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Diabetic kidney disease (DKD) is the most common microvascular complication
of diabetes and a leading cause of end-stage renal disease (ESRD). Traditionally,
its pathogenesis has been attributed to hyperglycemia-induced metabolic
disturbances, glomerular hyperperfusion and hyperfiltration, activation of the
renin—angiotensin—aldosterone system (RAAS), and oxidative stress. Recent
evidence, however, indicates that chronic inflammation and immune
dysregulation also play critical roles in DKD progression.Impaired macrophage
cholesterol efflux (MCE) has emerged as a central pathogenic mechanism in
DKD. Under hyperglycemic conditions, advanced glycation end-products (AGEs)
suppress the LXR/PPARYy signaling pathway and downregulate downstream
transporters ABCA1 and ABCGI, thereby reducing cholesterol efflux. This
disruption promotes lipid accumulation and macrophage foam cell formation,
leading to the sustained release of pro-inflammatory cytokines such as TNF-o,
IL-1B, and MCP-1, which accelerate glomerulosclerosis and tubulointerstitial
fibrosis. MCE dysfunction thus provides a mechanistic link bridging metabolic
dysregulation and immune-mediated inflammation in DKD.Therapeutic
strategies targeting MCE show promising potential. Pharmacological agents
such as LXR/RXR agonists, PPARY activators, sodium-glucose cotransporter 2
(SGLT2) inhibitors, and glucagon-like peptide-1 receptor agonists(GLP-1RAs)
enhance cholesterol transport, promote macrophage polarization toward the
M2 anti-inflammatory phenotype, and ameliorate renal injury. In addition, natural
bioactive compounds and nanodelivery systems can selectively modulate
ABCA1/Gl-mediated cholesterol efflux, attenuating lipid accumulation.In
conclusion, this study highlights the pivotal role of macrophage cholesterol
efflux in DKD pathogenesis beyond traditional metabolic factors and proposes
novel MCE-targeted therapeutic strategies, offering new insights for the
prevention and treatment of DKD.
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1 Introduction

Based on data from the IDF in 2019, it is estimated that
approximately 463 million adults aged 20-79 worldwide are
affected by diabetes, with projections indicating that this number
will increase to 578.4 million by 2030. The global range of end-stage
renal disease (ESRD) cases attributed to diabetes is between 10%
and 67% (1). Diabetic kidney disease (DKD), a significant
microvascular complication of diabetes, is a leading cause of
ESRD. Recent studies have identified a strong correlation between
the pathogenesis of DKD and inflammatory and immune responses.
Macrophages, serving as the primary inflammatory cells, are
integral to advancing DKD (2). The hyperglycemic milieu
resultant from diabetes can prompt M1 polarization of
macrophages, influence macrophage cholesterol efflux (MCE),
and prompt their transformation into foam cells, thereby
exacerbating DKD (3). This study delves into the issue of lipid
metabolism disturbances in macrophages triggered by DKD,
scrutinizes the physiological mechanisms of MCE, investigates the
correlation between impaired MCE and DKD progression, and
outlines potential strategies for reinstating MCE with the objective
of retarding the progression of DKD.

2 The biological basis of macrophage
cholesterol efflux

2.1 The mechanisms of macrophage
cholesterol efflux

Macrophages are essential components in lipid metabolism
within the human body, participating in various processes such as
lipid uptake, storage, metabolism, and degradation. MCE is the
term used to describe the mechanism by which macrophages

