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Background

A growing number of risk prediction models for cervical lymph node metastasis (CLNM) in papillary thyroid microcarcinoma (PTMC) have been developed, but their performance and methodological rigor remain unclear. This study systematically reviews these models to evaluate their predictive performance and critically appraise their risk of bias.





Methods

We conducted a systematic search of seven databases up to July 29, 2025. The methodological quality of the included studies was assessed using PROBAST. Model performance, measured by the area under the curve (AUC), was pooled using a random-effects meta-analysis.





Results

A total of 15 studies, comprising 24 predictive models, were included. The pooled AUC was 0.794 (95% CI: 0.769–0.820), but with substantial heterogeneity (I2 = 89.6%). Subgroup analysis revealed a performance drop from the training set (pooled AUC, 0.812) to the validation set (pooled AUC, 0.774). The PROBAST assessment revealed that 12 of the 15 studies (80%) were critically at a high risk of bias, primarily due to flaws in participant selection.





Conclusion

Although existing CLNM prediction models for PTMC show moderate to good discrimination on average, their clinical utility is severely limited by widespread methodological weaknesses and a high risk of bias. The current evidence is not robust enough to recommend any specific model for routine clinical use, and future research must prioritize methodological rigor and independent external validation.
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Introduction

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer (1, 2), accounting for approximately 85% to 90% of all thyroid malignancies (3, 4). In recent years, the incidence of PTC has been steadily increasing, making it one of the fastest-growing malignant tumors worldwide (5–9). A significant portion of these diagnoses are for papillary thyroid microcarcinoma (PTMC), defined as PTC with a diameter of not more than 10 mm (10). Although PTMC is often considered a low-risk disease, it has a notable tendency to metastasize to cervical lymph nodes relatively early (11), with reported metastasis rates ranging from 30% to 82% (12–16). This creates a significant clinical dilemma, as the presence of cervical lymph node metastasis (CLNM) is a key factor in determining the appropriate management strategy, which can range from active surveillance to surgical intervention (17–22).

To address this clinical uncertainty, risk prediction models have emerged as a promising tool to help stratify patients and guide treatment decisions. The traditional detection of CLNM primarily relies on ultrasound examination, but this modality has relatively low sensitivity in identifying metastatic lymph nodes (23–25). Consequently, there is an urgent need to identify CLNM risk more accurately to inform surgical planning (26). In response, a growing number of studies have developed multivariable prediction models, often presented as nomograms, that combine clinical, pathological, and imaging features to estimate the probability of CLNM in patients with PTMC.

Despite the proliferation of these models, their performance, reliability, and ultimate clinical utility have not been systematically and critically appraised. Many prediction model studies are known to suffer from methodological shortcomings, such as biased participant selection, inadequate handling of data, and insufficient validation, which can lead to overly optimistic performance estimates. The adoption of a poorly developed or validated model into clinical practice could lead to incorrect patient stratification, resulting in either unnecessary overtreatment or dangerous undertreatment. A comprehensive evaluation of the existing evidence is therefore essential.

Therefore, this study was conducted to systematically review existing prediction models for CLNM in PTMC, evaluate their predictive performance through meta-analysis, and critically appraise their methodological quality using Prediction model Risk Of Bias ASsessment Tool (PROBAST). The goal is to summarize the current evidence, highlight methodological limitations in the field, and provide guidance for both clinical practice and the development of future, more robust prediction models.





Methods

This systematic review and meta-analysis was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement.




Literature search

We searched the Chinese Biomedical Literature Database, China National Knowledge Infrastructure (CNKI), Wanfang, PubMed, EMbase, Web of Science, and Cochrane Library databases to collect studies on the risk prediction model of CLNM in PTMC published from the establishment of the databases to July 29, 2025. We combined keywords with related free words. The search terms included thyroid microcarcinoma, ultrasound, radiomic, lymph node, transfer, nomogram, etc. Detailed search strategies for each database, including the specific combinations of medical subject headings (MeSH), Emtree terms, and free-text words, are provided in Supplementary Appendix 1.





Inclusion and exclusion criteria

Based on the PICOTS framework, the inclusion and exclusion criteria for this study were as follows:

P (population): Patients with a postoperative pathological diagnosis of PTMC (defined as papillary thyroid carcinoma with tumor diameter ≤ 10 mm).

I (intervention model): Studies developing and/or validating a multivariable risk prediction model for CLNM.

C (comparator): Not applicable for this type of review.

O (outcome): Model performance metrics, primarily the area under the receiver operating characteristic curve (AUC).

T (timing): At the time of initial diagnosis, prior to surgical intervention.

S (setting): Eligible studies included observational study designs (e.g., retrospective or prospective cohort studies, case–control studies) that reported on the development or validation of a prediction model.

According to the qualification criteria, the included studies must be original research involving the CLNM risk prediction model of PTMC (excluding reports, reviews, conference papers, and meta-analyses), including both Chinese and English literature, with a focus on the training set and validation set of the prediction model. The exclusion criteria are studies with only training set but no validation set and studies with incomplete data or where the original text cannot be obtained.





Literature screening and data extraction

Two researchers independently conducted a preliminary screening of the titles and abstracts of the articles based on preset inclusion and exclusion criteria. Subsequently, the full-text reading of the literature that passed the initial screening was conducted to further screen whether it met the inclusion criteria. Data extraction uses standardized tables based on CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies) checklist. The extracted data were as follows: author, publication year, country, sample source, sample size, study type, age, lymph node metastasis rate, diagnostic basis, modeling sample size, model performance, model validation, main predictors, clinical applicability assessment, and lymph node metastasis risk stratification. During the process of article screening and data extraction, if there are any differences, a third researcher was introduced for discussion.





Risk assessment of bias

The risk of bias and suitability of the included studies were evaluated using the PROBAST checklist (27, 28). Two researchers independently assessed the risk of bias and applicability. The PROBAST checklist contains 20 signaling questions across four evaluation domains: participants, predictors, results, and analysis. The answer options for each signaling question are “yes”, “probably yes”, “no”, “probably no”, or “no information”. If the answer to any question in a certain field is “no” or “probably no”, that field is judged to have a high risk of bias. Only when all domains are determined to have a low risk of bias can the overall risk of bias be recognized as low.





