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Introduction: Graves' disease (GD), a common autoimmune thyroid disorder, is
typified by hyperthyroidism and pervasive metabolic perturbations.
Metabolomics, a burgeoning field instrumental in biomarker identification and
elucidating systemic biological mechanisms, has recently shed light on the
intricate pathophysiology of GD. The present study endeavors to delineate the
metabolic aberrations in untreated GD patients from Shenzhen, China,
leveraging LC-MS-based serum metabolomics.

Methods: A cohort comprising 30 newly diagnosed, untreated GD patients and
32 healthy controls was assembled. Serum metabolite profiling was conducted
via LC-MS, with subsequent identification and quantification of metabolites.
Multivariate statistical analyses, encompassing principal component analysis
(PCA) and partial least squares discriminant analysis (PLS-DA), were employed
to discern significant metabolic discrepancies. Pathway enrichment analysis and
receiver operating characteristic (ROC) curve analysis were utilized to assess the
diagnostic efficacy of the identified metabolites.

Results: A total of 334 significantly dysregulated metabolites were uncovered,
with a pronounced involvement of lipid and organic acid metabolic pathways.
Notably, N-phenethylacetamide (AUC = 0.94), diaminopimelic acid (AUC = 0.93),
and the dipeptide Gly-Val (AUC = 0.91) exhibited substantial diagnostic potential.
Pathway enrichment analysis unveiled significant alterations in linoleic acid,
alpha-linolenic acid, and arachidonic acid metabolism, underscoring the
pivotal role of inflammatory lipid pathways and amino acid metabolism in GD.
Discussion: This study offers a granular metabolic profile of untreated Graves'
disease, unmasking profound dysregulation within lipid and organic acid
metabolism. The identified metabolites, particularly N-phenethylacetamide,
diaminopimelic acid, and Gly-Val, emerge as promising high-performance
serum biomarkers for GD diagnosis. These findings not only augment our
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comprehension of the metabolic reprogramming inherent to GD but also proffer
potential targets for subsequent therapeutic endeavors. Subsequent
investigations are imperative to elucidate the mechanistic roles of these
metabolites in GD pathogenesis and their viability as clinical biomarkers.

Graves' disease, serum, LC-MS, metabolomics, biomarker, N-phenethylacetamide,
diaminopimelic acid, Gly-Val

1 Introduction

Graves’ disease (GD) is a common autoimmune disorder
characterized by hyperthyroidism resulting from thyroid-
stimulating hormone receptor (TSHR)-activating autoantibodies
(1). It predominantly affects women and can involve extrathyroidal
manifestations such as orbitopathy, driven by the synergistic action
of TSHR and insulin-like growth factor 1 receptor (IGFIR)
autoantibodies (2). Metabolomics is a powerful tool for biomarker
discovery that can also reveal systems-level biology and detect subtle
alterations in pathways, providing mechanistic insights into the
disease. In recent years, advancements in metabolomics (3) have
offered novel perspectives for a deeper understanding of the
pathophysiology of GD, especially in the realm of serum proteins
and metabolites (4). By employing proteomics and metabolomics
approaches, researchers have been able to uncover alterations in
proteins and metabolites within the serum of GD patients. These
alterations are potentially intertwined with the disease’s pathogenesis,
diagnosis, and treatment. One study utilized Mendelian
randomization (MR) in conjunction with genome-wide association
study (GWAS) data to scrutinize the impact of 486 serum metabolites
on GD (5). It identified 19 metabolites significantly associated with
GD risk. Notably, three metabolites, kynurenine, glycerol 2-
phosphate, and 4-androsten-3beta,17beta-diol disulfate 2, exhibited
significant heritability and lacked shared genetic correlations with GD
(6). This finding underscores the potential causal significance of these
metabolites in the disease. Another investigation employing
untargeted metabolomics to analyze serum samples from children
with GD uncovered 48 differential metabolites between the GD and
control groups, encompassing amino acids, dipeptides, lipids, and
purines (7). These metabolites are implicated in pathways such as
aminoacyl-tRNA biosynthesis, metabolism of various amino acids,
purine metabolism, and pyrimidine metabolism.

Serum metabolomic profiling of patients with GD has
unveiled a distinct metabolic signature characterized by pervasive
dysregulation across multiple biochemical pathways. Integrative
analyses demonstrate consistent perturbations in arginine and
proline metabolism, aminoacyl-tRNA biosynthesis, alanine-
aspartate—glutamate axis, and bile acid homeostasis (8). Notably,
these metabolic aberrations exhibit clinically significant
correlations with disease manifestations, including the degree of
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hyperthyroidism, autoantibody titers, and overall disease severity
(9). The mechanistic implications of these findings extend beyond
mere association, suggesting active involvement of metabolic
reprogramming in GD pathogenesis (10). Furthermore, the
dynamic nature of these metabolic profiles in response to
therapeutic interventions highlights their potential utility as
sophisticated biomarkers for treatment monitoring and
personalized therapeutic strategies (11).

