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MicroRNAs modulated
by DPP-4 inhibitor and
bedtime NPH insulin therapy in
individuals with type 2 diabetes
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and Maria Elizabeth Rossi da Silva™

Laboratdrio de Carboidratos e Radioimunoensaio (LIM18), Hospital das Clinicas (HCFMUSP),
Faculdade de Medicina, Universidade de Sao Paulo, Sdo Paulo, Brazil, 2Department of Pediatrics,
Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil

Background: MicroRNAs (miRNAs) and their target genes can elucidate
mechanisms of drug action and serve as potential therapeutic biomarkers.
Methods: To evaluate the effects of bedtime NPH insulin and sitagliptin on serum
mMiRNA expression in individuals with type 2 diabetes (T2D), thirty-two patients
with T2D inadequately controlled with metformin and glyburide were randomly
assigned to an additional 6-month treatment with either bedtime NPH insulin or
sitagliptin. Before and after treatments, fasting as postprandial (60, 120, and 180
minutes) concentrations of glucose, C-peptide, glucagon-like peptide 1 (GLP1),
and triglycerides were measured. Fasting HbAlc was also assessed. Expression
levels of selected miRNAs were analyzed using quantitative polymerase
chain reaction.

Results: The sitagliptin and bedtime NPH insulin groups were comparable in age,
body mass index, diabetes duration, and baseline metabolic variables. Both
treatments led to a similar reduction in HbAlc. Only sitagliptin increased
postprandial GLP1 concentrations. Sitagliptin treatment upregulated six
mMiRNAs: miR-24-3p, miR-27a-3p, miR92a-3p, let-7d-5p, miR-30c-5p, and
miR-660-5p. NPH insulin upregulated four miRNAs: miR-92a-3p, miR-193b-
3p, MmiR-320a-3p and miR-30c-5p. Both treatments increased miR-92a-3p and
miR-30c-5p, particularly at fasting and 60 minutes post-meal. KEGG pathways
analysis revealed enrichment in signaling pathways related to insulin action,
growth/development, cellular senescence, lipid/atherosclerosis, Thl7 cell
differentiation, insulin resistance, autophagy, and apoptosis. Sitagliptin and
bedtime NPH insulin induced metabolic improvement and distinct modulation
of circulating miRNAs, with sitagliptin influencing a broader spectrum of
mMiRNA expression.

Conclusion: The upregulated miRNAs are involved in pathways related to insulin
signaling, inflammation, and cellular homeostasis and support the hypothesis
that sitagliptin exerts pleiotropic effects beyond glycemic control.
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1 Introduction

Type 2 diabetes (T2D) is a heterogeneous metabolic disorder
characterized by chronic hyperglycemia and associated with severe
microvascular, macrovascular and neurological complications that
significantly reduce both quality of life and life expectancy. The
disease results from a combination of genetic and environmental
factors, particularly sedentary behavior and high-calorie diets rich
in fat and processed foods, which contribute to insulin resistance
and progressive pancreatic beta-cell dysfunction. Management of
T2D involves lifestyle interventions - including calorie restriction
and physical activity, and pharmacotherapy (1).

Sulfonylureas, which stimulate insulin secretion, and
metformin, which reduces hepatic gluconeogenesis and improves
insulin sensitivity, are widely used to treat patient with T2D due to
their efficacy and low cost (1).

However, when these therapies fail to achieve glycemic targets,
selecting a third-line medication remains a challenge, especially
with regard to its effectiveness in improving metabolic control and
preventing complications.

Both bedtime NPH insulin and incretin-based therapy with
dipeptidyl peptidase 4 (DPP4) inhibitors are recommended by the
American Diabetes Association for use in selected populations,
particularly in older adults and individuals in low-resource settings.
DPP4 inhibitors, also known as gliptins, are oral agents that prevent
the degradation of glucagon-like peptide 1 (GLP1). By increasing
GLP1 bioavailability, they exert several glucose-lowering effects:
stimulation of insulin secretion in a glucose-dependent manner,
reduction of postprandial glucagon, inhibition of hepatic glucose
production, and enhancement of peripheral glucose uptake, mainly
in the post-prandial period (1, 2). In addition to glycemic benefits,
DPP4 inhibitors have been shown to improve cardiovascular risk
factors, including left ventricular diastolic dysfunction,
independently of glycemic control, as previously demonstrated by
our group (3). Conversely, bedtime NPH insulin primarily targets
fasting hyperglycemia by decreasing hepatic glucose output
overnight and promoting cellular glucose uptake (1).

