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The effects of liraglutide

and metformin treatment

on fracture healing in partially
insulinopenic diabetic rats
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Purpose: Although Metformin has been studied, the comparative or synergistic
effect with GLP-1 agonists like Liraglutide on fracture healing remains poorly
characterized. This study aimed to evaluate the impact of metformin, liraglutide,
and their combination on fracture healing in a rat model of partially insulinopenic
diabetes mellitus (DM).

Methods: Sixty male Wistar rats (10—-14 weeks old, 350 + 50g) were divided into
five groups of twelve rats each: Control, DM, Met (Metformin), L (Liraglutide), and
Met+L. Partially insulinopenic DM was induced in all experimental rats except the
control group using streptozotocin (STZ) and nicotinamide (NA) combination. A
femoral fracture was created, and a Kirschner wire was inserted retrogradely into
the femoral canal. Liraglutide was injected subcutaneously at a daily dose of 0.6
mg/kg into the rats in the L and Met+L groups, and oral metformin was
administered to the rats in the Met and Met+L groups daily at a dose of 180
mg/kg. On the 15", 30", and 45" days, four rats from each group were selected
randomly and euthanized, and the femurs were examined radiographically,
biomechanically, and histopathologically.

Results: The baseline characteristics of the rats before the study showed no
significant differences between the groups (p>0.05). Biomechanical test results
showed a significant main effect of group (p<0.001), indicating that overall
Newton values varied across groups. Additionally, a significant main effect of
experimental day was found (p<0.001), suggesting that Newton values changed
across days regardless of group. Histopathological scores showed a statistically
significant difference between the groups on the 15th day, with the L group
having 75% scoring 7 (p=0.047), and on the 45th day, with the L and Met+L
groups both having 75% scoring 9 (p=0.036). Conversely, no significant
difference was found in radiological scores between the groups on the 15
day (p=0.934), 30" day (p=0.649), and 45" day (p=0.502) of the experiment.
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Conclusion: Both metformin and liraglutide improve fracture healing in a partially
insulinopenic diabetic rat model, and these findings suggest that liraglutide may
offer a superior therapeutic advantage over metformin in accelerating fracture
repair in patients with diabetes.

diabetes mellitus, liraglutide, metformin, rat, fracture healing

1 Introduction

Diabetes mellitus (DM), a chronic metabolic disorder, is
distinguished by hyperglycemia arising from impaired insulin
secretion, reduced insulin efficacy, or a combination of both
factors. It ranks among the most prevalent systemic diseases
globally and constitutes a significant health concern (1). By the
year 2045, it is projected that approximately 800 million individuals
worldwide will be affected by DM, with 90% of these cases classified
as type 2 DM (2). Beyond well-documented complications such as
nephropathy, neuropathy, retinopathy, and cardiovascular diseases,
DM also exerts detrimental effects on bone metabolism. Notably, in
patients with poor glycemic control, there is an increased risk of
fractures and impaired fracture healing, which may contribute to
additional morbidity and escalate treatment costs (3).

Bone healing encompasses a complex sequence of biological
processes. Numerous aspects of these processes, including
inflammation, angiogenesis, callus formation, and bone remodeling,
may be negatively impacted in patients diagnosed with DM, owing to
hyperglycemia and particular metabolic disorders observed in DM
patients (4). Given that fracture healing constitutes a prolonged and
challenging process, it is imperative to facilitate a smoother
progression for diabetic patients to enhance their quality of life.
Several clinical and experimental investigations have demonstrated
that DM results in a reduction of osteoblast differentiation and
activity, impaired angiogenesis, increased oxidative stress, and
reduced osteoclast activity, all of which are well established to
contribute to diminished bone regeneration capacity as a secondary
consequence (5). Given these considerations, the pursuit of
pharmacological agents that can mitigate these detrimental effects
remains a significant area of scientific research.