Building on these advancements, the present study introduces
certain improvements and, for the first time, investigates patients
with newly diagnosed Graves’ disease in the Shenzhen area. By
conducting a comparative analysis of serum metabolite differences,
this study aims to enhance accuracy and sensitivity. It is anticipated
that this research will offer more robust support for the diagnosis,
treatment, and prevention of GD.

2 Materials and methods
2.1 Recruitment and study protocol

For this investigation, we enrolled 30 consecutive individuals with
newly diagnosed (Table 1) untreated Graves’ disease (GD) and 32
healthy controls (HCs), all within the age range of 18-67 years. GD
was diagnosed in accordance with the 2016 American Thyroid
Association (ATA) criteria, which include suppressed TSH,
elevated free T4 levels, and positive TSI, or diffuse uptake on
99mTc-pertechnetate scintigraphy. The final diagnosis was
confirmed by an experienced endocrinologist, integrating all
available clinical, biochemical, serological, and imaging data. This
comprehensive approach ensured that all enrolled patients had a
definitive diagnosis of GD, including those with atypical biochemical
presentations that were clarified by positive autoimmunity or
characteristic imaging findings. We excluded individuals who were
pregnant or lactating; had a history of malignancy, cardiovascular
disease, or diabetes; had used antibiotics or probiotics within the past
3 months; had gastrointestinal disorders and psychiatric conditions;
or were taking selenium supplements.

HCs were individuals undergoing routine health checkups,
recruited from the hospital’s Department of Physical Examination.
All HC participants were confirmed to be euthyroid based on clinical
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TABLE 1 Baseline clinical and biochemical characteristics of the study cohort with untreated Graves’ disease (n = 30; M, male; F, female).

Gender Age TSH (0.27-4.2) mIU/L  FT3 (3.1-6.8) pmol/L FT4 (12-22) pmol/L TRAb (<1.75) IU/L

1 M 21 0.008 6.94 31.06 0.98
2 F 44 <0.005 6.48 18.7 6

3 F 56 <0.005 13.30 40.85 4.64
4 F 32 <0.005 11.30 19.99 >40.00
5 M 25 <0.005 32.97 64.46 14.35
6 M 26 <0.005 10.06 25.13 2.89
7 F 43 <0.005 20.63 54.38 6.54
8 M 38 <0.005 15.09 43.70 16.76
9 M 32 <0.005 7.55 17.85 30.37
10 M 37 <0.005 13.2 26.33 9.13
11 M 40 <0.005 5.05 15.59 21.43
12 M 67 0.268 9.37 16.72 1517
13 F 27 <0.004 >30.72 33.95 4.54
14 F 23 9.97 4.32 9.97 34.87
15 M 35 0.011 4.3 25.72 24.38
16 M 37 <0.005 34.93 78.77 17.78
17 M 36 <0.005 9.82 29.88 6.36
18 M 38 <0.005 7.44 24.84 3.74
19 M 58 <0.005 5.31 23.78 4.59
20 F 38 0.005 9.63 33.13 6.05
21 M 22 0.006 8.68 36.67 13.06
22 F 30 0.013 4.22 10.27 9.48
23 M 31 0.01 5.58 23.7 4.07
24 F 25 0.165 3.32 11.67 1.75
25 F 45 0.007 7.07 23.22 26.02
26 F 38 2.330 5.17 16.84 9.98
27 M 51 <0.005 36.09 >100.00 11.91
28 M 41 <0.005 15.24 30.24 11.21
29 M 34 <0.005 10.67 39.68 6.53
30 F 18 0.010 10.47 30.09 2.70

assessment and laboratory testing. Key inclusion criteria consisted of
the absence of a personal or family history of thyroid disease, no
current or previous use of medications known to affect thyroid
function, and having thyroid function tests (TSH, FT3, FT4) with
results within clinically acceptable normal limits. Specifically, all HC
participants had TSH levels within the reference range (0.27-4.2
mIU/L). A small number of participants (n = 5) exhibited FT4 values
slightly below the lower reference limit (12 pmol/L) but with
concomitant normal TSH levels; this pattern is recognized in
clinical practice as carrying no significant risk for hypothyroidism
and was categorized as normal variation. Therefore, all HC
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participants were rigorously defined as having normal thyroid
function. The study was approved by the local ethics committee
under protocol number 2023-096-03, and all participants provided
informed consent.

2.2 Sample collection and metabolite
extraction

Fasting venous blood samples were collected from all
participants. Serum was obtained by centrifugation and aliquoted
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and frozen immediately at —80°C until batch metabolite extraction.
All samples underwent only one freeze—thaw cycle for this analysis.
For metabolite extraction, 100 UL of serum was transferred into a
1.5-mL centrifuge tube and mixed with 400 puL of a solution
composed of acetonitrile and methanol in a 1:1 volume ratio,
containing an internal standard (L-2-chlorophenylalanine) at a
concentration of 0.02 mg/mL. The samples were vortexed for 30 s
to ensure thorough mixing and then subjected to low-temperature
sonication at 5°C and 40 kHz for 30 min to facilitate the extraction
process. To precipitate proteins, the samples were subsequently
stored at —20°C for 30 min (12). Following this, the samples
underwent centrifugation at 4°C and 13,000g for 15 min. The
supernatant was carefully removed and evaporated to dryness
under a stream of nitrogen gas (13). The dried samples were then
reconstituted in 100 UL of a solution consisting of acetonitrile and
water in a 1:1 volume ratio. This reconstituted solution was further
processed by low-temperature ultrasonication at 5°C and 40 kHz
for 5 min, followed by another centrifugation step at 4°C and
13,000g for 10 min. The final supernatant was carefully transferred
to sample vials, which were then prepared for LC-MS/MS
analysis (14).

