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The maintenance of skeletal integrity relies on bone remodeling, a dynamic
process orchestrated by the interplay between osteoclasts, osteoblasts, and the
regulatory network of osteocytes. Traditional bone turnover markers (BTM)
provide a non-invasive tool to assess bone metabolic activity. However, their
clinical utility is limited by a low specificity and poor reproducibility. Moreover,
traditional BTM do not reflect osteocyte function, despite the central role of
these cells in bone remodeling. Novel BTM, including proteins (namely sclerostin,
DKK-1, RANKL/OPG, and periostin), lipids (namely sphingosine-1-phosphate),
and miRNAs, offer more specific insights into the interactions between bone cells
and molecular signaling within the bone microenvironment. These markers
represent potential therapeutic targets, with anti-sclerostin antibodies already
approved for osteoporosis treatment. Another fundamental aspect of skeletal
integrity is the process of mineralization, which is tightly regulated by three
hormones: parathyroid hormone (PTH), vitamin D, and fibroblast growth factor
23 (FGF-23). These hormones not only maintain systemic calcium-phosphate
homeostasis but also exert direct effects on bone cells, thereby influencing bone
remodeling. This narrative review summarizes the functions, commonly used
analytical methods, and clinical applications of novel BTM. It also presents the
mechanisms of action of these hormones on bone tissue, along with new
analytical approaches for measuring vitamin D, PTH, and FGF-23. The
application of “omics” techniques in bone remodeling assessment is also
discussed, with an emphasis on the advantages and limitations of
these approaches.
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1 Introduction

Bone is a metabolically active living tissue that constantly
undergoes remodeling, a process essential for maintaining proper
skeletal function. The cellular components of the bone include
osteocytes, osteoblasts and osteoclasts embedded in a mineralized
bone matrix. The continuous and tightly regulated process of bone
remodeling is known as coupling, in which bone resorption by
osteoclasts precedes bone formation by osteoblasts (1).

In young adults, the remodeling rate is estimated at 5%, occurring
within the structure known as the bone multicellular units (BMU), the
number of which exceeds 1 million at a given moment in this age group
(1-3). Remodeling is more active in trabecular than in cortical bone (3).
The remodeling cycle encompasses five subsequent stages. The entire
process is regulated by multiple autocrine, paracrine and endocrine
factors and it is initiated by the retraction of the bone lining cells
covering the bone surface, which attracts osteoclasts (1). Osteoclasts
form resorption lacunae, in which acid produced by osteoclasts
dissolves calcium hydroxyapatite, leading to the release of calcium
into the bloodstream (1, 3). Simultaneous enzymatic degradation by
osteoclasts results in release of the type I collagen fragments, which can
be measured in the blood or/and in the 24-hour urine collection (4).
This group, widely known as bone resorption markers, includes serum
and urinary C-telopeptides of type I collagen (CTX-I), and N-
telopeptides of type I collagen (NTX-I), urinary pyridinoline (PYD)
and even more specific deoxypyridinoline (DPD) (5). Osteoclasts also
release tartrate-resistant acid phosphatase type 5b (TRACP5b) - a non-
specific hydrolase that enables osteoclasts migration and correlates with
their activity (5).

The period of the intense bone resorption is succeeded by bone
formation. Osteoblasts produce unmineralized extracellular matrix
(ECM), consisting mainly of type I collagen, which subsequently
undergoes the process of mineralization. The intensity of bone
formation correlates with the blood concentrations of osteocalcin
(OC), procollagen I N-propeptide (PINP), and bone-specific
alkaline phosphatase (BALP), traditionally referred to as bone
formation markers (5). After contributing to bone formation,
osteoblasts either apoptose or differentiate into lining cells or
osteocytes. Osteocytes form an extensive dendritic network, which
is essential for coordinating the activities of both osteoblasts and
osteoclasts (6). Scientific advances in recent years have redefined
osteocytes from metabolically inactive cells to central regulators of
bone cell communication. Osteocytes respond to mechanical and
hormonal stimuli, which they transduce to osteoblasts and
osteoclasts via paracrine signaling or direct cell-to-cell
communication through their long cytoplasmic extensions (7).
The main mediators of paracrine communication are receptor
activator for nuclear factor kB ligand (RANKL), a key regulator
of osteoclastogenesis, and sclerostin, a major antagonist of the
wingless-related integration site/B-catenin (Wnt/B-catenin)
signaling pathway. Mechanical stimuli inhibit osteocyte apoptosis
and trigger the Wnt pathway, thereby promoting bone formation.
In contrast, factors such as sex steroid deficiency, glucocorticoid
exposure, hypoxia, aging, tumor necrosis factor alpha (TNF-a), lack
of mechanical load, microdamage, fatigue, and inflammation
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activate pro-apoptotic pathways in osteocytes (7). This leads to
the recruitment of osteoclasts and the stimulation of bone
resorption. One proposed mechanism underlying this process is
the upregulation of RANKL expression in osteocytes adjacent to
apoptotic osteocytes (8, 9).

The unique crosstalk between bone cells and their activity is the
source of numerous compounds released into the bloodstream,
commonly referred as bone turnover markers (BTM), which have
enabled the diagnosis and monitoring of bone diseases for over
100 years.

This narrative review begins with an overview of the limitations
associated with classical BTM. Subsequently, we present a
comprehensive review of novel BTM, alongside with the
development of diagnostics laboratory methods used to determine
their concentrations. Eventually, we discuss the future directions of
assessment of bone remodeling, including “omics” techniques.

