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N-phenethylacetamide,
diaminopimelic acid, and
Gly-Val as high-performance
serum biomarkers for
diagnosing untreated Graves’
disease: an LC-MS-based
metabolomics study
Lihua Fang1, Qing Ning2, Chaowen Wu1, Dan Liu1

and Jie Ning1*

1Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen,
Guangdong, China, 2The Second School of Clinical Medicine, Southern Medical University,
Guangzhou, Guangdong, China
Introduction: Graves' disease (GD), a common autoimmune thyroid disorder, is

typified by hyperthyroidism and pervasive metabolic perturbations.

Metabolomics, a burgeoning field instrumental in biomarker identification and

elucidating systemic biological mechanisms, has recently shed light on the

intricate pathophysiology of GD. The present study endeavors to delineate the

metabolic aberrations in untreated GD patients from Shenzhen, China,

leveraging LC-MS-based serum metabolomics.

Methods: A cohort comprising 30 newly diagnosed, untreated GD patients and

32 healthy controls was assembled. Serum metabolite profiling was conducted

via LC-MS, with subsequent identification and quantification of metabolites.

Multivariate statistical analyses, encompassing principal component analysis

(PCA) and partial least squares discriminant analysis (PLS-DA), were employed

to discern significant metabolic discrepancies. Pathway enrichment analysis and

receiver operating characteristic (ROC) curve analysis were utilized to assess the

diagnostic efficacy of the identified metabolites.

Results: A total of 334 significantly dysregulated metabolites were uncovered,

with a pronounced involvement of lipid and organic acid metabolic pathways.

Notably, N-phenethylacetamide (AUC = 0.94), diaminopimelic acid (AUC = 0.93),

and the dipeptide Gly-Val (AUC = 0.91) exhibited substantial diagnostic potential.

Pathway enrichment analysis unveiled significant alterations in linoleic acid,

alpha-linolenic acid, and arachidonic acid metabolism, underscoring the

pivotal role of inflammatory lipid pathways and amino acid metabolism in GD.

Discussion: This study offers a granular metabolic profile of untreated Graves'

disease, unmasking profound dysregulation within lipid and organic acid

metabolism. The identified metabolites, particularly N-phenethylacetamide,

diaminopimelic acid, and Gly-Val, emerge as promising high-performance

serum biomarkers for GD diagnosis. These findings not only augment our
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comprehension of the metabolic reprogramming inherent to GD but also proffer

potential targets for subsequent therapeutic endeavors. Subsequent

investigations are imperative to elucidate the mechanistic roles of these

metabolites in GD pathogenesis and their viability as clinical biomarkers.
KEYWORDS
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1 Introduction

Graves’ disease (GD) is a common autoimmune disorder

characterized by hyperthyroidism resulting from thyroid-

stimulating hormone receptor (TSHR)-activating autoantibodies

(1). It predominantly affects women and can involve extrathyroidal

manifestations such as orbitopathy, driven by the synergistic action

of TSHR and insulin-like growth factor 1 receptor (IGF1R)

autoantibodies (2). Metabolomics is a powerful tool for biomarker

discovery that can also reveal systems-level biology and detect subtle

alterations in pathways, providing mechanistic insights into the

disease. In recent years, advancements in metabolomics (3) have

offered novel perspectives for a deeper understanding of the

pathophysiology of GD, especially in the realm of serum proteins

and metabolites (4). By employing proteomics and metabolomics

approaches, researchers have been able to uncover alterations in

proteins and metabolites within the serum of GD patients. These

alterations are potentially intertwined with the disease’s pathogenesis,

diagnosis, and treatment. One study utilized Mendelian

randomization (MR) in conjunction with genome-wide association

study (GWAS) data to scrutinize the impact of 486 serummetabolites

on GD (5). It identified 19 metabolites significantly associated with

GD risk. Notably, three metabolites, kynurenine, glycerol 2-

phosphate, and 4-androsten-3beta,17beta-diol disulfate 2, exhibited

significant heritability and lacked shared genetic correlations with GD

(6). This finding underscores the potential causal significance of these

metabolites in the disease. Another investigation employing

untargeted metabolomics to analyze serum samples from children

with GD uncovered 48 differential metabolites between the GD and

control groups, encompassing amino acids, dipeptides, lipids, and

purines (7). These metabolites are implicated in pathways such as

aminoacyl-tRNA biosynthesis, metabolism of various amino acids,

purine metabolism, and pyrimidine metabolism.

Serum metabolomic profiling of patients with GD has

unveiled a distinct metabolic signature characterized by pervasive

dysregulation across multiple biochemical pathways. Integrative

analyses demonstrate consistent perturbations in arginine and

proline metabolism, aminoacyl-tRNA biosynthesis, alanine–

aspartate–glutamate axis, and bile acid homeostasis (8). Notably,

these metabolic aberrations exhibit clinically significant

correlations with disease manifestations, including the degree of
02
hyperthyroidism, autoantibody titers, and overall disease severity

(9). The mechanistic implications of these findings extend beyond

mere association, suggesting active involvement of metabolic

reprogramming in GD pathogenesis (10). Furthermore, the

dynamic nature of these metabolic profiles in response to

therapeutic interventions highlights their potential utility as

sophisticated biomarkers for treatment monitoring and

personalized therapeutic strategies (11).