2.3 Quality control procedures

To ensure the reliability and stability of the analytical process, a
pooled quality control (QC) sample was created by combining equal
volumes from all individual samples. This QC sample was subjected
to the same preparation and analytical procedures as the
experimental samples. Its purpose was to provide a representative
benchmark for the entire sample set. The QC sample was injected at
regular intervals (every 5-15 samples) throughout the analysis to
continuously monitor and ensure the consistency and stability of
the analytical system.

2.4 UPLC-MS/MS analysis

The UPLC-MS/MS analysis was performed using a Thermo
UHPLC-Exploris 240 system equipped with an ACQUITY HSS T3
column (100 mm x 2.1 mm i.d., 1.8 um; Waters, USA) at Majorbio
Bio-Pharm Technology Co. Ltd. (Shanghai, China) (15). The
mobile phases used were 0.1% formic acid in water:acetonitrile
(95:5, v/v) (solvent A) and 0.1% formic acid in acetonitrile:
isopropanol:water (47.5:47.5:5, v/v) (solvent B). The gradient
elution for positive ion mode was as follows: 0-3 min, solvent B
increased from 0% to 20%; 3-4.5 min, solvent B increased to 35%;
4.5-5 min, solvent B increased to 100%; 5-6.3 min, solvent B
maintained at 100%; 6.3-6.4 min, solvent B decreased to 0%; and
6.4-8 min, solvent B maintained at 0%. For negative ion mode, the
gradient was as follows: 0-1.5 min, solvent B increased from 0% to
5%; 1.5-2 min, solvent B increased to 10%; 2-4.5 min, solvent B
increased to 30%; 4.5-5 min, solvent B increased to 100%; 5-6.3
min, solvent B maintained at 100%; 6.3-6.4 min, solvent B
decreased to 0%; and 6.4-8 min, solvent B maintained at 0%. The
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flow rate was set at 0.40 mL/min, and the column temperature was
maintained at 40°C.

2.5 Mass spectrometry conditions

The mass spectrometric data were collected using a Thermo
UHPLC-Exploris 240 Mass Spectrometer equipped with an
electrospray ionization (ESI) source, operating in both positive
and negative modes. The optimal conditions were set as follows:
auxiliary gas heating temperature at 350°C, capillary temperature at
320°C, sheath gas flow rate at 60 psi, auxiliary gas flow rate at 20 psi,
ion-spray voltage floating (ISVF) at —3,000 V in negative mode and
3,400 V in positive mode, and normalized collision energy set to 20—
40-60 eV for MS/MS. The full MS resolution was 60,000, and the
MS/MS resolution was 15,000. Data acquisition was performed in
data-dependent acquisition (DDA) mode, with a mass range of
70-1,050.

2.6 Data analysis

The UHPLC-MS raw data were processed using Progenesis QI
software (Waters, Milford, USA) to convert the data into a common
format. This involved baseline filtering, peak identification,
integration, retention time correction, and peak alignment. The
resulting data matrix, containing sample names, m/z values,
retention times, and peak intensities, was exported for further
analysis. Metabolite identification was performed by querying the
Human Metabolome Database (HMDB; http://www.hmdb.ca/),
Metlin (https://metlin.scripps.edu/), and the Majorbio Database
(MJDB) from Majorbio Biotechnology Co., Ltd. (Shanghai,
China) (16).

The data matrix was uploaded to the Majorbio cloud platform
(https://cloud.majorbio.com) for analysis. Preprocessing steps
included retaining metabolic features detected in at least 80% of
samples, filling missing values with the minimum value, and
normalizing each metabolite’s intensity to the sum of all
intensities. Variables with a relative standard deviation (RSD)
>30% in QC samples were excluded, and the remaining data were
log10-transformed to create the final data matrix.

Principal component analysis (PCA) and orthogonal partial
least squares discriminant analysis (OPLS-DA) were performed
using the R package “ropls” (version 1.6.2). Metabolites with high
variable importance in projection (VIP) >1 and p <0.05 were
considered significantly different based on the OPLS-DA model
and Student’s f-test. Differential metabolites were mapped to
biochemical pathways using the KEGG database (http://
www.genome.jp/kegg/). Enrichment analysis was conducted using
the Python package “scipy.stats” to identify the most relevant
biological pathways.