Data synthesis and statistical analysis

Meta-analysis of the area under the curve (AUC) and 95% confidence interval (CI) of the model was conducted using Stata 14. Heterogeneity among studies was evaluated by using Q test and I2. If P >0.1 and I2 <50%, it is considered that the heterogeneity among studies is relatively small, and a fixed-effect model is selected. If P ≤0.1 and I2 ≥50%, the random-effects model is selected. Subgroup analysis was conducted based on the training set, validation set, and sources of predictors. Sensitivity analysis was performed using the elimination method one by one. Egger’s test was used to assess publication bias.






Result

A total of 176 studies were identified through database retrieval. After removing 56 duplicate records, the titles and abstracts of the remaining studies were screened, and 81 studies were excluded. Subsequently, full-text evaluations were conducted on 39 articles. During this process, 15 studies were excluded due to the lack of a predictive model or incomplete data. Nine studies were excluded due to the lack of internal and external validation or improper grouping methods. Ultimately, 15 studies (1, 2, 4–6, 10, 11, 14, 15, 17, 18, 22, 23, 25, 29) and 24 models were included in this meta-analysis (Figure 1).
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Figure 1 | Flowchart of searching and screening steps for the studies.




Basic characteristics included in the study

This meta-analysis included 15 retrospective studies published between 2021 and 2025, involving a total of 24 predictive models. As detailed in Table 1, the studies showed significant geographical diversity, with seven conducted in China and eight in Western countries. The total sample sizes varied considerably, ranging from 133 to 2,368 participants.


Table 1 | Characteristics of the included studies.
	Author, year
	Country
	Period
	Sample source
	Study type
	Sample size
	Total sample size



	Ding et al., 2024 (10)
	China
	December 2020 to December 2021
	Postoperative patients
	Retrospective study
	TS (n = 282), VS (n = 122)
	404


	He 2024 (1)
	China
	January 2016 to January2020
	SEER database
Postoperative patients
	Retrospective study
	TS (n = 2085), VS (n = 283)
	2,368


	Jin et al., 2025 (11)
	China
	January 2022 to April 2023
	Postoperative patients
	Retrospective study
	TS (n = 92), VS (n = 41)
	133


	Luo 2021 (3)
	China
	October 2014 to October 2020
	Postoperative patients
	Retrospective study
	TS (n = 382), VS (n = 164)
	546


	Yu 2024 (4)
	China
	April 2022 to April 2023
	Postoperative patients
	Retrospective study
	TS (n = 128), VS (n = 56)
	184


	Huang et al., 2021 (17)
	Switzerland
	January 2018 to February 2020
	Institution Database
	Retrospective study
	TS (n = 439), VS (n = 220)
	659


	Zhu et al., 2023 (5)
	USA
	February 2016 to June 2022
	Postoperative patients
	Retrospective study
	TS (n = 151), VS (n = 65)
	216


	Duan et al., 2024 (14)
	China
	January 2017 to December 2022
	Postoperative patients in 2 hospitals
	Retrospective study
	TS (n = 709), VS (n = 302)
	1,011


	Gao et al., 2025 (29)
	USA
	October 2020 to October 2022
	Postoperative patients in 2 hospitals
	Retrospective study
	TS (n = 201), VS (n = 87)
	288


	Zhang et al., 2021 (23)
	Switzerland
	January 2018 to December 2020
	Postoperative patients
	Retrospective study
	TS (n = 180), VS (n = 89)
	269


	Liu et al., 2024 (6)
	UK
	January 2018 to December 2020
	Postoperative patients in 2 hospitals
	Retrospective study
	TS (n = 327), VS (n = 153)
	460


	Qiu et al., 2024 (2)
	UK
	July 2019 to December 2021
	Postoperative patients
	Retrospective study
	TS (n = 269), VS (n = 108)
	377


	Wu et al., 2024 (18)
	Switzerland
	November 2021 to October 2022
	Postoperative patients
	Retrospective study
	TS (n = 142), VS (n = 62)
	204


	Zhang et al., 2024 (25)
	Romania
	June 2020 to May 2021
	Postoperative patients
	Retrospective study
	TS (n = 445), VS (n = 191)
	636


	Zhao et al., 2023 (15)
	China
	January 2020 to July 2022
	Postoperative patients
	Retrospective study
	TS (n = 214), VS (n = 55)
	369





TS, training set; VS, validation set.



Further details on participant demographics are summarized in Table 2. The mean age of the patient cohorts was consistent across studies, ranging from 43 to 48 years. The reported rate of cervical lymph node metastasis (CLNM) was substantial, falling between 30% and 50%. A critically key methodological point highlighted in Table 2 is that only three studies explicitly confirmed that their population met the strict definition of PTMC (tumor diameter ≤10 mm), and quality control for ultrasound imaging was not reported in four of the studies.


Table 2 | Other characteristics of the included studies.
	Author, year
	Gender (male/female)
	Mean age, years
	Lymph node partitioning
	CLNM (%)
	PTMC ≤10 mm
	Image quality control



	Ding et al., 2024
	120/284
	45.20
	Neck
	159 (31.5)
	–
	–


	He 2024
	392/1976
	46.50
	Neck
	878 (37.1)
	–
	–


	Jin et al., 2025
	30/103
	47.63
	Neck
	57 (42.8)
	–
	Two doctors blind


	Luo 2021
	126/420
	47.00
	Neck
	163 (29.9)
	–
	–


	Yu 2024
	37/147
	44.51
	Neck
	81 (44.0)
	–
	One extraction, one review


	Huang et al., 2021 (17)
	152/507
	43.15
	Neck
	237 (35.9)
	–
	Third calibration


	Zhu et al., 2023 (5)
	42/174
	43.62
	Neck
	102 (47.2)
	+
	Third calibration


	Duan et al., 2024 (14)
	775/254
	46.5
	Neck
	465 (45.1)
	–
	Third calibration


	Gao et al., 2025 (29)
	66/222
	48.25
	Neck
	95 (32.9)
	–
	Two doctors independently extracted


	Zhang et al., 2021 (23)
	775/254
	46.5
	Neck
	104 (38.6)
	+
	Two doctors independently extracted, controversial discussion


	Liu et al., 2024 (6)
	66/222
	48.25
	Neck
	110 (40.8)
	–
	Two doctors independently extracted


	Qiu et al., 2024 (2)
	69/200
	44.82
	Neck
	119 (31.5)
	–
	Two doctors independently extracted


	Wu et al., 2024 (18)
	67/393
	45.6
	Neck
	102 (50)
	–
	Third calibration


	Zhang et al., 2024 (25)
	82/295
	46.5
	Neck
	203 (31.9)
	–
	Two doctors independently extracted, controversial discussion


	Zhao et al., 2023 (15)
	58/311
	43.89
	Neck
	184 (49.9)
	+
	–





+, mentioned; -, not mentioned.



