

#### **OPEN ACCESS**

edited and reviewed by Åke Sjöholm, Gävle Hospital, Sweden

\*CORRESPONDENCE
Ichiro Abe

Abe1ro@fukuoka-u.ac.jp

RECEIVED 29 September 2025 ACCEPTED 30 September 2025 PUBLISHED 14 October 2025

#### CITATION

Abe I, Fukuoka H, Igata M and Kodagoda Gamage S (2025) Editorial: Recent advances in secondary diabetes and glucose intolerance. Front. Endocrinol. 16:1715233. doi: 10.3389/fendo.2025.1715233

#### COPYRIGHT

© 2025 Abe, Fukuoka, Igata and Kodagoda Gamage. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# Editorial: Recent advances in secondary diabetes and glucose intolerance

Ichiro Abe<sup>1\*</sup>, Hidenori Fukuoka<sup>2</sup>, Motoyuki Igata<sup>3</sup> and Sujani Kodagoda Gamage<sup>4</sup>

<sup>1</sup>Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan, <sup>2</sup>Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Hyogo, Japan, <sup>3</sup>Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Kumamoto, Japan, <sup>4</sup>School of Medicine & Dentistry, Griffith University, Sunshine Coast, QLD, Australia

#### KEYWORDS

secondary diabetes, diabetes mellitus, glucose intolerance, endocrinological disorder, metabolic disorder

#### Editorial on the Research Topic

Recent advances in secondary diabetes and glucose intolerance

This Research Topic encompasses current perspectives on secondary diabetes and glucose intolerance. Diabetes mellitus is characterized by hyperglycemic symptoms resulting from glucose intolerance, which is caused by impaired insulin secretion and/or elevated insulin resistance. Accurate treatment for patients with diabetes mellitus is extremely important for preventing both acute and chronic diabetic complications. While type 2 and type 1 diabetes mellitus are the most common, there is increasing recognition that treatment-refractory diabetes cases could be caused by other endocrinological or metabolic disorders, indicating secondary diabetes. Secondary diabetes is a form of diabetes mellitus that develops as a consequence of different underlying medical conditions. On the other hand, effective treatment for secondary diabetes is crucial to prevent both acute and chronic complications. Addressing the primary endocrinological or metabolic disorders can significantly improve glucose intolerance and overall diabetes management.

Commonly, a large part of secondary diabetes is caused by endocrinological disorders, such as Cushing's syndrome (including mild autonomous cortisol secretion (MACS)), pheochromocytoma/paraganglioma (PPGL), primary aldosteronism, acromegaly, adult growth hormone deficiency, hyperthyroidism, and hypothyroidism. Recently, the mechanism of each disorder has been revealed. For instance, glucose intolerance in Cushing's syndrome is caused by impaired insulin secretion through the glucocorticoid receptor of pancreatic beta cells as well as increased insulin resistance (1–3). Glucose intolerance in PPGL is caused by both impaired insulin secretion due to increased epinephrine secretion and increased insulin resistance due to increased norepinephrine secretion (4, 5). Hence, updated knowledge of secondary diabetes is necessary.

In this Research Topic, Costa et al. revealed that patients with non-functioning adrenal incidentalomas (NFAI), as well as those with mild autonomous cortisol secretion (MACS),

Abe et al. 10.3389/fendo.2025.1715233

have a higher incidence of glucose intolerance than those without adrenal tumors, using the oral glucose tolerance test. Previously, the report that investigated the features and diagnosis of adrenal incidentaloma showed that there were no significant differences in glucose intolerance between NFAI and MACS (6). Besides, in the previous article with meta-analysis, the patients with NFAI had a twofold higher risk of having DM than controls (7). The mechanism of glucose intolerance in NFAI remains controversial. However, the number of clinical reports, including the article in this Research Topic, revealed that patients with NFAI tend to have glucose intolerance. Thus, future investigations that clearly demonstrate the mechanism should be needed.

Regarding endocrinological secondary diabetes, Kubo et al. also reported a case with hyperglycemia due to genotype-negative multiple endocrine neoplasia type 1 (MEN1). This patient had prolactinoma, hyperparathyroidism, and MACS. Prolactinoma was treated with cabergoline, and both hyperparathyroidism and MACS were treated by surgical extirpation. Interestingly, the clinical course showed that treatment of prolactinoma with cabergoline affected the improvement of hyperglycemia. In literature, cabergoline improved hyperglycemia in patients with prolactinoma via improvement of insulin sensitivity (8). Hence, this report indicated that glucose intolerance with multiple endocrine disorders should be accurately evaluated and treated, leading to improved secondary diabetes.