Abbreviations: MCE, Macrophage cholesterol efflux;ESRD, End-stage renal
disease;DKD, Diabetic kidney disease; RAAS, Renin-angiotensin-aldosterone
system;SR, Scavenger receptors;ox-LDL, Oxidized low-density lipoprotein;LXR,
Liver X receptor;PPARY:Peroxisome proliferator-activated receptor gamma;
ABCAI1:ATP-binding cassette transporters A1;ABCG1:ATP-binding cassette
transporters GI;RXR, Retinoid X receptor;ApoA-I:Apolipoprotein A-I;SR-BI,
Scavenger receptor class B type LHDL, High-Density Lipoprotein;AD, Aqueous
diftusion;ROS, Reactive oxygen species; MCP-1:Macrophage chemoattractant
protein-1;IRF3:Interferon regulatory factor 3;APl:Activator protein 1;NF-xB:
Nuclear factor kB;eFR, Estimated glomerular filtration rate;RCT, Reverse
cholesterol transport; AGEs, Advanced glycation end products;IL-8:Interleukin-
8 TNF-o:Tumor necrosis factor-o;IL-1B:Interleukin-13;MHR, Monocyte/HDL
ratio; TP, Tetramethylpyrazine-Paeoniflorin;GP-17:Gypenoside XVILPBMT,
Photobiomodulation therapy;SREBP-2:Sterol regulatory element-binding
protein 2;LPL, Lipoprotein lipase;RvT4:Resolvin T4;NCEH, Neutral cholesterol
ester hydrolase;SREBP-1c:Sterol regulatory element-binding transcription factor
16 TREM2:Triggering Receptor Expressed on Myeloid Cells 2;AMPK, AMP-
activated protein kinase;LDs, Lipid droplets; SGLT2:Sodium-glucose
cotransporter 2;FFA, Free fatty acid;GLP-1RAs, Glucagon-like peptide-1
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transport cholesterol to the extracellular space, a vital process for
regulating intracellular cholesterol levels and preventing lipid
accumulation (4). Macrophage surface receptors, particularly
scavenger receptors (SR), have the capability to internalize
oxidized low-density lipoprotein (ox-LDL). The absorbed lipids
are subsequently sequestered as lipid droplets within macrophages
and are mobilized as necessary following enzymatic degradation by
lipases and cholesterol esterases (4). Liver X receptor (LXR) and
peroxisome proliferator-activated receptor gamma (PPARY) play
pivotal roles as transcription factors in the regulation of
macrophage cholesterol metabolism. They enhance MCE by
inducing the upregulation of ATP-binding cassette transporters
Al (ABCAI1) and G1 (ABCG1) (5, 6). Activation of cholesterol-
dependent LXR/retinoid X receptor (RXR) transcription factors
occurs when there is a need to export lipids from macrophages or in
cases of lipid overload. These transcription factors target the DR4
sites within the proximal promoters of the ABCA1 gene, thereby
modulating the expression of lipid transport proteins like ABCA1
on the macrophage surface (7). The ABCAl-mediated pathway is
the principal mechanism by which cholesterol is transported out of
macrophages (8, 9). This pathway involves the creation of a plasma
membrane microdomain by ABCA1, which aids in the transfer of
phospholipids and cholesterol to apolipoprotein A-I (ApoA-I).
Subsequently, the lipidated ApoA-I, also known as nascent high-
density lipoprotein (HDL) particles, acquire additional cholesterol
through the ABCGIl-mediated efflux pathway, leading to the
formation of mature HDL particles. These mature HDL particles
then interact with the scavenger receptor class B type I (SR-BI) on
the cell surface. The extracellular domain of SR-BI functions as a
nonpolar channel facilitating cholesterol exchange (10-12). Studies
have shown that SR-BI exhibits the greatest binding affinity for
large, spherical HDL particles. In contrast, ABCA1 primarily binds
and cross-links lipid-poor ApoA-I, demonstrating minimal
interaction with smaller HDL3 and no interaction with larger
HDL2 subtypes (13, 14). Consequently, the interaction between
ABCAL1 and the predominant HDL subtypes present in plasma is
restricted. ABCAL is believed to have a central role in the initiation
of cholesterol efflux from macrophages and other cells to lipid-poor
apolipoproteins, whereas SR-BI primarily aids in the removal of
cholesterol and cholesterol esters from large HDL particles.
Furthermore, mature HDL particles can also acquire cholesterol
through aqueous diffusion (AD). AD involves a straightforward
diftusion mechanism in which cholesterol esters disengage from the
endoplasmic reticulum or HDL particles, and are transported back
to the cell membrane through cholesterol transporters such as
ABCA1 and ABCGI. Subsequently, these cholesterol esters are
released into the extracellular milieu, gathered, and conveyed to
the liver by HDL particles for the synthesis of bile acids (4).

