances (Table 1).

Eligible patients were adults with histologically confirmed,

disseminated or inoperable, well-differentiated gastroenteropancreatic

neuroendocrine tumors (GEP-NETs), defined by a Ki-67 index of

≤20%. The main inclusion criteria included documented

disease progression, as assessed by the Response Evaluation Criteria

in Solid Tumors (RECIST), version 1.1, on computed tomography

(CT) or magnetic resonance imaging (MRI) within a maximum of 18

months while receiving long-acting somatostatin analog therapy

(octreotide LAR 30 mg or lanreotide 120 mg administered every

4 weeks).

Additional eligibility requirements included a good general health

status, defined as a Karnofsky performance status of ≥60 and a life

expectancy of >26 weeks, as well as positive somatostatin receptor

expression in all target lesions. Patients were also required to have

adequate organ function, defined as: serum creatinine <120 mmol/L or

estimated glomerular filtration rate (eGFR) >45 mL/min/1.73 m²;

hemoglobin >9.0 g/dL; white blood cell count >3 × 109/L; and

platelet count >100 × 109/L within 4 weeks prior to enrollment. Liver

function tests were required to be <3 times the upper limit of normal.

Key exclusion criteria included pregnancy or breastfeeding; a

history of other malignancies; and any prior treatment with liver-

directed transarterial therapy (e.g., embolization), chemotherapy,

mTOR inhibitors, or PRRT at any time prior to randomization.
2.2 Trial design

Patients who met all the inclusion and did not meet any of the

exclusion criteria were randomly assigned to one of four

treatment arms:
Fron
• Arm A: [177Lu]Lu-DOTA-TATE administered at a fixed

activity of 7.4 GBq per cycle.

• Arm B: A combination of [177Lu]Lu-DOTA-TATE and

[90Y]Y-DOTA-TATE, initially in a ratio of 3.7:1.85 GBq/

GBq. The activity of [177Lu]Lu-DOTA-TATE remained

constant across all cycles, whereas the activity of [90Y]Y-

DOTA-TATE was adjusted in the second, third, and fourth

cycles based on bone marrow and kidney dosimetry to

maximize radiation dose delivery to tumor tissue.

• Arm C: Analogous to Arm B, except that [90Y]Y-DOTA-

TATE activity was kept constant, and the dose of [177Lu]Lu-
tiers in Endocrinology 04
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dosimetry findings.

• Arm D: [177Lu]Lu-DOTA-TATE administered at activity of

7.4 GBq at the first cycle, followed by individualized

adjustment in subsequent cycles based on bone marrow

and kidney dosimetry to maximize radiation dose delivery

to tumor tissue.
All patients received four cycles of PRRT administered every 8 ±

2 weeks, unless exclusion criteria were met during the treatment

course. Supportive care with long-acting somatostatin analogs was

continued throughout: these were administered approximately 2

weeks after each PRRT cycle and then monthly following

completion of therapy.

All patients received treatment in an inpatient setting within the

Departments of Nuclear Medicine. Long-acting somatostatin

analogs were discontinued 6 weeks prior to the initiation of

PRRT and reintroduced 2 weeks after each treatment cycle.

Antiemetic prophylaxis consisted of ondansetron administered

30 minutes prior to the start of the amino acid infusion. An amino

acid solution (1 L of Vamin 18, containing 18 g of lysine and 22.6 g

of arginine in 2 L of solution) was initiated 60 minutes before PRRT

administration and infused over 4 hours.

The PRRT infusion was administered intravenously over

approximately 30 minutes.

On day 2 following PRRT, an additional 0.5 L infusion of

Vamin 18 was administered fol lowing premedication

with ondansetron.

Treatment discontinuation criteria during PRRT included any

of the following: Karnofsky performance status score <60; serum

creatinine >150 mmol/L; eGFR <30 mL/min/1.73 m²; hemoglobin

<8.0 g/dL; white blood cell count <3 × 109/L; neutrophil count <1 ×

109/L; platelet count <80 × 109/L; or liver function test results

exceeding 3 times the upper limit of normal. Patients meeting any of

these criteria were withdrawn from further PRRT and transitioned

to follow-up care.
2.3 Dosimetry of critical organs and PRRT
dose calculations

For each patient, full dosimetry of critical organs and selected

GEP-NET lesions was performed following each cycle of PRRT.

Bone marrow dosimetry was based on measurements of isotope

activity in peripheral blood, as well as in hot organs (liver, spleen,

kidneys) and the rest of body, estimated from the four SPECT

images listed below, to account for the cross-dose to red marrow.

Blood samples were collected at five time points: 5 minutes, 10

minutes, 40 minutes, 4 hours (immediately prior to the first SPECT/

CT scan), and 24 hours after each RLT administration.

Renal dosimetry was performed using 4 post-therapeutic

SPECT/CT scans obtained at 4, 24, 48, and 192 hours after PRRT

administration. Data were analyzed using dedicated Q-DOSE

software. Kidney absorbed dose calculations were performed
frontiersin.org
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using the IDAC 2.1 model. In select anatomical variants, such as a

horseshoe kidney, the VOXEL S model was applied instead.

Activity of 177Lu was directly quantified using post-therapeutic

imaging, while 90Y activity was estimated based on 177Lu-derived

images, under the assumption of identical biodistribution for

both isotopes.