2 Traditional bone turnover
biomarkers: advantages and
disadvantages

Traditional BTM are a group of protein-based indicators that
allow for non-invasive assessment of bone formation and
resorption. In contrast to bone biopsy with histomorphometry,
BTM reflect the remodeling activity across the entire skeleton. A
further advantage of BTM is their ability to rapidly reflect changes
in bone metabolic activity, in contrast to imaging techniques.
However, traditional BTM have limited clinical applicability due
to several limitations that may compromise their reliability and
validity (10). The presence of type I collagen in other organs such as
skin, tendons, and blood vessels limits the bone specificity of both
resorption and formation markers derived from type I collagen
metabolism, including CTX-I, NTX-I, and PINP (11, 12). Diseases
affecting these tissues, including systemic sclerosis, cardiomyopathy
or congestive heart failure, are associated with elevated levels of
those markers (13-15). Moreover, their clinical utility is restricted
by significant intra-individual, and inter-laboratory differences in
reproducibility, as well as pre-analytical variability (10). The
circadian rhythm, food intake, drugs, immobilization, and
smoking are examples of modifiable sources of variability of BTM
(4). Unmodifiable factors such as age, sex, fracture, pregnancy,
lactation, and menopause should also be considered in the
interpretation of the laboratory results (4). Additionally, impaired
renal function may be another limiting factor. BTM such as CTX-I,
NTX-I, monomeric PINP, and OC undergo renal clearance and
typically accumulate in the setting of renal insufficiency (5). Factors
influencing the traditional BTM are presented in Figure 1.

Although the discovery of BTM has broadened the spectrum of
tools for assessing skeletal metabolism, their clinical utility remains
limited. Most studies have shown a negative correlation between
bone resorption markers and bone mineral density (BMD), and a
positive correlation between concentrations of these markers and
the risk of fractures in postmenopausal women (16, 17). However,
not all results are consistent. A recent study led by Crandall et al.,
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FIGURE 1

Traditional bone turnover markers associated with bone formation and resorption, and factors influencing their measurement in blood (serum/plasma) and
urine. BALP, bone-specific alkaline phosphatase; PINP, procollagen | N-propeptide; OC, osteocalcin; CTX-I, C-telopeptide of type | collagen; NTX-I, N-
telopeptide of type | collagen; urinary PYD, pyridinoline; DPD, deoxypyridinoline; TRACP5b-tartrate-resistant acid phosphatase type 5b; BTM, bone turnover

markers. Created in BioRender.

did not establish the efficacy of CTX and PINP measurements in
predicting hip fracture risk in postmenopausal women (18).
Currently, BTM assessments are not included in the Fracture Risk
Assessment Tool (FRAX) for estimating 10-year fracture risk and
are not used in the routine diagnosis of osteoporosis (19).
According to osteoporosis guidelines, the clinical application of
BTM is limited to evaluating responses to anabolic and
antiresorptive therapies, as well as assessing patient adherence to
treatment. (19). BTM, particularly PINP, are used in the clinical
diagnosis of Paget’s disease and in assessment of the efficacy of the
therapy (20). Although BTM are not used in the diagnosis or
monitoring of primary hyperparathyroidism (PHPT), some
studies have demonstrated that specific markers, such as CTX-I
and PINP, would be useful in predicting changes in bone mass
following successful parathyroidectomy (21, 22).

3 Novel bone turnover biomarkers

In recent years, growing interest in the molecular regulation of
bone remodeling has led to the identification of novel signaling
pathways involved in skeletal homeostasis, such as the Wnt/B-
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catenin pathway, the receptor activator of nuclear factor xB/
receptor activator of nuclear factor kB ligand/osteoprotegerin
(RANK/RANKL/OPG) system, and sphingosine-1-phosphate
(S1P) signaling. A deeper understanding of these pathways has
facilitated the discovery of new biomarkers that offer more specific
insights into the activity of osteoblasts, osteoclasts, and osteocytes,
compared to traditional BTM. These biomarkers represent a
biochemically diverse group of molecules, including glycoproteins
such as sclerostin and the Wnt antagonist Dickkopf-1 (DKK-1);
proteins including RANKL, OPG, and periostin; lipids such as S1P;
and small non-coding RNAs, including diverse group of
microRNAs. Their structural heterogeneity reflects the
multifaceted regulation of bone remodeling at the molecular level.

3.1 Protein and protein-derived bone
turnover biomarkers

3.1.1 Sclerostin

Sclerostin, encoded by the SOST gene and secreted mainly by
mature osteocytes, is an extracellular negative regulator of Wnt/
beta-catenin signaling pathway (23, 24). Since activation of this

frontiersin.org


https://doi.org/10.3389/fendo.2025.1702413
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Leszczynska et al.

pathway stimulates bone formation, sclerostin inhibits osteogenesis
by suppressing the pathway and reducing osteoblast function (23).
Moreover, by upregulating osteocyte expressed RANKL, sclerostin
promotes bone resorption processes (23, 24). Understanding the
role of sclerostin in bone remodeling led to the development and
subsequent approval of romosozumab — a humanized monoclonal
anti-sclerostin antibody — for the treatment of osteoporosis in
postmenopausal women at high risk of fractures, by both the Food
and Drug Administration (FDA) and the European Medicines
Agency (EMA) in 2019 (24). Nevertheless, the clinical utility of
serum/plasma sclerostin measurement in predicting the therapeutic
response to romosozumab has not yet been established (25).

3.1.1.1 Immunoassays for sclerostin determination

Circulating sclerostin levels in human serum and plasma are
most commonly quantified using enzyme-linked immunosorbent
assays (ELISA), (e.g., Biomedica (Austria), TECOmedical
(Switzerland), R&D Systems (USA)) (26, 27). Alternative methods
include a multiplex electrochemiluminescence assay (Meso Scale
Discovery (USA)) and a fully automated chemiluminescence
immunoassay (CLIA) such as the DiaSorin LIAISON® L/XL (26);
however, the latter method is not currently available. Recently
developed assays also allow for the quantification of bioactive
(intact) sclerostin concentrations (26, 27). Importantly, the
availability of multiple commercial ELISA kits from different
manufacturers, with varying degrees of sensitivity and specificity,
significantly limits comparability across studies and contributes to
inconsistent conclusions.

