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The pituitary gland, as a central regulator of endocrine function, may be affected by a

wide range of biologically derived harmful substances present in nature. While most

available literature focuses on neoplasms, trauma or autoimmune disorders, the

potential impact of natural toxins and poisons on pituitary function remains

underexplored. This narrative review addresses the effects of acute or chronic

exposure to harmful agents originating from the five biological kingdoms—Animalia,

Plantae, Fungi, Monera, and Protista—on the hypothalamic–pituitary axis. Drawing on

clinical reports, experimental data, and physiological insights, we describe how various

biological substances may alter hormonal regulation, leading to temporary or

persistent dysfunction. Importantly, this review does not cover direct infectious

involvement of the pituitary, such as pituitary abscess, but focuses instead on

biologically active compounds produced by living organisms. The review highlights

a dispersed body of knowledge with implications not only for endocrinologists and

pituitary specialists, but also for clinicians in toxicology, emergency medicine,

infectious diseases, and global health. Recognizing the pituitary as a vulnerable

target in diverse environmental and ecological contexts may aid in the early

diagnosis and management of otherwise unexpected endocrine disorders.
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1 Introduction

The pituitary gland is a pivotal endocrine structure situated at the base of the brain,

within the sella turcica, and connected to the hypothalamus via the pituitary stalk (1).

Despite its small size, it plays a central role in regulating the entire endocrine system

through its anterior and posterior lobes. The anterior pituitary (adenohypophysis) secretes

trophic hormones and prolactin, that govern target organs such as the adrenal glands,
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thyroid, gonads, and liver (2). The posterior pituitary

(neurohypophysis), derived from neural tissue, releases oxytocin

and vasopressin in response to hypothalamic input (3). This

bidirectional communication is tightly regulated by negative

feedback loops, allowing for dynamic adaptation to internal and

external stimuli such as stress, fasting, circadian rhythms, and

physiological demands (4, 5). Pituitary integrity is therefore

essential to homeostasis, and its disruption may result in

substantial clinical consequences, including hormone deficiencies,

metabolic dysregulation, and impaired stress responses (6–8).

Although the pituitary operates under robust physiological

control, various insults may compromise its function or structure

(9, 10). These insults may lead to partial or complete

hypopituitarism, hormone hypersecretion, or mass effects due to

glandular inflammation, hemorrhage, or expansion. Beyond

endocrine dysregulation, hypopituitarism is associated with

increased clinical risk. Mortality rates among patients with

hypopituitarism are higher than those in the general population,
Frontiers in Endocrinology 02
with a meta-analysis reporting a standardized mortality ratio of 1.55

(95% CI 1.14–2.11), even after hormone replacement therapy (11,

12). Furthermore, they also show increased rates of ICU admission

and longer hospital stays compared to individuals without pituitary

dysfunction (13). These findings underscore the importance of early

recognition and prevention of pituitary injury. It is therefore

essential to understand how the pituitary gland can be damaged

in various pathological contexts, as several causes such as mass

effects, radiation, trauma, infections, autoimmune processes,

ischemia, and infiltrative diseases have been described (14–20).

While these mechanisms are well established, the potential for

naturally occurring biologically derived compounds—such as

venoms, plant poisons, fungal toxins, and microbial exotoxins—to

impair pituitary function remains underrecognized. This review

addresses their impact across the five biological kingdoms,

emphasizing an underexplored intersection between natural

toxins and endocrine regulation, emphasizing its clinical

relevance for recognizing pituitary dysfunction in toxic exposures
FIGURE 1

Schematic representation of the five biological kingdoms (Animalia, Plantae, Fungi, Monera and Protista) and their potential impact on pituitary
function. AI-assisted visualization; verified by authors.
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where early hormonal screening may be crucial for diagnosis

and management.

This work was conducted as a narrative review based on an

exploratory search of the biomedical literature in PubMed and

Google Scholar. Iterative combinations of keywords were used,

including “pituitary” together with “toxin,” “venom,” “poison,”

“endocrine,” and terms referring to biological sources such as

animals, plants, fungi, bacteria, and protists. Additional references

were identified from the bibliographies of selected papers. No

formal time or language restrictions were applied, and relevant

publications from the 1980s to June 2025 were considered.
2 Biological kingdoms and pituitary
dysfunction

In this review, we adopt the classical five-kingdom model of

biological classification proposed by Whittaker in 1969 as a

conceptual framework to explore naturally occurring agents

capable of injuring the pituitary gland (Figure 1) (21). Although

more recent taxonomic systems such as the proposal by Cavalier-

Smith, which incorporates Chromista and other eukaryotic groups,

the five-kingdom scheme remains widely used in educational and

medical literature and offers a practical structure for grouping

biologically derived toxins (22). These kingdoms encompass a

broad spectrum of organisms capable of producing venoms,

poisons, or other biologically derived compounds that may affect

pituitary function, either directly or indirectly.
2.1 Kingdom Animalia

The kingdom Animalia comprises an immense variety of

multicellular species, ranging from complex vertebrates to

microscopic invertebrates, many of which have evolved

specialized biochemical defenses or predatory tools in the form of

venoms and toxins (23). These bioactive compounds often target

critical physiological processes in prey or predators, such as the

cardiovascular and nervous systems (24, 25). The endocrine system,

and particularly the pituitary gland, can also be affected, most often

in the context of snake envenomation, but also by venom

components from other animal groups such as arachnids and

insects, through mechanisms ranging from direct neuroendocrine

interference to indirect vascular and inflammatory injury (26–28).
2.1.1 Snake envenomation
Snake envenomation is a major public health issue in tropical

Asia, causing 1.8–2.7 million cases and 81,000–138,000 deaths

annually, mostly in India (29, 30). It is a multisystemic condition

involving renal failure, coagulopathy, myotoxicity, cardiac and

neurological complications (31). Endocrine complications have

also been described, most notably pituitary dysfunction, although

adrenal and thyroid involvement have occasionally been reported

(26, 32, 33).
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The association between snakebite and hypopituitarism was

first recognized in 1958, when Wolff reported a case following

Bothrops jararacussu envenomation (34). However, the majority of

clinical evidence originates from envenoming by Russell’s viper

(Daboia russelii and D. siamensis), which has become the paradigm

species linking snake venom to pituitary failure (35–39). Although

most reports concern anterior pituitary dysfunction, involvement of

the neurohypophysis has also been described, including cases of

ADH deficiency (40–42).

