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Editorial on the Research Topic

In vivo magnetic resonance imaging of metabolic disorders
1 Introduction

Metabolic health depends on the balance between energy expenditure through oxidation,

substrate supply, and substrate storage. When this balance is disrupted, for example when

substrate availability chronically exceeds energy expenditure, fatty acids and carbohydrates

may be stored as triglycerides in adipose tissue. The subcutaneous and visceral adipose tissues

serve as the body’s long-term energy reserve (1). Excess triglycerides may alternately be stored

in the liver (2), skeletal muscle (3), and in the pancreas (4), leading to ectopic lipid deposition

and lipotoxicity which interfere with insulin signaling (5). In the liver, steatosis leads to the

development of metabolic dysfunction-associated steatotic liver disease (MASLD) and

metabolic dysfunction-associated steatohepatitis (MASH) (6). In the endocrine pancreas,

lipotoxicity plays a key role in reduced beta-cell function and mass and impaired beta-cell

vascularization (7). Further, enlarged adipocytes secrete pro-inflammatory cytokines which

further worsen insulin resistance and type 2 diabetes (8). A major challenge in research of

metabolic disorders is the ability to evaluate several organ systems and phenomena (e.g., fat

metabolism, glycogen metabolism, blood flow, oxygenation) concurrently to better

understand the dynamic evolution of these diseases in vivo.

Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are

nonionizing techniques that display outstanding anatomical detail with high spatial

resolution and numerous tissue contrast mechanisms. Magnetic resonance techniques
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for fat quantification rely on difference in resonance frequencies

between water and fat proton signals to quantitatively measure the

proton density fat fraction (9, 10). Other relaxometry techniques

measure relaxation constants such as T1 and T2 to differentiate

normal and pathologic tissues. Advanced MRI techniques also allow

measurement of tissue blood flow, either with gadolinium-based

contrast agents (e.g., dynamic contrast-enhanced imaging) or

without contrast agents (e.g., using arterial spin labelling) (11–13).

Further, MRS can resolve distinct fat peaks based on their resonance

frequencies and provide information on the chemical structure of

triglycerides to determine fatty acid composition by differentiating

saturated, monounsaturated, and polyunsaturated fatty acids

fractions (14). Because of the abundance of hydrogen in the body

leading to high signal, most clinical magnetic resonance techniques

focus on hydrogen (1H) imaging or spectroscopy. With the use of

specialized hardware and sequences, MRS of other nuclei to provide

insights on metabolic pathways using isotopes such as the hydrogen

isotope deuterium (2H), carbon isotope (13C), or phosphorus (31P).

Remarkably, these techniques can achieve noninvasive,

quantitative, repeated, and longitudinal assessment of several

metabolic pathways concomitantly within the same examination

by using different sequences.
2 Key contributions to this Research
Topic

In this Research Topic, Kupriyanova and Schrauwen-

Hinderling describe current practice and recent advances in

metabolic research in their review article entitled ‘Advances in in

vivomagnetic resonance spectroscopy for metabolic disorders’. The

authors describe potential applications of MRS, specifically in the

field of obesity, insulin resistance and diabetes. For example, 31P-

MRS can provide in vivo, organ-specific, measurements of oxidative

or non-oxidative metabolism; 1H-MRS of lipid content and type of

fatty acids; and 13C-MRS of glycogen concentration and turnover.

Their review also highlights advantages of MRS such has real-time

dynamic information to investigate metabolism during

physiological challenges, non-invasive nature which allows

longitudinal monitoring of treatment response, and alleviate the

need for biopsies. The review briefly mentions strategies to mitigate

motion which can affect the quality of MRS and strategies for

motion correction.