2.2 The physiological role of macrophage
cholesterol efflux

Throughout the process of monocyte differentiation into
macrophages, notable alterations in lipid metabolism frequently
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take place. Due to the lack of regulation by cellular cholesterol levels,
SR can lead to uncontrolled uptake of modified LDL particles,
surpassing the cell’s ability to store and release lipids. This results
in the accumulation of cholesterol within macrophages and the
development of foam cells (4). An overabundance of cholesterol
uptake disrupts cellular equilibrium, leading to the activation of
inflammatory signaling pathways that control the generation of
reactive oxygen species (ROS), oxidative cytokines, and
chemokines, exacerbating the situation (15). The formation of foam
cells serves as an initial indicator of the development of
atherosclerotic plaques. By facilitating cholesterol efflux,
macrophages can uphold intracellular homeostasis and impede the
onset and advancement of this process (16). Furthermore, MCE has
been shown to effectively mitigate intracellular cholesterol
accumulation, attenuate the activation of inflammatory pathways,
suppress the release of inflammatory cytokines, and modulate
macrophage polarization, thereby exerting a significant influence
on both local and systemic inflammatory processes (15).
Additionally, the regulation of MCE has the potential to enhance
systemic insulin sensitivity, thereby aiding in the prevention and
management of diabetes and its associated complications (17).

3 The relationship between
macrophage cholesterol efflux and
diabetic kidney disease

3.1 The impact of a high-glucose
environment on macrophage cholesterol
efflux

An elevated glucose concentration in the renal blood vessels can
stimulate inflammatory reactions and the secretion of cytokines and
macrophage chemoattractant protein-1 (MCP-1), which attract
macrophages. These macrophages utilize Toll-like receptors 2 and 4
to internalize saturated fatty acids, activating themselves and initiating
inflammatory signaling cascades involving interferon regulatory factor
3 (IRF3), activator protein 1 (AP1), and nuclear factor kB (NF-kB).
This ultimately results in the impairment of glomerular endothelial
cells and mesangial cells (18, 19). The inflammatory mediators
generated as a result can exacerbate LDL oxidation and suppress the
transcription of LXR and PPARY, consequently diminishing the levels
of ABCAI and ABCG1 expression, leading to impaired MCE. A study
by Aecio Lopes de Aratjo Lira et al. revealed that albumin derived from
individuals with Type 2 Diabetes Mellitus and an estimated glomerular
filtration rate (eGFR) below 60 mL/min/1.73 m* undergoes heightened
carbamylation, impacting MCE facilitated by HDL2 and HDL3. This
process may facilitate the accumulation of lipids in macrophages and
disrupt the mechanism of reverse cholesterol transport (RCT). Prior
research has demonstrated that albumin extracted from the serum of
individuals with poorly controlled diabetes or from rats with induced
uremia can hinder macrophage reverse cholesterol transport by
decreasing the expression of ABCAl and ABCGI (20).
Correspondingly, Joseph et al. observed a notable decrease in
ABCA1 and ABCGL levels in mesangial cells of mice with diabetic
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nephropathy, aligning with these results (21). Furthermore, the buildup
of advanced glycation end products (AGEs) may stimulate the
secretion of inflammatory cytokines such as interleukin-8 (IL-8).
Xiaoer Tang et al. conducted experiments on cholesterol transport to
show that IL-8 effectively suppresses ApoA-I-mediated, ABCAI-
dependent MCE by upregulating miR-18322 expression (22). (Shown
in Figure 1).