The diagnostic performance of individual metabolites and
metabolite panels was evaluated using receiver operating
characteristic (ROC) curve analysis based on a random forest
classification model, rather than on univariate logistic regression.
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This machine learning approach assesses the importance of a
variable within a complex, multiparametric context.

3 Results

3.1 Multivariate statistical analyses reveal
distinct metabolomic profiles between GD
and HC groups

Principal component analysis (PCA) was performed to visualize
the overall distribution and grouping trends of serum metabolomic
profiles among GD patients, HCs, and QC samples (Figure 1A). The
resulting PCA score plot demonstrated a partial separation between
the GD and HC groups along the principal components, with PC1
and PC2 accounting for 24.30% and 17.30% of the total variance,
respectively. Although the model fit was moderate (R* = 0.066), the
permutation test indicated statistical significance (p = 0.009),
supporting the presence of distinct metabolic patterns between
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GD patients and healthy individuals. The QC samples clustered
tightly in the score plot, reflecting the high reproducibility and
stability of the LC-MS analytical platform throughout the
experiment. These findings suggest that untreated GD is
associated with significant alterations in the serum metabolome,
providing a basis for further identification of potential biomarkers.
A Venn diagram was constructed to illustrate the unique and
overlapping metabolic features between the GD and HC groups
(Figure 1B). The analysis revealed 1,785 metabolites common to
both groups, while 22 metabolites were uniquely expressed in the
GD group and 27 were specific to the HC group. These exclusive
metabolites, which account for 1.21% and 1.49% of the total detected
features in GD and HC, respectively, may reflect distinct metabolic
disturbances associated with Graves’ disease. The large number of
shared metabolites indicates considerable metabolic consistency
between groups, yet the unique features highlight potential
biomarker candidates worthy of further investigation. These findings
reinforce the presence of a specific metabolomic signature in GD
patients, consistent with the group separation observed in PCA.
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FIGURE 1

Multivariate analysis of serum metabolomic profiles from Graves' disease patients and healthy controls. (A) Principal component analysis (PCA) score
plot showing partial separation between GD patients, healthy controls (HCs), and quality control (QC) samples. PC1 and PC2 explain 24.30% and
17.30% of the total variance, respectively (R*> = 0.066, p = 0.009). (B) Venn diagram illustrating the overlap and unique metabolic features between
the GD and HC groups. (C) PLS-DA score plot demonstrating clear separation between GD and HC groups along the first two components (10.5%

and 19.5% of variance, respectively).
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To further maximize the separation between Graves' disease
patients and healthy controls and identify the most influential
metabolic variables, a supervised partial least squares-discriminant
analysis (PLS-DA) was performed (Figure 1C). The resulting score
plot demonstrated a markedly improved and clear separation
between the GD and HC groups along the first two components,
which together accounted for 30.0% of the total variance (component
1: 10.5%; component 2: 19.5%). This enhanced separation, compared
to the unsupervised PCA model, confirms that the metabolomic
profiles contain group-specific patterns that can be effectively
modeled to distinguish GD from healthy controls. The distinct
clustering of the QC samples again underscores the robustness and
reproducibility of the analytical platform. The PLS-DA model
provides a strong foundation for the subsequent identification of
discriminant metabolites with high VIP scores.

3.2 KEGG-based annotation and
enrichment highlight broad alterations in
lipid and organic acid metabolic pathways

Metabolites that were significantly altered between the GD and
HC groups were annotated and classified based on the KEGG
compound database to understand the major classes of compounds
affected (Figure 2A). The classification bar chart revealed that the
most prominent categories of differential metabolites belonged to
lipids and organic acids, underscoring a substantial disruption in
these metabolic pathways in Graves  disease. Other significantly
represented classes included carbohydrates, peptides, and nucleic
acids. Notably, within the lipid category, subclasses such as fatty
acids, phospholipids, and steroids (including steroid hormones) were
highly abundant, aligning with the known metabolic disturbances in
hyperthyroid conditions. The diversity of affected compound classes,
with a significant number also categorized under “others,” indicates
a widespread metabolic reprogramming associated with GD,
impacting energy metabolism, structural lipid composition, and
signaling molecules.

To further elucidate the biological implications of the altered
metabolites, pathway enrichment analysis was performed based on
the KEGG database. The results, visualized in Figure 2B,
demonstrate that the majority of the differentially abundant
metabolites were significantly enriched in pathways belonging
to the metabolism supercategory. Specifically, lipid metabolism
and amino acid metabolism were among the most represented
pathways, confirming the central role of metabolic reprogramming
in GD pathogenesis. A substantial number of compounds were also
mapped to pathways within organismal systems, particularly the
endocrine system, which is directly relevant to the autoimmune
endocrine nature of Graves” disease. Furthermore, enrichment was
observed in pathways related to human diseases and environmental
information processing, including signal transduction. This
comprehensive pathway analysis indicates that the metabolic
disturbances in GD extend beyond core metabolism, affecting
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systemic regulatory and signaling networks, and provides a
functional context for the identified biomarker candidates.