Russell’s viper venom is a complex mixture of bioactive molecules,

notably snake venom metalloproteinases, serine proteases,

phospholipase A2, lectin-like proteins, disintegrins, and hyaluronidases

(43, 44). These enzymes act synergistically on hemostasis, directly

activating clotting factors V and X, driving rapid thrombin generation

and fibrin formation, while thrombin-like enzymes accelerate fibrinogen

consumption and fibrinolysis (Figure 2) (45). Concomitantly,

metalloproteinases (“hemorrhagins”) damage vascular endothelium,

and PLA2 and lectin-like proteins impair platelet function, further

amplifying the coagulopathy (46, 47). The net effect is a state of

profound endothelial injury with disseminated intravascular

coagulation and spontaneous hemorrhages (48).

Clinically, two forms are recognized: acute and chronic

hypopituitarism (35). Diagnosis of the acute form is challenging

because glucocorticoid therapy and non-thyroidal illness can mask

hormonal deficits. Nevertheless, Tun-Pe et al. identified combined

deficiencies of cortisol, prolactin, and growth hormone (GH) in

nine patients with altered consciousness and hemodynamic

instability after Russell’s viper envenomation (35). Similarly,

Proby et al. described multiple hormonal deficits in patients with

snakebite-associated acute kidney injury, with 10 of 15 exhibiting

cortisol deficiency, 19 of 20 reduced thyroid stimulating hormone

(TSH) and T4, and 12 of 17 men showing low testosterone with

inappropriately normal gonadotropins (49). Although

methodological limitations exist, the persistence of deficits in 11

of 12 patients argues against transient illness-related changes and

supports true pituitary damage. Rajagopala et al. further reported

that acute hypopituitarism typically emerges around 9 days after

envenomation, with unexplained hypoglycemia (100%) and

refractory hypotension (67%) as key clinical markers (36).

Autopsy studies have revealed focal pituitary hemorrhages and

fibrin thrombi consistent with ischemic and hemorrhagic injury,

while other work has suggested a paradoxical early hypersecretion

of TSH, GH, and adrenocorticotropic hormone (ACTH) within the

first hours, probably reflecting toxin-induced stimulation rather

than destruction (50, 51).

Chronic hypopituitarism is typically diagnosed years after the

initial bite, with a mean delay of 8.1 ± 3.6 years (37). The nonspecific

nature of symptoms—including fatigue, hypothyroidism,

hypogonadism, and adrenal insufficiency—often accounts for

diagnostic delay. Central hypothyroidism and gonadotropin

deficiency are almost universal, with ACTH deficiency present in

approximately 93% of cases (38). GH deficiency shows wider

variability, ranging from 15% in the cohort studied by Bhat et al. to

100% in that of Naik et al. (39, 52) Radiological changes are frequent,

as Ayan Roy et al. reported magnetic resonance imaging
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abnormalities in all patients studied (n=15), with partial (47%) or

complete (53%) empty sella (38). Furthermore, stalk thinning and

proximal T1 hyperintensity was identified in 23% and

15% respectively.

Predictors of pituitary dysfunction remain controversial. Naik

et al. found no clear differentiating factors between patients with

and without hypopituitarism (39). In contrast, Bhat et al. identified

coagulopathy and the need for hemodialysis as predictors in

patients with acute kidney injury, while Rajagopala et al.

associated multiorgan failure, thrombocytopenia, and transfusion

requirements with the later development of pituitary insufficiency

(36, 39, 52). These endocrine alterations likely reflect a complex

combination of direct ischemic–hemorrhagic injury to the gland

and systemic inflammatory stress associated with coagulopathy,

rather than a purely toxin-mediated pituitary effect.

Pituitary involvement has also been described beyond Russell’s

viper. In fact, a case report of Gloydius blomhoffii envenomation

documented transient secondary adrenal insufficiency presenting

with severe hyponatremia, low cortisol, and inadequate responses to

dynamic stimulation tests, in the context of a pre-existing empty
Frontiers in Endocrinology 04
sella (53).Furthermore, experimental work in rabbits showed that

the neurotoxic fraction of Naja haje (Egyptian cobra) venom

generates an hyperglycemic status, as evidenced by a paradoxical

reduction in pituitary ACTH secretion alongside elevated

circulating cortisol (54). Another noteworthy example is the green

mamba (Dendroaspis angusticeps) venom, from which the peptide

mambaquaretin (MQ1) has been isolated (55). Although it does not

target the pituitary directly, this venom-derived peptide MQ1 is a

highly selective vasopressin V2 receptor competitive antagonist,

blocking b-arrestin and MAP kinase (MAPK) pathways, and in vivo

producing a pure aquaretic effect, with potential therapeutic

applications in disorders of vasopressin signaling such as

polycystic kidney disease or inappropriate ADH secretion.

2.1.2 Other venomous species
Beyond reptiles, evidence from the phylum Arthropoda—

particularly arachnids and insects—also points to the modulation

of pituitary function (56). Daachi et al. reported that Androctonus

australis hector scorpion venom increased ACTH and

corticosterone levels and disrupted circadian rhythmicity.
FIGURE 2

Mechanisms of Russell’s viper venom, including coagulopathy, endothelial injury, and disseminated intravascular coagulation leading to multiorgan
failure. AI-assisted visualization; verified by authors.
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Histological analysis revealed enhanced ACTH immunoexpression

in the anterior pituitary, together with increased oxidative markers

and greater vascular permeability in the hypothalamus (57). In

addition, venoms from species such as Leiurus quinquestriatus var.

hebraeus and Buthus martensii have been used in more mechanistic

studies of pituitary physiology, the former to investigate regulatory

feedback in ACTH secretion and the latter to explore sodium

current–dependent membrane potentials in anterior pituitary cells

(27, 58). Moreover, a-latrotoxin, a component of black widow

spider venom, has been shown to trigger vasopressin and oxytocin

release through its interaction with calcium-independent receptors

localized in the plasma membrane as well as calcium-dependent

receptors for latrotoxin (59). Regarding insects, the available

evidence is more limited but nonetheless illustrative. Sapeptin B,

an antibacterial peptide from the flesh fly, has been shown to inhibit

potassium currents in GH3 pituitary cells, while mastoparan, a wasp

venom peptide, stimulates prolactin secretion in rats through

increased intracellular calcium (28, 60). Finally, bee venom has

been reported to deplete secretory granules in corticotrophs and

somatotrophs, accompanied by elevated plasma ACTH and GH

concentrations. These effects have led some authors to propose bee

venom as a potential enhancer of growth performance and a

modulator of pubertal timing in certain mammalian species

(61, 62).