Dose constraints for critical organs were defined based on

previously published data:
Fron
• Kidneys: a cumulative absorbed dose limit of 23 Gy for the

entire PRRT course.

• Bone marrow: a maximum of 0.5 Gy per cycle, with a total

dose not exceeding 2 Gy across all cycles.
2.4 PRRT safety evaluation

Safety in all PRRT arms is assessed based on the incidence and

severity of adverse events, graded according to the Common

Terminology Criteria for Adverse Events (CTCAE), version 5.0.

Safety evaluations include:
• Laboratory assessments, including complete blood count

with peripheral smear and reticulocyte count, liver enzymes

(ALT, AST), total bilirubin, serum creatinine, and estimated

glomerular filtration rate (eGFR);

• Physical examinations;

• Vital signs monitoring;
Assessment of performance status, using the Karnofsky

Performance Status (KPS) scale. Safety assessments are conducted

prior to each PRRT cycle, 2 weeks after each cycle, and at least every

12 weeks during the follow-up period.
2.5 Preparation of [177Lu]Lu-DOTA-TATE
and [90Y]Y-DOTA-TATE

[177Lu]Lu-DOTA-TATE and [90Y]Y-DOTA-TATE were

prepared by radiolabeling DOTA-TATE (NCBJ POLATOM,

Poland) with carrier-free 177LuCl3 (LutaPol, NCBJ POLATOM,

Poland) or 90YCl3 (ItraPol, NCBJ POLATOM, Poland),

respectively (17). Radiolabeling was carried out in sodium

ascorbate buffer (pH 4.5) at 90°C for 30 minutes, followed by

sterilization through a 0.22 mm filter. The final preparations were

diluted with buffer to a concentration of 1.0 GBq/mL ±10% and

dispensed into sterile vials under aseptic conditions.
2.6 Sample size determination and
statistical analyses

Sample size estimation was based on the primary efficacy endpoint,

progression-free survival (PFS), and comparison of survival curves
tiers in Endocrinology 05
using the log-rank test. An exponential distribution of PFS was

assumed, with a baseline hazard rate in the standard arm of l =

0.0235 per month, corresponding to a 20-month PFS rate of

approximately 62–65%, consistent with the NETTER-1 trial (9). In

Polish retrospective data (13), median PFS for tandem-PRRT ranged

from 24.3 to 59.3 months depending on tumor grading. For the

purpose of the DUONEN study, a 100% improvement in PFS was

anticipated in the personalized PRRT arms, corresponding to a hazard

ratio (HR) of 0.50.

Statistical analyses were performed using IBM SPSS Statistics

software (version 23; IBM Corp., Armonk, NY, USA). The Shapiro–

Wilk test was applied to assess the normality of data distribution.

Normally distributed continuous variables are presented as means

with standard deviations, whereas non-normally distributed

variables are presented as medians with interquartile ranges

(IQRs). Between-group comparisons were performed using the

Kruskal–Wallis test for non-normally distributed data and

analysis of variance (ANOVA) for normally distributed data, with

post-hoc Tukey tests (equal variance) or Games–Howell tests

(unequal variance) applied as appropriate. Correlations between

variables were assessed using Pearson’s or Spearman’s correlation

coefficients. Statistical significance was defined as a two-tailed p-

value <0.05. P-values were not adjusted for multiple comparisons,

as all analyses were exploratory.
3 Results

In the presented analysis, the labels T1, T2, T3, and T4 denote

the first, second, third, and fourth cycles of PRRT, respectively. The

labels V1, V2, V3, and V4 refer to the subsequent follow-up visits

after the first (V1), second (V2), third (V3), and fourth (V4) cycle

of PRRT.
3.1 Modifications of administered activities
and organ doses

In the experimental arms B, C, and D, individualized

dosimetry-guided modifications of administered activities were

applied according to study protocol. By design, 90Y was

modulated in arm B, 177Lu in arms C and D, while the other

isotope (in arm B and C) was kept constant.
3.2 Patterns and magnitude of
modifications

As summarized in Table 2, in arm B 90Y activity was reduced in

9 patients, increased in 2, and unchanged in 6, while 177Lu remained

fixed. In arm C, 177Lu activity was reduced in 9 patients, increased

in 1, and unchanged in 2, while 90Y remained fixed. In arm D, 177Lu

was increased in 8 patients, decreased in 1, and unchanged in 3.

Thus, activity reductions predominated in arms B and C, while

increases were more common in arm D.
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The magnitude of changes varied: average reductions amounted

to −1160 MBq (−62.7%) for 90Y in arm B and −2532 MBq (−68.4%)

for 177Lu in arm C, while increases averaged +2338 MBq (+126%)

and +1055 MBq (+28.5%), respectively. In arm D, 177Lu activity was

increased on average by +1814 MBq (+24.5%) and decreased by

−2917 MBq (−39.4%).

These patterns are illustrated in Figure 1, which depicts the

proportion of patients with increased, decreased, or unchanged

activities per arm and isotope.
3.3 Impact on organ doses

Median cumulative kidney and marrow doses are presented in

Table 3. Patients in the control arm A (fixed-activity 177Lu, 4×7.4

GBq) received the lowest doses to both kidneys (15.6 Gy, IQR 11.1–

20.4) and marrow (0.39 Gy, IQR 0.25–0.57).