Metformin, a first-line therapeutic agent particularly utilized in
the management of type 2 DM, is administered orally. It enhances the
activity of AMP-activated protein kinase (AMPK), reduces hepatic
gluconeogenesis, and promotes peripheral glucose uptake.
Consequently, these mechanisms significantly contribute to the
regulation of blood glucose levels (6). Beyond glycemic control,
prior research has demonstrated that metformin stimulates
osteoblast differentiation, reduces advanced glycation end products,
and facilitates improvements in bone architecture (6-8). The impact
of metformin on fracture healing in patients with type 2 DM has been
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investigated in a limited number of studies within the existing
literature, with some indicating positive effects (9). In contrast,
others report no significant effect (10). Another antidiabetic
medication, Liraglutide, functions as a glucagon-like peptide-1
(GLP-1) receptor agonist, and its efficacy in blood glucose
regulation and protection against cardiovascular complications is
well established (11). In recent years, the utilization of GLP-1
receptor agonists has increased; it has been demonstrated that in
children over the age of 10 with type 2 DM, these agents can be
administered either alone or in conjunction with metformin to attain
effective glycemic control (12). The impact of GLP-1 receptor agonists
on bone tissue has been explored in various studies, revealing
increased osteoblast proliferation, reduced osteoclastogenesis, and
enhanced skeletal blood flow (13-16). Nevertheless, some research
indicates no beneficial effects on bone mass or fracture risk (17, 18).
Current literature provides limited data regarding the influence of this
drug class on fracture healing issues observed in diabetic patients.

The partially insulinopenic DM rat model created by combining
streptozotocin (STZ) with nicotinamide (NA) replicates the
pathophysiological features of human type 2 DM (19). By partially
protecting pancreatic B-cells, NA administration along with STZ
produces a state of stable moderate hyperglycemia, reflecting the
partial insulin deficiency seen in type 2 DM. Utilization of this model
enables the exploration of the mechanisms underlying diabetic
fracture healing and facilitates the assessment of potential
therapeutic interventions.

Although issues related to DM-associated fracture healing are
well documented, there exists a paucity of experimental research
examining the impact of certain widely used antidiabetic
medications on this process. While some investigations have
explored the effects of metformin and liraglutide on bone
metabolism, there are currently no studies in the literature that
compare the effects of these two drugs or examine the outcomes of
combined therapy. It is hypothesized that treatment with
metformin and liraglutide, both individually and in combination,
enhances fracture healing in rats with diabetes, potentially restoring
outcomes to levels comparable to those of non-diabetic controls.
This study aims to evaluate the impact of metformin, liraglutide,
and their combination on fracture healing in a rat model of partially
insulinopenic DM, to provide insights into potential translational
applications in clinical practice.
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2 Materials and methods

2.1 Animals

The study was conducted in accordance with the guidelines of
the Helsinki Declaration and received approval from the Diizce
University Animal Experiments Local Ethics Committee (protocol
code 2024/03/02, approval date: March 20, 2024). The male Wistar
rats (n = 60) utilized in this research were sourced from the Diizce
University Animal Research and Application Center. These rats
were approximately 10 to 14 weeks old, with an average weight of
350 + 30 grams, and they were observed for any health concerns
during a 15-day adaptation period. They were housed in
polycarbonate cages within a temperature-controlled environment
(22-24 °C) under a 12-hour light/dark cycle. Standard pellets and
water were supplied ad libitum.

Twelve rats were selected through simple randomization and
allocated to the control group, and during this process, the
researchers remained blinded. The remaining forty-eight rats
were induced with a partially insulinopenic DM model via
administration of a combination of STZ and NA (20).

2.2 Diabetes induction

At the beginning of the study, the blood glucose levels, weights,
and body lengths (from the nose to the anus and from the nose to
the tail end) of all the rats were measured and recorded. Partially
insulinopenic DM was induced in rats (n=48) in diabetic groups
that were fasted overnight (19).

NA(Sigma-Aldrich) was dissolved in a 0.9% sodium chloride
solution and adjusted to a concentration of 230 mg/ml. It was then
administered intraperitoneally (i.p.) at a dose of 230 mg/kg. Fifteen
minutes after applying NA, STZ (Glentham, England), prepared in
citrate buffer solution (0.1 M, pH 4.5) immediately before use, was
given at a dose of 65 mg/kg (i.p.) to each rat. After the injections, the
animals, housed in cages with six animals per cage, had unlimited
access to standard feed and drinking water. One week later, blood
samples were collected from the tail vein and analyzed for fasting
glucose levels using a glucometer (Accu-Check, Roche). Rats
exhibiting blood glucose levels exceeding approximately 250 mg/
dL were classified as diabetic and subsequently selected for further
experiments (21). Rats with blood glucose levels below this
threshold were initially planned to be excluded from the study;
however, evaluations showed that all rats given STZ/NA had blood
glucose levels above the threshold. The diabetic rats were
subsequently allocated to respective treatment groups through
simple randomization, with the researchers maintaining blindness
throughout this process.

Control (n=12): Non-diabetic group, not taking
any medication.

DM (n=12): Diabetic group, not taking any medication.

Met (n=12): Diabetic group, on oral metformin.

L (n=12): Diabetic group, receiving liraglutide
subcutaneously (s.c.).
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Met+L (n=12): Diabetic group, taking both oral metformin and
liraglutide (s.c.).