Building on these advancements, the present study introduces

certain improvements and, for the first time, investigates patients

with newly diagnosed Graves’ disease in the Shenzhen area. By

conducting a comparative analysis of serum metabolite differences,

this study aims to enhance accuracy and sensitivity. It is anticipated

that this research will offer more robust support for the diagnosis,

treatment, and prevention of GD.
2 Materials and methods

2.1 Recruitment and study protocol

For this investigation, we enrolled 30 consecutive individuals with

newly diagnosed (Table 1) untreated Graves’ disease (GD) and 32

healthy controls (HCs), all within the age range of 18–67 years. GD

was diagnosed in accordance with the 2016 American Thyroid

Association (ATA) criteria, which include suppressed TSH,

elevated free T4 levels, and positive TSI, or diffuse uptake on

99mTc-pertechnetate scintigraphy. The final diagnosis was

confirmed by an experienced endocrinologist, integrating all

available clinical, biochemical, serological, and imaging data. This

comprehensive approach ensured that all enrolled patients had a

definitive diagnosis of GD, including those with atypical biochemical

presentations that were clarified by positive autoimmunity or

characteristic imaging findings. We excluded individuals who were

pregnant or lactating; had a history of malignancy, cardiovascular

disease, or diabetes; had used antibiotics or probiotics within the past

3 months; had gastrointestinal disorders and psychiatric conditions;

or were taking selenium supplements.

HCs were individuals undergoing routine health checkups,

recruited from the hospital’s Department of Physical Examination.

All HC participants were confirmed to be euthyroid based on clinical
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assessment and laboratory testing. Key inclusion criteria consisted of

the absence of a personal or family history of thyroid disease, no

current or previous use of medications known to affect thyroid

function, and having thyroid function tests (TSH, FT3, FT4) with

results within clinically acceptable normal limits. Specifically, all HC

participants had TSH levels within the reference range (0.27–4.2

mIU/L). A small number of participants (n = 5) exhibited FT4 values

slightly below the lower reference limit (12 pmol/L) but with

concomitant normal TSH levels; this pattern is recognized in

clinical practice as carrying no significant risk for hypothyroidism

and was categorized as normal variation. Therefore, all HC
Frontiers in Endocrinology 03
participants were rigorously defined as having normal thyroid

function. The study was approved by the local ethics committee

under protocol number 2023-096-03, and all participants provided

informed consent.
2.2 Sample collection and metabolite
extraction

Fasting venous blood samples were collected from all

participants. Serum was obtained by centrifugation and aliquoted
TABLE 1 Baseline clinical and biochemical characteristics of the study cohort with untreated Graves’ disease (n = 30; M, male; F, female).

No. Gender Age TSH (0.27–4.2) mIU/L FT3 (3.1–6.8) pmol/L FT4 (12–22) pmol/L TRAb (<1.75) IU/L

1 M 21 0.008 6.94 31.06 0.98

2 F 44 <0.005 6.48 18.7 6

3 F 56 <0.005 13.30 40.85 4.64

4 F 32 <0.005 11.30 19.99 >40.00

5 M 25 <0.005 32.97 64.46 14.35

6 M 26 <0.005 10.06 25.13 2.89

7 F 43 <0.005 20.63 54.38 6.54

8 M 38 <0.005 15.09 43.70 16.76

9 M 32 <0.005 7.55 17.85 30.37

10 M 37 <0.005 13.2 26.33 9.13

11 M 40 <0.005 5.05 15.59 21.43

12 M 67 0.268 9.37 16.72 15.17

13 F 27 <0.004 >30.72 33.95 4.54

14 F 23 9.97 4.32 9.97 34.87

15 M 35 0.011 4.3 25.72 24.38

16 M 37 <0.005 34.93 78.77 17.78

17 M 36 <0.005 9.82 29.88 6.36

18 M 38 <0.005 7.44 24.84 3.74

19 M 58 <0.005 5.31 23.78 4.59

20 F 38 0.005 9.63 33.13 6.05

21 M 22 0.006 8.68 36.67 13.06

22 F 30 0.013 4.22 10.27 9.48

23 M 31 0.01 5.58 23.7 4.07

24 F 25 0.165 3.32 11.67 1.75

25 F 45 0.007 7.07 23.22 26.02

26 F 38 2.330 5.17 16.84 9.98

27 M 51 <0.005 36.09 >100.00 11.91

28 M 41 <0.005 15.24 30.24 11.21

29 M 34 <0.005 10.67 39.68 6.53

30 F 18 0.010 10.47 30.09 2.70
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and frozen immediately at −80°C until batch metabolite extraction.

All samples underwent only one freeze–thaw cycle for this analysis.