In comparison, kidney doses were higher in arms B (21.6 Gy,

IQR 17.1–26.2) and C (29.1 Gy, IQR 21.6–36.2), with the highest

marrow dose also observed in arm C (0.79 Gy, IQR 0.59–1.13). In

arm D, median doses were 21.2 Gy (kidneys) and 0.45 Gy (marrow),

comparable to those in arm B. Boxplots in Figures 2A, B illustrate

the distribution of cumulative kidney and marrow doses per arm.

Importantly, in arms B and C, isotope-specific contributions

could be distinguished. As shown in Table 3, 90Y accounted for the

majority of renal dose in both arms, while marrow exposure

remained modest. In arm C, a significant negative correlation was

observed between changes in 177Lu activity and kidney dose
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(Spearman rho = −0.74, p=0.037), underscoring the dominant

role of 90Y in determining renal exposure in tandem-RLT. This

relationship is visualized in Figure 3.
3.4 Comparison with the standard arm

Statistical analyses confirmed higher kidney doses across arms

(Kruskal-Wallis p=0.043), driven primarily by arm C (p=0.028 vs.

arm A). Marrow doses were also higher in arm C compared to arm

A (p=0.033), while arms B and D showed no significant differences.

Taken together, these results indicate that dosimetry-guided

modifications were successfully implemented in the targeted

isotopes, with reductions dominating in arms B and C and

increases in arm D. Among the modified regimens, arm C yielded

the highest renal and marrow doses relative to the standard fixed-

activity protocol.
3.5 Hematologic toxicity over time

Across the cohort, blood counts declined progressively after

consecutive PRRT cycles, with the largest median drops (vs T1

baseline) observed at V4 (Figures 4, 5): hemoglobin −0.90 g/dL

(IQR −1.60 to −0.50), platelets −57×109/L (−88 to −22),

WBC −2.52×109/L (−3.38 to −1.72), neutrophils −1.37×109/L

(−2.06 to −0.87), and lymphocytes −0.87×109/L (−1.31 to −0.53)

(Table 4). Paired comparisons showed stepwise, statistically
TABLE 2 Patterns of isotope modifications in arms B–D.

Arm Isotope N increased N decreased N unchanged Mean ↑ (MBq, %) Mean ↓ (MBq, %)

B [90Y] 2 9 6 +2338 (+126%) −1160 (−62.7%)

C [177Lu] 1 9 2 +1055 (+28.5%) −2532 (−68.4%)

D [177Lu] 8 1 3 +1814 (+24.5%) −2917 (−39.4%)
FIGURE 1

Modification patterns by study arm. Bar chart showing the proportion of patients with increased, decreased, or unchanged isotope activities in arms
(B-D). By protocol, [90Y] was modulated in arm (B) and [177Lu] in arms (C, D), while the complementary isotope was kept constant. The majority of
patients in arms (B, C) experienced activity reductions, whereas dose increases predominated in arm (D).
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significant declines between early visits: V1→V2 for Hb (p=0.0017),

PLT (p=0.0001), WBC (p<0.0001), NEU (p=0.0023), LYM

(p<0.0001), and also V2→V3 for Hb (p=0.013), PLT (p=0.0026),

WBC (p=0.023), NEU (p=0.17 ns), LYM (p=0.0049). Additional

decline in PLT was seen for V3→V4 (p=0.016).

Between-arm differences in D vs T1 were limited: Kruskal–

Wallis reached p<0.05 for Hb at V1 (p=0.027) and PLT at V3

(p=0.047), without a consistent pattern across timepoints. Notably,

dose modifications (↑/↓ vs unchanged) in arms B–D did not
Frontiers in Endocrinology 07
significantly shift hematologic nadirs in within-arm tests

(all p≥0.05).

Dose–effect relationship (marrow): hematologic nadirs

correlated with cumulative marrow dose: Hb (r=−0.40,
p=0.0047), WBC (r=−0.37, p=0.010), LYM (r=−0.49, p=0.0006).
Thus, deeper drops occurred in patients with higher marrow

exposure (Figure 6).
3.6 Renal function over time

Renal biochemistry remained stable overall. The worst median

D creatinine occurred at V2 and was negative (−0.08 mg/dL; IQR

−0.15–0.00), and eGFR medians tended to be stable to slightly

improved by V4 (+1.70 mL/min/1.73 m²; IQR −1.00–12.95). Paired

tests showed V3→V4 changes for creatinine (p=0.011) and eGFR

(p=0.001), consistent with mild late shifts but without clinical

deterioration. Between-arm tests detected differences at selected

visits (creatinine V2 p=0.036, V3 p=0.013; eGFR V3 p=0.0078, V4

p=0.0035), yet changes in creatinine/eGFR did not correlate with

cumulative kidney dose (no significant Spearman correlations), and

activity-modification categories (↑/↓/=) in B/C/D did not

significantly affect renal “worst D” in within-arm analyses.