The blood glucose levels and weights of the rats were measured
and recorded on a weekly basis. Liraglutide (Novo Nordisk) was
injected at a daily dose of 0.6 mg/kg (s.c.) into the rats in the L and
Met+L groups (22); and metformin (Sigma-Aldrich), dissolved in
sterile distilled water, was administered by gavage to the rats in the
Met and Met+L groups daily at a dose of 180 mg/kg (23)
throughout the experimental period.

2.3 Surgical technique

All rats were weighed using a sensitive electronic scale, and the
necessary anesthetic dose was adjusted accordingly. A combination
of 50 mg/kg ketamine (Eczacibagi, Turkey) and 10 mg/kg xylazine
(Bioveta, Turkey) was administered via the left groin (i.p.). After
testing the effectiveness of anesthesia, the right knee and thigh areas
of the rats were shaved and disinfected with povidone-iodine
(Batticon, Adeka, Turkey). A right femoral fracture was created
using the Einhorn closed fracture model (22). After fracture
creation, a 1 cm incision was made at the anterior knee. The
medial parapatellar approach was used to open the capsule, and
the patella was laterally displaced to expose the femoral condyles.
For fracture stabilization, a 0.45-mm Kirschner wire was inserted
retrogradely into the femoral canal using an electric motor. The
excess wire was cut at the level of the condyles and embedded into
the medullary canal to prevent skin irritation. The incision was
closed, and an X-ray was taken to confirm the fracture. Post-
surgery, rats received fentanyl citrate (Polifarma, Tiirkiye) at 0.02
mg/kg (s.c.) for three days to manage pain. A veterinarian specialist
monitored the rats, with six animals housed per cage. Prophylactic
antibiotic treatment was not given before or after surgery to avoid
affecting the fracture healing process.

On the 15“‘, SOth, and 45" days, four rats from each group were
selected randomly and euthanized. An intraperitoneal overdose of
sodium pentobarbital (Narcoren-Rhone Merieux) at a dose of 150
mg/kg was administered to the rats. The animals’ death was
confirmed through intracardiac puncture (24). After euthanasia,
the right femur bones of the rats were dissected and disarticulated
from the hip and knee joints.

The soft tissues enveloping the femur were meticulously
removed from the bone without inflicting damage upon the callus
tissue. Since the callus tissues that developed within 15 days do not
show adequate signs of fusion and lack the strength needed for
biomechanical testing, the femurs collected on day 15 were only
examined using radiology and histopathology. The femurs collected
at 30 and 45 days were evaluated through radiographic,
biomechanical, and histopathological analyses.

2.4 Radiological evaluation

Anteroposterior femur radiographs were taken of all femurs
from the sacrificed rats on days 15, 30, and 45 after removal of the
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Kirschner wire. Scoring was performed according to the Lane and
Sandhu grading system (25) by three independent orthopedic
surgeons who were not involved in this study.

2.5 Biomechanical evaluation

After radiological evaluation, the femurs underwent biomechanical
testing on the same day of sacrifice. Analyses were performed using the
BMT-E series material testing machine (Besmak, Tiirkiye) at the Diizce
University Application Center of Scientific and Technological
Research. A three-point bending test was conducted to assess the
biomechanical properties of fracture healing at days 30 and 45. The
femur was placed on two loading bars, with an 18 mm distance
between them. The movable head of the testing machine applied
pressure to the center of the callus at a rate of 2 mm/min until the bone
fractured. The highest force in Newtons (N) just before the fracture for
each specimen was recorded.

2.6 Histopathological evaluation

At the conclusion of the biomechanical assessment, the specimens
were preserved in 10% neutral-buffered formalin. Subsequently, the
samples underwent decalcification in a 10% formic acid solution at
room temperature over a period of two weeks. Following verification of
complete decalcification, the tissues were subjected to routine
processing and embedded in paraffin blocks.

Sections of 4 um thickness were prepared from each block and
stained with hematoxylin and eosin (H&E) for histological analysis.
Fracture healing was assessed using the histologic scoring system
described by Huo et al. (26). This numerical score, ranging from 1 to
10, is based on the dominant tissue type present at the fracture site,
including fibrous tissue, cartilage, immature bone, and mature bone.
All histologic evaluations were conducted under light microscopy by
two independent, blinded pathologists, and average scores were used
for statistical analysis. Representative histologic images from various
stages of fracture healing are shown in Figure 1.