Identifying biomarkers that predict therapeutic response could
support individualized treatment decisions. In this context,
microRNAs (miRNAs) have emerged as promising candidates.
These small, non-coding RNAs function as post-transcriptional
negative regulators of gene expression and are involved in a wide
range of biological processes, including development, cell
proliferation, differentiation, apoptosis, and metabolic regulation
(4, 5). They may also provide insights into drug mechanisms of
action by revealing the pathways associated with their target genes.

Recent studies have reported associations between antidiabetic
therapies and changes in miRNA expression profiles following
treatment with metformin (6), tiazolidinediones (7), DPP4
inhibitors (8), intensive insulin therapy (9), and GLP1 receptor
agonists (10) Notably, each drug class appears to modulate a
distinct and limited set of miRNAs.

Circulating miRNAs have been proposed as biomarkers of T2D
risk and therapeutic efficacy (10). However, it remains unclear
whether the pharmacological effects of these drugs are mediated
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by miRNAs, or whether miRNA changes simply reflect
improvements in metabolic variables.

In a previous study, we compared the efficacy of the DPP4
inhibitor sitagliptin versus bedtime NPH insulin as add-on therapy
in T2D individuals inadequately controlled with metformin and
glyburide (11). Building upon those findings, the present study
aimed to investigate whether treatment with sitagliptin or bedtime
NPH insulin was associated with changes in circulating miRNA
expression profiles, related to T2D and/or insulin resistance: miR-
24-3p, miR30c-5p (4), miR-193b-3p (12), miR-335-5p (13), miR-
199a-3p, miR-532-5p, let-7d-5p (14), miR-27a-3p (15), miR-660-5p
(16), miR-92a-3p and miR-320-3p (6). Their participation in
pathways related to metabolism and diabetes are presented in
Supplementary Table 1. We further examined whether these
changes were linked to improvements in metabolic control,
insulin, glucagon, and GLP1 concentrations. We also explored the
potential biological relevance of the differentially expressed
miRNAs by analyzing their predicted target genes involved in
pancreatic hormone secretion and insulin resistance pathways.

2 Materials and methods

The protocol adhered to the Declaration of Helsinki and was
approved by the Ethics Committee of Hospital das Clinicas,
Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP)
under approval numbers 415/01 and 0215/08. Written informed
consent was obtained from all participants.

In a previous prospective study, 35 outpatients with T2D
inadequately controlled with metformin plus glyburide were
randomized in parallel to receive an additional 6-month
treatment with either bedtime NPH insulin (NPH group) or 100
mg of sitagliptin once daily (SITA group). Exclusion criteria
included: heart or respiratory failure, uncontrolled hypertension,
hepatic, renal, endocrine and gastrointestinal disorders,
malignancy, alcohol abuse, and prior use of insulin or incretin-
based therapy.

Participants were followed weekly for drug and dietary
adjustments during the first month and then monthly for six-
month. Baseline clinical data, anthropometric and laboratory
assessments were collected at enrollment (pre-treatment) and
repeated at the end of the 6-month intervention.

2.1 Laboratory procedures

The participants were instructed to follow a consistent diet and
abstain from alcohol, caffeine and vigorous physical activity 24
hours before testing. After a 12-hour overnight fast, a standardized
500-kcal mixed meal (60% carbohydrate, 20% fat, 20% protein) was
administered. Blood samples were collected at 0, 60, 120 and 180
minutes for measurement of glucose, insulin, glucagon, proinsulin,
C-peptide, active GLP1 (aGLP1), free fatty acids, and triglycerides.
Fasting cholesterol and HbAlc values were also assessed. The study
utilized laboratory and demographic data previously reported in a
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evaluation of 6- and 12- month SITA or NPH insulin treatments
(11), which are presented in Supplementary Table 2 and Figures.

2.2 Sample collection and quality control

Blood samples were collected in tubes containing separation gel
(Becton Dickinson) to obtain serum, which was then stored in a
freezer at -80°C until total RNA extraction.