Importantly, arm D (escalated 177Lu) showed no signal of

worsened creatinine/eGFR vs other arms at V4 (Figure 7).
3.7 Hepatic parameters

ALT, AST and bilirubin exhibited small negative median shifts

(e.g., ALT V3 −5.5 U/L) without consistent between-arm differences

and without significant paired changes indicative of hepatotoxicity.
3.8 Interpretation focused on trial
questions
• Arm D (higher 177Lu activities): higher 177Lu vs baseline did

not worsen blood counts or renal function, and marrow/

renal doses remained within safety bounds.

• Arms B/C (tandem settings, especially C): although kidney

and marrow doses were higher (driven chiefly by 90Y), this

did not translate into disproportionate creatinine/eGFR

worsening; hematologic declines correlated with marrow
TABLE 3 Median cumulative organ doses per arm.

Arm N
Kidney dose total, Gy

(median, IQR)
kidney dose
177Lu, Gy

kidney dose
90Y, Gy

Marrow dose total, Gy
(median, IQR)

marrow dose
177Lu, Gy

marrow dose
90Y, Gy

A 16 15.6 (11.1–20.4) 15.6 — 0.39 (0.25–0.57) 0.39 —

B 16 21.6 (17.1–26.2) 6.4 14.7 0.56 (0.42–0.71) 0.12 0.44

C 12 29.1 (21.6–36.2) 8.3 20.8 0.79 (0.59–1.13) 0.22 0.57

D 12 21.2 (17.4–23.9) 21.2 — 0.45 (0.37–0.52) 0.45 —
FIGURE 2

(A) Cumulative kidney dose by arm. Box-and-whisker plots (with
jittered individual values) showing cumulative absorbed kidney doses
(Gy) across arms A–D. Median kidney dose was lowest in arm A
(fixed-activity [177Lu]) and highest in arm C (dosimetry-guided [177Lu]
+ fixed-activity [90Y]). (B) Cumulative marrow dose by arm. Box-
and-whisker plots (with jittered individual values) showing
cumulative absorbed marrow doses (Gy) across arms A–D. Median
marrow dose was lowest in arm A and highest in arm C.
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Fron
dose rather than with the categorical decision to escalate/

de-escalate activity.
3.9 Adverse events

In total, 38 adverse events (AEs) were reported during the active

treatment phase (Table 5). The majority were of mild or moderate

intensity (CTCAE grade 1–2). Overall, 5 events (13.2%) were grade

≥3, with no persistent high-grade hematological toxicities observed.
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Hematological abnormalities were the most frequently reported

events, including anemia (n=14, 36.9%), thrombocytopenia (n=11,

28.9%), and leukopenia/neutropenia (n=4, 10.6%). No cases of

myelodysplastic syndrome were observed in any of the patients

participating in the study. In addition, renal impairment (n=4,

10.6%), primarily increases in serum creatinine and decreases in

eGFR, was documented, all grade 1–2. No cases of permanent renal

failure were observed among the study participants, and none of the

patients required renal replacement therapy. Single cases of

alopecia, fatigue, and gastrointestinal complaints such as nausea,

diarrhea or abdominal discomfort were observed, but each occurred
FIGURE 3

Correlation between D[177Lu] activity and kidney dose in arm C. Scatter plot showing the relationship between mean change in administered [177Lu]
activity (post-baseline vs. baseline) and cumulative kidney dose (Gy) in arm C. A significant negative correlation was observed, indicating the
predominant role of [90Y] in determining kidney exposure.
FIGURE 4

Hemoglobin change at V4 by arm. Box-and-whisker plots (with jittered individual values) showing change in hemoglobin concentration (g/dL) at V4
relative to baseline (T1). A modest but consistent decline was observed across all arms.
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only sporadically. All 5 event of grade ≥3 required discontinuations

of the PRRT. Overall, the safety profile during the active treatment

period was consistent with expectations, with adverse events being

largely predictable, manageable, and reversible with supportive care.
4 Discussion

The DUONEN is the first in Poland and one of the few

worldwide, an ongoing, prospective, randomized clinical trial

comparing standard peptide receptor radionuclide therapy

(PRRT) based on fixed-activity dose of [177Lu]Lu-DOTA-TATE
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with dosimetry-guided PRRT strategy in which activities were

adapted after each treatment cycle. This pre-specified interim

analysis was conducted after more than 60% of the planned

cohort (56 of 92 patients) had completed the active phase of

PRRT. Because follow-up after PRRT is not yet complete, this

interim analysis does not focus on objective efficacy endpoints such

as progression-free survival (PFS) or overall survival (OS). Instead,

the purpose of this report is to confirm the safety of the ongoing

randomized clinical trial and to validate the assumptions

underlying the DUONEN trial design. The results obtained so far

provide several important insights relevant to the further

development of PRRT in neuroendocrine tumors.
TABLE 4 Safety summary (D vs T1).