For metabolite extraction, 100 mL of serum was transferred into a

1.5-mL centrifuge tube and mixed with 400 mL of a solution

composed of acetonitrile and methanol in a 1:1 volume ratio,

containing an internal standard (L-2-chlorophenylalanine) at a

concentration of 0.02 mg/mL. The samples were vortexed for 30 s

to ensure thorough mixing and then subjected to low-temperature

sonication at 5°C and 40 kHz for 30 min to facilitate the extraction

process. To precipitate proteins, the samples were subsequently

stored at −20°C for 30 min (12). Following this, the samples

underwent centrifugation at 4°C and 13,000g for 15 min. The

supernatant was carefully removed and evaporated to dryness

under a stream of nitrogen gas (13). The dried samples were then

reconstituted in 100 mL of a solution consisting of acetonitrile and

water in a 1:1 volume ratio. This reconstituted solution was further

processed by low-temperature ultrasonication at 5°C and 40 kHz

for 5 min, followed by another centrifugation step at 4°C and

13,000g for 10 min. The final supernatant was carefully transferred

to sample vials, which were then prepared for LC-MS/MS

analysis (14).
2.3 Quality control procedures

To ensure the reliability and stability of the analytical process, a

pooled quality control (QC) sample was created by combining equal

volumes from all individual samples. This QC sample was subjected

to the same preparation and analytical procedures as the

experimental samples. Its purpose was to provide a representative

benchmark for the entire sample set. The QC sample was injected at

regular intervals (every 5–15 samples) throughout the analysis to

continuously monitor and ensure the consistency and stability of

the analytical system.
2.4 UPLC-MS/MS analysis

The UPLC-MS/MS analysis was performed using a Thermo

UHPLC-Exploris 240 system equipped with an ACQUITY HSS T3

column (100 mm × 2.1 mm i.d., 1.8 mm; Waters, USA) at Majorbio

Bio-Pharm Technology Co. Ltd. (Shanghai, China) (15). The

mobile phases used were 0.1% formic acid in water:acetonitrile

(95:5, v/v) (solvent A) and 0.1% formic acid in acetonitrile:

isopropanol:water (47.5:47.5:5, v/v) (solvent B). The gradient

elution for positive ion mode was as follows: 0–3 min, solvent B

increased from 0% to 20%; 3–4.5 min, solvent B increased to 35%;

4.5–5 min, solvent B increased to 100%; 5–6.3 min, solvent B

maintained at 100%; 6.3–6.4 min, solvent B decreased to 0%; and

6.4–8 min, solvent B maintained at 0%. For negative ion mode, the

gradient was as follows: 0–1.5 min, solvent B increased from 0% to

5%; 1.5–2 min, solvent B increased to 10%; 2–4.5 min, solvent B

increased to 30%; 4.5–5 min, solvent B increased to 100%; 5–6.3

min, solvent B maintained at 100%; 6.3–6.4 min, solvent B

decreased to 0%; and 6.4–8 min, solvent B maintained at 0%. The
Frontiers in Endocrinology 04
flow rate was set at 0.40 mL/min, and the column temperature was

maintained at 40°C.
2.5 Mass spectrometry conditions

The mass spectrometric data were collected using a Thermo

UHPLC-Exploris 240 Mass Spectrometer equipped with an

electrospray ionization (ESI) source, operating in both positive

and negative modes. The optimal conditions were set as follows:

auxiliary gas heating temperature at 350°C, capillary temperature at

320°C, sheath gas flow rate at 60 psi, auxiliary gas flow rate at 20 psi,

ion-spray voltage floating (ISVF) at −3,000 V in negative mode and

3,400 V in positive mode, and normalized collision energy set to 20–

40–60 eV for MS/MS. The full MS resolution was 60,000, and the

MS/MS resolution was 15,000. Data acquisition was performed in

data-dependent acquisition (DDA) mode, with a mass range of

70–1,050.
2.6 Data analysis

The UHPLC-MS raw data were processed using Progenesis QI

software (Waters, Milford, USA) to convert the data into a common

format. This involved baseline filtering, peak identification,

integration, retention time correction, and peak alignment. The

resulting data matrix, containing sample names, m/z values,

retention times, and peak intensities, was exported for further

analysis. Metabolite identification was performed by querying the

Human Metabolome Database (HMDB; http://www.hmdb.ca/),

Metlin (https://metlin.scripps.edu/), and the Majorbio Database

(MJDB) from Majorbio Biotechnology Co., Ltd. (Shanghai,

China) (16).

The data matrix was uploaded to the Majorbio cloud platform

(https://cloud.majorbio.com) for analysis. Preprocessing steps

included retaining metabolic features detected in at least 80% of

samples, filling missing values with the minimum value, and

normalizing each metabolite’s intensity to the sum of all

intensities. Variables with a relative standard deviation (RSD)

>30% in QC samples were excluded, and the remaining data were

log10-transformed to create the final data matrix.

Principal component analysis (PCA) and orthogonal partial

least squares discriminant analysis (OPLS-DA) were performed

using the R package “ropls” (version 1.6.2). Metabolites with high

variable importance in projection (VIP) >1 and p <0.05 were

considered significantly different based on the OPLS-DA model

and Student’s t-test. Differential metabolites were mapped to

biochemical pathways using the KEGG database (http://

www.genome.jp/kegg/). Enrichment analysis was conducted using

the Python package “scipy.stats” to identify the most relevant

biological pathways.