2.3 Assessment of hemolysis

Initially, the samples were evaluated for hemolysis using
spectrophotometry (NanoDrop 2000 spectrophotometer, Thermo
Scientific, Waltham, Massachusetts, USA), with absorbance
measured between 350 and 650 nm. The degree of hemolysis was
determined based on the optical density (OD) at 414 nm—the
absorbance peak of free hemoglobin. Additional peaks at 541 and
576 nm were also monitored, as they are indicative of a higher
degree of hemolysis. Samples were classified as “hemolyzed” if the
OD at 414 nm exceeded 0.2 (17). Hemolyzed samples were excluded
from the study.

2.4 Extraction of total serum RNA enriched
in mMiRNAs

Total RNA enriched in miRNAs was extracted from 200 pL of
serum using the miRNeasy Serum/Plasma kit (Qiagen, Germany)
following the manufacturer’s instructions. A synthetic spike-in
control (cel-miR-39, C. elegans, 2.0 UL of the 2.5x10-° pmoL/uL)
was added to each sample to allow normalization of technical
variation and was used as the external reference miRNA. RNA
was eluted with 14 uL of RNase-free water and quantified by
absorbance at 260/280 nm using a NanoDrop ND-2000 apparatus
(Thermo Scientific, USA). Samples were stored at —80°C
until analysis.

2.5 MIiRNA expression profiling

Ten candidates” miRNAs were selected for expression analysis:
hsa-24-3p, hsa-27a-3p, hsa-92a-3p, hsa-let-7d-5p, hsa-199a-3p,
hsa-335-5p, has-532-5p, hsa-miR-193b-3p, hsa-miR-660-5p, hsa-
miR-30c-5p, described at Supplementary Table 3. The external
miRNA cel-miR-39-3p was used as a reference gene to normalize
miRNA expression data (18).

2.5.1 Reverse transcription reaction

We used the TaqManTM Advanced miRNA ¢cDNA Synthesis Kit
(A28007), comprising 4 steps (manufacturer’s protocol): Step 1: Poly
(A) tailing reaction — 10X Poly(A) Buffer (0.5uL); ATP (0.5uL); Poly
(A) Enzyme 0.3 pL, RN Ase-free water (1.7 uL) and 2 pL of the RNA
sample, according to the following Veriti thermocycler cycling
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(Applied Biosystems- Thermofisher): Polyadenylation 37°C for 45
minutos; Stop reaction 65°C for 10 minutes and finished at 4°C. Step
2: Ligation reaction: 5X DNA Ligase Buffer (3.0 uL); 50% PEG 8000
(4.5 pL); 25X Ligation Adaptor (0.6 puL); RNA Ligase (1.5 pL);
RNase-free water (0.4 pL). Add 10pL volume of total ligation
reaction mix to the tube from step 1, using cycling: Ligation, 16°C
for 60 minutes and finished at 4°C. Step 3: Reverse transcription
(RT) reaction - following the protocol: 5X RT Buffer (6uL); dNTP
Mix (25mM each) (1.2 pL);20X Universal RT Primer (1.5 pL); 10X
RT Enzyme Mix (3.0 uL) and RNase-free water (3.3 uL). Add 15ul of
the mix RT to the Step 2 tube, with final volume of 30uL, using
cycling: Reverse transcription 42°C for 15 minutes; Stop reaction
85°C for 5 minutes and finished at 4°C. Step 4: miR-Amp reaction:
2X miR-Amp Master Mix (25 pL); 20X miR-Amp Primer Mix
(2.5 pL); RNase-free water (17.5 pL). After preparing the mix from
step 4, add 5uL of the RT reaction product to another 0.2 mL tube,
with a final volume of 50pl and incubate the reaction with the
following cycling:Enzyme activation 95°C for 5 minutes and a total
of 14 cycles (Denature 95°C for 3 seconds and Anneal/Extend 60°C
for 30 seconds); Stop reaction 99°C for 10 minutes, finishing the 4°C.