In these species, the observed hormonal changes are thought to

result primarily from neuroendocrine stress responses rather than

direct pituitary cytotoxicity, as no histological lesions or direct

cellular injury have been demonstrated, supporting a

predominantly neuroendocrine or systemic stress mechanism.
2.2 Kingdom Plantae

Kingdom Plantae is characterized by multicellular, autotrophic

organisms with cell walls of cellulose and photosynthetic capacity

(63). Although plants play a role in numerous human physiological

functions and are widely used for their therapeutic potential, some

plant-derived compounds can also exert harmful effects (64, 65).

However, their influence on the hypothalamic–pituitary axis

remains poorly understood. This section focuses on the impact of

whole plants or natural extracts on pituitary function, excluding

pharmacological agents or highly modified derivatives of plant

origin —such as opioids (from Papaver somniferum) or aspirin

(from Salix alba)— as well as synthetic endocrine disruptors.

The vast majority of scientific evidence regarding the influence

of plants on pituitary function relates to their beneficial effects,

particularly in the modulation of the stress response, reproductive

health and obesity via the hypothalamic–pituitary–adrenal (HPA)

axis (66–70). In contrast, evidence on potentially harmful or

disruptive effects—whether functional or structural—is limited

and often anecdotal, highlighting a gap in current research. This

imbalance is further underscored by the fact that certain plant

species, such as Ginkgo biloba and Garcinia kola, have even been

investigated as protective agents against known toxicants like lead
Frontiers in Endocrinology 05
acetate or sodium arsenate, owing to their antioxidant and anti-

inflammatory properties (71, 72).

Several plant species have been shown to modulate the

hypothalamic–pituitary–thyroid (HPT) axis. Extracts of

Lithospermum officinale, Lycopus virginicus, Melissa officinalis,

and Thymus serpyllum have demonstrated the ability to suppress

both serum and pituitary TSH levels in animal models, even under

hypothyroid conditions (73). These effects appear to combine

central hormone-blocking actions with peripheral thyroid

hormone-like activity. Other species such as Chelidonium majus,

Curcuma longa, Dorema aucheri, and Peganum harmala contain

flavonoids or alkaloids capable of modulating thyrotropin–releasing

hormone (TRH) and TSH secretion via dopaminergic, serotonergic,

or second messenger pathways (74). Specifically, flavonoids from D.

aucheri and Humulus lupulus inhibit thyroid peroxidase and type-1

deiodinase, limiting iodine organification and peripheral T3

formation, whereas alkaloids from C. majus increase TRH and

TSH release by blocking catechol-O-methyltransferase and

enhancing calcium–phosphatidylinositol signaling in pituitary

thyrotrophs. In contrast, harmaline alkaloids from P. harmala

suppress TRH secretion through monoamine oxidase inhibition

and serotonin accumulation, effects further modulated by leptin-

mediated inhibition of neuropeptide Y neurons.

Regarding the hypothalamic–pituitary–gonadal (HPG) axis,

traditional extracts from Cola nitida, Afrormosia laxiflora, and

Pterocarpus erinaceus have been reported to inhibit ovulation and

disrupt the estrous cycle in experimental models (75). In vitro studies

further support these observations, showing that these plants

selectively inhibit luteinizing hormone (LH) release in cultured rat

pituitary cells, without affecting follicle stimulating hormone (FSH)

secretion or cell viability (76). This inhibition appears to result from

the formation of heterodimers between plant-derived compounds

and basic glycoproteins, suggesting a non-cytotoxic, extracellular

mechanism of gonadotropin modulation. Furthermore, Li et al.

found that exposure to swainsonine (an indolizidine alkaloid)

during pregnancy in mice led to significant disruption of

reproductive hormone secretion (77). This effect was linked to

impaired glycoprotein function in the anterior pituitary, resulting

from the alteration of the glycosylation pattern of gonadotropins.

Interestingly, some saponins such as those from Quillaja saponaria

and Gypsophila paniculata have shown a stimulatory effect on LH

secretion in pituitary cell cultures, in contrast to the inhibitory effects

reported for other plant compounds (78). These triterpenoid and

steroidal glycosides interact with membrane cholesterol, modifying

lipid microdomains and, in some cases, inducing pore formation that

facilitates Ca2+ influx and exocytotic release of gonadotropins in

cultured pituitary cells. Notably, G. paniculata exhibits marked

hemolytic activity whereas soybean saponins appear less lytic,

suggesting structural heterogeneity within their sapogenin cores.

The effects of various plant-based formulations on prolactin

secretion have been studied both in terms of increasing and

suppressing its levels (79). Most of this research has focused on

potentially beneficial outcomes—such as enhancing prolactin to

support lactation, or reducing it in cases of hyperprolactinemia—
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rather than investigating possible dysregulation or adverse effects

on pituitary control (80, 81). In line with this therapeutic

perspective, two natural compounds derived from Glycyrrhiza

glabra radix—18b-glycyrrhetinic acid and liquiritigenin—have

shown antiproliferative and pro-apoptotic activity in prolactin-

secreting pituitary adenoma cells (82, 83). These effects were

mediated by distinct intracellular pathways (ROS–CaMKII–JNK/

P38 activation and Ras/ERK inhibition, respectively) and were

accompanied by a consistent reduction in prolactin synthesis both

in vitro and in vivo, supporting their potential utility in the

management of prolactin-related pituitary disorders.

Despite these observations, most data on plant-derived

compounds come from experimental or preclinical settings, with

considerable variability in extraction methods, active constituents,

and dosing. The absence of standardized preparations and

controlled human studies continues to limit the interpretation

and translational relevance of these findings.
2.3 Kingdom Monera

Monera comprises prokaryotic organisms characterized by the

absence of a true nucleus and membrane-bound organelles (84).

Beyond their well-recognized roles in infectious disease, members

of this kingdom can influence endocrine function through

structural components and bioactive metabolites that interact

with the hypothalamic–pituitary axes without directly invading

the gland, instead acting via systemic mediators. (Figure 3) (85)

This section focuses on pituitary modulation mediated by bacterial
Frontiers in Endocrinology 06
components or metabolites and, as discussed previously, direct

pituitary infections—such as abscess formation— are not included

in the present analysis.