The diagnostic performance of individual metabolites and

metabolite panels was evaluated using receiver operating

characteristic (ROC) curve analysis based on a random forest

classification model, rather than on univariate logistic regression.
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This machine learning approach assesses the importance of a

variable within a complex, multiparametric context.
3 Results

3.1 Multivariate statistical analyses reveal
distinct metabolomic profiles between GD
and HC groups

Principal component analysis (PCA) was performed to visualize

the overall distribution and grouping trends of serum metabolomic

profiles among GD patients, HCs, and QC samples (Figure 1A). The

resulting PCA score plot demonstrated a partial separation between

the GD and HC groups along the principal components, with PC1

and PC2 accounting for 24.30% and 17.30% of the total variance,

respectively. Although the model fit was moderate (R² = 0.066), the

permutation test indicated statistical significance (p = 0.009),

supporting the presence of distinct metabolic patterns between
Frontiers in Endocrinology 05
GD patients and healthy individuals. The QC samples clustered

tightly in the score plot, reflecting the high reproducibility and

stability of the LC-MS analytical platform throughout the

experiment. These findings suggest that untreated GD is

associated with significant alterations in the serum metabolome,

providing a basis for further identification of potential biomarkers.

A Venn diagram was constructed to illustrate the unique and

overlapping metabolic features between the GD and HC groups

(Figure 1B). The analysis revealed 1,785 metabolites common to

both groups, while 22 metabolites were uniquely expressed in the

GD group and 27 were specific to the HC group. These exclusive

metabolites, which account for 1.21% and 1.49% of the total detected

features in GD and HC, respectively, may reflect distinct metabolic

disturbances associated with Graves’ disease. The large number of

shared metabolites indicates considerable metabolic consistency

between groups, yet the unique features highlight potential

biomarker candidates worthy of further investigation. These findings

reinforce the presence of a specific metabolomic signature in GD

patients, consistent with the group separation observed in PCA.
FIGURE 1

Multivariate analysis of serum metabolomic profiles from Graves’ disease patients and healthy controls. (A) Principal component analysis (PCA) score
plot showing partial separation between GD patients, healthy controls (HCs), and quality control (QC) samples. PC1 and PC2 explain 24.30% and
17.30% of the total variance, respectively (R² = 0.066, p = 0.009). (B) Venn diagram illustrating the overlap and unique metabolic features between
the GD and HC groups. (C) PLS-DA score plot demonstrating clear separation between GD and HC groups along the first two components (10.5%
and 19.5% of variance, respectively).
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To further maximize the separation between Graves’ disease

patients and healthy controls and identify the most influential

metabolic variables, a supervised partial least squares-discriminant

analysis (PLS-DA) was performed (Figure 1C). The resulting score

plot demonstrated a markedly improved and clear separation

between the GD and HC groups along the first two components,

which together accounted for 30.0% of the total variance (component

1: 10.5%; component 2: 19.5%). This enhanced separation, compared

to the unsupervised PCA model, confirms that the metabolomic

profiles contain group-specific patterns that can be effectively

modeled to distinguish GD from healthy controls. The distinct

clustering of the QC samples again underscores the robustness and

reproducibility of the analytical platform. The PLS-DA model

provides a strong foundation for the subsequent identification of

discriminant metabolites with high VIP scores.
3.2 KEGG-based annotation and
enrichment highlight broad alterations in
lipid and organic acid metabolic pathways

Metabolites that were significantly altered between the GD and

HC groups were annotated and classified based on the KEGG

compound database to understand the major classes of compounds

affected (Figure 2A). The classification bar chart revealed that the

most prominent categories of differential metabolites belonged to

lipids and organic acids, underscoring a substantial disruption in

these metabolic pathways in Graves’ disease. Other significantly

represented classes included carbohydrates, peptides, and nucleic

acids. Notably, within the lipid category, subclasses such as fatty

acids, phospholipids, and steroids (including steroid hormones) were

highly abundant, aligning with the known metabolic disturbances in

hyperthyroid conditions. The diversity of affected compound classes,

with a significant number also categorized under “others,” indicates

a widespread metabolic reprogramming associated with GD,

impacting energy metabolism, structural lipid composition, and

signaling molecules.

To further elucidate the biological implications of the altered

metabolites, pathway enrichment analysis was performed based on

the KEGG database. The results, visualized in Figure 2B,

demonstrate that the majority of the differentially abundant

metabolites were significantly enriched in pathways belonging

to the metabolism supercategory. Specifically, lipid metabolism

and amino acid metabolism were among the most represented

pathways, confirming the central role of metabolic reprogramming

in GD pathogenesis. A substantial number of compounds were also

mapped to pathways within organismal systems, particularly the

endocrine system, which is directly relevant to the autoimmune

endocrine nature of Graves’ disease. Furthermore, enrichment was

observed in pathways related to human diseases and environmental

information processing, including signal transduction. This

comprehensive pathway analysis indicates that the metabolic

disturbances in GD extend beyond core metabolism, affecting
Frontiers in Endocrinology 06
systemic regulatory and signaling networks, and provides a

functional context for the identified biomarker candidates.
3.3 HMDB superclass analysis confirms the
predominance of lipids and organic acids