3.1.1.2 Clinical application

Numerous researchers have focused on evaluating the clinical
relevance of sclerostin in relation to osteoporosis and its potential
role in predicting fracture risk. Multiple studies have reported lower
sclerostin levels in patients with osteoporosis or osteopenia
compared to individuals with normal bone mass (28, 29), a
finding also observed in postmenopausal women (30), which may
be attributed to an age-related decline in osteocyte number (28).
Gorter et al. observed that osteoporotic patients with low-energy
extremity fractures exhibited lower sclerostin levels compared to
non-osteoporotic fracture patients (29). These findings suggest that
sclerostin may serve as a novel biomarker for osteoporosis in
patients with fractures (29). On the other hand, numerous studies
have reported conflicting results regarding the correlation between
serum sclerostin concentrations and fracture risk (25). Moreover,
research groups from China (31) and Malaysia (30) demonstrated
that in women with postmenopausal osteoporosis, serum sclerostin
levels were positively correlated with BMD (30, 31), and could be
considered an indirect predictor of bone strength in this population
(31). In the OFELY study on postmenopausal women, serum
sclerostin concentrations were positively associated with bone
mineral density but showed no significant relationship with the
risk of incident fractures (32). The authors suggested that this
discrepancy might be attributed to the fact that circulating
sclerostin levels mainly reflect the number of osteocytes rather
than the metabolic activity of individual cells. Since sclerostin may
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act predominantly at the local (bone tissue) level, peripheral
concentrations may not adequately capture its paracrine effects
within the bone microenvironment (32). The lack of association
could also be related to the relatively small number of fracture cases
and to methodological aspects, such as reliance on single morning
measurements despite known diurnal variation in serum sclerostin
levels (32).

Although sclerostin reflects osteocyte number and/or activity and
bone remodeling processes, circulating sclerostin levels have not shown
a consistent relationship with bone mineral density in either the general
population or osteoporotic patients. Based on current evidence,
sclerostin appears to be more informative in specific pathological
conditions than as a stand-alone bone turnover marker. In a study of
patients with renal osteodystrophy, osteocytic sclerostin expression was
found to vary inversely with turnover rate, making it a potential marker
for distinguishing between high- and low-turnover bone states in this
group (23).

The assessment of sclerostin levels may offer potential benefits
in the evaluation of metabolic bone disorders. Given its elevated
levels in osteogenesis imperfecta (OI), (which exhibits the highest
reported concentrations of sclerostin), X-linked hypophosphatemia
(XLH), and Paget’s disease of bone (PDB), the assessment of
circulating sclerostin may represent a useful adjunct in the
diagnostic evaluation of these conditions (33). In Gaucher disease,
increased sclerostin levels have been associated with skeletal
manifestations, including bone pain, bone marrow infiltration,
and Erlenmeyer flask deformities (34).

3.1.2 Dickkopf-1

DKK-1 is a glycoprotein that, due to its mechanism of action—
namely inhibition of the Wnt/B-catenin signaling pathway—shares
functional similarities with sclerostin. It is primarily expressed in
osteocytes and osteoblasts, as well as in the skin and placenta. In the
context of bone remodeling, DKK-1 competitively binds to LRP5/6
co-receptors, thereby inhibiting Wnt-induced osteoblast
differentiation and suppressing bone formation (35). Elevated
DKK-1 levels have been associated with enhanced resorption,
which may contribute to bone loss and altered turnover states.

3.1.2.1 Immunoassays for DKK-1 determination

Commercially available ELISA kits (e.g., R&D Systems (USA),
SunRedBio (China), Abcam (UK), Cloud-Clone (China)) are widely
utilized in both clinical and research settings to quantify DKK-1
levels in serum or plasma. These assays offer a reliable and relatively
straightforward method for monitoring DKK-1 concentrations.
Recently, aptamer-based assays [oligonucleotides (short fragments
of DNA or RNA) or peptides that bind specifically to a specific
molecule] have emerged as a promising alternative, combining the
high specificity of antibodies with the structural flexibility of
aptamers, and have been validated against conventional ELISA
immunoassays (36).

3.1.2.2 Clinical application
DKK-1 acts as a regulatory molecule, reflecting the severity of
several bone-related diseases and representing a potential
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therapeutic target. Elevated levels of DKK-1 have been associated
with improved BMD, microarchitecture, and strength in
postmenopausal women with osteoporosis (31). This paradoxical
finding—similar to what is observed with sclerostin—may be
explained by the hypothesis that DKK-1 levels reflect osteocyte
number. Conversely, Ahmed et al. reported that postmenopausal
women with significantly elevated serum DKK-1 levels exhibited
more severe osteoporosis at the lumbar spine and femoral neck,
suggesting that DKK-1 inhibition could hold therapeutic potential
in this population (37). Additionally, an analysis by Alam et al.
identified DKK-1 as part of a gene triplet associated with treatment
response to bisphosphonates such as ibandronate and alendronate
(38). Despite inconsistent findings regarding the overall correlation
between DKK -1 concentration and BMD, the assessment of DKK-
1 levels may be particularly useful in the diagnosis and management
of specific disease entities. Colditz et al. demonstrated a critical role
for DKK-1 in the pathogenesis of glucocorticoid (GC)-induced
bone loss (39), highlighting its potential as a therapeutic target to
reduce the risk of osteoporosis resulting from long-term GC
therapy. In rare bone diseases, such as osteogenesis imperfecta,
which is characterized by recurrent fractures and skeletal
deformities, the use of DKK-1 antisense treatment has shown
promise in improving bone mechanical properties (40). In
Gaucher disease, an altered sclerostin/DKK-1 ratio has been
found to correlate with decreased bone mineral density,
suggesting its potential utility as a biomarker of skeletal
involvement (34). Moreover, elevated concentrations of DKK-1 in
serum and tumor tissues of patients with various malignancies (41)
—such as breast, prostate, and lung cancers—and its proposed
involvement in osteolytic bone metastases support its role as a pro-
tumorigenic factor, as demonstrated in both in vivo and in vitro
studies (41). These findings provide a rationale for the potential use
of anti-DKK-1 therapies in cancer immunotherapy (41). In multiple
myeloma, increased serum DKK-1 levels correlate positively with
the severity of osteolytic lesions and with treatment response,
further underscoring its clinical relevance (42). Moreover, studies
indicate a role for DKK-1 in the diagnosis and monitoring of
chronic immunoinflammatory rheumatic diseases, which are
often associated with abnormal bone remodeling, including early-
stage spondyloarthritis (43). In psoriatic arthritis and ankylosing
spondylitis, DKK-1 is notably elevated in axial disease forms,
suggesting its utility as a biomarker for axial skeletal
involvement (44).