2.7 Statistical analysis

IBM SPSS Statistics v.22 (IBM Corp., 2013, Armonk, NY, USA)
was used as the statistical package for analysis. Before conducting
inferential tests, normality was checked using the Shapiro-Wilk test,
and skewness and kurtosis values were examined. Homogeneity of
variances across groups was assessed with Levene’s test. Differences
between groups were analyzed using one-way ANOVA, followed by
an LSD post hoc test for pairwise comparisons. For the within-
subject design with repeated measurements, repeated measures
ANOVA was used to analyze changes over time and potential
time X group interactions. Bonferroni and LSD tests were used for
within-group differences and multiple comparisons when
necessary. Because of an anticipated reduction in sample size over
time, a linear mixed-effects model (LMM) was employed to analyze
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repeated data, accounting for within-subject correlation and
unbalanced data due to scheduled animal sacrifices at different
time points. The model was estimated using the Restricted
Maximum Likelihood (REML) method. The Fisher-Freeman-
Halton test, with a Bonferroni-adjusted Z-test for comparing
column proportions, was used to analyze categorical data. A p-
value of less than 0.05 was considered statistically significant in
all analyses.

3 Results

The baseline characteristics of the rats before the study show
no significant differences between the groups; all rats had similar
nose to anus and nose to tail end lengths (p=0.998 and 0.970,
respectively), weights (p=0.999), and blood glucose levels (p=0.857).
The mean values of these measurements prior to the study are
provided in Table 1.

Analysis of blood glucose levels before and during treatment
revealed significant differences between the control and diabetic
groups induced by STZ (p < 0.001). All four DM-induced groups
exhibited significant increases after STZ injection, as indicated by
the comparison of pre- and post-injection values (p<0.001 for all
within-group comparisons). However, there were no significant
differences between the different experimental weeks of treatment
within these groups (p>0.05 for all within-group comparisons of
weeks 1 to 6). Additionally, the control group, which did not receive
STZ, exhibited no significant changes in blood glucose levels from
the beginning to the end of the experimental period (p>0.05 for all
within-group comparisons) (Table 2).

Throughout the study, the diabetic groups consistently
exhibited lower weights compared to the control group, from the
third week onward until the experiment’s conclusion (p = 0.038, p =
0.003, p = 0.003, and p < 0.001, respectively). In the control group,
body weight decreased during the first and second weeks of
treatment, followed by an increase in the third week (p<0.001).
Similarly, in the four diabetic groups, weight initially decreased;
subsequently, it increased in the third week; however, these weights
remained significantly lower than those observed in the control
group (p<0.001) (Table 3).

When evaluating the biomechanical test results, no significant
interaction was found between group and experimental day
(p=0.525), indicating that the effect of the group did not depend
on the experimental day. However, there was a significant main
effect of group (p < 0.001), indicating that overall Newton values
differed across groups; on the 30th day, the Newton scores of the
control and Met+L groups were similar, and by the 45th day, the
Met and L groups showed comparable scores. Additionally, a
significant main effect of experimental day was found (p<0.001),
suggesting that Newton values changed across days regardless of
group. Although no significant interaction was observed,
exploratory post hoc analyses, adjusted for multiple testing using
the Bonferroni correction, were performed within each group to
investigate further specific differences between groups and
days (Table 4).
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FIGURE 1

Representative histological images depicting various stages of fracture healing (H&E staining). (A) Predominantly cartilage-rich callus formation
(yellow asterisks) with minimal immature bone component (green asterisks), consistent with Score 6. (B) A mixture of immature bone (green
asterisks) and cartilage (yellow asterisks), indicating active endochondral ossification — consistent with Score 7. (C) Extensive immature bone
formation bridging the fracture site (green asterisks) with minimal residual cartilage (yellow asterisks), consistent with Score 8. (D) Dense mature
lamellar bone (black asterisks) fully bridging the fracture site, signifying advanced healing — consistent with Score 10.

When the overall histopathological scores were analyzed in
detail, a statistically significant difference between the groups was
observed on the 15 day (p=0.047) and 45™ day (p=0.036), but not
on the 30™ day (p=0.128). The score of 7 was observed in 75% of the
L group on the 15th day, and the score of 9 was observed in 75% of
both the L and Met+L groups on the 45th day. Conversely, no
significant difference was found in radiological scores between the
groups on the 15™ day (p=0.934), 30™ day (p=0.649), and 45" day
(p=0.502) of the experiment (Table 5).

4 Discussion

This study examined the effects of metformin, liraglutide, and
their combination on fracture healing through radiological,
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biomechanical, and histopathological methods in an experimental
partially insulinopenic DM rat model created with the STZ-NA
combination. The data showed that DM significantly impairs
fracture healing and that metformin and liraglutide, particularly
when used together, may improve biomechanical and
histopathological fracture healing outcomes.