3.3 HMDB superclass analysis confirms the
predominance of lipids and organic acids

To gain a broader chemical perspective on the altered
metabolome, differential metabolites were classified according to
the HMDB superclass system. The resulting pie chart (Figure 2C)
demonstrates that the vast majority of these metabolites belonged to
the “lipids and lipid-like molecules” superclass, accounting for
39.89% of all identified compounds. This was followed by the
“organic acids and derivatives” superclass, which represented
21.27% of the total. These two dominant categories align perfectly
with the findings from the KEGG-based classification, robustly
confirming that dysregulation of lipid and organic acid
metabolism is a core characteristic of the Graves’ disease
metabolomic profile. Other notable superclasses included
“organoheterocyclic compounds” (12.00%) and “benzenoids”
(8.30%). A small proportion of metabolites (3.88%) were
categorized as “not available,” indicating compounds that await
further classification. This HMDB-based chemical taxonomy
provides a high-level, chemically grounded overview that strongly
supports the centrality of specific metabolic pathways in GD.

3.4 Volcano plot analysis and validation of
key differential metabolites

Volcano plot analysis was employed to visualize the extent and
significance of metabolic changes between the GD and HC groups.
The analysis identified a total of 334 significantly differentially
abundant metabolites. Among these, 169 metabolites were
significantly upregulated and 165 were significantly downregulated
in the GD group compared to HC. This widespread dysregulation
across a substantial number of compounds highlights the profound
impact of GD on the serum metabolome (Figures 3A, B).

To confirm the identity and statistical significance of specific
potential biomarkers, the abundance levels of several key differential
metabolites were compared between the GD and HC groups using
box plots, which revealed distinct and significant abundance
patterns for each compound (Figures 3C-G). The dipeptide Gly-
Val (glycylvaline) showed significantly altered levels in GD patients.
The phospholipid species PE(P-16:0/18:2), a plasmalogen
phosphatidylethanolamine, exhibited a marked difference in
abundance. Acetyltryptophanamide, a tryptophan derivative, was
also identified as being significantly dysregulated. Furthermore,
coumaric acid, a phenolic acid, demonstrated a significant change
in concentration, highlighting perturbations in related pathways.
Notably, N-phenethylacetamide, which demonstrated the highest
individual diagnostic accuracy (AUC = 0.940), was confirmed to be
significantly upregulated in the GD group (p = 0.004, FDR-
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FIGURE 2

Classification and pathway analysis of differentially abundant metabolites. (A) Bar chart of KEGG compound classification showing the predominance
of lipids and organic acids among altered metabolites in GD. (B) KEGG pathway enrichment analysis highlighting significantly enriched metabolic
pathways, including linoleic acid and arachidonic acid metabolism. (C) Pie chart of HMDB superclass distribution confirming the dominance of lipids

and lipid-like molecules (39.89%) and organic acids and derivatives (21.27%).

corrected p = 0.031; VIP > 1) (Figure 3G), robustly supporting its
role as a top-tier candidate biomarker. The consistent and
statistically significant alterations in the abundance of these
specific compounds, which span critical chemical classes
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including lipids, amino acid derivatives, and phenolic acids,
provide strong evidence for their involvement in the metabolic
disturbances of Graves’ disease and validate them as high-priority
candidate biomarkers.
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3.5 Hierarchical C[ustering and VIP ana[ysis groups. The resulting heatmap (Figure 4A) clearly segregated the
samples into two primary clusters, which corresponded perfectly

reveal expression patterns and

discri minatory metabolites with the GD and HC groups, thereby providing robust validation of
the distinct metabolomic signature of Graves’ disease. Furthermore,

the metabolites were clustered into several subclusters (e.g.,

subcluster_1 to subcluster_10) based on their co-expression

patterns. Specific subclusters exhibited coordinated upregulation

Unsupervised hierarchical clustering was performed to visualize
the overall expression patterns of the significantly differential
metabolites across all individual samples in the GD and HC
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or downregulation in the GD group. For instance, metabolites such
as alpha-linolenic acid, 12,13-DiHOME, azelate acid, and various
phospholipids [e.g., PE(16:1/22:5), PE(0-18:1/22:6)] showed
distinct expression trends. This coordinated regulation within
metabolite subclasses suggests potential functional linkages and
common regulatory mechanisms underlying the metabolic
perturbations in GD. The heatmap thus offers a comprehensive
overview of the systematic metabolic changes and identifies
groups of metabolites that may play synergistic roles in the
disease’s pathophysiology.

To identify the metabolites that contributed most significantly
to the separation between the GD and HC groups observed in the

Frontiers in Endocrinology 10

OPLS-DA model, a VIP analysis was conducted. The VIP plot
(Figure 4B) ranks these influential metabolites based on their VIP
scores, with a score greater than 1.0 typically considered significant
for group discrimination. The top-ranking metabolites with the
highest discriminatory power included coumarinic acid, the
phospholipid PE(p-16:0/18:2), the dipeptide Gly-Val, and
nepetaside. Other notable high-VIP metabolites encompassed
compounds such as N-lauroyl glutamine, the tetrapeptide Arg-
Thr-Lys-Arg, acetyltryptophanamide, and taurochenodeoxycholate-3-
sulfate. This list of high-VIP metabolites, which includes lipids, amino
acid derivatives, and bile acids, provides a prioritized set of the most
reliable candidate biomarkers that are most responsible for the
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metabolic distinction of Graves’ disease, guiding further targeted
investigation and potential clinical application.