3.1.3 RANKL and osteoprotegerin

The RANK/RANKL/OPG signaling pathway regulates bone
turnover by controlling the differentiation and survival of
osteoclasts (45). RANKL binds to transmembrane receptor RANK
on osteoclast precursors, consequently provoking their
differentiation and fusion, as well as stimulating their function
and survival. OPG acts as a decoy receptor for RANKL, blocking its
interaction with RANK, thereby preventing osteoclast formation
and inhibiting bone resorption. Both RANKL and OPG are
produced by osteoblasts and osteocytes. Their expression is
regulated by various stimuli such as PTH, 1,25(OH),D,
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reproductive hormones, glucocorticosteroids, and
proinflammatory cytokines.

3.1.3.1 Immunoassays for RANKL and OPG determination

RANKL and OPG serum concentrations are measured using
immunoassay methods such as ELISA, CLIA. However,
discrepancies between findings have revealed the unsatisfactory
reproducibility of RANKL and OPG measurements, which has been
attributed to the lack of a standardized method and test units (46, 47).
Due to these issues, new methods are being explored, including
Multiplex electrochemical detection techniques (48).

Another important consideration is that available assays
measure only soluble RANKL, whereas a substantial portion of
RANKL remains membrane-bound on the surface of osteocytes and
does not enter the circulation. The soluble form is produced
through proteolytic cleavage of the membrane-bound protein (49).

RANKL/OPG ratio is a parameter that integrates both biomarkers
as they function within an interdependent pathway. It has been
established that the ratio demonstrates bone turnover trends more
accurately than the individual concentrations of OPG and RANKL
(45). However, some studies use the inverse: OPG/RANKL ratio (46,
50). Further standardization of this marker is needed.

3.1.3.2 Clinical application

As key factors in regulating osteoclastogenesis, RANKL and
OPG serum level measurements were initially considered promising
as bone turnover markers. However, results from numerous studies
have been inconsistent.

Osteoporosis has been associated with an increased RANKL/
OPG ratio (46, 51, 52), low OPG (51-54), and high RANKL serum
levels. Some studies have also shown a negative correlation between
a high RANKL/OPG ratio and low BMD (52). Yet, findings from
other research differ, reporting no significant differences in these
biomarkers between osteoporotic and healthy individuals (55).
Some studies have even produced contradictory results, linking
high OPG levels, low RANKL levels, and a low RANKL/OPG ratio
to osteoporosis (56). Reports using OPG and RANKL serum levels
or the RANKL/OPG ratio to estimate the effectiveness of
osteoporosis treatment have also shown discrepant results (57, 58).

3.1.4 Periostin

Periostin (PSTN) is an extracellular matrix protein that participates
in cortical bone metabolism and tissue healing (59). Its expression is
highest in collagen-rich connective tissues, such as periosteum,
periodontal ligaments, tendons, skin, aorta, and heart valves. PSTN
promotes cell migration, adhesion, and proliferation by binding to
integrins’ ovP3 and a5 receptors on the cell surface and activating
Wnt/B-catenin, NF-kB/STAT3, PI3K/Akt, and focal adhesion kinase
signaling pathways. Its elevated expression has been observed in
various types of neoplasms and inflammatory diseases.

In bone, PSTN interacts with bone morphogenetic protein-1
(BMP-1), which leads to the activation of lysyl oxidase, an enzyme
that catalyzes collagen cross-linking (60). This process is essential
for high-strength bone formation. It has been observed that PSTN
expression is increased by mechanical stress and inflammation. The
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protein promotes bone repair by recruiting stem cells to the injury
site, enhancing osteoblast differentiation and survival, supporting
matrix remodeling and mineralization. Another way in which
PSTN affects osteogenesis is by downregulating sclerostin
expression via the Wnt-B-catenin pathway.

3.1.4.1 Immunoassays for PSTN determination

PSTN serum/plasma concentrations can be measured using
different immunoassay methods. PSTN assays demonstrate high
analytical validity and reproducibility. Standardization and reference
ranges are well established, and results remain stable under normal
storage conditions (61). PSTN essays are commercially available for
clinical and research use. In healthy individuals, levels are high at age
16-18, then decrease and remain stable between the ages of 32 and 70,
and are not influenced by gender (62).

An important limitation of PSTN assay is its low specificity, as it is
expressed in various tissues, and is upregulated in numerous
conditions, primarily in diseases characterized by type 2
inflammation, tissue remodeling, or fibrosis, such as chronic
obstructive pulmonary disease, asthma, chronic kidney disease,
diabetes, chronic heart failure, and certain types of malignancies (63).
In 2017, Garnero et al. developed an ELISA for the Cathepsin K-
generated periostin fragment (K-PSTN), a bone-specific PSTN form
produced by osteoclastic proteolysis (64). The assay demonstrated low
variability and adequate sensitivity for serum measurements in healthy
individuals and was validated in postmenopausal women, showing
bone specificity and correlation with cortical bone microstructure, but
not with BMD, or standard bone turnover markers (65). It is not
currently available for clinical use as standardized, commercially
available assays and reference ranges are not established.