To gain a broader chemical perspective on the altered

metabolome, differential metabolites were classified according to

the HMDB superclass system. The resulting pie chart (Figure 2C)

demonstrates that the vast majority of these metabolites belonged to

the “lipids and lipid-like molecules” superclass, accounting for

39.89% of all identified compounds. This was followed by the

“organic acids and derivatives” superclass, which represented

21.27% of the total. These two dominant categories align perfectly

with the findings from the KEGG-based classification, robustly

confirming that dysregulation of lipid and organic acid

metabolism is a core characteristic of the Graves’ disease

metabolomic profile. Other notable superclasses included

“organoheterocyclic compounds” (12.00%) and “benzenoids”

(8.30%). A small proportion of metabolites (3.88%) were

categorized as “not available,” indicating compounds that await

further classification. This HMDB-based chemical taxonomy

provides a high-level, chemically grounded overview that strongly

supports the centrality of specific metabolic pathways in GD.
3.4 Volcano plot analysis and validation of
key differential metabolites

Volcano plot analysis was employed to visualize the extent and

significance of metabolic changes between the GD and HC groups.

The analysis identified a total of 334 significantly differentially

abundant metabolites. Among these, 169 metabolites were

significantly upregulated and 165 were significantly downregulated

in the GD group compared to HC. This widespread dysregulation

across a substantial number of compounds highlights the profound

impact of GD on the serum metabolome (Figures 3A, B).

To confirm the identity and statistical significance of specific

potential biomarkers, the abundance levels of several key differential

metabolites were compared between the GD and HC groups using

box plots, which revealed distinct and significant abundance

patterns for each compound (Figures 3C–G). The dipeptide Gly-

Val (glycylvaline) showed significantly altered levels in GD patients.

The phospholipid species PE(P-16:0/18:2), a plasmalogen

phosphatidylethanolamine, exhibited a marked difference in

abundance. Acetyltryptophanamide, a tryptophan derivative, was

also identified as being significantly dysregulated. Furthermore,

coumaric acid, a phenolic acid, demonstrated a significant change

in concentration, highlighting perturbations in related pathways.

Notably, N-phenethylacetamide, which demonstrated the highest

individual diagnostic accuracy (AUC = 0.940), was confirmed to be

significantly upregulated in the GD group (p = 0.004, FDR-
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corrected p = 0.031; VIP > 1) (Figure 3G), robustly supporting its

role as a top-tier candidate biomarker. The consistent and

statistically significant alterations in the abundance of these

specific compounds, which span critical chemical classes
Frontiers in Endocrinology 07
including lipids, amino acid derivatives, and phenolic acids,

provide strong evidence for their involvement in the metabolic

disturbances of Graves’ disease and validate them as high-priority

candidate biomarkers.
FIGURE 2

Classification and pathway analysis of differentially abundant metabolites. (A) Bar chart of KEGG compound classification showing the predominance
of lipids and organic acids among altered metabolites in GD. (B) KEGG pathway enrichment analysis highlighting significantly enriched metabolic
pathways, including linoleic acid and arachidonic acid metabolism. (C) Pie chart of HMDB superclass distribution confirming the dominance of lipids
and lipid-like molecules (39.89%) and organic acids and derivatives (21.27%).
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FIGURE 3

Volcano plot and box plots of key differential metabolites. (A, B) Volcano plot visualizing 334 significantly dysregulated metabolites (169 upregulated,
165 downregulated) in GD vs. HC. (C–G) Box plots comparing the abundance of selected metabolites: (C) Gly-Val, (D) PE(P-16:0/18:2), (E)
acetyltryptophanamide, (F) coumaric acid, and (G) N-phenethylacetamide. ** 0.001 < P ≤ 0.01, *** P ≤ 0.001.
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3.5 Hierarchical clustering and VIP analysis
reveal expression patterns and
discriminatory metabolites

Unsupervised hierarchical clustering was performed to visualize

the overall expression patterns of the significantly differential

metabolites across all individual samples in the GD and HC
Frontiers in Endocrinology 09
groups. The resulting heatmap (Figure 4A) clearly segregated the

samples into two primary clusters, which corresponded perfectly

with the GD and HC groups, thereby providing robust validation of

the distinct metabolomic signature of Graves’ disease. Furthermore,

the metabolites were clustered into several subclusters (e.g.,

subcluster_1 to subcluster_10) based on their co-expression

patterns. Specific subclusters exhibited coordinated upregulation
FIGURE 4

Hierarchical clustering and variable importance analysis. (A) Heatmap of hierarchical clustering showing distinct metabolomic patterns between the
GD and HC groups, with metabolites grouped into co-expression subclusters. (B) VIP plot from the OPLS-DA model ranking the top 30 metabolites
contributing to group separation (VIP > 1).
frontiersin.org

https://doi.org/10.3389/fendo.2025.1707049
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fang et al. 10.3389/fendo.2025.1707049
or downregulation in the GD group. For instance, metabolites such

as alpha-linolenic acid, 12,13-DiHOME, azelate acid, and various

phospholipids [e.g., PE(16:1/22:5), PE(o-18:1/22:6)] showed

distinct expression trends. This coordinated regulation within

metabolite subclasses suggests potential functional linkages and

common regulatory mechanisms underlying the metabolic

perturbations in GD. The heatmap thus offers a comprehensive

overview of the systematic metabolic changes and identifies

groups of metabolites that may play synergistic roles in the

disease’s pathophysiology.