A detailed overview of the 24 prediction models is presented in Table 3. The performance of these models, as measured by the area under the curve (AUC), varied widely, with validation set AUCs ranging from a modest 0.661 to a highly discriminative 0.921. The predictors used to build these models were diverse but frequently included age, gender, tumor size, capsular invasion, and microcalcification. As shown in Table 3, while most models were presented as nomograms, their methodological follow-through varied. Although 14 studies reported some form of model calibration, the method was often unspecified. Furthermore, while 12 studies assessed clinical utility using decision curve analysis, only four attempted to define risk strata for clinical application, highlighting a common gap between model development and practical implementation.


Table 3 | Overview of the information of the included prediction models.
	Author, year
	Number of models
	Calibration
	Verification method
	Model performance
	Predictor
	Model display
	Clinical applicability assessment
	Risk stratification



	Ding et al., 2024
	1
	Hosmer–Lemeshow test
	Interior
	TS: 0.747 (95% CI: 0.690–0.804)
VS: 0.778 (95% CI: 0.697–0.860)
	Margin, size, multifocality, capsular invasion, recovery mode
	Nomogram
	Decision curve
analysis
	+


	He 2024
	1
	Hosmer–Lemeshow test
Calibration of 1,000 bootstrap samples
	External
	TS: 0.763 (95% CI: 0.728–0.799)
VS: 0.725 (95% CI: 0.613–0.837)
	Male, size (>5 mm), multifocality, capsular invasion
	Nomogram
	Decision curve
analysis
	–


	Jin et al., 2025
	3
	There is calibration, but no method specified
	Interior
	Clinical prediction model:
TS: 0.810 (95% CI: 0.673–0.948)
VS: 0.769 (95% CI: 0.670–0.868)
Radiomics scoring model:
TS: 0.900 (95% CI: 0.840–0.961)
VS: 0.860 (95% CI: 0.743–0.977)
Conjunctive model:
TS: 0.911 (95% CI: 0.855–0.96)
VS: 0.903 (95% CI: 0.804–0.980)
	Microcalcification, capsular invasion (≥25%), lymph node condition
	Nomogram
	Decision curve
analysis
	–


	Luo 2021
	1
	Hosmer–Lemeshow test
	Interior
	TS: 0.775 (95% CI: 0.723–0.826)
VS: 0.720 (95% CI: 0.635–0.804)
	Age, gender, size, capsular invasion, multifocality, Hashimoto’s thyroiditis
	Nomogram
	Decision curve
analysis
	+


	Yu 2024
	2
	Without calibration
	Interior
	Radiomics group:
TS: 0.78 (95% CI: 0.74–0.82)
VS: 0.72 (95% CI: 0.68–0.75)
Joint group:
TS: 0.87 (95% CI: 0.83–0.90)
VS: 0.81 (95% CI: 0.78–0.83)
	Capsular invasion, age
	Nomogram
	–
	–


	Huang et al., 2021 (17)
	1
	Hosmer–Lemeshow test
	Interior
	TS: 0.78 (95% CI: 0.735–0.825)
VS: 0.77 (95% CI: 0.703–0.837)
	Age, size, multifocality, capsular invasion
	Nomogram
	Decision curve
analysis
Clinical Impact Curve
	–


	Zhu et al., 2023 (5)
	3
	Hosmer–Lemeshow test
	Interior
	TS: 0.78 (95% CI: 0.735–0.825)
VS: 0.77 (95% CI: 0.703–0.838)
	BRAF V600E, age (<45), size (>5 mm), capsular invasion, microcalcification
	Nomogram
	Decision curve
analysis
	–


	Duan et al., 2024 (14)
	1
	Bootstrapping
	Interior
External
	TS: 0.784 (95% CI: 0.750–0.81)
VS: 0.779 (95% CI: 0.729–0.830)
	Age, multifocality, size, microcalcification, aspect ratio >1, lymph node condition, FT4, TPOAb
	Nomogram
	Decision curve
analysis
	+


	Gao et al., 2025 (29)
	3
	Hosmer–Lemeshow test
	Interior
	Combined model:
TS: 0.921 (95% CI: 0.883–0.958)
VS: 0.889 (95% CI: 0.820–0.959)USA—Clinic:
TS: 0.812 (95% CI: 0.748–0.876)
VS: 0.741 (95% CI: 0.627–0.856)
Imaging group score:
TS: 0.876 (95% CI: 0.826–0.926)
VS: 0.807 (95% CI: 0.713–0.901)
	Age, capsular invasion,
male, microcalcification
	Nomogram
	Decision curve
analysis
	–


	Zhang et al., 2021 (23)
	1
	There is calibration, but no method specified
	Interior
	TS: 0.777 (95% CI: 708–0.847)
VS: 0.661 (95% CI: 544–0.778)
	Age, gender, size, capsular invasion, lymph node condition
	Nomogram
	–
	–


	Liu et al., 2024 (6)
	1
	There is calibration, but no method specified
	External
	TS: 0.795 (95% CI: 0.745–0.846)
VS: 0.774 (95% CI: 0.696–0.852)
	Rad grade, age, capsular invasion
	Nomogram
	–
	–


	Qiu et al., 2024 (2)
	1
	There is calibration, but no method specified
	Interior
	TS: 0.703 (95% CI: 0.640–0.731)
VS: 0.672 (95% CI: 0.656–0.707)
	Age, gender, size, multifocality, margin
	Nomogram
	Decision curve
analysis
	–


	Wu et al., 2024 (18)
	3
	There is calibration, but no method specified
	Interior
	Clinic + US:
TS: 0.835 (95% CI: 0.768–0.902)
VS: 0.806 (95% CI: 0.699–0.914)Radiological group characteristics:
TS: 0.734 (95% CI: 0.653–0.815)
VS: 0.686 (95% CI: 0.547–0.824)
Aggregative model:
TS: 0.868 (95% CI: 0.811–0.925)
VS: 0.857 (95% CI: 0.759–0.955)
	Male, echo, margin, microcalcification
	Nomogram
	Decision curve
analysis
	–


	Zhang et al., 2024 (25)
	1
	Hosmer–Lemeshow test
	Interior
	TS: 0.720 (95% CI: 0.649–0.791)
VS: 0.704 (95% CI: 0.622–0.786)
	Age, gender, size, capsular invasion, lymph node condition
	Nomogram
	Decision curve
analysis
	–


	Zhao et al., 2023 (15)
	1
	modeFRONTIER
	Interior
	TS: 0.946 (95% CI: 0.920–0.972)
VS: 0.845 (95% CI: 0.714–0.976)
	Gender, age
	Nomogram
	Decision curve
analysis
	+





TS, training set; VS, validation set; +, something has been done; -, nothing has been done.