3.1.4.2 Clinical application

High serum PSTN concentrations have been associated with
postmenopausal osteoporosis, with numerous studies demonstrating
a negative correlation between circulating PSTN and BMD (66, 67).
However, the findings are not entirely consistent, as a few studies have
failed to confirm this relationship (68, 69).

PSTN has been identified as an independent predictor of fracture
risk in postmenopausal women (70, 71). In a prospective cohort study,
serum K-PSTN levels were likewise associated with fracture risk, and
incorporating K-PSTN into models based on BMD or FRAX
significantly enhanced their diagnostic accuracy (65).

In patients with PHPT, serum PSTN levels were significantly
elevated compared to healthy controls (72). Among the PHPT
group, those with osteoporosis had notably higher PSTN levels than
those without (72). PSTN has been identified as a predictor of
osteoporosis in this population (73).

3.2 Lipids and lipid-derived bone turnover
biomarkers

3.2.1 Sphingosine 1-phosphate

Sphingosine-1-phosphate (SI1P) is a bioactive sphingolipid
metabolite generated by the phosphorylation of sphingosine via
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sphingosine kinases 1 and 2 (SK1 and SK2) (74). It acts both
intracellularly and extracellularly through five distinct G protein-
coupled receptors (SIPR1-S1PR5) (74-77), regulating a wide range
of cellular processes including proliferation, apoptosis, and
angiogenesis (74-78). In bone tissue, SIP mediates the crosstalk
between osteoclasts, osteoblasts, and vascular endothelial cells, for
example by recruiting osteoclast and osteoblast precursors to sites of
bone injury (75), thereby coordinating bone resorption and
formation (74-78). This signaling axis is increasingly recognized
as a potential therapeutic target in bone-related diseases. Beyond
the skeletal system, S1P receptors are expressed in multiple systems,
including the immune, cardiovascular, reproductive, and nervous
systems (74, 77).

3.2.1.1 Immunoassays for S1P determination

The gold standard for SIP measurement remains liquid
chromatography-tandem mass spectrometry (LC-MS/MS) (79),
owing to its high specificity, sensitivity, and reproducibility. Both
total and specific protein-bound (i.e. albumin-bound or low-density
lipoprotein-bound) S1P fractions can be quantified, which may
exert distinct biological effects, depending on the carrier (75, 80).
However, Song et al. showed that only total plasma SIP levels
correlated positively with osteoporotic fracture risk (75, 80). Recent
technical improvements include the use of QTRAP® LC-MS/MS
technology, achieving detection limits as low as 1 nM (81).
Although ELISA immunoassays are commercially available for
S1P determination, they offer lower specificity compared to MS-
based approaches and are more susceptible to cross-reactivity.

3.2.1.2 Clinical application

Lee et al. demonstrated an association between elevated S1P
levels and reduced bone strength in postmenopausal women,
highlighting its potential utility in predicting fracture risk (82).
Notably, SIP may serve as an independent predictor of fracture risk
beyond traditional assessment tools such as FRAX (83), and
incorporating SIP measurements into FRAX could enhance its
clinical predictive value (84). Frost et al. proposed that SIP may
act as a biomarker for the early detection of osteoporosis and could
have therapeutic potential (75). For instance, SIPR3 agonists have
been shown to enhance bone formation by promoting osteoblast
differentiation, whereas SIPR2 antagonists may suppress bone
resorption, offering targeted strategies for osteoporosis
management (75). Wagner et al. reported that pharmacological
elevation of S1P, via upregulation of SIPR3 signaling, supported
bone regeneration in a model of posttraumatic osteomyelitis (85).
Moreover, in Paget’s disease, SIPR3 antagonists might help mitigate
excessive bone formation (86). While preclinical studies suggest
that inhibition of SIPR2 or modulation of S1PRs can reduce
inflammatory bone loss, their translation to human therapy is
limited by potential adverse effects (87). The pro-angiogenic
activity of the SIP-S1PR signaling axis, which contributes to
tumor progression, including in osteosarcoma, offers a novel
therapeutic avenue for targeting tumor-associated angiogenesis
(88, 89). Interestingly, a negative correlation between S1P and
parathyroid hormone level was found in patients with PHPT
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(90), although the clinical significance of this relationship requires
further investigation.

Associations of novel protein and lipid bone turnover markers with
cellular pathways in bone precursor cells are presented in the Figure 2.

3.3 MicroRNA

MicroRNAs (miRNAs), small non-coding RNAs (18-22
nucleotides), secreted by numerous cells into the extracellular space,
modulate gene expression post-transcriptionally and have emerged as
significant regulators in bone metabolism (91, 92). Several miRNAs
have been shown to modulate key signaling pathways involved in
osteogenesis and osteoclastogenesis, including Wnt/B-catenin, RANK/
RANKL/OPG, and bone morphogenetic protein (BMP) signaling (93,
94). For instance, miR-21 has been associated with osteoclast
differentiation (94), while miR-29b promotes osteoblast
differentiation and matrix mineralization (95).

3.3.1 Assays for miRNA determination

MiRNAs are detectable in various body fluids such as blood
(serum, plasma), and saliva, making them attractive non-invasive
biomarkers (96). The main assays used for miRNA profiling include
quantitative reverse transcription polymerase chain reaction (qRT-
PCR), microarray, and next-generation sequencing (NGS) (97).
However, each methodology has its own limitations (98), such as
susceptibility to pre-analytical variation, low sensitivity and specificity,
or high cost. Therefore, in addition to the need for further
standardization, the selection of the appropriate analytical platform
may be critically important.