Fracture healing involves stages such as inflammation, repair,
and remodeling. After a fracture, an inflammatory response occurs
first, with activated immune cells interacting with bone cells. This is
followed by the repair phase, where bone bridges form, and finally
the remodeling of the resulting callus tissue (27). Many stages of
fracture healing are significantly impacted in DM and present
clinically as issues like delayed union and nonunion. It has been
shown that inflammation, angiogenesis, endochondral ossification,
and remodeling are affected, leading to serious fracture healing
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TABLE 1 Distribution of animals’ height (cm), weight (g), and blood glucose levels (mg/dl) before the study.

Parameter Control DM Met L Met+L p
Length-nose to anus (cm) 2075 + 1.42 20.92 + 1.68 2075 + 1.22 2075 + 1.42 20.83 + 1.34 0.998
Length-nose to tail end (cm) 41.00 +2.13 4058 + 1.98 40.50 + 2.20 40.83 +2.37 4050 + 1.93 0.970
Weight (g) 379.33 + 8.60 379.58 + 9.15 379.25 + 5.9 379.08 + 8.37 379.50 + 7.98 0.999
Initial blood glucose (mg/dl) 100.42 + 9.28 98.75 + 8.56 100.33 + 9.58 96.75 + 11.34 98.25 + 6.9 0.857

DM, Diabetes mellitus; Met, Metformin; L, Liraglutide; cm, centimeters; mg, milligrams; dl, deciliters; g, grams.

problems in patients with type 2 DM (28). When examining the
biological causes of impaired fracture healing, it is observed that
oxidative stress and chronic inflammation—caused by factors such
as hyperglycemia and advanced glycation end products (AGEs) in
diabetic patients—disrupt osteoblast differentiation and reduce
osteoclast activity, causing impaired bone remodeling (29). Recent
studies have shown that in patients with type 2 DM, impairments in
fracture healing occur due to defects in mesenchymal and skeletal
system progenitor cell functions and ciliary signaling pathways (30,
31). Furthermore, some studies indicate that reduced antioxidant
defense systems associated with oxidative stress in type 2 DM
patients are a significant factor impairing fracture healing (32). In
our study, fracture healing scores were worse in the group with
induced DM and no antidiabetic treatment compared to the other
groups, as assessed biomechanically and histopathologically.
Metformin is the first-line oral medication used to treat patients
with type 2 DM (33). It has been shown that metformin activates
the AMPK complex, thereby improving glycemic control,
enhancing osteoblastic differentiation, reducing AGE, and
supporting angiogenesis (34, 35). Some experimental studies
indicate that metformin promotes the formation of type H vessels
in animal models of type 2 DM, accelerates endochondral
ossification, and aids fracture healing (7, 8, 36). Additionally, it
has been demonstrated to speed up the healing of bone defects in a
type 2 DM rat model by suppressing neutrophil extracellular traps
(NETs) observed around these defects (37). Despite these positive

effects, some studies have shown that metformin has no impact on
fracture healing (10) and may even exert negative effects (9). In our
study, diabetic rats treated with metformin achieved better
biomechanical and histopathological fracture healing scores
compared to untreated diabetic rats. These findings support
previous research indicating that metformin has beneficial effects
on fracture healing in a partially insulinopenic DM rat model.

GLP-1 is secreted by L-cells, which are intestinal epithelial
endocrine cells, in response to food entering the intestinal lumen. By
binding to GLP-1 receptors on pancreatic beta cells, it promotes
glucose-dependent insulin secretion by pancreatic islets (38). It has
been shown that GLP-1 secretion and activation are decreased in
patients with type 2 DM, and that significant increases in insulin levels
occur when GLP-1 infusion above normal levels is given to these
patients (39). However, because natural GLP-1 is rapidly inactivated by
dipeptidyl peptidase-4 (DPP-4), using GLP-1 receptor agonists (GLP-
1Ra) is more effective (40). Some experimental studies have indicated
that deletion of the GLP-1 receptor leads to increased osteopenia and
changes in collagen within the bone matrix (41, 42). Additionally,
administering GLP-1Ra for three days has been shown to raise
trabecular bone mass and osteoblast markers in diabetic and non-
diabetic rats (43). In an experimental osteoporotic fracture model, the
GLP-1Ra liraglutide was reported to enhance callus formation and
positively influence remodeling (44).

