

OPEN ACCESS

EDITED AND REVIEWED BY
Jeff M P Holly,
University of Bristol, United Kingdom

*CORRESPONDENCE

An Tang

RECEIVED 26 September 2025 ACCEPTED 03 November 2025 PUBLISHED 13 November 2025

CITATION

Tang A, Lepage M, Rutter GA and Carpentier AC (2025) Editorial: *In vivo* magnetic resonance imaging of metabolic disorders. *Front. Endocrinol.* 16:1713999. doi: 10.3389/fendo.2025.1713999

COPYRIGHT

© 2025 Tang, Lepage, Rutter and Carpentier. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: *In vivo* magnetic resonance imaging of metabolic disorders

An Tang^{1,2,3*}, Martin Lepage^{4,5}, Guy A. Rutter^{3,6,7,8} and André C. Carpentier^{5,9}

¹Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, QC, Canada, ²Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada, ³Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada, ⁴Department of Medical Imaging and Radiation Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, ⁵Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada, ⁶Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom, ⁷Research Institute of the McGill University Health Centre, Montreal, QC, Canada, ⁸Lee Kong Chian School of Medicine, Nanyang Technological College, Singapore, Singapore, ⁹Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada

KEYWORDS

magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), metabolic disorders, adipose tissue, diabetes, metabolism

Editorial on the Research Topic

In vivo magnetic resonance imaging of metabolic disorders

1 Introduction

Metabolic health depends on the balance between energy expenditure through oxidation, substrate supply, and substrate storage. When this balance is disrupted, for example when substrate availability chronically exceeds energy expenditure, fatty acids and carbohydrates may be stored as triglycerides in adipose tissue. The subcutaneous and visceral adipose tissues serve as the body's long-term energy reserve (1). Excess triglycerides may alternately be stored in the liver (2), skeletal muscle (3), and in the pancreas (4), leading to ectopic lipid deposition and lipotoxicity which interfere with insulin signaling (5). In the liver, steatosis leads to the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) (6). In the endocrine pancreas, lipotoxicity plays a key role in reduced beta-cell function and mass and impaired beta-cell vascularization (7). Further, enlarged adipocytes secrete pro-inflammatory cytokines which further worsen insulin resistance and type 2 diabetes (8). A major challenge in research of metabolic disorders is the ability to evaluate several organ systems and phenomena (e.g., fat metabolism, glycogen metabolism, blood flow, oxygenation) concurrently to better understand the dynamic evolution of these diseases in vivo.

Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are nonionizing techniques that display outstanding anatomical detail with high spatial resolution and numerous tissue contrast mechanisms. Magnetic resonance techniques

Tang et al. 10.3389/fendo.2025.1713999

for fat quantification rely on difference in resonance frequencies between water and fat proton signals to quantitatively measure the proton density fat fraction (9, 10). Other relaxometry techniques measure relaxation constants such as T1 and T2 to differentiate normal and pathologic tissues. Advanced MRI techniques also allow measurement of tissue blood flow, either with gadolinium-based contrast agents (e.g., dynamic contrast-enhanced imaging) or without contrast agents (e.g., using arterial spin labelling) (11-13). Further, MRS can resolve distinct fat peaks based on their resonance frequencies and provide information on the chemical structure of triglycerides to determine fatty acid composition by differentiating saturated, monounsaturated, and polyunsaturated fatty acids fractions (14). Because of the abundance of hydrogen in the body leading to high signal, most clinical magnetic resonance techniques focus on hydrogen (¹H) imaging or spectroscopy. With the use of specialized hardware and sequences, MRS of other nuclei to provide insights on metabolic pathways using isotopes such as the hydrogen isotope deuterium (²H), carbon isotope (¹³C), or phosphorus (³¹P). Remarkably, these techniques can achieve noninvasive, quantitative, repeated, and longitudinal assessment of several metabolic pathways concomitantly within the same examination by using different sequences.