2.5.2 Real-time quantitative PCR

The qRT-PCR reaction was performed as follows: 10uL of
TaqMan® Fast Advanced Mix (2X) (Applied Biosystems-
Thermofisher- USA PN 4444557); 1 pL TaqMan® Advanced
miRNA Assay (20x) (Applied Biosystems-Thermofisher- USA PN
A25576); 4uL of RNase-free water and 5 uL of cDNA diluted 1:10.
The reaction was performed on the Thermocycler StepOnePlusTM
Real-Time PCR System (Thermofisher Scientific, USA) following
the cycling conditions: 95 °C for 20s, 40 cycles of 95 °C for 15 s and
60 °C for 20 s, and ending at 4 °C.

2.6 Functional enrichment analyses

Validated target genes for differentially expressed miRNAs
(DEMs) were identifed using the miRTargetLink 2.0 database
(https://ccb-compute.cs.uni-saarland.de/mirtargetlink2/) (19).

Functional enrichment analysis was performed with the Enrichr
plataform (https://maayanlab.cloud/Enrichr/) (20, 21) based on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
KEGG terms with adjusted p-value < 0.01 were considered
significantly enriched.

2.6.1 MiRNA-target gene network construction

MiRNA-target gene interaction networks were constructed
separately for the SITA and NPH groups based on DEMs with
KEGG enrichment relevant to T2D. Network visualization was
performed using Cytoscape (version 3.10.3) (22).

2.7 Statistical analysis

Continuous variables were expressed as mean * standard
deviation (SD), and categorical variables as proportions.
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Repeated-measures ANOVA followed by Schefte’s post hoc tests was
used to assess treatment effects over time. Categorical data were
analyzed using chi-square or Fisher’s exact tests, as appropriate.
Graphical results are shown as mean + standard error (SE). For
miRNA expression, relative quantification (2/A-ACt) (23) was used,
normalized to cel-miR-39 (18). Depending on data distribution,
comparisons of miRNA relative expression were performed using
either the non-parametric Mann-Whitney U test or the parametric
t-test. A p-value < 0.05 were considered statistically significant.

3 Results

This study is an extension of the randomized clinical trial titled
“Short and Long-Term Effects of a DPP-4 Inhibitor Versus Bedtime
NPH Insulin as Add-On Therapy in Patients with Type 2 Diabetes”
(11) where 35 adult outpatients with T2D (aged 57 + 7 years, 57.1%
female) inadequately controlled with metformin plus glyburide,
were randomized to receive either sitagliptin (100 mg once daily;
SITA group) or bedtime NPH insulin (final dose of 11.0 + 6.7 IU;
NPH group). The groups were comparable in terms of glyburide
dose (SITA: 17.6 + 3.1 mg/day; NPH: 18.1 + 4.1 mg/day; p = 0.68),
metformin dose (SITA: 2.4 + 0.3 g/day; NPH: 2.3 + 0.6 g/day; p =
0.46), and frequencies of statin (77.8% vs. 64.7%; p = 0.47) or
antihypertensive therapy use (77.8% vs. 100%; p = 0.11). These
medications remained unchanged throughout the study.

After 6 months of treatment, both sitagliptin and NPH insulin
significantly reduced HbAlc values to a similar extent (p<0.001):
from 8.1 + 0.7% to 7.3 + 0.8% in the SITA group and from 8.1+
0.6% to 7.3 £ 0.7% in the NPH group. Fasting and postprandial
(after a standardized 500-kcal mixed meal), active GLP1
concentrations increased 3- to 4-fold at all time points in the
SITA group and remained elevated throughout the study. NPH
insulin led to reductions in fasting glucose, fasting and postprandial
triglyceride, and C-peptide concentrations. Conversely, sitagliptin
reduced postprandial insulin and glucagon concentrations. Both
treatments suppressed postprandial proinsulin concentrations.
NPH insulin was associated with increased post-challenge free
fatty acid concentrations and weight gain. A detailed metabolic
profile has been reported elsewhere (11) and is presented in
Supplementary Table 2 and Figures 1 and 2.