Quality assessment results

The methodological quality of the 15 included studies was assessed using PROBAST. A detailed, item-by-item evaluation of the risk of bias and applicability concerns across the four key domains for each study is presented in Table 4.


Table 4 | Prediction model risk of bias assessment tool evaluation results included in the study.
	Study
	Study type
	ROB
	Applicability
	Overall


	Participants
	Predictors
	Outcome
	Analysis
	Participants
	Predictors
	Outcome
	ROB
	Applicability



	Ding et al., 2024
	B
	–
	+
	+
	+
	–
	+
	+
	–
	–


	He 2024
	B
	–
	+
	+
	+
	–
	+
	+
	–
	–


	Jin et al., 2025
	B
	–
	+
	+
	+
	–
	+
	+
	–
	–


	Luo 2021
	B
	–
	+
	+
	+
	–
	+
	+
	–
	–


	Yu 2024
	B
	–
	+
	+
	–
	–
	+
	+
	–
	–


	Huang et al., 2021 (17)
	B
	–
	+
	+
	+
	–
	+
	+
	–
	–


	Zhu et al., 2023 (5)
	B
	+
	+
	+
	+
	+
	+
	+
	+
	+


	Duan et al., 2024 (14)
	B
	–
	+
	+
	+
	–
	+
	+
	–
	–


	Gao et al., 2025 (29)
	B
	–
	+
	+
	+
	–
	+
	+
	–
	–


	Zhang et al., 2021 (23)
	B
	+
	+
	+
	+
	+
	+
	+
	+
	+


	Liu et al., 2024 (6)
	B
	–
	+
	+
	+
	–
	+
	+
	–
	–


	Qiu et al., 2024 (2)
	B
	–
	+
	+
	+
	–
	+
	+
	–
	–


	Wu et al., 2024 (18)
	B
	–
	+
	+
	+
	–
	+
	+
	–
	–


	Zhang et al., 2024 (25)
	B
	–
	+
	+
	+
	–
	+
	+
	–
	–


	Zhao et al., 2023 (15)
	B
	+
	+
	+
	+
	+
	+
	+
	+
	+





PROBAST, Prediction model Risk Of Bias ASsessment Tool; A, development only; B, development and validation in the same publication; +, low ROB/low concern regarding applicability; -, high ROB/high concern regarding application; ROB, risk of bias.



As detailed in Table 4, our analysis found that only three studies demonstrated an overall low risk of bias, while the remaining 12 were judged to have a high risk of bias. The specific domain responsible for the high risk of bias varied, namely: (1) Participant domain: This was the most common source of bias. A total of 12 studies were rated as having a high risk of bias in this domain, primarily due to the use of inappropriate inclusion criteria that did not strictly limit the tumor diameter to ≤10 mm; (2) Analysis domain: Only one study was rated as having a high risk of bias in this area. This was due to a failure to account for potential model overfitting or to assess the optimism of the model’s performance; (3) Predictors and outcome domains: All 15 studies were consistently rated as having a low risk of bias in these domains, indicating robust methods to define and measure predictors and outcomes.

In summary, the granular results in Table 4 reveal that while predictor and outcome assessments were methodologically sound, critical issues in participant selection were the predominant reason for the high risk of bias observed in the majority of the included literature.





Meta-analysis

We conducted a meta-analysis of the AUC values from 24 models reported in the 15 included studies. As shown in the forest plot (Figure 2), there was substantial heterogeneity among the studies (I2 = 89.6%, P < 0.00001), necessitating the use of a random-effects model. This high level of heterogeneity suggests a significant variability in model performance across different study populations, predictor definitions, and modeling techniques. The pooled AUC was 0.794 (95% CI: 0.769–0.820), indicating moderate to good overall discriminatory performance, though this result must be interpreted with caution given the aforementioned heterogeneity and high risk of bias in the primary studies.

[image: Forest plot depicting various studies with corresponding AUC values and confidence intervals. Each study is represented by a blue diamond on a horizontal line, indicating the confidence interval, and positioned according to the AUC value. The weight of each study is shown on the right, and a random effect model summary is included at the bottom.]
Figure 2 | Forest plot showing the meta-analysis of the area under the curve for 15 studies.





Subgroup analysis

To explore sources of heterogeneity, subgroup analyses were performed. The analysis based on dataset type (Figure 3) showed that the pooled AUC of models in the training sets was 0.812 (95% CI: 0.780–0.845), which was higher than the pooled AUC in the validation sets (0.774, 95% CI: 0.743–0.808). This performance drop-off, or “optimism,” is common in prediction model studies and underscores the critical importance of external validation to assess a model’s true generalizability. A second subgroup analysis based on predictor types (Figure 4) showed that models combining US, clinical, and pathology features had a pooled AUC of 0.796 (95% CI: 0.767–0.826), while the further addition of biomarkers did not improve performance (AUC = 0.782, 95% CI: 0.763–0.802). This suggests that the biomarkers included in current models may have limited incremental predictive value over more established factors.

[image: Forest plot showing AUC with 95% confidence intervals for training and validation sets from various studies. The training set includes studies from Ding et al 2024A to Luo 2021A, with a random effect model AUC of 0.812 (0.780, 0.845). The validation set includes studies from Ding et al 2024B to Luo 2022B, with a random effect model AUC of 0.774 (0.743, 0.808). Horizontal lines represent confidence intervals for each study, and diamond shapes indicate AUC values.]
Figure 3 | Subgroup analysis of forest plot (training versus validation).

[image: Forest plot showing various study results on diagnostic performance. Studies are grouped under “US+Clinical+pathology” and “US+Clinical+pathology+biomarker”. Each entry displays a horizontal line with a center diamond, representing the confidence interval (CI) and the pooled effect size. Columns indicate study names with publication years, and AUC with 95% CI values. A random effect model is included for each group. AUC values range from 0.50 to 0.90 on the x-axis.]
Figure 4 | Subgroup analysis of forest plot (US+clinical+pathology versus US+clinical+pathology+biomarker).





Sensitivity analysis

A leave-one-out sensitivity analysis was performed to assess the stability of our findings, with the results shown in Figure 5. This analysis demonstrated that the sequential removal of each individual study did not significantly alter the overall pooled AUC. This confirms that our meta-analysis results are robust and not unduly influenced by any single study.