Analyte Visit of largest median D Median D (IQR) Between-arm p<0.05 (visits)

Hemoglobin V4 −0.90 g/dL (−1.60 to −0.50) V1 (p=0.027)

Platelets V4 −57×109/L (−88 to −22) V3 (p=0.047)

WBC V4 −2.52×109/L (−3.38 to −1.72) —

Neutrophils V4 −1.37×109/L (−2.06 to −0.87) —

Lymphocytes V4 −0.87×109/L (−1.31 to −0.53) —

Creatinine V2 (worst ↑ would be +; here ↓) −0.08 mg/dL (−0.15 to 0.00)
V2 (p=0.036),
V3 (p=0.013)

eGFR V4 +1.70 mL/min/1.73 m² (−1.00 to 12.95)
V3 (p=0.0078),
V4 (p=0.0035)

AlAT V3 −5.5 U/L (−10.3 to 1.25) —

AspAT V1 −2.0 U/L (−7.25 to 0.25) —

Bilirubin V1 −0.047 mg/dL (−0.123 to 0.10) —
median D with IQR; visit with largest median drop; significant between-arm signals where present; T1–T4 = treatment cycles (first to fourth RLT cycle); V1–V4 = follow-up visits after each
corresponding cycle; WBC - white blood count; eGFR - estimated glomerular filtration rate; ALT - alanine aminotransferase; AST - aspartate aminotransferase.
FIGURE 5

Neutrophil change at V4 by arm. Box-and-whisker plots (with jittered individual values) showing change in neutrophil count (×109/L) at V4 relative to
baseline (T1). Declines were observed in all arms, consistent with transient hematologic toxicity.
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4.1 Dosimetry and activity modifications

As demonstrated, the use of individualized dosimetry in arms B,

C, and D led to both upward (predominantly in arm D) and

downward (predominantly in arms B and C) activity adjustments.

Notably, in arm D (where after the first cycle of 7.4 GBq [177Lu]Lu-

DOTA-TATE, activities for subsequent cycles were modified

individually based on dosimetry), higher-than-standard PRRT

activities could be safely administered in 8 of 12 patients (66.7%).
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Similar findings were reported by Sandström et al. (11), who

showed that over 50% of patients in their 200-patient cohort

treated with standard fixed 7.4 GBq [177Lu]Lu-DOTA-TATE

could have continued treatment safely beyond four cycles, as

critical organ dose limits (kidneys and bone marrow) were not

reached. In their study, the adopted strategy was to escalate the

number of treatment cycles if safety limits were not exceeded,

yielding a median of 4.53 cycles (range 2–10; IQR 3.87–5.52),

corresponding to a median cumulative administered activity of
FIGURE 6

Lymphocyte nadir vs. cumulative marrow dose. Scatter plot showing the correlation between nadir lymphocyte count (D vs. T1) and cumulative
marrow dose (Gy). A moderate negative correlation was identified (Spearman r≈−0.49), indicating that greater marrow exposure was associated with
deeper lymphocyte declines.
FIGURE 7

eGFR change at V4 by arm. Box-and-whisker plots (with jittered individual values) showing change in estimated glomerular filtration rate (mL/min/
1.73 m²) at V4 relative to baseline (T1). No clinically significant differences were observed between arms.
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33.52 GBq. In our analysis, the median cumulative activity in arm D

was 31.28 GBq (range 14.26–48.67; IQR 24.72–32.59). In our

analysis, where activity was modified per cycle, and in the

Sandström et al. study, where the number of fixed-activity cycles

was varied, no increase in hematologic toxicity or renal impairment

was observed in patients receiving cumulative activities above the

standard 29.6 GBq. This provides an important argument for a

more flexible approach to RLT planning. Of course, the critical

question remains whether activity escalation (or increasing the

number of cycles, as in Sandström et al.) will translate into

improved efficacy. Such analyses are not yet available in

DUONEN and will be the subject of future reports. In a

dosimetry report from the NETTER-1 trial published in 2025

(18), the median cumulative absorbed kidney dose in a cohort of

20 patients was 19.3 Gy, remaining below the predefined threshold

of 23 Gy; only three patients in this group treated with standard

[177Lu]Lu-DOTA-TATE PRRT exceeded this limit. In our cohort of

patients treated with standard PRRT (Group A), the median

absorbed kidney dose was 15.6 Gy, and none of the 14 analyzed

patients exceeded the threshold of 23 Gy.

In arms B and C, which employed so-called tandem-PRRT

combining [177Lu]Lu-DOTA-TATE and [90Y]Y-DOTA-TATE in

variable proportions, higher absorbed doses in critical organs

(kidneys and bone marrow) were observed, mainly driven by the

biodistribution of [90Y]Y-DOTA-TATE. These findings are

consistent with earlier Polish and European retrospective reports

(13, 14, 16). Polish experiences (13, 14) emphasized that although

tandem-PRRT may increase exposure to critical organs, it may

simultaneously enhance efficacy in patients with bulky tumors or

heterogeneous metastatic disease. The main advantage of

DUONEN results is that they originate from a prospective trial in

which isotope activities in tandem arms were individualized

according to dosimetry. Unlike prior retrospective studies, where

the ratio of [177Lu]Lu-DOTA-TATE to [90Y]Y-DOTA-TATE was
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fixed at 1:1, in DUONEN the ratio in the first cycles of arms B and C

was set at 2:1 (3.7 GBq [177Lu]Lu-DOTA-TATE and 1.85 GBq [90Y]