A correlation network analysis was performed to visualize the
complex interrelationships among the significantly altered
metabolites in GD. The resulting chord diagram (Figure 5A)
illustrates the extensive co-regulation patterns, where metabolites
are categorized into major classes, predominantly lipids and organic
acids, with the remaining compounds grouped as others. The
diagram reveals dense clusters of connections within and between
these categories, particularly among lipid species. This intricate
network of positive and negative correlations indicates a highly
coordinated metabolic response in Graves’ disease. The central role
of lipid metabolites in the network, interacting strongly with each
other and with organic acids, suggests that dysregulation of lipid
metabolism forms a core hub in the pathophysiology of GD.
Thi systemic view of metabolic interactions provides insights
beyond individual biomarkers, highlighting disrupted functional
modules and potential key regulatory nodes in the disease’s
metabolic network.

3.6 Correlation network and pathway
enrichment analyses uncover coordinated
metabolic dysregulation

KEGG pathway enrichment analysis was performed to
systematically identify biological pathways that were significantly
altered in Graves’ disease. The bubble plot (Figure 5B) visualizes the
results, where the size of the bubbles corresponds to the number of
differential metabolites mapped to a pathway, and the color
represents the statistical significance (—logl0(p-value)). The rich

Lipids and lipid-like molecules: 70 (31.67%) —

Organic acids and derivatives: 53 (23.98%)

FIGURE 6

[~

10.3389/fendo.2025.1707049

factor indicates the proportion of differential metabolites found in a
given pathway relative to all metabolites annotated to that pathway.

The analysis revealed significant enrichment in several key
metabolic pathways. Most notably, linoleic acid metabolism and
alpha-linolenic acid metabolism were among the top enriched
pathways, underscoring a major disruption in the metabolism of
essential polyunsaturated fatty acids. Arachidonic acid metabolism,
a crucial pathway for inflammatory signaling, was also highly
enriched, aligning with the autoimmune and inflammatory nature
of GD. Pathways in alanine, aspartate, and glutamate metabolism
and arginine biosynthesis were significantly altered, highlighting
recurrent perturbations in amino acid metabolism. Other enriched
pathways included biosynthesis of cofactors and glyoxylate and
dicarboxylate metabolism.

Interestingly, several enriched pathways were related to specific
human diseases or infections (e.g., Kaposi sarcoma-associated
herpesvirus infection, pathogenic Escherichia coli infection); these
likely represent shared signaling or metabolic modules rather than a
direct etiological link. The collective enrichment results strongly
suggest that GD is characterized by profound dysregulation in lipid
inflammatory pathways and specific amino acid metabolic routes.

The classification of significantly differential metabolites based on
the HMDB superclass system was further refined and confirmed, as
illustrated in the pie chart (Figure 6). This analysis provided a precise
quantitative breakdown, unequivocally showing that lipids and lipid-
like molecules constituted the largest proportion of altered
metabolites, accounting for 31.67% (70 out of the 221 HMDB-
annotated differential metabolites) of the total in this annotated
subset. The second largest superclass was organic acids and
derivatives, representing 23.98% (53 metabolites). Together, these
two superclasses dominated the metabolic profile of GD, comprising

Lignans, neolignans and related compounds: 2 (0.90%)

Nucleosides, nucleotides, and analogues: 2 (0.90%)

Alkaloids and derivatives: 3 (1.36%)

Organic nitrogen compounds: 3 (1.36%)

~—_Not Available: 12 (5.43%)

Phenylpropanoids and polyketides: 12 (5.43%)
Benzenoids: 15 (6.79%)

I
‘—/ Organic oxygen compounds: 17 (7.69%)

N

Organoheterocyclic compounds: 32 (14.48%)

Pie chart detailing the HMDB superclass distribution of metabolites identified as significantly different between the GD and HC groups. The
classification is overwhelmingly dominated by “lipids and lipid-like molecules” (31.67%) and “organic acids and derivatives” (23.98%), providing
definitive evidence for the central role of these compound classes in the metabolic dysregulation of Graves’ disease. The chart lists the percentage

and count of metabolites for each superclass.
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over 55% of all identified differential metabolites. This finding robustly
corroborates the results from prior KEGG and chemical class analyses,
solidifying the conclusion that perturbations in lipid and organic acid
metabolism are a fundamental characteristic of GD. Other notable
superclasses included organoheterocyclic compounds (14.48%),
benzenoids (6.79%), and organic oxygen compounds (7.69%). A
small fraction of metabolites (5.43%) remained unclassified (not
available). This detailed HMDB taxonomy offers a chemically
grounded, high-level overview that powerfully emphasizes the
specific types of biochemical compounds most affected in GD.