[image: Forest plot illustrating meta-analysis estimates where individual studies are omitted. Horizontal lines represent confidence intervals, and circles indicate estimates for studies labeled by author and year on the left. The x-axis represents effect sizes ranging from negative 0.27 to negative 0.20. Vertical lines signify zero effect.]
Figure 5 | Sensitivity analysis.





Publication bias

Publication bias was evaluated using Egger’s test. The results showed that there was no significant publication bias in the included studies (P = 0.103).






Discussion

This systematic review and meta-analysis synthesized evidence from 15 studies involving 24 prediction models for CLNM in patients with PTMC. The principal findings are threefold, namely: first, the models demonstrate moderate to good discriminatory ability on average, with a pooled AUC of 0.794; second, this overall performance estimate is subject to considerable statistical heterogeneity (I2 = 89.6%) across studies; and third and most critically, the validity of these findings is severely threatened by the methodological quality of the underlying evidence, as 12 of the 15 included studies were judged to be at a high risk of bias according to PROBAST.

The pooled AUC of 0.794 suggests that, on paper, these models can distinguish between patients with and without CLNM reasonably well. However, this figure likely represents an overestimation of true performance. The subgroup analysis revealed a consistent drop in performance from the training sets (pooled AUC 0.812) to the validation sets (pooled AUC 0.774), a phenomenon known as “optimism” that is characteristic of models that have not been robustly validated on independent data. This performance degradation, combined with the high risk of bias identified in most studies—particularly related to participant selection and inadequate handling of potential overfitting—means that the reported performance metrics should be interpreted with extreme caution.

A significant challenge in synthesizing these models is the inconsistent role and definition of certain predictors. In terms of predictors, US and clinicopathological features such as age, gender, tumor size, and capsular invasion are the most common inclusion indicators (30). However, the contribution of some biomarkers is contentious—for instance, TPOAb was identified as a protective factor in some studies (14, 31–33), potentially through an antibody-mediated cytotoxic effect. This contradicts other reports, such as those by Sun et al. (34) and Wang et al. (35), where TPOAb was associated with an increased risk of CLNM. These discrepancies may arise from differences in study populations (e.g., underlying rates of Hashimoto’s thyroiditis), variations in TPOAb detection assays, or failure to adjust for key confounders. The predictive value of the BRAF V600E mutation likewise remains debated. While some included studies (5) found it to be a strong predictor of metastasis, consistent with a large meta-analysis by Attia et al. (36), another research by Virk et al. (37) suggests that it is not a reliable predictor in the specific context of PTMC. This highlights the need for further research to clarify the role of molecular markers before they can be reliably incorporated into clinical prediction models.

The high risk of bias found in 80% of the included studies is a major concern that limits the clinical applicability of these models. As detailed in Table 4, the primary issue was in the participant domain, where many studies failed to strictly define PTMC (≤10 mm) or used retrospective designs with inadequate sampling strategies, which can introduce selection bias. Such methodological flaws not only inflate performance metrics but also render the models unreliable for use in the specific clinical population they are intended for. Furthermore, the lack of calibration assessment in many studies is a critical omission, as a model with good discrimination (AUC) can still be clinically useless if its predicted probabilities are poorly calibrated with observed frequencies.

The strengths of our review include a comprehensive search strategy across multiple databases, duplicate data extraction and quality assessment to minimize error, and a formal risk of bias assessment using the recommended PROBAST. However, this study also has its shortcomings. Firstly, all of the included studies were retrospective studies, and there was a certain degree of bias in the included population. Secondly, most of the studies were single-center studies, and some had relatively small sample sizes. Finally, some of the included studies did not strictly control the quality of ultrasound images, and some results might have been influenced by the experience of the operators and instruments used.





Conclusion

In conclusion, while numerous CLNM risk prediction models for PTMC exist and demonstrate moderate discriminatory performance on average, their reliability and clinical utility are severely hampered by widespread methodological weaknesses and a high risk of bias. The current evidence base is not robust enough to recommend any single model for routine clinical use. Future research must prioritize methodological rigor, adhering strictly to development and reporting guidelines such as TRIPOD and PROBAST. Emphasis should be placed on large, multi-center prospective studies with independent external validation to develop truly reliable and well-calibrated models that can safely guide individualized treatment for patients with PTMC.





Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.





Author contributions

XH: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. QZ: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. KY: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. JL: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. ML: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. RL: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. XY: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.





Funding

The author(s) declare financial support was received for the research and/or publication of this article. Chongqing Joint Medical Research Project of Science and Health 2026MSXM135.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.





Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2025.1709773/full#supplementary-material




References

	 Hualin H. To Develop and Validate a Nomogram Model for Predicting High Volume (>5) Central Lymph Node Metastasis in Papillary Thyroid Microcarcinoma. Hualin He: North China University of Science and Technology (2024). doi: 10.27108/d.cnki.ghelu.2024.001051.


	 Qiu P, Guo Q, Pan K, Lin J. Development of a nomogram for prediction of central lymph node metastasis of papillary thyroid microcarcinoma. BMC Cancer. (2024) 24:235. doi: 10.1186/s12885-024-12004-3


	 Zhaoten L. Development and Validation of a Nomogram Predictive Model for Central Lymph Node Metastasis Risk in the Papillary Thyroid Microcarcinoma. Zhaoten Luo: University Of South China (2023). doi: 10.27234/d.cnki.gnhuu.2023.000555.


	 Yixing Y. Gray-scale Ultrasound-based Radiomics for Prediction of Lymph Node Metastasis in Papillary Thyroid Microcarcinoma. Yixing Yu: Henan University (2024). doi: 10.27114/d.cnki.ghnau.2024.002830.