3.1 Differential expression of miRNA

Sitagliptin treatment induced upregulation of six miRNAs at
various time points (Figure 1), with fold-change values ranging
from 3 tol0 (Table 1). Among them, miR-24-3p was consistently
upregulated during fasting and across all three postprandial time
points. miR-92a-3p, let-7d-5p, miR-27a-3p, miR-30c-5p, and miR-
660-5p were differentially expressed at one to three time points.
One-hour post-meal, all six miRNAs were significantly upregulated
relative to baseline. Notably, miR-24-3p and miR-27a-3p exhibited
the highest fold-changes (> 9; Table 1).
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In the NPH group, four miRNAs were differentially expressed at
one- or two-time intervals, with more modest fold-changes (2.43 to
3.57, Table 2, Figure 2). Specifically, miR-92a-3p, miR-193b-3p, and
miR-320a-3p were upregulated during fasting, while miR-30c-5p
and miR-92a-3p were upregulated at 1h post-prandial.

Two miRNAs, miR-92a-3p and miR-30c-5p, showed similar
expression patterns in both treatment groups, with increases
predominantly observed during fasting and at 60 minutes post-meal.

Between-group comparisons revealed that four miRNAs were
significantly upregulated in the SITA group (Figure 3), with fold-
changes ranging from 3.73 to 17.98 (Table 3). miR-24-3p was
consistently upregulated at all time-points, while let-7d-5p
increased between 1 to 3 hours postprandially. Two miRNAs,
miR-660-5p and miR-27a-3p were upregulated at 2- and 3-
hours, respectively.

Interestingly, in contrast to the relatively consistent changes in
hormonal and metabolic variables, no uniform pattern of miRNA
was observed across postprandial time points within each
treatment group.

3.2 Enrichment analysis of differentially
expressed miRNAs

Validated target genes were identified for the differentially
expressed miRNAs: 88 for miR-24-3p, 66 for miR-27a-3p, 39 for
miR-30c-5p, 35 for miR-92a-3p, 16 for miR-193b-3p, 8 for let-7d-
3p, 1 for miR-660-5p (Supplementary Table 4) and none for miR-
320a-3p.

Two gene sets were constructed for functional analysis,
comprising validated targets of the six and four differentially
expressed miRNAs in the SITA and NPH groups, respectively. This
yielded 222 genes for the SITA group and 88 for the NPH group.

KEGG pathway enrichment analysis revealed 26 shared
pathways and nine unique to the SITA group (Figure 4,
Supplementary Table 2). The number of genes mapped to each
pathway varied between groups.

In both groups, enriched pathways were primarily related to
signal transduction, cellular senescence, lipid metabolism and
atherosclerosis, Th17 cell differentiation, insulin resistance,
autophagy, and apoptosis. However, seven signaling pathways -
Wnt, HIF1, TGF beta, IL17, mTOR, glucagon, and VEGF - along
with pathways involved in diabetic cardiomyopathy and
necroptosis, were exclusively enriched in the SITA group (Figure 4).

Network analyses summarized the interactions among
miRNAs, their target genes, and biological pathways based on the
highest odds ratios from the enrichment analysis (Figure 5,
Supplementary Table 5).

The sitagliptin network included five miRNAs, 102 genes, and
237 interactions, whereas the insulin network comprised three
miRNAs, 48 genes, and 90 interactions. Sixteen KEGG terms
were present in both networks, but the SITA group showed
broader involvement in signaling pathways, cellular senescence,
lipid and atherosclerosis, mitophagy, and autophagy.
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miRNA expression analysis of SITA group
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4 Discussion

To our knowledge, this is the first study to compare the
effects of sitagliptin and bedtime NPH insulin on circulating
miRNAs expression in individuals with long-standing T2D. Our
findings demonstrate that both therapies modulate serum
miRNA levels, with sitagliptin exerting a broader and more
sustained influence across multiple postprandial time points.
In contrast, bedtime NPH insulin was associated with more
limited changes, primarily restricted to fasting and early
postprandial states.

Frontiers in Endocrinology

Among the 10 miRNAs evaluated, seven were upregulated
following treatment, with sitagliptin accounting for the majority
of these changes. Two miRNAs - miR-92a-3p and miR-30c-5p -
were similarly upregulated in both treatment arms, suggesting the
involvement of shared pathways, likely related to the observed
metabolic improvements. miR-30c-5p has been implicated in
reducing hyperlipemia and atherosclerosis in a murine model
(24), inhibiting pyroptosis (25) and apoptosis in neural
progenitor cells, (26) and exerting renoprotective effects by
attenuating high glucose-induced oxidative stress, inflammation,
and extracellular matrix accumulation (27).
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TABLE 1 Differentially expressed miRNAs in participants treated with sitagliptin (SITA).