3.3.2 Clinical application

Particular attention from researchers is focused on uncovering the
role of miRNAs in the diagnosis of osteoporosis. A large case-control
study conducted by Shuai et al. (99) identified distinct circulating
miRNA signatures, including miR-30c-2-3p, miR-199a-5p, miR-424-
5p, miR-497-5p, miR-550a-5p, miR-654-5p, miR-663a, miR-877-3p,
miR-1260b, miR-1299, capable of distinguishing individuals with
osteoporosis from health and osteopenia, outperforming traditional
bone turnover markers (BTM) (99). These miRNAs could provide
additional value to dual-energy X-ray absorptiometry (DXA) for
osteoporosis detection, independent of the participants’ age (99).
Emerging diagnostic candidates for osteoporosis in postmenopausal
women include miR-144-5p, miR-506-3p, miR-8068, and miR-6851-
3p, which have shown superior diagnostic accuracy compared to
traditional bone turnover markers (91). Notably, miR-144-5p
exhibited a significant correlation with bone mineral density (BMD)
at the lumbar spine, total hip, and femoral neck (91).

In a meta-analysis including 27 studies and a total of 2,263
participants with osteoporosis (100), Gao et al. reported a significant
upregulation of miR-21-5p, miR-125b-5p, miR-483-5p, miR-133a,
miR-422a, and miR-214-3p. Moreover, the profiling of miRNAs
holds promising diagnostic and therapeutic implications in Paget’s
bone disease (101), osteogenesis imperfecta (102), and rheumatoid
arthritis (103). In oncological bone diseases, miRNAs also play crucial
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regulatory roles. Given their dual function as both oncogenes and tumor
suppressors in bone sarcomas, Zoroddu et al. highlighted their potential
use in the management and treatment of these cancers (104).
Furthermore, miRNAs have been demonstrated to be useful in the
diagnosis of multiple myeloma (105), in predicting the presence and
burden of bone metastases in prostate cancer (106), and as potential
therapeutic targets in bone metastases from hepatobiliary cancers (107).
The overview of the novel BTM was presented in Table 1.

4 New endocrine aspects of the
regulation of bone mineralization

Calcium and phosphate homeostasis, essential for skeletal
remodeling and mineralization, is tightly regulated by three
hormones: parathyroid hormone (PTH), vitamin D (vitD) and
fibroblast growth factor 23 (FGF23). Its biological activity involves a
complex interaction with multiple target organs including the kidneys,
intestines, and parathyroid glands, as well as direct effects on bone cells.
Other hormones influencing calcium and phosphate homeostasis are
not discussed in this review.

4.1 Parathyroid hormone

PTH is an 84-amino acid peptide hormone synthesized in the
parathyroid glands in response to changes in calcium levels (108). The
amino-terminal fragment of PTH binds to the PTHI receptor, which is
expressed on osteocytes, osteoblasts, and bone lining cells, but not on
osteoclasts (109). This interaction activates intracellular signaling
cascades, primarily the cyclic adenosine monophosphate-protein
kinase A (cAMP-PKA) pathway, and the phospholipase C- protein
kinase C (PLC-PKC) pathway, which mediate its biological effects (110).

Advances in recent years in bone metabolism have significantly
expanded understanding of PTH actions. Once regarded solely as a
regulator of calcium-phosphate homeostasis, PTH is now recognized as
a multifunctional hormone with direct effects on bone tissue through
cellular and molecular mechanisms. Importantly, the effects of PTH
depend on the mode of exposure—continuous hyperparathyroidism
promotes bone resorption through indirect activation of osteoclasts,
whereas intermittent administration exerts anabolic effects by
stimulating the activity of osteoblasts and osteocytes. This principle is
utilized in anabolic therapies for osteoporosis. These two forms of PTH
administration trigger different gene regulations and signaling
pathways. The catabolic effect of PTH is mediated through the
promotion of osteoclastogenesis, achieved by upregulating RANKL
expression in osteoblasts and osteocytes and downregulating OPG
mRNA expression, which together shift the RANKL/OPG ratio in
favor of bone resorption (110). PTH also increases the expression of
monocyte chemoattractant protein-1 (MCP-1), thereby promoting the
recruitment of pre-osteoclasts and enhancing RANKL-mediated
osteoclastogenesis (111).

The anabolic effect of PTH is driven by multiple pathways that
increase the number of osteoblasts, including the suppression of
osteoblast apoptosis, the conversion of bone lining cells into active
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Associations of novel protein and lipid bone turnover markers with cellular pathways in osteoblast precursor cell (A) and osteoclast precursor cell,
including the role of S1P gradient and receptor activation in regulation of osteoclast precursor cell migration between blood and bone tissue (B).
DKK-1,Dickkopf-1; LRP, lipoprotein receptor-related protein; PSTN — periostin; S1P, sphingosine 1-phosphate; S1PR, sphingosine 1-phosphate
receptor; OPG, osteoprotegrin; RANKL, receptor activator of nuclear factor B ligand; RANK, receptor activator of nuclear factor B.Created in

BioRender.

osteoblasts, the expansion of osteoblast precursors, and the stimulation
of their differentiation into mature osteoblasts (112-114). Furthermore,
PTH enhances Wnt signaling by inhibiting the expression of SOST, the
gene encoding sclerostin, primarily in osteocytes, thereby promoting
osteoblast activity and bone formation. The differential skeletal response
to intermittent versus continuous PTH administration is not yet fully
understood. One hypothesis suggests that the anti-apoptotic effect of
PTH on osteoblasts is transient due to its influence on the proteolytic
degradation of the runt-related transcription factor 2 (RUNX2). When
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RUNX2 levels decline below a critical threshold, PTH can no longer
maintain its inhibitory effect on osteoblast apoptosis (115).