	 Zhu D, Wu X, Zhang L, Chen Z. Predictive value of ultrasound imaging characteristics and a BRAF V600E nomogram for central lymph node metastasis risk in papillary thyroid microcarcinoma. Altern Ther Health Med. (2023) 29:139–43


	 Liu J, Yu J, Wei Y, Li W, Lu J, Chen Y, et al. Ultrasound radiomics signature for predicting central lymph node metastasis in clinically node-negative papillary thyroid microcarcinoma. Thyroid Res. (2024) 17:4. doi: 10.1186/s13044-024-00191-x


	 Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. (2016) 388:2783–95. doi: 10.1016/s0140-6736(16)30172-6


	 La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer. (2015) 136:2187–95. doi: 10.1002/ijc.29251


	 Möller M, Gustafsson U, Rasmussen F, Persson G, Thorell A. Natural course vs interventions to clear common bile duct stones: data from the Swedish Registry for Gallstone Surgery and Endoscopic Retrograde Cholangiopancreatography (GallRiks). JAMA Surg. (2014) 149:1008–13. doi: 10.1001/jamasurg.2014.249


	 Jiaojiao D, Wei H, Junxi G, Tao S. Risk of cervical lymph node metastasis of thyroid micropapillary carcinoma predicted by constructing a nomogram based on contrast-enhanced ultrasound features. J Xinjiang Med University. (2024) 47:39–45 + 50. doi: 10.3969/j.issn.1009-5551.2024.01.007


	 Bin J, Feng C, Lingling M, Chenying L. Development and validation of an ultrasound radiomics-based nomogram for preoperative prediction of central lymph node metastasis in patients with papillary thyroid microcarcinoma. Zhejiang Medical. (2025) 47:1166–72. doi: 10.12056/j.issn.1006-2785.2025.47.11.2024-1739


	 Gao X, Luo W, He L, Cheng J, Yang L. Predictors and a prediction model for central cervical lymph node metastasis in papillary thyroid carcinoma (cN0). Front Endocrinol (Lausanne). (2021) 12:789310. doi: 10.3389/fendo.2021.789310


	 Shindo M, Wu JC, Park EE, Tanzella F. The importance of central compartment elective lymph node excision in the staging and treatment of papillary thyroid cancer. Arch Otolaryngol Head Neck Surg. (2006) 132:650–4. doi: 10.1001/archotol.132.6.650


	 Duan S, Yang Z, Wei G, Chen S, Hu X, Ryu YJ, et al. Nomogram for predicting the risk of central lymph node metastasis in papillary thyroid microcarcinoma: a combination of sonographic findings and clinical factors. Gland Surg. (2024) 13:1016–30. doi: 10.21037/gs-24-154


	 Zhao Y, Fu J, Liu Y, Sun H, Fu Q, Zhang S, et al. Prediction of central lymph node metastasis in patients with papillary thyroid microcarcinoma by gradient-boosting decision tree model based on ultrasound radiomics and clinical features. Gland Surg. (2023) 12:1722–34. doi: 10.21037/gs-23-456


	 Zheng X, Peng C, Gao M, Zhi J, Hou X, Zhao J, et al. Risk factors for cervical lymph node metastasis in papillary thyroid microcarcinoma: a study of 1,587 patients. Cancer Biol Med. (2019) 16:121–30. doi: 10.20892/j.issn.2095-3941.2018.0125


	 Huang C, Cong S, Shang S, Wang M, Zheng H, Wu S, et al. Web-based ultrasonic nomogram predicts preoperative central lymph node metastasis of cN0 papillary thyroid microcarcinoma. Front Endocrinol (Lausanne). (2021) 12:734900. doi: 10.3389/fendo.2021.734900


	 Wu L, Zhou Y, Li L, Ma W, Deng H, Ye X. Application of ultrasound elastography and radiomic for predicting central cervical lymph node metastasis in papillary thyroid microcarcinoma. Front Oncol. (2024) 14:1354288. doi: 10.3389/fonc.2024.1354288


	 Hong C, Tingyue Q. Application progress of contrast-enhanced ultrasonography in thyroid carcinoma diagnosis and treatment. J Ultrasound Clin Med. (2018) 20:478–80. doi: 10.16245/j.cnki.issn1008-6978.2018.07.013


	 Zhan J, Ding H. Application of contrast-enhanced ultrasound for evaluation of thyroid nodules. Ultrasonography. (2018) 37:288–97. doi: 10.14366/usg.18019


	 Aifang B, Jianlei Z, Nini Z, Yi Y, Yan Q. The diagnostic value of ultrasonography for the nodular goiter combined with papillary thyroid microcarcinoma. Prog Modern Biol. (2015) 15:6538–41. doi: 10.13241/j.cnki.pmb.2015.33.037


	 Qianwen L. Development and Validation of a Nomogram Predictive Model for Central Lymph Node Metastasis Risk in the Papillary Thyroid Microcarcinoma.  Qianwen Luo: North China University of Science and Technology (2021). doi: 10.27108/d.cnki.ghelu.2021.000200.


	 Zhang L, Ling Y, Zhao Y, Li K, Zhao J, Kang H. A nomogram based on clinicopathological and ultrasound imaging characteristics for predicting cervical lymph node metastasis in cN0 unilateral papillary thyroid microcarcinoma. Front Surg. (2021) 8:742328. doi: 10.3389/fsurg.2021.742328


	 Khokhar MT, Day KM, Sangal RB, Ahmedli NN, Pisharodi LR, Beland MD, et al. Preoperative high-resolution ultrasound for the assessment of Malignant central compartment lymph nodes in papillary thyroid cancer. Thyroid. (2015) 25:1351–4. doi: 10.1089/thy.2015.0176


	 Zhang X, Zhu J, Ai X, Dang M, Huang P. An ultrasound-based nomogram for predicting central lymph node metastasis in papillary thyroid microcarcinoma. Med Ultrason. (2024) 26:369–75. doi: 10.11152/mu-4411


	 Kaliszewski K, Zubkiewicz-Kucharska A, Kiełb P, Maksymowicz J, Krawczyk A, Krawiec O. Comparison of the prevalence of incidental and non-incidental papillary thyroid microcarcinoma during 2008-2016: a single-center experience. World J Surg Oncol. (2018) 16:202. doi: 10.1186/s12957-018-1501-8


	 Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. (2019) 170:51–8. doi: 10.7326/m18-1376


	 Chen R, Wang SF, Zhou JC, Sun F, Wei WW, Zhan SY. Introduction of the Prediction model Risk Of Bias ASsessment Tool: a tool to assess risk of bias and applicability of prediction model studies. Zhonghua Liu Xing Bing Xue Za Zhi. (2020) 41:776–81. doi: 10.3760/cma.j.cn112338-20190805-00580


	 Gao L, Wen X, Yue G, Wang H, Lu Z, Wu B, et al. The predictive value of a nomogram based on ultrasound radiomics, clinical factors, and enhanced ultrasound features for central lymph node metastasis in papillary thyroid microcarcinoma. Ultrason Imaging. (2025) 47:93–103. doi: 10.1177/01617346251313982