2.3.1 Effect of lipopolysaccharide on pituitary
function

Lipopolysaccharide (LPS) is a major structural component of

the outer membrane of Gram-negative bacteria, composed of a lipid

A moiety, a core oligosaccharide, and an O-antigen polysaccharide

chain (86). It acts as a potent endotoxin by binding to Toll-like

receptor 4 (TLR4) and triggering a strong innate immune

response (87).

Evidence indicates that LPS can modulate prolactin secretion

through both indirect and direct pituitary mechanisms. Regarding

indirect mechanisms, LPS binds to TLR4 via LPS-binding protein

and CD14, triggering the release of proinflammatory cytokines such

as interleukin (IL) -1b, IL-6, and tumor necrosis factor-a (TNF-a)
(88). These mediators can suppress LH secretion from

gonadotropes, stimulate prolactin release via folliculostellate cell-

derived IL-6, remodel the pituitary microenvironment (e.g.,

increased aquaporin-4 expression), and activate necroptosis in the

hypothalamus, pituitary, and adrenal glands (89–92). Other

mediators such as nitric oxide (NO) also participate, influencing

LPS-induced prolactin release in a manner dependent on thyroid

status (93). Furthermore, developmental exposure, particularly

during the prenatal period, disrupts gonadotropin–releasing

hormone (GnRH) neuron maturation and leads to long-term

reductions in GnRH and LH and altered sex steroid profiles,

whereas chronic low-dose exposure may paradoxically increase
FIGURE 3

Effects of LPS, microcystin, and classical bacterial toxins on pituitary hormone regulation and cellular function. Note that lipopolysaccharide can act
either directly on pituitary cells or indirectly through cytokine-mediated pathways. Acronyms: IL-1b, interleukin-1b; IL-6, interleukin-6, TNF-a, Tumor
necrosis factor-a; NO, nitric oxide; GnRH, gonadotropin–releasing hormone; CRH, corticotropin–releasing hormone; TRH, thyrotropin–releasing
hormone; ACTH, adrenocorticotropic hormone; LH, luteinizing hormone; FSH, follicle stimulating hormone; TSH, thyroid stimulating hormone; FT4,
free T4; FT3, free T3; ADH, antidiuretic hormone. Note that the anatomical illustration of the pituitary gland was AI-generated using OpenAI DALL·E
(2025) and verified by authors.
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gonadotropin output through pituitary transcriptomic

reprogramming (94, 95). In addition, LPS can act directly on

endocrine cells, as lactotrophs express functional TLR4;

stimulation promotes their proliferation and prolactin synthesis

via MAPK and nuclear factor kB (NF-kB) activation—effects

abolished by TLR4 blockade—demonstrating that bacterial

endotoxin can influence pituitary hormonal output and cell

growth independently of hypothalamic input (96). However, these

direct effects have been demonstrated exclusively in experimental

models, and their physiological relevance in humans with sepsis

remains speculative.

On the other hand, under conditions where NF-kB–dependent
survival signaling is impaired, either pharmacologically or via

estradiol, LPS exposure can also trigger apoptosis in anterior

pituitary cells, particularly lactotrophs and somatotrophs,

accompanied by reduced expression of the anti-apoptotic protein

Bcl-xL (97). Notably, LPS has also been shown to suppress the

growth of TLR4-positive pituitary adenomas, an effect closely linked

to IL-6 production via p38aMAPK, as evidenced by its reversal with

specific kinase inhibitors (98).

2.3.2 Bacterial toxins and pituitary modulation
Cyanobacteria, commonly known as “blue–green algae,” are

photosynthetic prokaryotes that inhabit a wide range of aquatic

environments and can form dense blooms under eutrophic

conditions (99). Many cyanobacterial species produce potent

secondary metabolites, including microcystins, which are cyclic

heptapeptide hepatotoxins with recognized endocrine-disrupting

potential (100).

In mammals, exposure to microcystin-LR (MC-LR) has been

reported to reduce hypothalamic GnRH and Kiss1 transcript

expression, accompanied by decreased GnRH concentrations but

increased FSH levels, while effects on LH appear variable, with most

studies reporting elevations, although Dos Santos et al. observed

reduced levels (101–103).These endocrine alterations are associated

with impaired gametogenesis and reduced ovarian follicle counts,

indicating downstream reproductive toxicity (104). In addition to

its effects on the reproductive axis, MC-LR disrupts the HPA axis by

reducing hypothalamic corticotropin–releasing hormone (CRH)

expression, circulating ACTH, and plasma corticosterone, and

impairs the HPT axis by decreasing hypothalamic TRH

expression and free T4 and T3 concentrations, while

concomitantly increasing TSH levels in a compensatory manner

(102, 103).

In fish and amphibians, waterborne MC-LR exposure disrupts

the hypothalamic–pituitary–gonadal–liver axis, reducing GnRH,

FSHb, LHb and LH receptor mRNA expression, impairing

vitellogenin synthesis, and inducing gonadal dysplasia, often with

sex-specific transcriptional profiles (105, 106).

Early life-stage exposures in zebrafish have demonstrated

activation and dysregulation of the hypothalamic–pituitary–

interrenal (HPI) axis, with an hypothalamic CRH and pituitary

proopiomelanocortin (POMC) expression, elevated cortisol and

altered glucocorticoid receptor expression, indicating feedback

dysregulation and suggesting potential long-term programming
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effects (107). Combined exposures with other aquatic

contaminants, such as nitrite, can exacerbate these endocrine

disruptions through synergistic effects (108).

Some toxins from classical pathogenic bacteria also show

pathogenic relevance for pituitary function. In rodents, the

Staphylococcus aureus superantigen enterotoxin B and

Clostridium difficile toxin A both increase plasma corticosterone

and ACTH levels, the latter likely acting through the release of

inflammatory mediators such as TNF-a and prostaglandin E2 (109–

111). In humans, vaccination with tetanus toxoid has been

associated with transient rises in cortisol and ACTH, consistent

with acute HPA axis activation (112).