Garcia et al. describe compressed sensing techniques, an

acceleration method for MRI signal acquisition translated to

MRS, to evaluate energy metabolism in vivo using 31P-MRS and

MRS imaging in their original research article entitled ‘Assessment

of reconstruction accuracy for under-sampled 31P-MRS data using

compressed sensing and a low rank Hankel matrix completion

approach’. By using this approach, the team was able to shorten the

long acquisition times typically required to measure metabolites

such as phosphocreatine and inorganic phosphate in brain and

skeletal muscle tissue. They analyzed factors that influence the
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quality of the signal reconstruction. Their findings revealed that

reconstruction accuracy is influenced by the selection of samples

and their density rather than the undersampling factor. Future

work will require quantitative assessment to validate the fidelity

of the proposed method for reconstructing individual

spectral components.

Mori et al. investigated the potential impact of a sodium-glucose

cotransporter 2 (SGLT2) inhibitor on kidney oxygenation in their

original research article entitled ‘Effects of canagliflozin on kidney

oxygenation evaluated using blood oxygenation level-dependent

MRI in patients with type 2 diabetes’. With repeated mapping of

T2*, which is related to blood oxygenation, (using blood

oxygenation level-dependent, BOLD MRI) the authors found that

short-term canagliflozin treatment was associated with higher T2*

values indicating good levels of tissue oxygenation. However, the

results of this single-arm study will need to be validated in future

studies with a control group. Increase in oxygenation induced by

the administration of SGLT2 inhibitor in type 2 diabetes may

improve kidney outcomes, as kidney injury has been thought to

be induced by hypoxic damage (15).

Xie et al. investigated two MRI techniques in their original

research article entitled ‘T1 mapping combined with arterial spin

labeling MRI to identify renal injury in patients with liver cirrhosis’.

The authors found lower T1 values in the renal cortex and medulla of

normal controls than in cirrhotic participants. They also proposed a

classification and regression tree model incorporating cortical T1

values and cortical renal blood flow derived from arterial spin

labelling to identify renal injury. Their findings suggest that renal

T1 mapping may be used for early detection of renal injury in the

setting of cirrhosis. This proof-of-concept study will also require

validation against other techniques such as para-aminohippurate

clearance for assessing effective renal blood flow, or histopathology

for confirming the presence of renal injury prior to clinical adoption.

Finally, Li et al. evaluated alterations in marrow fat content in their

original research article entitled ‘Associations of marrow fat fraction

with MRI based trabecular bone microarchitecture in first-time

diagnosed type 1 diabetes mellitus’. The authors performed a case-

control study in adults diagnosed with type 1 diabetes mellitus and age-

and sex-matched healthy volunteers. They evaluated the trabecular

microarchitecture of the tibia with X-ray absorptiometry and fat

fraction by MRI. While bone density was similar between the two

groups, the trabecular separation, volume, number, and fat fraction

were higher in type 1 diabetes mellitus than in controls. Their findings

highlight alterations in trabecular bone microarchitecture and

expansion of marrow adiposity in type 1 diabetes mellitus. These

measurements may be further investigated as quantitative tools for

assessing diabetic bone fragility.

A common thread among these contributions is the use of

various magnetic resonance techniques to assess organ-specific

manifestations of disease without the need for invasive tissue

sampling. Collectively, the articles in this Research Topic provide

insights into metabolic disorders using noninvasive MRS and MRI

techniques. By focusing on tissue properties in vivo, these articles
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highlighted the potential of these quantitative techniques for

assessing manifestations of disease in diabetes, kidney injury, or

bone fragility. The diversity of tissue contrast mechanisms exploited

to differentiate normal and pathologic tissue and the variety of

organs assessable with magnetic resonance techniques showcase the

versatility of this modality. Importantly, magnetic resonance

techniques can assess fatty tissue content, type (saturated vs.

unsaturated fatty acids), and distribution. A major unmet need in

this field is the development of an integrated panel of molecular

imaging tools capable of assessing dysregulation of energy and fatty

acid metabolism across key organs, including adipose tissue (fat and

brown), liver, pancreas, brain, and skeletal muscle. Moving forward,

we anticipate that magnetic resonance techniques will help identify

critical organ-specific pathogenic biomarkers that will lead to better,

individually tailored strategies for clinical management.
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