3.7 ROC and variable importance analyses
validate the diagnostic potential of key
metabolites

To evaluate the diagnostic performance of the identified
differential metabolites, ROC curve analysis was performed for
both individual candidates and a metabolite panel (Figure 7). The
ROC curves for several top candidate biomarkers demonstrated
strong discriminatory power between GD patients and healthy
controls (Figure 7A). The metabolite N-phenethylacetamide
exhibited the highest individual diagnostic accuracy (AUC =
0.9400; 95% CI: 0.5454-0.9644). Diaminopimelic acid also
showed excellent performance, with an AUC of 0.9300 (95% CI:
0.4615-0.9167). Similarly, the dipeptide Gly-Val demonstrated high
diagnostic potential with an AUC of 0.9100 (95% CI: 0.5455-
0.9596). Furthermore, to explore the potential for enhanced
diagnostic performance, a combined model incorporating key
metabolites was constructed. This multimetabolite panel yielded
an AUC of 0.775 (95% CI: 0.749-0.802) (Figure 7B). The sensitivity
and specificity values at various thresholds for these biomarkers
further support their clinical utility. Collectively, the ROC analysis
underscores the validity of our metabolomic approach in
identifying biomarkers with significant diagnostic potential for
Graves’ disease, both individually and in combination.

Variable importance analysis was performed to rank metabolites
based on their contribution to distinguishing Graves’ disease patients
from healthy controls (Figure 7C). The mean decrease in accuracy
was used as the metric to evaluate the discriminatory power of each
metabolite. Key metabolites with the highest importance scores
included PS(5-iso PGF2V1/20:0), Lpe(0-20:1), coumarinic acid,
Ent-kaurane-3,16,17-triol, and SI(14:3_0/22:6). Additional
metabolites such as nordihydrocapsaicin, GPCho(18:4/18:3), 2,4-
dinitrophenol, Trp-Ser, and piriprost also demonstrated significant
importance in the classification model. This analysis highlights
specific metabolites that play crucial roles in the metabolic
differentiation of GD, providing valuable candidates for further
biomarker validation and mechanistic studies.

4 Discussion

This LC-MS-based (3) serum metabolomic study provides a
comprehensive profile of the profound metabolic disturbances
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present in patients with untreated Graves’ disease from the
Shenzhen region. We identified 334 significantly dysregulated
metabolites, with a predominant disruption in lipid and organic
acid metabolism pathways. Among the candidate biomarkers
validated by ROC analysis, N-phenethylacetamide exhibited
the highest individual diagnostic accuracy (AUC = 0.94).
Diaminopimelic acid also showed exceptional diagnostic
performance (AUC = 0.93), positioning it as another top-tier
candidate. The high diagnostic accuracy of diaminopimelic acid
warrants further investigation (17). As a key intermediate in the
lysine biosynthesis pathway in bacteria and plants, its presence and
dysregulation in human serum suggest potential involvement of
gut microbiota or novel host metabolic pathways in GD (18).
While its specific role in human pathophysiology is less defined,
its significant alteration highlights a previously overlooked
aspect of GD metabolism that merits deeper exploration (19).
Concurrently, the dipeptide Gly-Val demonstrated robust
diagnostic performance (AUC = 0.91) and may hold particular
mechanistic significance (20).

The most striking finding of our study is the predominant
dysregulation of lipid and organic acid metabolism in GD patients.
This widespread dysregulation of fundamental metabolic pathways
provides a rich source of diagnostic signals, forming the foundation
for the high accuracy of our candidate biomarkers. Furthermore,
the combination of these metabolites into a panel, while yielding a
currently modest AUC of 0.775, underscores the complex,
multifactorial nature of GD and points to the potential of a
multi-analyte approach for capturing the disease’s heterogeneity,
a strategy that may be refined in larger cohorts. Metabolites
belonging to the superclasses of “lipids and lipid-like molecules”
and “organic acids and derivatives” constituted over 55% of all
significantly altered compounds (21). This observation aligns with
previous studies that have reported lipid metabolic disturbances in
GD (8), but our untargeted approach provides a more
comprehensive picture of the specific lipid species affected (22).
The significant enrichment of pathways related to linoleic acid,
alpha-linolenic acid, and arachidonic acid metabolism is
particularly noteworthy (23). These polyunsaturated fatty acids
are precursors to various inflammatory mediators, and their
dysregulation strongly supports the involvement of enhanced
inflammatory signaling in GD pathogenesis. The alteration in
arachidonic acid metabolism, especially, provides a direct
metabolic link to the autoimmune and inflammatory processes
that characterize Graves’ disease (24).