2.2 The impact of impaired macrophage
cholesterol efflux on diabetic kidney
disease

Renal biopsies of patients with DKD demonstrate that
macrophages are the predominant infiltrating leukocytes in both the
glomeruli and tubulointerstitium. The degree of macrophage
infiltration is positively associated with the development of
glomerulosclerosis, tubular atrophy, and interstitial fibrosis (23).
Dysregulation of macrophages, characterized by increased cholesterol
uptake and subsequent production of inflammatory mediators, can
lead to further complications such as LDL oxidation, endothelial cell
activation, and recruitment of monocytes. Ox-LDL has been shown to
induce the secretion of tumor necrosis factor-o. (TNF-c), interleukin-
1B (IL-1B), and MCP-1, leading to increased macrophage infiltration in
renal tissue and worsening kidney damage (24, 25). Additionally, the
accumulation of foam cells, originating from macrophages, in
the glomeruli and tubules plays a crucial role in the development
of glomerulosclerosis and interstitial fibrosis. The matrix
metalloproteinases released by foam cells have the ability to break
down the extracellular matrix, disrupt the glomerular basement
membrane, and damage interstitial structures, thereby hastening the
progression of glomerulosclerosis and tubular fibrosis (26).
Furthermore, compromised MCE leads to excessive production of
ROS by macrophages, resulting in direct harm to glomerular and
tubular cells and exacerbating renal damage (27). The accumulation of
intracellular lipids due to impaired MCE also contributes to increased
cell membrane stiffness, which impairs the macrophage’s ability to
recognize and bind apoptotic cells. This disruption hinders the
signaling of receptors like MERTK, suppresses the expression of
genes related to phagocytosis, and diminishes phagocytic
effectiveness, ultimately exacerbating kidney injury and inflammatory
reactions (28). (Shown in Figure 1).

2.3 Association between impaired
macrophage cholesterol efflux and clinical
biomarkers in diabetic kidney disease

MCE represents a critical pathological mechanism in metabolic
diseases such as DKD and shows strong correlations with several
clinical biomarkers. In a cohort study involving 220 patients with
diabetes and 70 healthy controls, Ahmet Karatas et al. reported that
the monocyte/HDL ratio (MHR) was significantly higher in patients
with DKD compared with those with normoalbuminuric diabetes
and healthy individuals. Moreover, MHR was positively associated
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FIGURE 1

Effects of impaired macrophage cholesterol efflux in diabetic kidney disease. In the presence of elevated glucose levels, the body initiates an
inflammatory cascade by releasing pro-inflammatory cytokines including TNFa., IL-8, IL-1B, and MCP-1. This process results in a notable influx of
macrophages into renal tissue, leading to the injury of glomerular endothelial cells and mesangial cells. Furthermore, the released inflammatory
mediators promote LDL oxidation by interacting with Toll-like receptors on the macrophage surface. The activation of IRF3, NF-xB, and AP1 leads to
the release of inflammatory factors from macrophages and the generation of ROS, thereby exacerbating renal inflammation. Furthermore, these
inflammatory factors suppress the expression of nuclear transcription factors LXR and PPARY, impacting the expression of ABCA1 and ABCG1 genes,

ultimately resulting in impaired cholesterol efflux in macrophages.

with the urinary albumin-to-creatinine ratio (UACR), suggesting its
potential as a biomarker for monitoring proteinuria progression in
DKD (29). Similarly, Barati F et al. demonstrated that exposure of
the human monocyte cell line U937 to platelets and ox-LDL(80 ug/
ml) markedly upregulated the expression of CD36, ABCAI, SR-B1,
ACAT]1, and LXRo. in macrophages, implying that elevated platelet
activation and ox-LDL accumulation may contribute to cholesterol
imbalance and foam cell formation (30). Therefore, assessment of
ox-LDL levels and platelet activity may provide valuable insight into
the progression of DKD. Furthermore, cathepsins L and S have been
found to promote LDL degradation while suppressing cholesterol
efflux, exacerbating lipid accumulation and foam cell development.
Elevated serum levels of these proteases may thus serve as indirect
indicators of MCE impairment in DKD (31).