On a molecular level, the beneficial effects of liraglutide may be
linked to the activation of the cAMP-dependent Protein Kinase A

TABLE 2 Comparison of blood glucose levels (mg/dl) between groups during the 6-week study period.

Time point Control DM Met L Met+L p
Baseline 100.42 +9.28 98.75 + 8.56 100.33 +9.58 96.75 + 11.34 98.25 + 6.99 0.857
STZ 98.50 + 6.42° 345.42 + 45.05° 347.08 + 44.03° 355.33 + 32.26° 343.42 + 31.43° <0.001
Week 1 97.42 + 5.65° 363.33 + 23.97 280.75 + 31.81¢ 24425 + 31.16° 208.42 + 10.16" <0.001
Week 2 99.33 + 10.80% 368.67 + 22.88° 276.17 + 32.52¢ 231.00 + 28.96° 199.17 + 14.15° <0.001
Week 3 95.88 + 9.95" 369.13 + 32.38° 270.00 + 22.44¢ 231.75 + 15.52° 190.63 + 6.63" <0.001
Week 4 92.88 + 8.03* 378.38 + 32.14° 265.75 + 15.749 22250 + 29.23° 191.25 + 5.34° <0.001
Week 5 98.75 + 8.69* 365.00 + 28.37¢ 266.50 + 9.29° 222.00 + 10.00" 188.25 + 12.95° <0.001
Week 6 100.75 + 3.10° 369.00 + 18.89° 270.25 + 16.96° 219.75 + 13.20° 189.50 + 7.72° <0.001

STZ, 1 week after streptozotocin application; DM, Diabetes mellitus; Met, Metformin; L, Liraglutide; mg, milligrams; dl, deciliters; abede Jifferent superscript letters denote significant differences
between the groups in each measurement time according to the post hoc test, with-in group pairwise comparisons showed no significant changes across the study period in the control group
(p>0.05 for all), all STZ-induced groups exhibited significant increases from baseline to post-STZ and subsequent weeks (p<0.001 for all), with no significant differences between weeks 1 to 6
(p>0.05 for all within-group comparisons of weeks 1 to 6). Due to the extensive number of comparisons, detailed p-values are provided in the Supplementary Table 1.

Bold values indicate statistically significant differences (p < 0.05).
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TABLE 3 Comparison of weights (g) between groups during the 6-week study period.

Time point Control DM Met L Met+L p
Baseline 379.33 + 8.60 379.58 + 9.15 379.25 + 5.99 379.08 + 8.37 379.50 + 7.98 0.999
Week 1 356.05 + 12.83 358.17 + 11.95 358.33 + 5.88 361.75 + 12.66 361.92 + 12.08 0.673
Week 2 349.92 + 12.18 344.92 + 11.29 349.83 + 6.69 352.08 + 12.80 35525 + 12.63 0271
Week 3 362.25 + 12.20° 347.38 + 10.41* 355.38 + 4,27 359.25 + 11.76" 361.75 + 10.63" 0.038
Week 4 370.13 + 11.14° 351.63 + 8.40° 36238 + 427" 365.25 + 10.54" 369.00 + 10.70° 0.003
Week 5 381.75 + 9.07° 35275 + 9.74* 368.25 + 2.99° 373.00 + 8.04" 376.25 + 10.90 0.003
Week 6 400.75 + 5.44° 35350 + 8.39° 377.75 + 7.27° 381.50 + 7.77° 380.25 + 13.93" <0.001

DM, Diabetes mellitus; Met, Metformin; L, Liraglutide; g, Grams. *>%, different superscript letters denote significant differences between the groups in each measurement time according to the
post hoc test, within-group pairwise comparisons showed complex patterns of significant and non-significant differences across groups and time points. Due to the extensive number of

comparisons, detailed p-values are presented in the Supplementary Table 2.
Bold values indicate statistically significant differences (p < 0.05).

(cAMP/PKA) signaling cascade following GLP-1 receptor stimulation.
This pathway has been demonstrated to enhance osteoblast
differentiation, increase collagen synthesis, and suppress osteoclast
activity, thereby facilitating callus formation and remodeling (45).
Concurrently, metformin exerts its effects primarily by activating
AMPK, which improves mitochondrial function, reduces oxidative
stress, and promotes angiogenesis. AMPK signaling has also been
reported to stimulate osteogenic differentiation of mesenchymal stem
cells and inhibit osteoclastogenesis (37). These complementary
mechanisms may elucidate why the combination of liraglutide and
metformin yielded superior biomechanical and histopathological
outcomes in our study.