To identify the metabolites that contributed most significantly

to the separation between the GD and HC groups observed in the
Frontiers in Endocrinology 10
OPLS-DA model, a VIP analysis was conducted. The VIP plot

(Figure 4B) ranks these influential metabolites based on their VIP

scores, with a score greater than 1.0 typically considered significant

for group discrimination. The top-ranking metabolites with the

highest discriminatory power included coumarinic acid, the

phospholipid PE(p-16:0/18:2), the dipeptide Gly-Val, and

nepetaside. Other notable high-VIP metabolites encompassed

compounds such as N-lauroyl glutamine, the tetrapeptide Arg-

Thr-Lys-Arg, acetyltryptophanamide, and taurochenodeoxycholate-3-

sulfate. This list of high-VIP metabolites, which includes lipids, amino

acid derivatives, and bile acids, provides a prioritized set of the most

reliable candidate biomarkers that are most responsible for the
FIGURE 5

Correlation network and pathway enrichment analysis. (A) Chord diagram depicting correlation networks among significantly altered metabolites,
grouped into lipids, organic acids, and others. (B) Bubble plot of the KEGG pathway enrichment analysis showing the most significantly altered
pathways in GD.
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metabolic distinction of Graves’ disease, guiding further targeted

investigation and potential clinical application.

A correlation network analysis was performed to visualize the

complex interrelationships among the significantly altered

metabolites in GD. The resulting chord diagram (Figure 5A)

illustrates the extensive co-regulation patterns, where metabolites

are categorized into major classes, predominantly lipids and organic

acids, with the remaining compounds grouped as others. The

diagram reveals dense clusters of connections within and between

these categories, particularly among lipid species. This intricate

network of positive and negative correlations indicates a highly

coordinated metabolic response in Graves’ disease. The central role

of lipid metabolites in the network, interacting strongly with each

other and with organic acids, suggests that dysregulation of lipid

metabolism forms a core hub in the pathophysiology of GD.

Thi systemic view of metabolic interactions provides insights

beyond individual biomarkers, highlighting disrupted functional

modules and potential key regulatory nodes in the disease’s

metabolic network.
3.6 Correlation network and pathway
enrichment analyses uncover coordinated
metabolic dysregulation

KEGG pathway enrichment analysis was performed to

systematically identify biological pathways that were significantly

altered in Graves’ disease. The bubble plot (Figure 5B) visualizes the

results, where the size of the bubbles corresponds to the number of

differential metabolites mapped to a pathway, and the color

represents the statistical significance (−log10(p-value)). The rich
Frontiers in Endocrinology 11
factor indicates the proportion of differential metabolites found in a

given pathway relative to all metabolites annotated to that pathway.

The analysis revealed significant enrichment in several key

metabolic pathways. Most notably, linoleic acid metabolism and

alpha-linolenic acid metabolism were among the top enriched

pathways, underscoring a major disruption in the metabolism of

essential polyunsaturated fatty acids. Arachidonic acid metabolism,

a crucial pathway for inflammatory signaling, was also highly

enriched, aligning with the autoimmune and inflammatory nature

of GD. Pathways in alanine, aspartate, and glutamate metabolism

and arginine biosynthesis were significantly altered, highlighting

recurrent perturbations in amino acid metabolism. Other enriched

pathways included biosynthesis of cofactors and glyoxylate and

dicarboxylate metabolism.

Interestingly, several enriched pathways were related to specific

human diseases or infections (e.g., Kaposi sarcoma-associated

herpesvirus infection, pathogenic Escherichia coli infection); these

likely represent shared signaling or metabolic modules rather than a

direct etiological link. The collective enrichment results strongly

suggest that GD is characterized by profound dysregulation in lipid

inflammatory pathways and specific amino acid metabolic routes.

The classification of significantly differential metabolites based on

the HMDB superclass system was further refined and confirmed, as

illustrated in the pie chart (Figure 6). This analysis provided a precise

quantitative breakdown, unequivocally showing that lipids and lipid-

like molecules constituted the largest proportion of altered

metabolites, accounting for 31.67% (70 out of the 221 HMDB-

annotated differential metabolites) of the total in this annotated

subset. The second largest superclass was organic acids and

derivatives, representing 23.98% (53 metabolites). Together, these

two superclasses dominated the metabolic profile of GD, comprising
FIGURE 6

Pie chart detailing the HMDB superclass distribution of metabolites identified as significantly different between the GD and HC groups. The
classification is overwhelmingly dominated by “lipids and lipid-like molecules” (31.67%) and “organic acids and derivatives” (23.98%), providing
definitive evidence for the central role of these compound classes in the metabolic dysregulation of Graves’ disease. The chart lists the percentage
and count of metabolites for each superclass.
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over 55% of all identified differential metabolites. This finding robustly

corroborates the results from prior KEGG and chemical class analyses,

solidifying the conclusion that perturbations in lipid and organic acid

metabolism are a fundamental characteristic of GD. Other notable

superclasses included organoheterocyclic compounds (14.48%),

benzenoids (6.79%), and organic oxygen compounds (7.69%). A

small fraction of metabolites (5.43%) remained unclassified (not

available). This detailed HMDB taxonomy offers a chemically

grounded, high-level overview that powerfully emphasizes the

specific types of biochemical compounds most affected in GD.
3.7 ROC and variable importance analyses
validate the diagnostic potential of key
metabolites