Time-interval

Relative expression (2A-dCT)

FC (Post-T/Pre-T) P-value
(minutes) Mean (Post-T) Mean (Pre-T)

Fasting miR-24-3p 0.03 0.01 4.82 0.00
miR-let-7d-5p 0.01 0.00 3.94 0.03

miR-92a-3p 0.28 0.09 3.02 0.04

60 miR-24-3p 0.03 0.00 10.25 0.00
miR-27a-3p 0.20 0.02 9.05 0.01

miR-let-7d-5p 0.01 0.00 6.27 0.00

miR-30c-5p 0.16 0.03 523 0.04

miR-660-5p 0.02 0.01 4.15 0.03

miR-92a-3p 0.28 0.07 3.93 0.01

120 miR-24-3p 0.03 0.01 439 0.01
miR-27a-3p 0.19 0.05 4.26 0.01

miR-92a-3p 0.40 0.11 3.60 0.01

180 miR-24-3p 0.02 0.00 7.62 0.00
miR-let-7d-5p 0.01 0.00 6.25 0.00

miR-27a-3p 0.12 0.03 442 0.03

miR-30c-5p 0.16 0.04 434 0.03

qRT-PCR analyses; FC, fold-change; T, treatment; p-value was obtained using a Mann-Whitney U test.

As for miR-92a-3p, its target genes include members of the
SMAD family, key mediators of the transforming growth factor
beta 1 (TGFB1) signaling pathway, thus, its upregulation may be
associated with reduced fibrosis (28) and inflammation (29).
Interestingly, miR-92a-3p expression has been reported to
decrease following interventions known to improve insulin
sensitivity, such as metformin (6), pioglitazone (7) and gastric by-
pass surgery (30). This contrasts with the upregulation observed in
the present study, which may reflect the fact that bedtime NPH
insulin and sitagliptin improve glycemic control primarily through
non-insulin-sensitizing mechanisms. One possibility is the report of
Xu et al. (31) which showed that mir-235/miR-92, by suppressing

Wnt signaling, upregulates several autophagy genes, enhances
autophagy, and promotes longevity, thereby supporting glucose
metabolism. Alternatively, the observed increase in miR-92a-3p
may reflect broader metabolic changes rather than being directly
related to the specific mechanisms of action of the drugs.

Four miRNAs - miR-24-3p, miR-27a-3p, let-7d-5p, and miR-660-
5p - were exclusively upregulated following sitagliptin treatment.
Among these, miR-24-3p and miR-27a-3p have been associated with
anti-inflammatory effects (32, 33). In addition, miR-27a-3p has been
shown to enhance muscle glycogen storage and alleviate insulin
resistance by modulating FOXO1 signaling and downregulating
gluconeogenic enzymes (34). Let-7d-5p has demonstrated the ability

TABLE 2 Differentially expressed miRNAs in participants treated with NPH insulin.

Time-interval

Relative expression (2A-dCT)

miRNA FC (Post-T/Pre-T) P-value
(minutes) Mean (Post-T) Mean (Pre-T)
miR-320a-3p 0.05 0.02 2.64 0.03
Fasting miR-92a-3p 0.31 0.09 3.33 0.03
miR-193b-3p 0.03 0.01 357 0.04
miR-30c-5p 0.08 0.03 243 0.01
60
miR-92a-3p 0.18 0.07 2.48 0.04
120 NS
180 NS

qRT-PCR analyses; FC, fold-change; T, treatment; p-value was obtained using a Mann-Whitney U test.
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to attenuate neuroinflammation (35) and the progression of
atherosclerosis, likely through inhibition of NF-kB-mediated
inflammation and vascular smooth muscle cells proliferation (36),
suggesting a potential protective role against vascular complications.
Interestingly, circulating let-7d-5p was downregulated in individuals
with hepatic steatosis whereas hepatic expression was increased and
correlated with insulin resistance (37), underscoring the complex and
tissue-specific regulation of miRNAs.