In addition to all the experimental studies conducted, some
clinical studies and meta-analyses have also demonstrated that
Liraglutide increases bone mineral density, reduces bone
resorption, and accelerates bone formation, thereby improving
fracture healing and reducing bone loss observed in patients with
osteoporosis (3, 13). Some studies have also reported that, aside
from these positive effects, GLP-1Ra drugs have no modifying
impact on bone metabolism in type 2 DM patients, and no
superiority over other antidiabetic drugs has been found (39, 45).
A limited number of previous studies reported that liraglutide,
either alone or combined with insulin, had positive effects on
fracture healing in type 2 DM rats (46). In our study, it was
observed that blood glucose control remained stable and balanced
in diabetic rats treated with liraglutide, and that better results were
obtained in the biomechanical and histopathological scores of

fracture healing compared to the diabetic control group and the
diabetic group treated with metformin.

When analyzing the results of our study, the most notable
finding is that the biomechanical and histopathological healing
scores in the diabetic group receiving combination therapy with
metformin and liraglutide were significantly better than those in all
other diabetic groups. In addition, healing scores like those of the
non-diabetic control group were achieved with this combination
therapy. A similar study reported that the combination of
liraglutide and insulin had more effective results on fracture
healing in diabetic rats than the same treatments given alone (46).
The superior effects of the combination therapy may partly result
from more stable blood glucose levels compared to liraglutide or
metformin alone, which can influence bone cells and fracture
healing. A randomized controlled prospective clinical study
showed that liraglutide alone or combined with metformin led to
significant improvements in blood glucose levels in children and
adolescents aged 10 years and older with type 2 DM, and that it can
be used in a safe manner in this age group (12).

Biomechanical analysis showed significant differences between
groups regardless of the day. On both day 30 and day 45, the control
group achieved the highest scores, closely matching the results of the
Met+L group, while the DM group had the lowest scores at both
measurement times. Previous studies in diabetic rats and humans
have also indicated that biomechanical strength is reduced in DM
compared to normal bone (9, 47). A study examining the effects of
liraglutide on fracture healing in an osteoporotic rat model found that

TABLE 4 Comparison of biomechanical evaluation (Newton values) across the groups by experimental day.

Experimental

day Control

Newton-30™ day 101.35 + 18.64° 38.85 + 5.53° 51.33 + 18.28° 75.70 + 4.81° 93.50 + 7.31° <0.001
Newton-45™" day 124.05 + 6.02° 53.50 + 9.78¢ 78.28 + 4.24° 89.90 + 8.40° 105.13 + 4.82° <0.001
Pw 0.004 0.050 0.001 0.057 0.116 0.525

DM, Diabetes mellitus; Met, Metformin; L, Liraglutide; p, between groups; p,, within groups, *>“*<, different superscript letters denote significant differences between the groups in each

measurement time according to the post hoc test.
Bold values indicate statistically significant differences (p < 0.05).
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TABLE 5 Comparisons of histopathological and radiological evaluations across groups by experimental day.

Evaluation parameter Control DM Met L Met+L p
HS - day15, n (%)
5 0 (0.0)* 3 (75.0)° 2 (50.0)* 0 (0.0)* 0 (0.0)* 0.047
6 2 (50.0) 1 (25.0) 2 (50.0) 1 (25.0) 3 (75.0)
7 2 (50.0)* 0 (0.0)* 0 (0.0)* 3 (75.0)° 1 (25.0)*
HS - day30, n (%)
6 0 (0.0) 0 (0.0) 1 (25.0) 0 (0.0) 0 (0.0) 0.128
7 0 (0.0) 3 (75.0) 3 (75.0) 2 (50.0) 1 (25.0)
8 3 (75.0) 1 (25.0) 0 (0.0) 2 (50.0) 1 (25.0)
9 1(25.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (50.0)
HS - day45, n (%)
7 0 (0.0) 1 (25.0) 1 (25.0) 0 (0.0) 0 (0.0) 0.036
8 1(25.0" 3 (75.0)° 1(25.00" 1(25.00" 0 (0.0)*
9 0 (0.0)* 0 (0.0)* 2 (50.0)* 3 (75.0)° 3 (75.0)°
10 3 (75.0)° 0 (0.0)* 0 (0.0)* 0 (0.0)* 1(25.0)®
RS - dayl15, n (%)
0 1 (25.0) 1 (25.0) 1 (25.0) 0 (0.0) 1(25.0) 0.934
1 2 (50.0) 3 (75.0) 3 (75.0) 4 (100) 3 (75.0)
2 1 (25.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
RS - day30, n (%)
0 0(0.0) 1(25.0) 0 (0.0) 0 (0.0) 0 (0.0) 0.649
1 0 (0.0) 2 (50.0) 2 (50.0) 1 (25.0) 0 (0.0)
2 2 (50.0) 1 (25.0) 1 (25.0) 2 (50.0) 3 (75.0)
3 2 (50.0) 0 (0.0) 1 (25.0) 1 (25.0) 1 (25.0)
RS - day45, n (%)
1 0(0.0) 1(25.0) 0 (0.0) 0 (0.0) 0 (0.0) 0.502
2 0(0.0) 2 (50.0) 2 (50.0) 1(25.0) 0 (0.0)
3 2 (50.0) 1 (25.0) 1 (25.0) 2 (50.0) 1 (25.0)
4 2 (50.0) 0 (0.0) 1 (25.0) 1 (25.0) 3 (75.0)