	 Sun W, Lan X, Zhang H, Dong W, Wang Z, He L, et al. Risk factors for central lymph node metastasis in CN0 papillary thyroid carcinoma: A systematic review and meta-analysis. PloS One. (2015) 10:e0139021. doi: 10.1371/journal.pone.0139021


	 Noel JE, Thatipamala P, Hung KS, Chen J, Shi RZ, Orloff LA. Pre-operative antithyroid antibodies in differentiated thyroid cancer. Endocr Pract. (2021) 27:1114–8. doi: 10.1016/j.eprac.2021.06.014


	 Huang DM, Zhi JT, Zhang JM, Zheng XQ, Zhao JZ, Wei SF, et al. Correlations of serum TgAb and TPOAb and clinicopathological features of PTC in children and adolescents. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. (2022) 57:1418–25. doi: 10.3760/cma.j.cn115330-20220927-00581


	 Li X, Zhang H, Zhou Y, Cheng R. Risk factors for central lymph node metastasis in the cervical region in papillary thyroid carcinoma: a retrospective study. World J Surg Oncol. (2021) 19:138. doi: 10.1186/s12957-021-02247-w


	 Sun GH, Qu N, Hu JQ, Shi RL, Zhang TT, Wen D, et al. Risk for metastasis of lymph node between sternocleidomastoid and sternohyoid muscle in papillary thyroid cancer. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. (2017) 52:253–8. doi: 10.3760/cma.j.issn.1673-0860.2017.04.003


	 Wang Y, Zheng J, Hu X, Chang Q, Qiao Y, Yao X, et al. A retrospective study of papillary thyroid carcinoma: Hashimoto’s thyroiditis as a protective biomarker for lymph node metastasis. Eur J Surg Oncol. (2023) 49:560–7. doi: 10.1016/j.ejso.2022.11.014


	 Attia AS, Hussein M, Issa PP, Elnahla A, Farhoud A, Magazine BM, et al. Association of BRAF(V600E) mutation with the aggressive behavior of papillary thyroid microcarcinoma: A meta-analysis of 33 studies. Int J Mol Sci. (2022) 23:15626. doi: 10.3390/ijms232415626


	 Virk RK, Van Dyke AL, Finkelstein A, Prasad A, Gibson J, Hui P, et al. BRAFV600E mutation in papillary thyroid microcarcinoma: a genotype-phenotype correlation. Mod Pathol. (2013) 26:62–70. doi: 10.1038/modpathol.2012.152







Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.


Copyright © 2025 He, Zhang, Yang, Li, Luo, Liu and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.


OEBPS/Images/cover.jpg
, frontiers | Frontiersin Endocrinology

Risk prediction model for cervical lymph
node metastasis of papillary thyroid
microcarcinoma: a systematic review
and meta-analysis





OEBPS/Images/crossmark.jpg
©

2

i

|





OEBPS/Images/fendo-16-1709773-g002.jpg
_ Study AUC(95%(C) .
Ding et al 2024A 0.747(0.69.0.304) —— 2.42
Ding et al 20248 0.7 78(0.697.0.86) —— 215

Huang ct al 2021 A 0.78(0.735.0.825) —— 257

Huang et al 20218 0.77(0.703,0.837) —— 232
Duan et al 20244 0.784(0.75.0.817) =0 267
Duan et al 2024B 0.779(0.729.0.83) —— 2.52

Zhang et al 2021 A 0.777(0.708.0.847) —— 23

Zhang et al 20218 0.661(0.544.0.778) H——e— 1.49
Liu et al 2024A 0. 795(0.745,0.846) —— 253
Liu et al 20248 0.774(0.696,0_852) f— it 2.19
Qiu et al 2024A 0.703(0.64.0.731) — 2.5
Qiu et al 20248 0.672(0.656.0.707) Ko 271

Zhang et al 2024A 0.72(0.649.0.791) —e— 221

Zhang et al 20248 0.704(0.622.0.786) —— 204

Zhao et al 2023A 0.946(0.92.0.972) B2 2758

Zhao et al 20238 0.845(0.714.0.976) —— 1.67
Zhu et al 20234 0.78(0.735.0.825) o 257
Zhu et al 20218 0.770.703.0.837) — 232
Jin et al 20254 0.81{0.673.0.948) e S | 1.55
Jin et al 20258 0.769(0.67.0.868) p——l— 1.92
Jin et al 2025C 0.90{0.84.0.961) —— 25
Jin et al 2025D 0.86{0.743.0.97T) —e— |85
Jin et al 2025E 0.911{0.855.0.967) —— 2 54
Jin et al 2025F 0.903(0.804,0.98) bt 221
Gao et al 20254 0.921{0.883.0.958) o 269
Gao et al 20258 (0.889(0.82.0.959) —_— 2.4
Gao et al 2025C 0.812{0.748.0.876) —— 2.4
Gao et al 2025D 0.741{0.627.0.856) e 1.68
Gao ct al 2025E (.R76{0.826.0.926) i 258
Gao et al 2025F 0.807(0.713,0.901) ———i 204
Wu et al 2024A 0.835(0.768.0.902) —— 238
Wu et al 20248 0.806(0.699.0.914) b ———1 1.87
Wu et al 2024C 0.734(0.653.0.815) —— 209
Wu et al 2024D (0.686(0.547.0.824) F———p——ri 1.3
W et al 2024E (.868(0.811.0.925) —&— 251
Wu et al 2024F 0.857(0.759,0.955) ——t 2 06

Yu 20244 0.78(0.74,0.82) o 262

Yu 20248 0.72{0.68.0.75) el 263

Yu 2024C 0.87(0.83.0.9) = 269

Yu 2024D 0.81(0.78.0.83) HCH 2.74

He 20244 0.763(0.728.0.799) b 265

He 20248 0.725(0.613,0.837) S S— 1.68

Luo 2021A 0.755(0.723,0.826) H— 2.5
luwo 20228 0.72(0.635.0.804) | 203

Random effect model  0.794(0.769,0.82) M T

(. 50 0. 70 . 90





OEBPS/Images/fendo-16-1709773-g004.jpg
US+Clinlcal

Ding et al 20244
Dhng et al 20248
Huang et al 2021A
Huang et al 20218
Zhang et al 2021 A
Zhang et al 20218
Chu et al 20244
(Qm et al 20248
Zhang et al 20244
Zhang et al 20248
Zhao et al 2023A
Zhao et al 20238
Jin et al 20254
Jin et al 20258
Jin et al 2025C
Jin et al 2025D
Jin et al 2025E
Jin et al 2025F
(ao et al 2025A
Gao et al 20258
Gao et al 2025C
Gao et al 2025D
Gao et al 2025E
Gao et al 2025F
Wu et al 2024A
Wu et al 20248
Wu et al 2024C
Wu et al 2024D