By contrast, although several other bacterial toxins have been

investigated in relation to pituitary function, most evidence derives

from animal models in which these molecules serve as experimental

tools rather than as causes of clinically relevant pituitary

dysfunction. For example, Diphtheria toxin has been employed in

transgenic mouse models to conditionally ablate specific pituitary

cell types, such as somatotropes or lactotropes, via inducible

expression of the diphtheria toxin receptor (113–115). These

models have revealed a remarkable regenerative capacity of the

adult pituitary, involving Sox2+ stem/progenitor cell activation,

expansion of the marginal-zone niche, proliferation of surviving

endocrine cells, and, in some cases, transdifferentiation between

lineages. Pertussis toxin, through ADP-ribosylation of Gi/o

proteins, has been instrumental in demonstrating that

somatostatin receptor signaling in pituitary cells is Gi/o-

dependent, clarifying inhibitory pathways that regulate hormone

secretion (116–118). Cholera toxin, in contrast, enhances GnRH-

induced LH release by shifting hormone stores from a nonreleasable

to a releasable pool via Gs protein activation and cyclic adenosine

monophosphate (cAMP) production, a sensitization lost during

desensitization but recoverable under specific stimulation patterns

(119). Clostridial toxins have been used to probe vesicular

trafficking and cytoskeletal regulation, for example showing that

Clostridium tetani toxin blocks synaptobrevin-dependent

exocytosis of vasopressin and oxytocin, and that other

Clostridium toxins can induce actin depolymerization and

aquaporin-2 translocation (120, 121). Collectively, these studies

have provided valuable mechanistic insight into pituitary cell

biology, although most represent experimental paradigms rather

than evidence of clinically relevant pituitary pathology.
2.4 Kingdom Fungi

The kingdom Fungi comprises a diverse group of eukaryotic

organisms that includes yeasts, molds, and mushrooms (122).

Characterized by a chitinous cell wall and heterotrophic

metabolism, fungi play essential ecological roles as decomposers

and symbionts, but also produce a wide array of bioactive

metabolites (123). Some of these secondary metabolites have been

recognized as potent modulators of endocrine function, capable of

affecting the hypothalamic–pituitary axes.
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2.4.1 Mycotoxin T-2 and pituitary impairment
Most of the current scientific evidence on pituitary dysfunction

related to fungi centers around T-2 toxin, a trichothecene

mycotoxin produced by Fusarium species (124). This compound

gained notoriety in the 1940s in the former Soviet Union, where

contaminated grain led to outbreaks of alimentary toxic aleukia—a

severe disease characterized primarily by hematological

suppression, mucosal ulceration, and high mortality (125). T-2

toxin is known to widely contaminate barley, maize, oats, and

even processed human food, raising ongoing concerns about its

impact on both public health and endocrine function (126).

The effects of T-2 toxin on the HPG axis appear to be highly

context-dependent, varying with dose, sex, and developmental

stage. In adult male mice, chronic oral exposure to T-2 toxin led

to a dose-dependent decline in fertility and disrupted

spermatogenesis, which correlated with reduced serum levels of

GnRH, LH, FSH, testosterone, and progesterone (127). These

endocrine alterations were supported by suppressed expression of

hypothalamic GnRH1 and pituitary LHb mRNA. In contrast,

prepubertal exposure in female rats resulted in the opposite

pattern: accelerated pubertal onset, increased circulating LH, FSH,

and estradiol, and upregulation of GnRH and GnRHR expression,

along with histological signs of premature reproductive maturation

(128). These divergent effects suggest that T-2 toxin may suppress

or activate the HPG axis depending on the physiological window,

possibly through differential modulation of upstream regulators

such as kisspeptin signaling.

Regarding the somatotropic axis, T-2 toxin significantly reduces

GH synthesis and secretion in GH3 pituitary cells, primarily

through excessive NO production via inducible NO synthase

(129). This leads to mitochondrial dysfunction, oxidative stress,

and caspase-mediated apoptosis , further enhanced by

proinflammatory cytokines such as IL-6, IL-1b, and IL-11. These

findings align with the well-established cytotoxic role of NO in the

pituitary, contributing to both cell death and hormonal deficiencies

(130, 131).

Beyond its effects on hormone secretion, T-2 toxin has been

shown to cause direct structural damage to the pituitary gland. In

fact, Pu Guo et al. demonstrated that T-2 crosses the blood–brain

barrier and induces distinct histopathological changes in the

anterior pituitary, including early signs of vascular congestion and

hemorrhage, followed by apoptotic degeneration (132). The

pituitary responded primarily with apoptosis, unlike other brain

regions where autophagy was more prominent, suggesting tissue-

specific mechanisms of toxicity.

2.4.2 Other toxins and fungal molecules
Regarding other mycotoxins, zebrafish models have shown that

both zearalenone (ZEA) and ochratoxin A (OTA) can disrupt

pituitary-regulated endocrine function through distinct

mechanisms. ZEA, a mycotoxin produced by Fusarium species,

selectively altered LH-related pathways in adult females, as

evidenced by upregulation of LHr and multiple genes involved in

estrogen synthesis and steroidogenesis, while FSH receptor
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expression remained unchanged—suggesting a targeted effect on

LH-mediated signaling (133). In contrast, OTA—produced mainly

by Aspergillus and Penicillium species—did not affect prolactin

release itself but interfered with its downstream action by

upregulating prolactin receptor expression following miR-731

suppression in embryonic zebrafish, contributing to vascular

instability (134). In addition, the mycotoxin deoxynivalenol,

produced by Fusarium species and commonly found in

contaminated cereals, has been shown to activate the HPA axis in

a necroptosis-dependent manner, as evidenced by the attenuation

of these effects with necrostatin-1, a well-recognized necroptosis

inhibitor (135).

On the other hand, species of Amanita are among the most

dangerous wild mushrooms due to their highly toxic compounds,

including amatoxins and phallotoxins, and pose a risk of accidental

ingestion (136). In relation to endocrine disregulation, Amanita

mushroom poisoning resulted in suppressed thyroid function, with

reduced thyroxine levels and undetectable triiodothyronine

accompanied by inappropriately low or normal TSH

concentrations in most cases, suggesting impaired hypothalamic–

pituitary responsiveness or a euthyroid sick syndrome (137).

Whether Amanita exerts a direct cytotoxic effect on pituitary cells

remains unknown; this contrasts with other endocrine organs, such

as the pancreas, where b-cell injury has been reported (138).

Beyond classical mycotoxins, other fungal-derived compounds

may also modulate hypothalamic–pituitary function. For instance,

b-glucan—a polysaccharide present in fungal cell walls—has been

shown to stimulate prolactin secretion both in vivo, after

intravenous administration, and ex vivo in incubated pituitary

tissue (139).