Clinical studies show that primary hyperparathyroidism is
associated with elevated bone turnover markers, including formation
markers such as OC, BALP and resorption markers, such as CTX-I
(116). After parathyroidectomy, resorption markers decline rapidly,
followed by a slower normalization of formation markers, accompanied
by increases in bone mineral density, while serum sclerostin levels
return to normal earlier than the other bone turnover markers (117,

frontiersin.org


https://doi.org/10.3389/fendo.2025.1702413
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Leszczynska et al.

10.3389/fendo.2025.1702413

TABLE 1 Overview of novel bone markers including sclerostin, DKK-1, RANKL/osteoprotegerin, PSTN, S1P, and microRNAs, regarding their origin,
roles in bone metabolism, clinical relevance, and methods of determination. .

Biomolecule

Marker
class

Bone tissue/ cellular

origin

Function in
bone

Clinical application

Sclerostin

Osteocytes (mainly)

Inhibits Wnt/beta-
catenin signaling,
suppresses osteoblast
activity,
increases
osteoclastogenesis by
upregulating RANKL

ELISA (most common),
MSD, currently
unavailable automated
CLIA

Potential biomarker for osteoporosis
and fracture risk assessment;
diagnostic adjunct in metabolic bone
diseases (e.g., osteogenesis imperfecta,
XLH, Paget’s disease); target of
romosozumab therapy approved for
osteoporosis treatment

DKK-1

RANKL

Proteins and OPG

Osteocytes osteoblasts

Osteocytes osteoblasts

Inhibits Wnt/B-catenin
signaling by binding
LRP5/6, suppressing

osteoblast
differentiation

RANKL stimulates
osteoclastogenesis via
RANK, while
osteoprotegerin blocks
this interaction,
preventing osteoclast
formation.

ELISA

ELISA, but
standardization and
reproducibility is
frequently not
satisfactory; emerging
multiplex electrochemical
methods may be an
alternative'

Potential biomarker and therapeutic
target in osteoporosis, multiple
myeloma, bone loss from
glucocorticoids, rare bone disorders
(e.g., osteogenesis imperfecta) and
cancer-related bone disorders.

Potential biomarkers of osteoclast
activity; elevated RANKL/OPG ratio
linked to osteoporosis and low BMD.

Limited diagnostic and monitoring
utility without assay standardization.

PSTN

Lipid SIP

miRNAs miRNA

Periosteum

Osteoclasts, osteoblasts, and their
precursors, osteocytes

osteoblasts, osteoclasts and their
precursors, osteocytes

Stimulates osteoblast
differentiation and
survival., promotes

collagen cross-linking

for strong bone
formation, activates
indirectly the Wnt/B-
catenin pathway by
downregulating
sclerostin, supports
fracture healing by
aiding osteoblast
function and matrix
remodeling.

Regulates proliferation,
apoptosis, and
angiogenesis,
coordinates osteoclast—
osteoblast-endothelial
cell crosstalk, recruits
bone cell precursors

Post-transcriptional
gene expression
regulation, modulation
of osteogenesis and
osteoclastogenesis via
Wnt/B-catenin, RANK/
RANKL/OPG, BMP
pathways, matrix
mineralization

ELISA, automated CLIA

LC-MS/MS
ELISA

qRT-PCR, microarray,
NGS

Potential biomarker of fracture risk in
postmenopausal women and
osteoporosis associated with primary
hyperparathyroidism.

Potential biomarker of fracture risk
and early osteoporosis; therapeutic
target via SIPR modulation (e.g.,
S1PR3 agonists 1 bone formation,
S1PR2 antagonists | resorption);
potential in bone regeneration and
treatment of Paget’s disease

Potential biomarker and therapeutic
role in osteoporosis, Paget’s disease,
and osteogenesis imperfecta; potential
therapeutic role in bone sarcomas;
diagnostic biomarker in multiple
myeloma; prediction and treatment of
bone metastases (prostate and
hepatobiliary cancer); bone healing

118). In patients treated with teriparatide, formation markers, such as
PINP, rise quickly within days, and early changes in this marker
correlate with subsequent gains in bone mineral density (119, 120).

4.1.1 Analytical consideration
PTH is present in the circulation not only as the full-length
active 84-amino acid peptide, but also as various fragments,
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predominantly derived from its C-terminal region, which
contains the carboxyl-terminal part (121). These fragments,
commonly referred to as C-terminal fragments, represent
approximately 15%-30% of total PTH in healthy subjects and are
either secreted directly by the parathyroid glands or generated
through hepatic metabolism (122). They have a longer half-life
than the full-length PTH and are eliminated from the bloodstream
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via the kidneys; therefore, they accumulate in patients with chronic
kidney disease. Among these fragments, the 7-84 fragment is the
most prevalent in circulation (123).

Currently, the primary method for determining PTH levels is
immunoassay, which has undergone significant development over
the years. Today, second- and third-generation automated
sandwich-type immunoassay methods are commonly used. The
second-generation assay, known as the intact PTH assay, uses two
sets of antibodies targeting the C-terminal and N-terminal regions
of the PTH molecule (124). However, the N-terminal antibody does
not bind to the first four amino acids, which results in the detection
of not only the biologically active full-length PTH (1-84PTH), but
also C-terminal PTH fragments, most notably the 7-84 fragment
(124). Third-generation PTH assays, also referred to as whole or
bio-intact PTH assays, are designed to measure only the 1-84PTH.
This is achieved through the use of an antibody directed at the first
four amino acids of the N-terminal region, along with another
targeting the C-terminal region, as in second-generation assay
(123). Despite their higher specificity, third-generation assays may
still detect posttranslationally modified forms of PTH, including
those commonly overproduced in parathyroid carcinoma (123).