To evaluate the diagnostic performance of the identified

differential metabolites, ROC curve analysis was performed for

both individual candidates and a metabolite panel (Figure 7). The

ROC curves for several top candidate biomarkers demonstrated

strong discriminatory power between GD patients and healthy

controls (Figure 7A). The metabolite N-phenethylacetamide

exhibited the highest individual diagnostic accuracy (AUC =

0.9400; 95% CI: 0.5454–0.9644). Diaminopimelic acid also

showed excellent performance, with an AUC of 0.9300 (95% CI:

0.4615–0.9167). Similarly, the dipeptide Gly-Val demonstrated high

diagnostic potential with an AUC of 0.9100 (95% CI: 0.5455–

0.9596). Furthermore, to explore the potential for enhanced

diagnostic performance, a combined model incorporating key

metabolites was constructed. This multimetabolite panel yielded

an AUC of 0.775 (95% CI: 0.749–0.802) (Figure 7B). The sensitivity

and specificity values at various thresholds for these biomarkers

further support their clinical utility. Collectively, the ROC analysis

underscores the validity of our metabolomic approach in

identifying biomarkers with significant diagnostic potential for

Graves’ disease, both individually and in combination.

Variable importance analysis was performed to rank metabolites

based on their contribution to distinguishing Graves’ disease patients

from healthy controls (Figure 7C). The mean decrease in accuracy

was used as the metric to evaluate the discriminatory power of each

metabolite. Key metabolites with the highest importance scores

included PS(5-iso PGF2VI/20:0), Lpe(o-20:1), coumarinic acid,

Ent-kaurane-3,16,17-triol, and SI(14:3_o/22:6). Additional

metabolites such as nordihydrocapsaicin, GPCho(18:4/18:3), 2,4-

dinitrophenol, Trp-Ser, and piriprost also demonstrated significant

importance in the classification model. This analysis highlights

specific metabolites that play crucial roles in the metabolic

differentiation of GD, providing valuable candidates for further

biomarker validation and mechanistic studies.
4 Discussion

This LC-MS-based (3) serum metabolomic study provides a

comprehensive profile of the profound metabolic disturbances
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present in patients with untreated Graves’ disease from the

Shenzhen region. We identified 334 significantly dysregulated

metabolites, with a predominant disruption in lipid and organic

acid metabolism pathways. Among the candidate biomarkers

validated by ROC analysis, N-phenethylacetamide exhibited

the highest individual diagnostic accuracy (AUC = 0.94).

Diaminopimelic acid also showed exceptional diagnostic

performance (AUC = 0.93), positioning it as another top-tier

candidate. The high diagnostic accuracy of diaminopimelic acid

warrants further investigation (17). As a key intermediate in the

lysine biosynthesis pathway in bacteria and plants, its presence and

dysregulation in human serum suggest potential involvement of

gut microbiota or novel host metabolic pathways in GD (18).

While its specific role in human pathophysiology is less defined,

its significant alteration highlights a previously overlooked

aspect of GD metabolism that merits deeper exploration (19).

Concurrently, the dipeptide Gly-Val demonstrated robust

diagnostic performance (AUC = 0.91) and may hold particular

mechanistic significance (20).

The most striking finding of our study is the predominant

dysregulation of lipid and organic acid metabolism in GD patients.

This widespread dysregulation of fundamental metabolic pathways

provides a rich source of diagnostic signals, forming the foundation

for the high accuracy of our candidate biomarkers. Furthermore,

the combination of these metabolites into a panel, while yielding a

currently modest AUC of 0.775, underscores the complex,

multifactorial nature of GD and points to the potential of a

multi-analyte approach for capturing the disease’s heterogeneity,

a strategy that may be refined in larger cohorts. Metabolites

belonging to the superclasses of “lipids and lipid-like molecules”

and “organic acids and derivatives” constituted over 55% of all

significantly altered compounds (21). This observation aligns with

previous studies that have reported lipid metabolic disturbances in

GD (8), but our untargeted approach provides a more

comprehensive picture of the specific lipid species affected (22).

The significant enrichment of pathways related to linoleic acid,

alpha-linolenic acid, and arachidonic acid metabolism is

particularly noteworthy (23). These polyunsaturated fatty acids

are precursors to various inflammatory mediators, and their

dysregulation strongly supports the involvement of enhanced

inflammatory signaling in GD pathogenesis. The alteration in

arachidonic acid metabolism, especially, provides a direct

metabolic link to the autoimmune and inflammatory processes

that characterize Graves’ disease (24).

Beyond the metabolic pathways identified in our study, it is

important to consider the potential interplay with other systemic

regulators of immunity, such as vitamin D and the gut microbiome.