Y-DOTA-TATE), better reflecting the differences in radiation

energy of the two isotopes. Importantly, in both tandem arms,

activities of the modifiable isotope (90Y in arm B, 177Lu in arm C)

were reduced in most patients (9 of 16 (56.3%) and 9 of 12 (75.0%),

respectively). This may suggest that despite the adjusted 2:1 ratio,

the activities in many patients were still too high for a fixed four-

cycle regimen. To date, no randomized phase III trials have

reported on the safety and efficacy of dosimetry-based tandem-

PRRT using somatostatin analogs labeled with 90Y. U.S. phase II

data (19) on [90Y]Y-DOTA-TOC are available, where the first

course was administered at 4.4 GBq, and subsequent activities

were adjusted based on dosimetry to 1.7–5.6 GBq. In that study,

3 of 25 patients discontinued after the first course, while among the

remaining 22 patients, subsequent activities were reduced or

maintained in 45%. Again, it should be emphasized that the

impact of different PRRT regimens on PFS and OS represents one

of the main objectives of the DUONEN trial, and these analyses will

be available and reported once the entire study cohort has

completed treatment and follow-up. It is worth emphasizing that

the dosimetric findings presented in this interim analysis are

consistent with the preliminary report conducted in a smaller

subset of DUONEN patients (64 administrations in 36 patients),

which aimed to validate the dosimetric methodology applied in this

trial (20). The stability of the previously reported results, despite the

enlargement of the analyzed cohort and the extended study

duration, confirms the robustness of the methodological approach

adopted in DUONEN and supports the continued implementation

of the study protocol.
4.2 Hematologic and renal safety

Safety analyses indicate predictable hematologic declines that

increased with subsequent PRRT cycles across all study arms. The

most pronounced decreases were observed in lymphocytes and

platelets, consistent with earlier publications. In the Polish study by

Saracyn et al. (21), conducted in a cohort of 42 patients treated with

either standard PRRT or tandem-PRRT, a significant decrease in all

hematological parameters was observed when comparing results

between the first and the fourth treatment course. In NETTER-1,

the first randomized trial assessing efficacy of fixed-activity [177Lu]

Lu-DOTA-TATE PRRT in GEP-NET patients, worsening of

hematologic parameters was primarily seen in white blood cell

and platelet counts (9). In that trial (design analogous to our arm

A), the majority of patients (77%) in the [177Lu]Lu-DOTA-TATE

group received all four planned infusions, and eight patients

required activity reduction. Similarly, in our study, PRRT in arm

A was discontinued before the fourth cycle in 3 of 16 patients

(81.3% completed treatment as planned). A comparable outcome

was seen in arm D, where variable activities of [177Lu]Lu-DOTA-

TATE were used - 10 of 12 patients (83.3%) completed all four

cycles. Importantly, activity modifications in arms B, C, and D did
TABLE 5 Adverse events reported during RLT.

Category
All reported events

(N, %)
Events grade
≥3 (N, %)

Anemia 14 (36.9%) 0 (0%)

Thrombocytopenia 11 (28.9%) 5 (13.2%)

Leukopenia/
neutropenia

4 (10.6%) 0 (0%)

Renal impairment 4 (10.6%) 0 (0%)

Alopecia 1 (2.6%) 0 (0%)

Fatigue 1 (2.6%) 0 (0%)

Diarrhea 1 (2.6%) 0 (0%)

Nausea 1 (2.6%) 0 (0%)

Abdominal
discomfort

1 (2.6%) 0 (0%)

Total 38 (100%) 5 (13.2%)
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not result in statistically significant changes in nadir hematologic

values in within-arm comparisons.

Most severe, long-term hematologic complications (persistent

hematologic disorders, PHD) described in the literature occur

months to years after PRRT. Bergsma et al. (22) reported a

prevalence of 4% PHD after [177Lu]Lu-DOTA-TATE, with a

median time to onset of 41 months. The current interim analysis

of DUONEN includes only early post-treatment hematologic

results. The full protocol includes a 5-year follow-up, and late

hematologic events will be reported subsequently, however it

should be emphasized that during the period covered by the

analysis (as well as throughout the subsequent course of the

DUONEN study, which is not included in the present analysis),

no cases of myelodysplastic syndrome were observed in any of the

patients participating in the study.

An interesting finding was the lack of statistically significant

differences between arms in the depth of hematologic declines,

despite higher marrow doses in arms B and C compared to arm A.

As noted, in arms B and C, activities in subsequent cycles were

frequently reduced, primarily due to approaching the renal dose

limit rather than the marrow threshold. Indeed, in most patients in

this interim analysis, renal dose was the limiting factor for reducing

PRRT activity. Nevertheless, renal function remained stable across

all study arms, and observed inter-arm differences were not

clinically significant. Premature treatment discontinuations were

usually related to hematologic rather than renal toxicity. These

findings suggest that the traditionally applied renal dose limit of 23

Gy remains safe even in the context of dosimetry-driven therapy. It

should be emphasized, however, that both the 23 Gy kidney and 2

Gy marrow limits were historically derived from external beam

radiotherapy (23) and 131I therapy (24). Growing evidence suggests

these thresholds may be overly conservative in the PRRT setting.

Large cohorts treated with [177Lu]Lu-DOTA-TATE have shown

clinically relevant nephrotoxicity to be rare even at doses above 23

Gy (11, 25), and true safety limits may be higher, particularly when

expressed as biologically effective dose (BED) (26). Similarly, the 2

Gy marrow threshold is based on simplified blood-based models

(23), while more recent image-based studies suggest a more

complex dose–effect relationship with hematologic toxicity (27).