HS, Histopathological score; RS, Radiological score; DM, Diabetes mellitus; Met, Metformin; L, Liraglutide; py, between groups; p,,, within groups; abede Jifferent superscript letters denote
significant differences between the groups in each measurement time according to the post hoc test.

Bold values indicate statistically significant differences (p < 0.05).

rats treated with liraglutide experienced better biomechanical
outcomes (48). When radiological fracture healing scores were
assessed, although the control and Met+L groups had higher scores
than the other groups at Day 45, this difference was not statistically
significant. The sensitivity of evaluating callus maturation and
fracture healing with radiography is limited, and methods such as
micro-CT may be necessary in studies examining early and mid-term
fracture healing, as in the present study (46, 49). Histopathological
examination is also one of the most effective and reliable methods for
evaluating fracture healing (50). When analyzing our study data, no
significant differences were found between the groups on day 30,
while on days 15 and 45, the control and Met+L groups showed the

Frontiers in Endocrinology

best healing scores, and the DM group had the worst scores during
both time points. These findings align with the literature and support
the positive effects of combination therapy with metformin and
liraglutide on fracture healing (44, 46, 51).

One of the strengths of our study is that the partially
insulinopenic DM rat model created with the STZ-NA combination
resembles the human type 2 DM phenotype. Therefore, more reliable
results can be obtained concerning the clinical implications of the
data. Additionally, fracture healing was assessed from biomechanical,
radiological, and histopathological perspectives, ensuring that
multiple methods were addressed within the same study. Moreover,
although the effects of metformin and liraglutide on fracture healing
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have been explored in limited studies, comparing the two drugs in a
single study and examining their combined effects is valuable.

This study has some limitations. The small sample size, due to
ethical concerns, is a constraint. Because conventional X-ray
radiological examinations are inadequate, more detailed methods
like micro-CT should be used in future studies. The short follow-up
period restricts the ability to assess long-term fracture healing, and
studies with longer follow-up could better evaluate the later stages
of remodeling. It might be helpful to evaluate blood samples taken
during the euthanasia for some biochemical parameters and assess
AGE accumulation and GLP-1R expression in bone tissue. The
study was not examined at a mechanistic level; therefore, our
findings should be considered hypothesis-generating. Metformin
was given by gavage once daily, resulting in only a few hours of
significant plasma concentrations each day, unlike the 24-hour
profile seen in treated humans. Lastly, the study did not compare
different dosages and application periods of the drugs used.

From a translational perspective, our findings could have
clinical significance for managing diabetic patients with fractures.
Current guidelines primarily focus on glycemic control when
selecting antidiabetic treatments; however, our results suggest that
medication selection may also impact bone healing. Notably, the
combined use of metformin and liraglutide, both commonly
prescribed for type 2 diabetes, may offer dual benefits by
supporting metabolic regulation and promoting fracture repair.
Although further clinical trials are needed, these findings
highlight the potential to include bone health considerations in
treatment strategies for diabetic fracture patients.

In conclusion, complications such as delayed fracture healing result
in extended treatment durations, additional health issues, substantial
increases in costs, and ultimately, profound impacts on patients’ quality
of life. This study demonstrates that both metformin and liraglutide
exhibit positive effects on fracture healing in a partially insulinopenic
DM rat model. The combined administration of these two
pharmaceuticals demonstrated that the adverse impact of DM on
fracture healing can be broadly mitigated, resulting in outcomes
comparable to those observed in the non-diabetic control group of
rats. It is evident that these two medications, which are presently
extensively utilized in the treatment of both pediatric, adolescent, and
adult patients with type 2 DM, may facilitate fracture healing.
Furthermore, combination therapies employing these agents possess
significant potential for enhanced therapeutic effects. Future human-
based studies are needed to support the data obtained from this study.
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