Wu et al 2024E
Wu et al 2024F

Yu 20244
Yu 20248
You 2024C
Yu 2024D
He 2024A

He 20248
Luo 2021A

Luo 2022B

I?L :ffﬁ: model

' US+Clinlcal+pathology+bicmarker

Duan et al 20244
Duan et al 20248
£hu et al 20234
Zhu et al 20238
Liu et al 20244

_Linct al 2248

0.50

0.70

0.90

AUC(95%C]
0.747(0.69.0_804)
0. 778(0.697.0.86)
0.78(0.735.0.825)
0.77(0.703 0.837)
0.777(0.708,0.847)
0.661(0.544,0.778)
0.703(0.64,0.731)
0.672{0.656,0.707)
0.72(0.649.0.791)
(. 704(0.622,0.786)
(.946{0.92 0.972)
0.845(0.714,0.976)
0.81(0.673 0.948)
0.769(0.67.0.868)

0.9(0.84,0.961)
0.86(0.743 0.977)
(.91 1{0L.855.0.967)
(.903{0.804.0.98)
0.92 1{0.883,0.958)
(LRE9(0.82 0.959)
0.812{0.748.0.876)
0.741{0.627.0.856)
0.876(0.826.0.926)
0.807(0.713,0.901)
0.835(0.768.0.902)
0. BO06{0.699,0.914)
0.734(0.653,0.815)
0.686(0.547,0.824)
0.868(0.811,0.925)
0.857(0.759,0.955)

(.7%(0.74,0.82)

0.72(0.68 0.75)

0.87(0.83,0.9)

0.81(0.78.0.83)
0.763(0.728,0.799)
0.725(0.613,0.837)
0.755(0.723.0.826)
0.72{0.635.0.804)
0.796( 0.767.0.826)

0.784(0.75.0.817)
0.779(0.729.0.83)
0.78(0.735.0.825)
0.77(0.703,0.837)
0. 795(0.745,0.846)

_0.774(0.696.0.852)

(0. TH2(0.T63.0.8B02)





OEBPS/Images/fendo-16-1709773-g001.jpg
Records identified from the following
databases(n=176):
CEM(n=22"

CNEIn=52 -
“fvaﬂ_ﬁlil g[; =15) Records removed before screening:

PubMedin =20) Duplicate records removed(n =36)
Embase{n =24)

Cochrane Library{n =206)

Webof Science(n=17)

Records screened Excluded based on tifle and abstract
(n=120) (n=81)

Identification

Reports excludedn=15):

Absence of prediction model(n=10)

The conclusion data of the article 13
mcomplete(n =3 )

The content of the article and the table are
incomrectin =3 )

Full-text articles assessed for eligimlity
(n=39)

Lack of intemal and extemal validation
(n=35)

Incotrect grouping methods(n =4)

Studies included in qualttative synthesis
(n=13)






OEBPS/Images/fendo-16-1709773-g003.jpg
set
Ding et al 20244
Huang et al 20214
Duan et al 20244
Zhang ct al 2021 A
Liu et al 20244
Quu et al 20244
Zhang et al 20244
Zhao et al 20234
Zhu et al 20234
Jin et al 2025A
Jin et al 2025C
Jin et al 2025E
Gao et al 20254
Gao et al 2025C
Gao et al 20251
Wu et al 20244
Wu et al 2024C
Wuo et al 2024E
Yu 20244

Yu 2024C

He 20244

Luo 20214

Random effect model

Validation set
Ding et al 20248
Huang et al 20218
Duan et al 20248
Zhang et al 20218
Liu et al 20248
Qhu et al 20248
Zhang et al 20248
£hao et al 20238
Zhu et al 20238
Jin et al 2025B
Jin et al 2025D
Jin et al 2025F
Gao et al 2025B
Gao et al 2025D
Gao et al 2025F
Wu et al 2024B
Wu et al 2024D
Wu et al 2024F
Yu 20248

Yu 2024D

He 20248

Luo 20228

Random effect model

0. 50

0. 78(0.T35,0.825)
0. 7B4H0.750.817)
077 7(0.708,0.847)
(b 795 (L7450, 846)
0.703(0.64,0.731)
0. 72(0.649.0.791)
0.946(0.92,0.972)
0.78(0.735,0.825)
0.8 1{0.673,0.948)
0.90.84.0.961)

(L921(0 883, 0.958)
OB 12 T48,0.876)
(LETH(0.826,0.926)
(L B35 0. 768,0.902)
0734 0L653,0.815)
(LEOE(0LE11,0.925)
0.7T8(0.74,0.82)
OLRET0.B3,0.9)
0. 763(0.728,0.799)
(L TS5(0L 723, 0.826)
0.B12{0.TRO.0.845)

0.778(0.697 0.86)
0.77(0.703,0.837)
0.779(0.729,0.83)
0.661(0.544.0.77%)

0.774(0.696,0.852)

0.672(0.656,0.707)
0.704(0.622,0.786)
0.845(0.714,0.976)
0.77(0.703,0.837)
0.769(0.67.0.868)
0.86(0.743,0.977)
0.903{ 0.804.0.98)
(L.889(0.82,0.959)
0.741(0.627,0.856)
0.807(0.713,0.901)
0.806(0.699.0.914)
0.686(0.547.0.824)
0.857(0.759,0.955)
0.72(0.68,0.75)
0.81(0.7%,0.83)
0.725(0.613,0.837)

| 072006350 804

0774 0.743.0.808)

(i





OEBPS/Images/fendo-16-1709773-g005.jpg
given named study is omitted

Meta—analysis estimates,

| Upper ClI Limit

O Estimate

| Lower Gl Limit

—_— - r0 r >3 3533>5 (e]e)
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalVIVIVIeeUU

o sl |
T T ST T T L YA TR STV TR TR TR T T LT ST T ST LT LT LT T LT
VOOV VVLVVVOVVVVLVDVVVVVVVVVVVDVVOLOLOOLOOLOOLOD

oLMC CoIS S S50 O0SSCCCCCCO000003S535355S
cCCCCOmmCCE———CCOoNCCE—————— OO OO0 EEEEEE
—— QOSSO0 L OO0ACONNT I I I 000 3I5
OO STINCC NN

I NN NN

-0.20. 20

-0. 23

-0. 20. 26