Pectin derivatives may exert similar effects, suggesting that

certain structural polysaccharides can influence anterior pituitary

hormone release.

From a mechanistic standpoint, findings from different fungal

species converge on a limited set of cellular processes—oxidative

stress, inhibition of protein synthesis, and apoptotic signaling—

suggesting a conserved pattern of endocrine cell injury related to

redox imbalance and mitochondrial dysfunction. Such mechanisms

parallel those observed in bacterial endotoxins and other

biologically derived compounds, pointing to a broader

susceptibility of hormone-secreting cells to metabolic and

oxidative stress. Nevertheless, most available data originate from

in vitro or rodent experiments, often employing supraphysiological

concentrations, and human evidence remains largely inferential,

based on dietary or environmental exposure rather than direct

clinical observation.
2.5 Kingdom Protista

Protists are a diverse group of eukaryotic microorganisms

traditionally defined by exclusion: they are not animals, plants, or

fungi, yet share certain cellular features with each. Most are

unicellular, though some form simple multicellular or colonial
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structures. They exhibit a wide range of nutritional strategies—

including autotrophy, heterotrophy, and mixotrophy—and possess

various forms of motility such as flagella, cilia, or pseudopodia

(140). Despite their diversity, in practical terms the kingdom

Protista is often represented by two major categories of medical

and ecological interest: marine microalgae and pathogenic parasites.

2.5.1 Marine microalgae
Scientific evidence is limited in this group and derives almost

exclusively from two species: Gambierdiscus toxicus and

Prymnesium patelliferum. In more recent taxonomic systems

these species are reclassified under the kingdom Chromista.

Gambierdiscus is typically placed within the Alveolata group,

while Prymnesium belongs to Haptophyta (141, 142).

Gambierdiscus toxicus is a marine dinoflagellate known as the

primary source of ciguatoxin, a lipophilic neurotoxin responsible

for ciguatera fish poisoning —a foodborne illness characterized by

gastrointestinal, neurological, and cardiovascular disturbances

following the ingestion of contaminated reef fish (143).

Interestingly, another compound produced by this organism,

maitotoxin, has been shown to interact directly with the pituitary

gland, inducing a marked increase in intracellular calcium flux in

pituitary cells, likely mediated by elevated levels of inositol

trisphosphate (144). This calcium influx leads to enhanced

secretion of several pituitary hormones, including GH, LH, and

prolactin (145). However, the regulation of prolactin secretion

appears to involve additional complexity, potentially mediated by

an increase in leukotriene production (146). Notably, the

secretagogue effect of maitotoxin seems to be specific to the

pituitary gland, as it has been shown to inhibit parathyroid

hormone secretion (147).

A similar mechanism has been observed with the ichthyotoxic

flagellate Prymnesium patelliferum, whose toxin also enhanced

calcium influx in GH4C1 pituitary cells by activating both T-type

and L-type voltage-gated calcium channels, leading to elevated

intracellular calcium levels and a dose-dependent increase in

prolactin secretion (148).

2.5.2 Pathogenic parasites
Infection with Plasmodium spp. has been associated with

impairment of the pituitary gland. Acute malaria typically

activates the HPA axis, with elevated cortisol and DHEA levels,

likely triggered by TNF-a and IL-1 release following erythrocyte

rupture and antigen exposure during the parasitic replication phase,

which acutely stimulate both the thermoregulatory center and

corticotropic pathways (149). In contrast, prolonged disease may

result in selective adrenal exhaustion, reflected in declining DHEA

concentrations. Transient pituitary dysfunction has also been

observed in the HPT axis, with low thyroxine levels and blunted

TSH responses to TRH stimulation during severe malaria, which

normalize upon recovery (150). However, these alterations are most

likely driven by systemic inflammation due to TNF-a and

interferon gamma (IFN-g) oversecretion and metabolic adaptation

to critical illness, rather than specific peptide-mediated pituitary

toxicity (151).
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Several protozoan infections have been associated with pituitary

dysfunction. but current evidence suggests that such alterations are

not mediated by selective distant pituitary modulators. In

Trypanosoma spp. infections, extensive data from both animal

models and human studies reveal central endocrine disturbances,

such as ACTH exhaustion and corticotroph remodeling in T. brucei

brucei, persistent hypogonadism in T. rhodesiense, and central

hypothyroidism in T. evansi (152–154). Findings in Trypanosoma

congolense infections are less consistent, with conflicting reports

regarding ACTH dynamics, although the detection of parasites in

both cerebrospinal fluid and pituitary microvasculature suggests

direct involvement of the gland (155–157). Similarly, other

protozoa such as Toxoplasma gondii and Leishmania spp. have

been investigated for their effects on pituitary axes, particularly the

HPG axis (158). Chronic T. gondii infection triggers sustained

systemic inflammation, with IL-1 and TNF-a reaching the

hypothalamus and stimulating corticotropin-releasing hormone

(CRH) secretion, thereby activating the HPA axis and secondarily

suppressing the HPG axis through inhibition of GnRH release.

Similarly, elevated TNF-a and IFN-g levels reported in visceral

leishmaniasis may further impair hypothalamic and gonadal

function, providing a plausible immuno-endocrine mechanism

linking protozoan infection to reproductive axis dysfunction. Yet,

no pituitary-specific toxins have been identified, and endocrine

manifestations in these infections are most likely secondary to

systemic cytokine-driven inflammation, though limited evidence

suggests that direct pituitary involvement may occasionally occur

(159–162).

Taken together, evidence from parasitic and non-parasitic

protists points to two predominant processes of endocrine

disruption: (1) cytokine-driven activation of hypothalamic–

pituitary pathways during systemic infection, and (2) calcium-

dependent exocytotic or cytopathic effects induced by marine

metabolites. These phenomena illustrate how distinct protistan

lineages can trigger comparable neuroendocrine alterations

through immune signaling and intracellular calcium dynamics.

However, most of these data derive from experimental systems

rather than human studies, and the direct endocrine relevance of

these mechanisms in clinical settings remains to be confirmed.