In DUONEN, activities in arms B, C, and D were adjusted in cycles

2–4 to approach but not exceed these thresholds. In arm C,

however, the fixed use of 1.85 GBq [90Y]Y-DOTA-TATE in each

cycle, with only [177Lu]Lu-DOTA-TATE adjusted, resulted in renal

dose thresholds being exceeded in some patients. Nonetheless, no

early renal toxicity was observed, indirectly supporting the concept

that the 23 Gy kidney threshold derived from external beam

radiotherapy may be conservative for PRRT.

It should also be noted that no significant hepatological adverse

events were observed in any of the four study arms, either in cycles

using pure 177Lu or in tandem-PRRT. These observations are

consistent with previously published data (28). Although those

reports are derived from retrospective studies, they, similarly to

the DUONEN trial, included patients treated with both 177Lu-based

PRRT and tandem-PRRT. Furthermore, the available literature

indicates that the liver is not considered a critical organ limiting
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the use of PRRT (18). Nevertheless, given the very high prevalence

of hepatic metastases in patients with GEP-NETs, the potential for

increased radiation exposure to liver tissue must be acknowledged.

Therefore, in the DUONEN study, biochemical liver function

parameters are systematically assessed both during qualification

for standard and dosimetry-guided PRRT, as well as throughout

follow-up.
4.3 Clinical significance and practical
implications

Our early observations carry several clinical implications. First,

standard PRRT (arm A) remains safe and predictable, but does not

allow treatment individualization, which does not align with the

current paradigm of personalized medicine. A significant

proportion of patients may not reach critical organ thresholds,

leaving room for potential escalation of activity or number of cycles.

Second, arm D demonstrates that escalation of [177Lu]Lu-DOTA-

TATE activity in selected patients is feasible, potentially beneficial,

and safe, paving the way for future studies on maximizing efficacy

while maintaining safety. Third, arms B and C illustrate that

tandem-PRRT regimens (with added [90Y]Y-DOTA-TATE)

increase absorbed doses in critical organs, necessitating caution

and long-term follow-up, but may be advantageous in patients with

bulky or poorly penetrated lesions. Literature data support these

assumptions, with Baum et al. (16) reporting the longest OS in

retrospective analyses of 1048 patients treated with various PRRT

regimens for those receiving tandem-PRRT (64 months vs 44

months for [177Lu]Lu-DOTA-TATE alone). Aalbersberg et al.

similarly reported longer OS and PFS with tandem-RLT, though

noting potential selection bias, as patients with higher tumor

burden were more likely to receive dual-isotope regimens (29).

Importantly, our randomized design avoids this limitation, as

patients with both large and small metastases were included in

arms B and C. Final OS and PFS analyses will be reported upon

study completion. Prospective, randomized confirmation is

particularly relevant in light of recent retrospective Polish data

(Durma et al.), which in a cohort of 51 other than midgut and

pancreatic NET patients (30) and in a cohort of 167 midgut and

pancreatic NET patients (31) found no significant OS or PFS

differences between treatment subgroups based on the PRRT

regimen used. However, both studies were retrospective and non-

randomized in treatment allocation, and one of them included

patients with NETs other than midgut and pancreatic primaries,

whereas the majority of patients in the DUONEN trial had midgut

or pancreatic NETs. It should also be taken into consideration that

non-pancreatic NETs, such as those originating from the lung or

rectum, may display a more aggressive clinical course. Moreover,

one of that study cohort included patients with NET G3, who were

not eligible for inclusion in the DUONEN trial.

Although the DUONEN study comprises four treatment arms,

all regimens are based exclusively on b--emitting radionuclides. In

recent years, the concept of PRRT using a-particle emitters (a-
PRRT, also referred to as targeted alpha therapy, TAT) such as
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actinium-225 (225Ac), bismuth-213 (213Bi), or lead-212 (212Pb) (32)

has gained increasing attention. However, due to the limited global

production capacity of alpha emitters, clinical trials using these

isotopes are still restricted to small patient cohorts, and widespread

adoption of a-PRRT is unlikely in the near future. Alpha particles,

characterized by high linear energy transfer (LET) and a short tissue

penetration range (<100 mm), induce highly localized DNA damage

and allow effective eradication of micrometastatic or poorly

vascularized tumor clusters. Encouraging results from early

clinical experiences have demonstrated the efficacy of a-PRRT,
including prolonged PFS and objective responses in patients

refractory to standard (b--based) PRRT (33–35). These findings

have provided the rationale for exploring combined a/b tandem-

PRRT approaches. Most reports on such therapies originate from

German centers (36, 37), where simultaneous administration of
177Lu and 225Ac was performed, frequently using somatostatin