2 Key contributions to this Research Topic

In this Research Topic, Kupriyanova and Schrauwen-Hinderling describe current practice and recent advances in metabolic research in their review article entitled 'Advances in in vivo magnetic resonance spectroscopy for metabolic disorders'. The authors describe potential applications of MRS, specifically in the field of obesity, insulin resistance and diabetes. For example, ³¹P-MRS can provide in vivo, organ-specific, measurements of oxidative or non-oxidative metabolism; ¹H-MRS of lipid content and type of fatty acids; and 13C-MRS of glycogen concentration and turnover. Their review also highlights advantages of MRS such has real-time dynamic information to investigate metabolism during physiological challenges, non-invasive nature which allows longitudinal monitoring of treatment response, and alleviate the need for biopsies. The review briefly mentions strategies to mitigate motion which can affect the quality of MRS and strategies for motion correction.

Garcia et al. describe compressed sensing techniques, an acceleration method for MRI signal acquisition translated to MRS, to evaluate energy metabolism *in vivo* using ³¹P-MRS and MRS imaging in their original research article entitled 'Assessment of reconstruction accuracy for under-sampled ³¹P-MRS data using compressed sensing and a low rank Hankel matrix completion approach'. By using this approach, the team was able to shorten the long acquisition times typically required to measure metabolites such as phosphocreatine and inorganic phosphate in brain and skeletal muscle tissue. They analyzed factors that influence the

quality of the signal reconstruction. Their findings revealed that reconstruction accuracy is influenced by the selection of samples and their density rather than the undersampling factor. Future work will require quantitative assessment to validate the fidelity of the proposed method for reconstructing individual spectral components.

Mori et al. investigated the potential impact of a sodium-glucose cotransporter 2 (SGLT2) inhibitor on kidney oxygenation in their original research article entitled 'Effects of canagliflozin on kidney oxygenation evaluated using blood oxygenation level-dependent MRI in patients with type 2 diabetes'. With repeated mapping of T2*, which is related to blood oxygenation, (using blood oxygenation level-dependent, BOLD MRI) the authors found that short-term canagliflozin treatment was associated with higher T2* values indicating good levels of tissue oxygenation. However, the results of this single-arm study will need to be validated in future studies with a control group. Increase in oxygenation induced by the administration of SGLT2 inhibitor in type 2 diabetes may improve kidney outcomes, as kidney injury has been thought to be induced by hypoxic damage (15).

Xie et al. investigated two MRI techniques in their original research article entitled 'T1 mapping combined with arterial spin labeling MRI to identify renal injury in patients with liver cirrhosis'. The authors found lower T1 values in the renal cortex and medulla of normal controls than in cirrhotic participants. They also proposed a classification and regression tree model incorporating cortical T1 values and cortical renal blood flow derived from arterial spin labelling to identify renal injury. Their findings suggest that renal T1 mapping may be used for early detection of renal injury in the setting of cirrhosis. This proof-of-concept study will also require validation against other techniques such as para-aminohippurate clearance for assessing effective renal blood flow, or histopathology for confirming the presence of renal injury prior to clinical adoption.

Finally, Li et al. evaluated alterations in marrow fat content in their original research article entitled 'Associations of marrow fat fraction with MRI based trabecular bone microarchitecture in first-time diagnosed type 1 diabetes mellitus'. The authors performed a case-control study in adults diagnosed with type 1 diabetes mellitus and age-and sex-matched healthy volunteers. They evaluated the trabecular microarchitecture of the tibia with X-ray absorptiometry and fat fraction by MRI. While bone density was similar between the two groups, the trabecular separation, volume, number, and fat fraction were higher in type 1 diabetes mellitus than in controls. Their findings highlight alterations in trabecular bone microarchitecture and expansion of marrow adiposity in type 1 diabetes mellitus. These measurements may be further investigated as quantitative tools for assessing diabetic bone fragility.

A common thread among these contributions is the use of various magnetic resonance techniques to assess organ-specific manifestations of disease without the need for invasive tissue sampling. Collectively, the articles in this Research Topic provide insights into metabolic disorders using noninvasive MRS and MRI techniques. By focusing on tissue properties *in vivo*, these articles

Tang et al. 10.3389/fendo.2025.1713999

highlighted the potential of these quantitative techniques for assessing manifestations of disease in diabetes, kidney injury, or bone fragility. The diversity of tissue contrast mechanisms exploited to differentiate normal and pathologic tissue and the variety of organs assessable with magnetic resonance techniques showcase the versatility of this modality. Importantly, magnetic resonance techniques can assess fatty tissue content, type (saturated vs. unsaturated fatty acids), and distribution. A major unmet need in this field is the development of an integrated panel of molecular imaging tools capable of assessing dysregulation of energy and fatty acid metabolism across key organs, including adipose tissue (fat and brown), liver, pancreas, brain, and skeletal muscle. Moving forward, we anticipate that magnetic resonance techniques will help identify critical organ-specific pathogenic biomarkers that will lead to better, individually tailored strategies for clinical management.