Circulating miR-660-5p has previously been reported to be
downregulated in obese children with insulin resistance and to
correlate with changes in glycemia and insulinemia (A0-120 min)
during an oral glucose tolerance test in obese children without insulin
resistance (38). The regulation of this miRNA likely depends on
distinct metabolic variables, as suggested by its divergent responses
under various insulin-related conditions: it was downregulated
during hyperinsulinemic-euglycemic clamp, upregulated in
response to insulin plus intralipid infusion - a model known to
exacerbate insulin resistance (16) - and remained unchanged
following bedtime NPH insulin therapy in the present study, while
it was upregulated exclusively after sitagliptin treatment.

Two miRNAs - miR-320a-3p and miR-193b-3p - were exclusively
upregulated in the fasting state following bedtime NPH insulin
treatment. The miR-320a has been reported to inhibit glucagon
secretion (39, 40), and to be negatively correlated with fasting plasma
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glucose and insulin resistance in obese individuals with metabolic
syndrome (41). In contrast, it was positively associated with insulin
resistance in healthy individuals without T2D (42) and with fasting
glucose in individuals with T2D (39). Furthermore, miR-320a-3p was
downregulated in participants treated with metformin in the Diabetes
Prevention Program (DPP) (6) and in individuals with T2D
undergoing gastric bypass surgery (43). Experimental data also
indicate a role for miR-320a in beta-cell dysfunction in high-fat diet-
fed mice (44). These findings suggest that its downregulation may be
beneficial in the context of T2D. Therefore, its upregulation in the
fasting state of individuals receiving bedtime NPH insulin in the present
study is intriguing and may reflect a context-dependent response whose
physiological significance warrants further investigation.

Circulating miR-193b-3p has been reported to be upregulated in
newly diagnosed, untreated individuals with T2D, and is believed to
directly influence glucose metabolism by upregulating the transcription
factor FOXOL1, thereby enhancing the expression of gluconeogenic
enzymes and promoting hepatic glucose production (12). Elevated
levels of this miRNA have also been observed in individuals with
prediabetes and in glucose-intolerant mice, with a reduction following
chronic exercise intervention (45). Given that a key mechanism by
which bedtime insulin suppresses hepatic glucose production involves
the inactivation of FOXO1, leading to reduced gluconeogenesis (46) the
upregulation of miR-193b-3p in this context is unexpected. The fact
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that all study participants were taking metformin, which is known
to attenuate FOXOLI activity (47), makes the interpretation of this
finding - observed only in the bedtime NPH insulin-treated group -
even more challenging. Nonetheless, it may represent a compensatory
mechanism to preserve glucose homeostasis under specific
metabolic conditions.

Discrepancies with previous studies may be attributed to several
factors, including differences in sample collection timing (e.g.,
fasting vs. postprandial), the biological source of miRNAs (e.g.,

serum vs. extracellular vesicles, diabetes duration, degree of
glycemic control and the statistical approaches used for data
analysis. Additionally, the fact that our participants were already
being treated with metformin and glyburide may have influenced
circulating miRNA levels. These discrepancies highlight the
complexity of studying miRNAs, as their expression appears to be
modulated by a wide range of metabolic and contextual variables.
This inherent variability poses a challenge for establishing miRNAs
as reliable biomarkers in a multifactorial condition such as T2D.

TABLE 3 Differentially expressed miRNA between the sitagliptin (SITA) and NPH insulin (NPH) groups.

Time-interval

Relative expression (2A-dCT)

FC (SITA/NPH) P-value
(minutes) Mean (SITA) Mean (NPH)

Fasting miR-24-3p 0.03 0.00 921 0.01
60 miR-660-5p 0.02 0.00 17.98 0.04
miR-24-3p 0.03 0.00 14.17 0.01

let7-d-5p 0.01 0.00 373 0.04

120 miR-27a-3p 0.19 0.01 14.85 0.01
miR-24-3p 0.03 0.00 9.36 0.01

let7-d-5p 0.01 0.00 438 0.02

180 miR-24-3p 0.02 0.00 7.41 0.04
let7-d-5p 0.01 0.00 7.11 0.04

qRT-PCR analyses; FC, fold-change; p-value was obtained using a t-test.
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FIGURE 4

Functional enrichment analysis of target genes for differentially expressed miRNAs (DEM) in the sitagliptin (SITA) and NPH insulin (NPH) groups.
KEGG pathway analysis for target genes of the six DEMs (miR-24-3p, miR-27a-3p, miR-30c-5p, miR92a-3p, miR-660-5p, and let-7-5p) identified in
the SITA group (red bars), and three DEMs (miR-92a-3p, miR-30c-5p, and miR-193b-3p) identified in the NPH group (blue bars). Only KEGG terms
with adjusted p < 0.05 were considered significant. The histograms depict pathways related to T2D.