receptor antagonists, which exhibit markedly higher receptor

affinity (32, 38) than the agonists used in conventional PRRT and

in the DUONEN protocol. Optimization of dosing schemes,

sequencing, and radiobiological modeling remains critical to

balancing efficacy and safety, particularly regarding renal and

hematologic toxicity. Nevertheless, individual activity tailoring in

a-PRRT remains technically challenging - if not impossible -

because of the phenomenon of radioactive decay chains

producing daughter isotopes (39, 40). These isotopes, which are

themselves a-emitters with distinct energies, half-lives, and ligand

affinities, may lead to unpredictable pharmacokinetics, biological

effects, and toxicity, rendering accurate dosimetry difficult or

unfeasible (39). Ongoing studies are expected to better define the

clinical role of a-based tandem PRRT and its integration into

personalized theranostic strategies.
4.4 Limitations and strengths

The findings of this interim analysis should be considered in

light of several important limitations. First, the presented results are

based on an interim evaluation, and long-term efficacy endpoints

such as progression-free survival (PFS) and overall survival (OS) are

not yet available. Consequently, the findings should be primarily

interpreted in terms of dosimetry and safety rather than treatment

efficacy. Second, although the study was randomized and

multicenter, the overall sample size remains limited and

suboptimal, which reduces the power of between-arm

comparisons. The sample size calculation assumed a two-sided

significance level (a = 0.05), 90% statistical power, uniform

patient accrual over five years, and a total study duration of ten

years. For the primary comparison combining all personalized

PRRT arms (B + C + D) versus the standard PRRT arm (A) with

a 3:1 allocation ratio, approximately 117 PFS events were required

to achieve 90% power. Under the assumed event rate of ~70%, this

corresponds to an overall sample size of about 167 patients

(approximately 42 per arm). Due to funding constraints, the

study was planned to include 92 patients (23 per arm). This

sample size ensures adequate precision for safety assessments (for
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instance, a 10% incidence of grade ≥3 renal toxicity can be

estimated with a 95% CI half-width of approximately 6%) and

provides exploratory power for efficacy analyses. For the pooled

comparison (B + C + D vs. A), the expected statistical power is

approximately 33% for HR = 0.667, 75% for HR = 0.50, and 89% for

HR = 0.43. Pairwise comparisons between individual experimental

arms and the control arm will be treated as exploratory and

presented with 95% confidence intervals without adjustment for

multiplicity. Third, all statistical analyses were exploratory; p-values

were not adjusted for multiple testing, and results should therefore

be interpreted with caution. Fourth, conventional organ dose limits

of 23 Gy for kidneys and 2 Gy for bone marrow were applied as

reference thresholds. These limits originate from external beam

radiotherapy and 131I therapy and may be conservative in the PRRT

context; nevertheless, they remain the most widely accepted

benchmarks in clinical practice. Emerging evidence suggests that

higher dose thresholds may be tolerable in PRRT, but a definitive

consensus has not yet been established. Fifth, although safety

monitoring included hematologic and renal parameters, rare but

clinically significant adverse events - such as grade ≥3 toxicities or

treatment discontinuations due to toxicity - warrant continued

surveillance in the final analysis.

Despite these limitations, the study has several notable strengths.

DUONEN represents the first randomized, multicenter trial directly

comparing fixed-activity [177Lu]Lu-DOTA-TATE with multiple

predefined dosimetry-guided strategies, including 90Y/177Lu tandem

therapy, with per-cycle activity adjustment. The systematic dosimetry

performed after each cycle allowed for quantification of isotope-specific

organ contributions, providing novel prospective evidence that has not

been available from retrospective series or single-arm trials. This is

particularly important, as the existing literature explicitly indicates the

lack of randomized controlled clinical trials on dosimetry-guided

PRRT (41, 42). The DUONEN study fills this gap in an excellent

way. Moreover, the multicenter design enhances the generalizability of

the findings across different nuclear medicine departments. Finally, the

comprehensive safety evaluation—including both dosimetric endpoints

and laboratory toxicity - provides a robust foundation for refining

PRRT protocols and for informing future guidelines on individualized,

dosimetry-driven treatment. To emphasize the importance of

implementing dosimetry in PRRT, it is worth noting that during the

annual congress of the European Association of Nuclear Medicine

(EANM) held in October 2025 in Barcelona, Spain the prestigious

Marie Curie Award was granted to an international research team for

conducting patient-specific dosimetry within the COMPETE trial (43,

44). Notably, the dosimetric analysis in COMPETE was performed in a

cohort of only 20 patients - substantially smaller than the group

presented in the current study - further underscoring the significance

and scale of the dosimetric work achieved in our investigation.
5 Conclusions

In conclusion, DUONEN provides the first randomized,

multicenter evidence directly comparing fixed-activity PRRT with

several predefined dosimetry-guided strategies, including 90Y/177Lu
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tandem therapy with per-cycle adaptation. While these interim

results are limited to safety and dosimetry, they demonstrate the

feasibility and safety of individualized, dosimetry-driven protocols

and highlight their potential to refine established kidney and

marrow dose thresholds. Larger studies with longer follow-up will

be required to confirm the impact of these approaches on long-term

efficacy outcomes.
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(rekomendowane przez Polska ̨ Sieć Guzów Neuroendokrynych). Endokrynol Pol.
(2022) 73:491–548. doi: 10.5603/EP.a2022.0050

7. Bednarczuk T, Zemczak A, Bolanowski M, Borowska M, Chmielik E, Cwikla JB,
et al. Neuroendocrine neoplasms of the small intestine and the appendix - update of the
diagnostic and therapeutic guidelines (recommended by the Polish Network of
Neuroendocrine Tumours) [Nowotwory neuroendokrynne jelita cienkiego i wyrostka
robaczkowego - uaktualnione zasady diagnostyki i leczenia (rekomendowane przez
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