4 Potential therapeutic strategies to
restore macrophage cholesterol efflux
in diabetic kidney disease

4.1 Targeting lipid transport proteins
regulation

Transcription factors LXR/RXR regulate genes that mediate
MCE (APOE, ABCAI, and possibly ABCG1), transport (LPL,
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CETP, and several genes encoding ApoC isoforms), cholesterol
conversion to bile acids (CYP7A), and metabolism and excretion
into bile or intestinal lumen (ABCG5 and ABCGS8) (7). LXR
agonists have been shown to decrease lipid accumulation in
macrophages that infiltrate renal tissue, thereby mitigating the
activation of multiple signaling pathways, including JNK1, JNK2,
and NF-«kB, resulting in decreased levels of pro-inflammatory
cytokines such as IL6 and TNFo. (21). Furthermore, treatment of
macrophages with LXR or RXR activators can enhance ABCA1
mRNA expression and facilitate cholesterol efflux to ApoA-I (7).
For example, Tall et al. demonstrated that administration of LXR
agonists to Apo E KO mice resulted in increased expression of
ABCA1 and ABCG1 mRNA in lesions (7). Similarly, LXR-623, an
LXRP agonist, has been shown to produce similar effects (32).
Currently, two synthetic LXR agonists (T0901317 and GW3965)
have been identified as potential therapeutic agents for DKD,
primarily through the upregulation of sterol regulatory element-
binding transcription factor 1c¢ (SREBP-1c¢) to stimulate lipogenesis,
leading to excessive secretion of triglycerides into the systemic
circulation. Nevertheless, the clinical application of these
therapies is impeded by hepatotoxicity. In response to this
challenge, researchers have engineered innovative sHDL
nanoplatforms featuring a KT peptide surface and a hydrophobic
core incorporating LXR agonists. These nanoplatforms have the
ability to circumvent the glomerular filtration barrier, facilitate
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mesangial retention, and augment cholesterol efflux, thereby
presenting a potentially efficacious therapeutic option for
individuals with DKD (21).PPARY, a crucial transcription factor
in macrophage cholesterol metabolism, has the potential to enhance
ABCAL1 transcription and cholesterol efflux by upregulating LXRot
and ABCALI sequentially (33). Recent studies have demonstrated
that mangiferin may stimulate MCE through the PPARY-LXRo-
ABCA1/G1 pathway (34). Nevertheless, despite the identification of
a genuine PPARY response element in the LXRol gene, recent
studies have not been able to validate the induction of ABCALI
mRNA and cholesterol efflux in macrophages by PPARY agonists
like troglitazone or rosiglitazone (35-37). It is proposed that the
limitation in ABCA1 expression in differentiated cells may be
attributed to the availability of LXR/RXR ligands rather than the
abundance of LXRs. Due to the limited responsiveness of PPARY to
endogenous fatty acids, it has been observed that oxidized
derivatives of fatty acids, specifically those containing circulating
0x-LDL, can effectively stimulate PPARY activation and facilitate the
efflux of cholesterol (5).What’s more,the primary role of microRNA
miR-33a, situated within the intron of the transcription factor sterol
regulatory element-binding protein 2 (SREBP-2), is to suppress the
expression of ABCA1 (38). Research conducted by Jenika D.
Marshall demonstrated that lipoprotein lipase (LPL) hinders the
gene expression of ABCA1, ABCG1, and SR-BI via the Akt pathway
after 18 hours, establishing LPL as a crucial mediator in the process
through which it inhibits cholesterol efflux (39). Consequently, the
inhibition of microRNA miR-33a and Akt has the potential to
enhance cholesterol efflux in macrophages. Another approach to
augment efflux capacity involves the utilization of cholesterol ester
transfer protein (CETP) inhibitors, which elevate HDL levels by
way of the ABCGI transporter (5). Furthermore, research has
demonstrated that resolvin T4 (RvT4) can stimulate MCE
through the SR-BI-neutral cholesterol ester hydrolase (NCEH)
pathway (40).