After reviewing the different biological kingdoms, the main

biologically derived agents and their effects on pituitary function

can be summarized comparatively. Table 1 provides an integrative

overview of representative toxins, their principal mechanisms, and

documented endocrine outcomes according to the available type

of evidence.
3 Conclusions

Across the five biological kingdoms, diverse natural agents

demonstrate the pituitary’s vulnerability to toxic injury. Russell’s

viper envenomation is a well-documented cause of both acute and

chronic hypopituitarism, while other animals can also alter pituitary

responses. Plants are mainly studied for their therapeutic potential,

yet certain extracts interfere with gonadotropin secretion and
frontiersin.org

https://doi.org/10.3389/fendo.2025.1708792
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sanchis-Pascual et al. 10.3389/fendo.2025.1708792
reproductive regulation. Fungal metabolites, particularly the

trichothecene T-2 toxin, exert direct cytotoxic damage on

pituitary cells, raising concerns about dietary exposure. Among

kingdomMonera, LPS can disrupt pituitary function both indirectly

through systemic inflammation and directly at the cellular level,

also highlighting the influence of bacterial toxins. Protists complete

this spectrum, with marine microalgae producing potent

secretagogues of pituitary hormones, while pathogenic protozoa

impair endocrine axes largely through systemic inflammatory

mechanisms. Together, these findings underscore the pituitary’s

remarkable impairment to biologically derived agents and the need

for greater clinical awareness of these impactful toxic insults.

Clinicians should maintain a high index of suspicion for pituitary

dysfunction in acute toxic exposures, as early assessment of ACTH,

cortisol, and TSH levels may unmask evolving hypopituitarism and

guide timely management.
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TABLE 1 Representative natural toxins affecting pituitary function, summarizing their main mechanisms, endocrine outcomes, and supporting
evidence.

Kingdom Representative agent Main mechanism Outcome Evidence type

Animalia
Russell’s viper venom (metalloproteinases, serine
proteases, phospholipase A2…)

Endothelial injury, coagulopathy
Acute and chronic
hypopituitarism

Clinical and
Pathological

Plantae Swainsonine
Inhibition of N-glycan processing in
glycoprotein hormones

Disruption of LH/FSH
secretion and reproductive
dysfunction

Experimental (in vivo)

Fungi T-2 toxin
Nitric oxide–mediated apoptosis,
oxidative stress

Growth hormone,
gonadotropin deficiency (male
mice) and citotoxic effect

Experimental (in vivo
and in vitro)

Monera LPS
TLR4 activation, cytokine release, NF-
kB signaling

Altered PRL, ACTH, and HPA
axis activity

Experimental (in vivo
and in vitro)

Protista Maitotoxin
Calcium influx and IP3-mediated
exocytosis

Increased GH, LH, and PRL
secretion

Experimental (in
vitro)
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55. Droctové L, Lancien M, Tran VL, Susset M, Jego B, Theodoro F, et al. A snake
toxin as a theranostic agent for the type 2 vasopressin receptor. Theranostics. (2020)
10:11580. doi: 10.7150/thno.47485

56. Kobzina-Didukh DS. The influence of scorpion venom on the hypothalamo-
pituitary-adrenal axis (review). Rep Vinnytsia Natl Med University. (2024) 28:524–9.
doi: 10.31393/reports-vnmedical-2024-28(3)-24

57. Daachi F, Adi-Bessalem S, Megdad-Lamraoui A, Laraba-Djebari F. Immune-
toxicity effects of scorpion venom on the hypothalamic pituitary adrenal axis during
rest and activity phases in a rodent model. Comp Biochem Physiol C Toxicol Pharmacol.
(2020) 235:108787. doi: 10.1016/j.cbpc.2020.108787

58. Yamashita M, Oki Y, Iino K, Hayashi C, Matsushita F, Faje A, et al. The role of
ether-a-go-go-related gene K+ channels in glucocorticoid inhibition of
adrenocorticotropin release by rat pituitary cells. Regul Pept. (2009) 152:73–8.
doi: 10.1016/j.regpep.2008.09.002

59. Hlubek M, Tian D, Stuenkel EL. Mechanism of a-latrotoxin action at nerve
endings of neurohypophysis. Brain Res. (2003) 992:30–42. doi: 10.1016/
j.brainres.2003.08.025

60. Suzuki N, Hirono M, Kawahara K, Yoshioka T. Sapecin B, a novel fly toxin,
blocks macroscopic K+ currents in the GH3 rat pituitary cell line. Am J Physiol Cell
Physiol. (1997) 273:289–96. doi: 10.1152/ajpcell.1997.273.1.C289

61. Florea A, El Hof FA, Hazi GM, Oprea MC. Bee venom stimulates hormone
secretion in rat somatotroph and corticotroph cells: digital image analysis of secretory
granules. Microscopy Microanalysis . (2019) 25:1234–45. doi: 10.1017/
S1431927619014910

62. Khalifa EI, Grawish SI, Gomaa AAAI, M.M GA, Metwally AAA, Mahdy T.
Influence of honey bee venom on growth performance of zaraibi kids from weaning to
sexual puberty. EJAP. (2024) 61:83–92. doi: 10.21608/EJAP.2024.281834.1080

63. Delwiche CF, Timme RE. Plants. Curr Biol. (2011) 21:R417–22. doi: 10.1016/
j.cub.2011.04.021

64. Monjotin N, Amiot MJ, Fleurentin J, Morel JM, Raynal S. Clinical evidence of
the benefits of phytonutrients in human healthcare. Nutrients. (2022) 14:1712.
doi: 10.3390/nu14091712

65. Kristanc L, Kreft S. European medicinal and edible plants associated with
subacute and chronic toxicity part I: Plants with carcinogenic, teratogenic and
endocrine-disrupting effects. Food Chem Toxicol. (2016) 92:150–64. doi: 10.1016/
j.fct.2016.04.007

66. Li H, Ge M, Lu B, Wang W, Fu Y, Jiao L, et al. Ginsenosides modulate
hypothalamic–pituitary–adrenal function by inhibiting FKBP51 on glucocorticoid
receptor to ameliorate depression in mice exposed to chronic unpredictable mild
stress. Phytother Res. (2024) 38:5016–29. doi: 10.1002/ptr.8075

67. Mohan Gowda CM, Murugan SK, Bethapudi B, Purusothaman D,
Mundkinajeddu D, D’Souza P. Ocimum tenuiflorum extract (HOLIXERTM):
Possible effects on hypothalamic-pituitary-adrenal (HPA) axis in modulating stress.
PloS One. (2023) 18:e0285012. doi: 10.1371/journal.pone.0285012