Secondary diabetes due to metabolic disorders should be important. Nonalcoholic fatty liver disease (NAFLD) is wellknown to be associated with glucose intolerance via increased insulin resistance (9). Liu et al. demonstrated the investigation of the predictive value of traditional and nontraditional lipid parameters in identifying abnormal glucose metabolism in NAFLD patients. The results of this investigation clarified that the levels of triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) could be associated with glucose intolerance in traditional lipid parameters. The levels of atherogenic index of plasma (AIP) and residual cholesterol (RC) could also be associated with glucose intolerance in nontraditional lipid parameters. Moreover, nontraditional lipid parameters could be superior predictive markers in identifying hyperglycemia in NAFLD patients than traditional lipid parameters. This perspective could be a standard way of predicting glucose intolerance in patients with NAFLD.

In addition, in this Research Topic, Yao et al. focused on hypoglycemia following gastrointestinal tumor surgery in patients with type 2 diabetes mellitus. It has been reported that gastrectomy with bypass reconstruction, such as Roux-en-Y gastrojejunostomy, in patients with gastric cancer could improve glucose intolerance *via* changes in the gastrointestinal hormones (10). Results of the investigation indicated five parameters (including duration of

diabetes, operation duration, preoperative fasting time, preoperative hypoglycemic regimen, and glucose fluctuation on the day of surgery) could be useful for the prediction of hypoglycemia. These perspectives could contribute to gastric surgery in patients with type 2 diabetes mellitus.

In conclusion, the information presented in this Research Topic provides updated knowledge of secondary diabetes and glucose intolerance. These enrich the perspectives of secondary diabetes and glucose intolerance, which could lead to accurate treatment of treatment-refractory diabetes.

## **Author contributions**

IA: Conceptualization, Writing – original draft, Writing – review & editing. HF: Conceptualization, Writing – review & editing. MI: Conceptualization, Writing – review & editing. SK: Conceptualization, Writing – review & editing.

# Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

# Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

### Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Abe et al. 10.3389/fendo.2025.1715233

# References

- 1. Sharma A, Vella A. Glucose metabolism in Cushing's syndrome. Curr Opin Endocrinol Diabetes Obes. (2020) 27:140–5. doi: 10.1097/MED.00000000000000537
- 2. Abe I, Yamazaki Y, Higashi A, Ochi K, Kubo K, Fujita Y, et al. Case Report: Adrenocortical adenoma harboring atypical subclinical Cushing's syndrome with dehydroepiandrosterone sulfate transferase and cytochrome b5 expression in tumor cells. Front Endocrinol (Lausanne). (2025) 16:1624396. doi: 10.3389/fendo.2025.1624396
- 3. Tsurutani Y, Miyoshi K, Inoue K, Takiguchi T, Saito J, Omura M, et al. Changes in glucose metabolism based on 75-g oral glucose tolerance tests before and after surgery for adrenal Cushing's syndrome. *Endocr J.* (2019) 66:207–14. doi: 10.1507/endocrj.EJ18-0445
- 4. Abe I, Islam F, Lam AK. Glucose intolerance on phaeochromocytoma and paraganglioma-the current understanding and clinical perspectives. *Front Endocrinol (Lausanne)*. (2020) 11:593780. doi: 10.3389/fendo.2020.593780
- 5. Abe I, Fujii H, Ohishi H, Sugimoto K, Minezaki M, Nakagawa M, et al. Differences in the actions of adrenaline and noradrenaline with regard to glucose intolerance in patients with pheochromocytoma. *Endocr J.* (2019) 66:187–92. doi: 10.1507/endocrj.EJ18-0407
- 6. Abe I, Sugimoto K, Miyajima T, Ide T, Minezaki M, Takeshita K, et al. Clinical investigation of adrenal incidentalomas in Japanese patients of the fukuoka region with updated diagnostic criteria for sub-clinical cushing's syndrome. *Intern Med.* (2018) 57:2467–72. doi: 10.2169/internalmedicine.0550-17
- 7. Athanasouli F, Georgiopoulos G, Asonitis N, Petychaki F, Savelli A, Panou E, et al. Nonfunctional adrenal adenomas and impaired glucose metabolism: a systematic review and meta-analysis. *Endocrine*. (2021) 74:50–60. doi: 10.1007/s12020-021-02741-x
- 8. Auriemma RS, Granieri L, Galdiero M, Simeoli C, Perone Y, Vitale P, et al. Effect of cabergoline on metabolism in prolactinomas. *Neuroendocrinology.* (2013) 98:299–310. doi: 10.1159/000357810
- 9. Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. *Nat Rev Endocrinol.* (2017) 13:572–87. doi: 10.1038/nrendo.2017.80
- 10. Choi YY, Noh SH, An JY. A randomized controlled trial of Roux-en-Y gastrojejunostomy vs. gastroduodenostomy with respect to the improvement of type 2 diabetes mellitus after distal gastrectomy in gastric cancer patients. *PloS One.* (2017) 12:e0188904. doi: 10.1371/journal.pone.0188904