Beyond the metabolic pathways identifled in our study, it is
important to consider the potential interplay with other systemic
regulators of immunity, such as vitamin D and the gut microbiome.
Vitamin D is a well-established immunomodulator, and its deficiency
has been linked to an increased risk of various autoimmune diseases,
including potentially modulating B-cell activation and antibody
production (25). Furthermore, the gut microbiome exerts a
profound influence on host immunity and metabolism. The
microbial synthesis of short-chain fatty acids and other metabolites
can shape the immune landscape, and dysbiosis has been implicated
in the pathogenesis of autoimmune conditions (18). While our
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0.775 (95% Cl: 0.749-0.802). (C) Scatter plot of variable importance based on mean decrease accuracy.

current LC-MS-based serum metabolomics approach did not directly
measure vitamin D levels or microbial compositions, the profound
dysregulation of host metabolism we observed, particularly in lipids
and organic acids, may very well be intertwined with the status of the
gut microbiome and vitamin D metabolism. This represents a

Frontiers in Endocrinology

compelling avenue for future research, integrating metabolomic,
microbiomic, and micronutrient analyses to build a more
comprehensive model of Graves’ disease pathophysiology.

In addition to lipid metabolism, our pathway analysis revealed
significant perturbations in amino acid metabolic pathways,
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including alanine, aspartate, glutamate metabolism, and arginine
biosynthesis (26). These findings corroborate earlier reports of
amino acid metabolism alterations in GD (7) and suggest a
complex reprogramming of nitrogen metabolism that may
support the increased metabolic demands and immune activation
associated with hyperthyroidism (27). Our untargeted platform
allowed for a more detailed characterization of the specific lipid
species involved in GD. While previous studies noted broad changes
in phospholipids, we identified distinct plasmalogen species, such as
PE(P-16:0/18:2), as being significantly altered (28). Plasmalogens
are ether phospholipids with antioxidant properties and roles in
signal transduction, and their specific depletion may indicate
increased oxidative stress or specific membrane remodeling in
GD, offering a new layer of mechanistic insight beyond the well-
known inflammatory polyunsaturated fatty acids (PUFAs) (29).

The composition of our cohort, consisting exclusively of
treatment-naive patients from a specific geographical region
(Shenzhen), may account for certain unique aspects of our
metabolic signature (30). Differences in diet, environment, and
genetic background compared to cohorts from other regions
could influence the metabolome (31). By providing a baseline
profile free from the confounding effects of antithyroid
medications (32), our data serve as a valuable reference for future
studies investigating treatment responses or regional variations in
GD. We hypothesize that these metabolic changes are not merely
consequences but may actively participate in GD pathogenesis. The
dysregulation of Gly-Val could fuel clonal expansion of autoreactive
T and B lymphocytes by providing a readily available source of
glycine and valine, crucial for protein synthesis and immune cell
activation (24, 26). Concurrently, the upregulation of arachidonic
acid metabolism likely contributes a pervasive pro-inflammatory
milieu through the production of eicosanoids (23), while the
broader disruption in amino acid metabolism may simultaneously
reflect the hypermetabolic state and supply biosynthetic precursors
for immune escalation (27). This creates a potential feed-forward
cycle where inflammation and metabolic reprogramming mutually
reinforce each other. Although the primary focus of this study is
biomarker discovery, these proposed mechanisms offer testable
hypotheses for future research into how specific metabolites like
Gly-Val might mechanistically contribute to GD progression.

Several limitations of this study should be acknowledged (19).
First, the sample size, while sufficient for initial biomarker
discovery, requires expansion in future validation studies (33).
Second, our cross-sectional design cannot establish whether the
observed metabolic changes are causes or consequences of GD (34).
Longitudinal studies tracking metabolic changes during treatment
and remission would help address this question (35). Additionally,
the untargeted metabolomics approach, while powerful for
hypothesis generation, carries the inherent risk of false-positive
identifications or isobaric interferences, necessitating that the
biological relevance of all putative biomarkers be interpreted with
caution and confirmed through targeted validation (21, 22). Finally,
while we identified numerous significantly altered metabolites, the
biological functions of some compounds remain to be
fully characterized.
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5 Conclusion

This study robustly confirms the profound dysregulation of
inflammatory lipid and amino acid metabolic pathways in Graves’
disease. Simultaneously, it unveils a panel of novel, high-performance
biomarker candidates, with N-phenethylacetamide, diaminopimelic
acid, and the dipeptide Gly-Val emerging as the most discriminative.
By integrating our findings with the existing literature, we not only
reinforce the consistent metabolic core of GD but also delineate the
unique contribution of our work: the identification of this specific triad
of biomarkers with exceptional diagnostic potential. We acknowledge
the limitations inherent in this study, including its sample size and the
exploratory nature of the proposed mechanistic hypotheses.
Nevertheless, these findings establish a refined metabolic framework
for GD and generate compelling, testable hypotheses for future
research. The critical next step is to experimentally determine
whether these metabolites act as immunomodulatory signals that
potentiate T-cell activation, influence B-cell antibody production, or
alter thyrocyte susceptibility to immune attack. Employing advanced
techniques such as stable-isotope tracing in primary immune cells and
genetic manipulation of metabolic enzymes will be pivotal to dissecting
the underlying cause-effect relationships. Ultimately, deciphering why
the GD metabolome is reconfigured in this specific manner will unlock
fundamental biological insights into disease etiology that extend far
beyond the initial scope of biomarker discovery.
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