Author contributions

AT: Writing – original draft, Writing – review & editing. ML: Writing – original draft, Writing – review & editing. GR: Writing – review & editing, Writing – original draft. AC: Writing – review & editing, Writing – original draft.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. AT is the recipient of the Fonds de recherche du Québec en Santé (FRQ-S #366366 and #376472) Clinical Research Scholarship –Merit Salary Award (https://doi.org/10.69777/366366 and https://doi.org/10.69777/376472). ACC is the recipient of the Canada Research Chair in Molecular Imaging of Diabetes.

References

- 1. Arsenault BJ, Carpentier AC, Poirier P, Despres JP. Adiposity, type 2 diabetes and atherosclerotic cardiovascular disease risk: Use and abuse of the body mass index. *Atherosclerosis*. (2024) 394:117546. doi: 10.1016/j.atherosclerosis.2024.117546
- 2. Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol. (2017) 8(1):1-8. doi: 10.1002/cphy.c170012
- 3. Kelley DE, Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. *Diabetes Care.* (2001) 24:933–41. doi: 10.2337/diacare.24.5.933
- 4. Singh RG, Yoon HD, Poppitt SD, Plank LD, Petrov MS. Ectopic fat accumulation in the pancreas and its biomarkers: A systematic review and meta-analysis. *Diabetes Metab Res Rev.* (2017) 33. doi: 10.1002/dmrr.2918
- 5. Carpentier AC. 100(th) anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. $Am\ J\ Physiol\ Endocrinol\ Metab.$ (2021) 320: E653–70. doi: 10.1152/ajpendo.00620.2020
- 6. Steinberg GR, Valvano CM, De Nardo W, Watt MJ. Integrative metabolism in MASLD and MASH: Pathophysiology and emerging mechanisms. *J Hepatol.* (2025) 83:584–95. doi: 10.1016/j.jhep.2025.02.033
- 7. Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev. (2008) 29:351–66. doi: 10.1210/er.2007-0023
- 8. Ye RZ, Richard G, Gevry N, Tchernof A, Carpentier AC. Fat cell size: measurement methods, pathophysiological origins, and relationships with metabolic dysregulations. *Endocr Rev.* (2022) 43:35–60. doi: 10.1210/endrev/bnab018

Conflict of interest

AT has received grant funding from Milvue and Bracco. GR has received grant funding from, and is a consultant for, Sun Pharmaceuticals Inc. AC has received funds from Eli Lilly, Novo Nordisk, Medison Pharma, Merck & Co., Janssen, and HLS Therapeutics. These organisations were not involved in any way in the preparation of the present article.

The remaining author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

- 9. Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. *J Magn Reson Imaging*. (2011) 34:729–49. doi: 10.1002/jmri.22580
- 10. Tang A, Desai A, Hamilton G, Wolfson T, Gamst A, Lam J, et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. *Radiology.* (2015) 274:416–25. doi: 10.1148/radiol.14140754
- 11. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. $Magn\ Reson\ Med.\ (1992)\ 23:37-45.\ doi: 10.1002/mrm.1910230106$
- 12. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. *Proc Natl Acad Sci U.S.A.* (1992) 89:212–6.
- 13. Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, et al. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant. (2018) 33:ii15–21. doi: 10.1093/ndt/gfy180
- 14. Trinh L, Peterson P, Leander P, Brorson H, Mansson S. *In vivo* comparison of MRI-based and MRS-based quantification of adipose tissue fatty acid composition against gas chromatography. *Magn Reson Med.* (2020) 84:2484–94. doi: 10.1002/mrm.28300
- 15. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. *J Am Soc Nephrol.* (2006) 17:17–25. doi: 10.1681/ASN.2005070757