68. Shams E, Zohrabi D, Omrani O, Sanati MH, Karimi-Dehkordi M, Yazdanpanahi
N, et al. The effect of quercetin on obesity and reproduction through the expression of
genes involved in the hypothalamus-pituitary-gonadal axis. J Bras Reprod Assist. (2025)
29:211–8. doi: 10.5935/1518-0557.20240097

69. Abedi H, Zarrin-Mehr A, Ebrahimi B, Haghshenas H, Parvin N, Kargar Jahromi
H. The effect of aqueous extract of orchid root on the structure of ovary and
hypothalamic-pituitary-gonadal hormones in polycystic ovary syndrome rat model:
An experimental study. Int J Reprod Biomed. (2024) 22:203–10. doi: 10.18502/
ijrm.v22i3.16164

70. Oh DR, Yoo JS, Kim Y, Kang H, Lee H, Lm SJ, et al. Vaccinium bracteatum Leaf
extract reverses chronic restraint stress-induced depression-like behavior in mice:
Regulation of hypothalamic-pituitary-adrenal axis, serotonin turnover systems, and
ERK/Akt phosphorylation. Front Pharmacol. (2018) 9:604. doi: 10.3389/
fphar.2018.00604

71. Asiwe JN, Ekene EN, Agbugba LC, Moke EG, Akintade AV, Ben-Azu B, et al.
Ginkgo biloba supplement abates lead-induced endothelial and testicular dysfunction
Frontiers in Endocrinology 12
in Wistar rats via up-regulation of Bcl-2 protein expression, pituitary-testicular
hormones and down-regulation of oxido-inflammatory reactions. J Trace Elem Med
Biol. (2023) 79:127216. doi: 10.1016/j.jtemb.2023.127216

72. Omotola MB, Adeosun IO, Obuotor EM, Akomolafe RO, Ayannuga OA.
Assessment of the effects of graded doses of polyphenolic-rich fraction of Garcinia
kola seeds on pituitary–testicular axis of male Wistar rats. Dose-Response. (2017)
15:1559325817729260. doi: 10.1177/1559325817729260

73. Sourgens H, Winterhof H, Gumbinger HG, Kemper FH. Antihormonal effects of
plant extracts. TSH- and prolactin-suppressing properties of lithospermum officinale
and other plants. Planta Med. (1982) 45:78–86. doi: 10.1055/s-2007-971251

74. Aleebrahim-Dehkordy E, Ansaripour S, Rafieian-Kopaei M, Saberianpour S.
Effects of substances on plants’ active compounds on changes in the hormone levels of
the pituitary-thyroid axis in hyperthyroidism and hypothyroidism. Pharmacogn Rev.
(2018) 12:1. doi: 10.4103/phrev.phrev_48_17

75. Benie T, Duval J, Thieulant ML. Effects of some traditional plant extracts on rat
oestrous cycle compared with clomid. Phytother Res. (2003) 17:748–55. doi: 10.1002/
ptr.1206

76. Benie T, Thieulant ML. Mechanisms underlying antigonadotropic effects of
some traditional plant extracts in pituitary cell culture. Phytomedicine. (2004) 11:157–
64. doi: 10.1078/0944-7113-00326

77. Zhongyang L, Shengxiang W, Yuyun Q, Tian T, Baoyu Z, Chenchen W.
Swainsonine affects the secretion of reproductive hormones by inhibiting N-glycan
processing. Acta Vet Zootec Sin. (2020) 51:3171–80.

78. Levavi-Sivan B, Hedvat R, Kanias T, Francis G, Becker K, Kerem Z. Exposure of
tilapia pituitary cells to saponins: Insight into their mechanism of action. Comp
Biochem Physiol C Toxicol Pharmacol. (2005) 140:79–86. doi: 10.1016/j.cca.2005.01.002

79. Kasiri K, Heidari-Soureshjani S, Pocock L. Medicinal plants effect on prolactin: A
systematic review. WFM/MEJFM. (2017) 15. doi: 10.5742/MEWFM.2017.93164

80. Ushiroyama T, Sakuma K, Souen H, Nakai G, Morishima S, Yamashita Y, et al.
Xiong-gui-tiao-xue-yin (Kyuki-chouketsu-in), a traditional herbal medicine, stimulates
lactation with increase in secretion of prolactin but not oxytocin in the postpartum
period. Am J Chin Med. (2007) 35:195–202. doi: 10.1142/S0192415X07004734

81. Wang X, Chen YG, Ma L, Li ZH, Li JY, Liu XG, et al. Effect of Chinese medical
Herbs-Huiru Yizeng Yihao on hyperprolactinemia and hyperplasia of mammary gland
in mice. Afr J Tradit Complement Altern Med. (2013) 10:24. doi: 10.4314/ajtcam.v10i4.5

82. Wang D, Wong HK, Bin FY, Zhang ZJ. 18beta-Glycyrrhetinic acid induces
apoptosis in pituitary adenoma cells via ROS/MAPKs-mediated pathway. J Neurooncol.
(2014) 116:221–30. doi: 10.1007/s11060-013-1292-2

83. Wang D, Wong HK, Feng YB, Zhang ZJ. Liquiritigenin exhibits antitumour
action in pituitary adenoma cells via Ras/ERKs and ROS-dependent mitochondrial
signalling pathways. J Pharm Pharmacol. (2014) 66:408–17. doi: 10.1111/jphp.12170

84. Margulis L. Biodiversity: molecular biological domains, symbiosis and kingdom
origins. BioSystems. (1992) 27:39–51. doi: 10.1016/0303-2647(92)90045-z

85. Webster JI, Sternberg EM. Role of the hypothalamic-pituitary-adrenal axis,
glucocorticoids and glucocorticoid receptors in toxic sequelae of exposure to bacterial
and viral products. J Endocrinol. (2004) 181:207–21. doi: 10.1677/joe.0.1810207

86. Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A
journey from structure to function of bacterial lipopolysaccharides. Chem Rev. (2022)
122:15767–821. doi: 10.1021/acs.chemrev.0c01321

87. Wang X, Quinn PJ. Endotoxins: Lipopolysaccharides of gram-negative bacteria.
Subcell Biochem. (2010) 53:3–25. doi: 10.1007/978-90-481-9078-2_1

88. Tsukamoto H, Takeuchi S, Kubota K, Kobayashi Y, Kozakai S, Ukai I, et al.
Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like
receptor 4 internalization and LPS-induced TBK1-IKKa-IRF3 axis activation. J Biol
Chem. (2018) 293:10186–201. doi: 10.1074/jbc.M117.796631
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