This study has several limitations that should be acknowledged.  prior treatments. Moreover, the observational nature of the miRNA
The relatively small sample size may limit the generalizability of the  analyses does not allow for causal inferences.
findings, and the lack of a drug-naive control group prevents us Despite these limitations, the predicted gene targets of miRNAs
from fully isolating the effects of the interventions from those of ~ modulated by both sitagliptin and NPH insulin treatment
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converged on key signaling pathways associated with improved
glucose control. Notably, pathways such as PI3K-Akt, MAPK,
insulin, prolactin, ErB, apelin and lipid and atherosclerosis
signaling are involved in glucose metabolism, protein synthesis,
and energy metabolism. The activation of the Foxo signaling
pathway observed in our analysis may have been influenced by
metformin use among study participants.

In addition to metabolic pathways, immunomodulatory and
inflammatory signaling emerged as relevant targets. These included
the prolactin pathway, Th17 differentiation, T cell receptor,
chemokines, Th1-Th2 cell, TNF, and JAK-STAT pathways. These
findings may reflect either postprandial inflammatory responses or
underlying diabetes-related complications, particularly given the
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long disease duration in our cohort. Activation of AGE-RAGE and
cellular senescence pathways was also observed, consistent with
chronic metabolic stress.

Pathways related to cell cycle regulation, such as autophagy,
apoptosis, and mitophagy, may also be secondary to the
metabolic derangements or complications of longstanding
diabetes. Interestingly, glucagon signaling was exclusively
enriched in the SITA group, suggesting a potentially distinct
mechanism of action or feedback regulation related to incretin-
based therapy.

It is noteworthy that many of the genes targeted by the identified
miRNAs (Supplementary Table 4) have been predominantly studied
in contexts such as cancer, apoptosis, cellular development and
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differentiation, inflammation, cellular stress, and signaling pathways
involved in insulin resistance. These regulatory pathways often
intersect with mechanisms of metabolic homeostasis and the
pathophysiology of diabetes.

In our initial analysis, we focused on genes targeted by two or
more miRNAs, including BCL2L11, CCNDI1, DNMTI1, FBXW?7,
GATA3, IFNG, IFNGR, KRAS, MAP2K4, MAPKI14, MCLI,
NOTCHI, SPI, and TP53. Among these, several are involved in
key cellular processes: BCL2L11 and TP53 are associated with
apoptosis; MAP2K4, MAPKI4, and SPI1 are linked to
inflammatory signaling and cellular stress, while IFNG and its
receptor (IFNGR) participate in inflammatory cytokine signaling
implicated in beta-cell apoptosis and insulin resistance.

Specifically, regarding genes related to insulin resistance
pathway (Supplementary Table 3), we highlight SOCS3, GSK3B,
STAT3, PTEN, TRIB3, FOXOI, and PTPRF, along with MAPKS,
which plays a role in metabolic stress and inflammation. Many of
these genes also participate in broader regulatory networks,
including FASN and GRB2 in insulin signaling pathways, as well
as JAK1, ITGA5, FOXO3 in the PI3K-Akt signaling pathway.

Collectively, these findings suggest that the modulation of gene
expression by miRNAs may contribute to improved metabolic
control and represent a potential therapeutic avenue in the
treatment of T2D, particularly through targeting key genes
involved in insulin resistance and inflammation.

5 Conclusion

Adjunctive therapy with sitagliptin and bedtime NPH insulin
was associated with metabolic improvement and distinct
modulation of circulating miRNAs, with sitagliptin influencing a
broader spectrum of miRNA expression. The upregulated
miRNAs are involved in pathways related to insulin signaling,
inflammation, and cellular homeostasis. These findings support
the hypothesis that sitagliptin exerts pleiotropic effects beyond
glycemic control.
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