Vitamin D is a well-established immunomodulator, and its deficiency

has been linked to an increased risk of various autoimmune diseases,

including potentially modulating b-cell activation and antibody

production (25). Furthermore, the gut microbiome exerts a

profound influence on host immunity and metabolism. The

microbial synthesis of short-chain fatty acids and other metabolites

can shape the immune landscape, and dysbiosis has been implicated

in the pathogenesis of autoimmune conditions (18). While our
frontiersin.org

https://doi.org/10.3389/fendo.2025.1707049
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fang et al. 10.3389/fendo.2025.1707049
current LC-MS-based serummetabolomics approach did not directly

measure vitamin D levels or microbial compositions, the profound

dysregulation of host metabolism we observed, particularly in lipids

and organic acids, may very well be intertwined with the status of the

gut microbiome and vitamin D metabolism. This represents a
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compelling avenue for future research, integrating metabolomic,

microbiomic, and micronutrient analyses to build a more

comprehensive model of Graves’ disease pathophysiology.

In addition to lipid metabolism, our pathway analysis revealed

significant perturbations in amino acid metabolic pathways,
FIGURE 7

Receiver operating characteristic (ROC) curves and variable importance scatter plot. (A) ROC curves of candidate serum metabolites for
discriminating patients with Graves’ disease from healthy controls. (B) ROC curve for the multimetabolite panel combination, showing an AUC of
0.775 (95% CI: 0.749–0.802). (C) Scatter plot of variable importance based on mean decrease accuracy.
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including alanine, aspartate, glutamate metabolism, and arginine

biosynthesis (26). These findings corroborate earlier reports of

amino acid metabolism alterations in GD (7) and suggest a

complex reprogramming of nitrogen metabolism that may

support the increased metabolic demands and immune activation

associated with hyperthyroidism (27). Our untargeted platform

allowed for a more detailed characterization of the specific lipid

species involved in GD.While previous studies noted broad changes

in phospholipids, we identified distinct plasmalogen species, such as

PE(P-16:0/18:2), as being significantly altered (28). Plasmalogens

are ether phospholipids with antioxidant properties and roles in

signal transduction, and their specific depletion may indicate

increased oxidative stress or specific membrane remodeling in

GD, offering a new layer of mechanistic insight beyond the well-

known inflammatory polyunsaturated fatty acids (PUFAs) (29).

The composition of our cohort, consisting exclusively of

treatment-naive patients from a specific geographical region

(Shenzhen), may account for certain unique aspects of our

metabolic signature (30). Differences in diet, environment, and

genetic background compared to cohorts from other regions

could influence the metabolome (31). By providing a baseline

profile free from the confounding effects of antithyroid

medications (32), our data serve as a valuable reference for future

studies investigating treatment responses or regional variations in

GD. We hypothesize that these metabolic changes are not merely

consequences but may actively participate in GD pathogenesis. The

dysregulation of Gly-Val could fuel clonal expansion of autoreactive

T and B lymphocytes by providing a readily available source of

glycine and valine, crucial for protein synthesis and immune cell

activation (24, 26). Concurrently, the upregulation of arachidonic

acid metabolism likely contributes a pervasive pro-inflammatory

milieu through the production of eicosanoids (23), while the

broader disruption in amino acid metabolism may simultaneously

reflect the hypermetabolic state and supply biosynthetic precursors

for immune escalation (27). This creates a potential feed-forward

cycle where inflammation and metabolic reprogramming mutually

reinforce each other. Although the primary focus of this study is

biomarker discovery, these proposed mechanisms offer testable

hypotheses for future research into how specific metabolites like

Gly-Val might mechanistically contribute to GD progression.

Several limitations of this study should be acknowledged (19).

First, the sample size, while sufficient for initial biomarker

discovery, requires expansion in future validation studies (33).

Second, our cross-sectional design cannot establish whether the

observed metabolic changes are causes or consequences of GD (34).

Longitudinal studies tracking metabolic changes during treatment

and remission would help address this question (35). Additionally,

the untargeted metabolomics approach, while powerful for

hypothesis generation, carries the inherent risk of false-positive

identifications or isobaric interferences, necessitating that the

biological relevance of all putative biomarkers be interpreted with

caution and confirmed through targeted validation (21, 22). Finally,

while we identified numerous significantly altered metabolites, the

biological functions of some compounds remain to be

fully characterized.
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5 Conclusion

This study robustly confirms the profound dysregulation of

inflammatory lipid and amino acid metabolic pathways in Graves’

disease. Simultaneously, it unveils a panel of novel, high-performance

biomarker candidates, with N-phenethylacetamide, diaminopimelic

acid, and the dipeptide Gly-Val emerging as the most discriminative.

By integrating our findings with the existing literature, we not only

reinforce the consistent metabolic core of GD but also delineate the

unique contribution of our work: the identification of this specific triad

of biomarkers with exceptional diagnostic potential. We acknowledge

the limitations inherent in this study, including its sample size and the

exploratory nature of the proposed mechanistic hypotheses.

Nevertheless, these findings establish a refined metabolic framework

for GD and generate compelling, testable hypotheses for future

research. The critical next step is to experimentally determine

whether these metabolites act as immunomodulatory signals that

potentiate T-cell activation, influence b-cell antibody production, or

alter thyrocyte susceptibility to immune attack. Employing advanced

techniques such as stable-isotope tracing in primary immune cells and

genetic manipulation of metabolic enzymes will be pivotal to dissecting

the underlying cause–effect relationships. Ultimately, deciphering why

the GDmetabolome is reconfigured in this specific manner will unlock

fundamental biological insights into disease etiology that extend far

beyond the initial scope of biomarker discovery.
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