Targeting ABCA1 and ABCG1 to regulate cholesterol efflux in
MCE pathways is a promising strategy.While reduced ABCAL1
expression alone is not enough to induce DKD, experimental
manipulation through genetic or pharmacological means to
increase ABCALI levels has shown promising results in mitigating
kidney disease progression, indicating ABCAL1 as a potential target
for therapeutic intervention. Experimental investigations have
demonstrated that Tetramethylpyrazine-Paeoniflorin (TP),
sorbitol A, gypenoside monomer-gypenoside XVII (GP-17),
curcumin, LCBP, and 17B-estradiol estrogen receptor A can
enhance MCE and inhibit lipid accumulation through the
upregulation of ABCAI and ABCG1 expression (41-46). Qianxia
Yin et al. demonstrated that photobiomodulation therapy (PBMT)
enhances ABCA1 expression and facilitates cholesterol efflux in
lipid-loaded primary peritoneal macrophages through the
activation of the phosphatidylinositol 3-kinase/protein kinase C
zeta/specific protein 1 signaling cascade (47). Conversely, Min
Zhang and team identified that stabilizing ABCAI through the
inhibition of protein degradation can elevate ABCA1 levels and
improve cholesterol efflux (48).
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4.2 Anti-inflammatory strategies

Excessive cholesterol accumulation in macrophages situated in
an inflammatory microenvironment triggers the activation of the
Triggering Receptor Expressed on Myeloid Cells 2(TREM2) and
AMP-activated protein kinase (AMPK) signaling pathways. This
activation subsequently leads to the upregulation of LXR, which in
turn facilitates the expression of downstream genes such as ABCA1
and ABCG1, thereby modulating lipid metabolism in macrophages
(49, 50). When the lipid burden surpasses the macrophage’s
intrinsic regulatory abilities, a transformation into foam cells
occurs. The collective action of inflammasomes and ox-LDL
intensifies macrophage oxidative stress and inflammatory
reactions, consequently impeding MCE (15). Hence, the
implementation of anti-inflammatory approaches is crucial in
enhancing MCE. Jun Mei et al. discovered that TP has the ability
to decrease the secretion of TNFq, IL-1B3, and MCP-1 induced by
ox-LDL, which is a significant finding in the context of
inflammation alleviation (41). Additionally, Metformin, a widely
prescribed medication for diabetes, has been shown to effectively
slow down the progression of DKD by enhancing cholesterol efflux
and lipid metabolism via the activation of the AMPK pathway
(51).As emerging therapeutic agents for DKD, sodium-glucose
cotransporter 2 (SGLT2) inhibitors induce glycosuria, thereby
shifting the primary cellular energy substrate from glucose to free
fatty acid (FFA) oxidation. This metabolic reprogramming helps
decrease intracellular levels of toxic lipid intermediates in
podocytes, mesangial cells, and proximal tubular cells, ultimately
mitigating kidney injury caused by excessive cholesterol
accumulation (52). Moreover, glucagon-like peptide-1 receptor
agonists (GLP-1RAs) have been shown to suppress activation of
the NF-xB inflammatory pathway and reduce the release of
proinflammatory cytokines such as IL-6, TNF-o, and MCP-1,
while promoting macrophage polarization toward the anti-
inflammatory M2 phenotype rather than the proinflammatory
MI1 phenotype—thus exerting beneficial effects on macrophage
cholesterol metabolism. Clinically used GLP-1RAs, including
exenatide and liraglutide, have been demonstrated to lower IL-10
levels in the kidneys of diabetic mice, an effect further confirmed in
vitro in human monocytes (53).

Macrophage polarization involves the differentiation of
macrophages into distinct functional states in response to various
signals within the microenvironment, resulting in the classification
of M1 macrophages as pro-inflammatory and M2 macrophages as
anti-inflammatory (54). In a pro-inflammatory setting, M1
macrophages have been shown to suppress the expression and
activity of ABCA1 and ABCGI, thereby promoting intracellular
cholesterol buildup (55). Hence, enhancing the M1/M2 conversion
of macrophages may lead to improved cholesterol efflux function.
For instance, the activation of the miR-182-5p/HDACY signaling
pathway by GP-17 can facilitate the transition of macrophages to
the M2 phenotype (43). In order to enhance both cellular
cholesterol efflux and targeted drug delivery to macrophages,
researchers have developed a ROS-responsive PF/TC-AT-d-
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rHDL, which effectively enhances cholesterol clearance in foam cells
upon exposure to ROS, inhibits intracellular lipid deposition, and
promotes M2 polarization of macrophages (56). Moreover, research
conducted by Saba Soltani et al. has demonstrated that PON1 and
PON2, both paraoxonases implicated in HDL-mediated cholesterol
efflux, play a crucial role in safeguarding cholesterol-laden foam
cells. Specifically, PON1 functions to diminish ox-LDL formation,
while PON2 acts as a defense mechanism against oxidative stress.
Consequently, enhancing the activity of PON1 and PON2 has the
potential to mitigate cholesterol accumulation and facilitate efflux
(5). Additionally, lipophagy, a specialized autophagic process
responsible for degrading intracellular lipid droplets (LDs),
liberates free cholesterol and fatty acids. Promoting cholesterol
efflux can be achieved by enhancing lipophagy through the
selective knockdown of genes located on lipid droplets, including
SQSTM1/p62, NBR1, and OPTN (57).

4.3 Interventions Targeting the MCE
Pathway and Their Potential for Prognostic
Improvement

Emerging therapeutic agents for DKD, including liraglutide and
canagliflozin, have been shown to activate AMPK and downstream
MCE-related signaling pathways, highlighting the central role of
MCE in metabolic regulation, inflammation resolution, and renal
protection (58, 59). In the SUSTAIN-6 trial, treatment with the
GLP-1 receptor agonist semaglutide significantly reduced the risk of
new-onset or worsening nephropathy compared with placebo
(HR = 0.64, 95% CI: 0.46-0.88; P < 0.01), suggesting that its
renoprotective effects may be mediated through improved
metabolic homeostasis and anti-inflammatory mechanisms (60).
Likewise, findings from the CANVAS program demonstrated that
the SGLT2 inhibitor canagliflozin slowed the decline in eGFR,
reduced UACR levels, and lowered the incidence of composite
renal outcomes, further supporting its protective role against renal
function deterioration (61, 62). Collectively, these data indicate that
modulation of MCE may represent a pivotal mechanism by which
metabolic agents confer renal benefits. In the future, therapeutic
strategies targeting MCE may drive a paradigm shift in DKD
management—from conventional metabolic control toward
integrated immunometabolic modulation—thereby offering new
opportunities for precision treatment and long-term outcome
improvement. However, it is worth noting that direct
pharmacological modulators of MCE remain at the preclinical
research stage, and further studies are warranted to translate these
findings into clinical practice (63).

5 Conclusion

Recent research has elucidated the mechanism of MCE,
highlighting the importance of lipid metabolism in macrophages,
particularly the role of surface proteins ABCA1 and ABCGI in
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transporting cholesterol bound to ApoA-I and HDL for recycling in
the liver. A stable lipid metabolism in macrophages is essential for
internal homeostasis and the inhibition of inflammatory mediator
release. Recent studies have shown that modulating lipid transport
proteins, crucial transcription factors in cholesterol metabolism,
and anti-inflammatory approaches can effectively modulate
macrophages to enhance cholesterol efflux. Despite advancements
in comprehending MCE, there are still constraints.Most studies
have focused on the link between MCE and atherosclerosis, whereas
direct investigations of MCE in the context of DKD, both in
experimental models and clinical settings, remain limited.
Moreover, although certain novel agents can indirectly enhance
MCE, no therapeutics specifically targeting MCE have yet been
developed or approved for clinical use.
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