4.2 Vitamin D

Knowledge about the positive effect of vitD on bone mineralization
and formation is well established. Guidelines unanimously recommend
vitD supplementation to prevent nutritional rickets and support the
attainment of peak bone mass during skeletal maturation, which is
crucial for reducing the risk of osteoporotic fractures in later life (125).
In adults and elderly, vitD prevents osteomalacia and reduces the risk
of falls and fractures (126, 127). 1,25-(OH),D, the hormonally active
form of vitD, is a steroid hormone that exerts both direct and indirect
effects on bone health. The indirect effect is due to the stimulation of
calcium and phosphate absorption from the intestines, reabsorption in
the kidneys, and inhibition of PTH secretion by decreased PTH gene
expression (128). The direct effect is mediated by the presence of the
vitD receptor (VDR) in osteoblasts (129). In studies using human
osteoblasts, 1,25-(OH),D has been shown to stimulate the
differentiation of mesenchymal stromal cells into osteoblasts,
promote osteoblast growth, and influence the mineralization process
through the production of ALP-positive matrix vesicles (130). The
regulation of these processes is mediated by the effect of 1,25-(OH),D
on the expression of genes involved in osteoblastogenesis and
mineralization, including ALP, OC, and osteopontin (OPN) (131).
On the other hand, studies using human bone cells have demonstrated
that 1,25-(OH),D enhances osteoclastogenesis by activating RANKL
gene transcription in osteoblastic cells (132). This provides evidence
that, similar to PTH, vitD is involved in both anabolic and catabolic
effects on the skeleton.

Clinical studies on the impact of vitamin D supplementation on
bone turnover markers yield inconsistent results. While the majority of
studies report no significant changes (133, 134), some trials observed
reductions in CTX-I (135) and PINP (136). In the study by Jorde et al.,
vitamin D supplementation that effectively suppressed high baseline
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PTH levels led to a marked decrease in PINP and CTX-I, along with an
increase in serum sclerostin, indicating reduced bone turnover through
PTH suppression (136). The variability of findings across studies may
be related to differences in dosage, treatment duration, baseline vitamin
D and PTH status, or differences in calcium intake.

The initial metabolites used to synthesize hormonally active 1,25-
(OH),D are: cholecalciferol (vitD;) and ergocalciferol (vitD,).
Subsequently, as the result of 25-hydroxylation by cytochrome P450
family 2 subfamily R member 1 (CYP2R1) mainly in the liver, 25-(OH)
D, and 25-(OH)Dj are formed, then during 1-alpha-hydroxylation by
cytochrome P450 family 27 subfamily B member 1 (CYP27B1), 1,25-
(OH),D, and 1,25-(OH),D; are synthesized, respectively. The
inactivation of 1,25-(OH),D; and 25-(OH)D; is mediated by the
enzyme 24-hydroxylase (cytochrome P450 family 24 subfamily a
member 1 (CYP24Al)), which plays a crucial role in the vitD
catabolism. The direct products of the CYP24A1 reaction are 24,25-
(OH),D5 and 1,24,25-(OH),D3, which are further converted to
calcitroic acid destined for biliary excretion. However, recent studies
suggest that 24,25-(OH),Dj5 is not simply a degradation product of
vitD metabolism, but a metabolite that may play a role in bone
formation. In vivo animal models, its role in fracture healing has
been demonstrated (137). Furthermore, studies using mesenchymal
stem cell cultures have shown that 24,25-(OH),Dj is involved in their
differentiation into osteoblasts (138, 139).

4.2.1 Analytical consideration

Currently, the LC-MS/MS technique enables the reliable
determination of a vitD metabolite panel metabolites simultaneously,
including 24,25-(OH),D and 3-epi-25-(OH)D, offering a new
perspective on the assessment of vitD status and the potential for
rapid detection of vitD metabolism disorders. The evaluation of vitD
status is typically based on the measurement of the total serum
concentration of 25-(OH)D. It results from the relatively stable
expression of the 25-hydroxylase gene, indicating that the
concentration of 25-(OH)D is primarily depended by the availability
of its substrate. However, recent studies indicate that the ratio of 24,25-
(OH),D to 25-(OH)D multiplied by 100, known as the vitamin D
metabolite ratio (VMR), may serve as a more reliable marker of vitD
status. There are several points that support this hypothesis.

VitD, like other steroid hormones, is highly lipophilic and
therefore needs a carrier protein in the serum for delivery to
target tissues. Approximately 85%-90% of 25-(OH)D is bound to
vitD binding protein (VDBP), which is the non-bioavailable
fraction (140). However, studies report significant individual
differences in the concentration of binding proteins. In the study
by Powe et al., black Americans had lower levels of 25-(OH)D and
VDBP, resulting in similar concentrations of estimated bioavailable
25-(OH)D compared to white Americans (141). Genetic
polymorphisms in VDBP, health status, pregnancy, and
medications that affect VDBP concentrations may contribute to
the variability in 25-(OH)D levels. Therefore, low 25-(OH)D levels
may not necessarily reflect true vitD deficiency. Many individuals
with low 25-(OH)D levels do not exhibit clinical symptoms of
deficiency or elevated PTH levels. Black Americans in the above
study had a higher bone mineral density and lower risk of fractures
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than white Americans, despite lower 25-(OH)D concentrations
(141). Since VDBP affects both the numerator and denominator
of the VMR ratio, the final VMR value is likely not affected by its
influence. Dugar A. et al. measured the concentrations of 25-(OH)
D, 1,25-(OH),D, 24,25-(OH),D3, and VDBP in patients before and
after therapeutic plasma exchange (TPE), a procedure that removes
plasma, including VDBP (142). A significant decrease in the
concentrations of VDBP and the determined vitD metabolites was
observed, but no significant change in VMR was detected (142).
Moreover, including the metabolite 24,25-(OH),D in vitD status
assessment provides more dynamic and functional information on
vitD deficiency. In a recent study with 1200 Belgian children, it was
shown that, despite having the same 25-(OH)D concentration,
some individuals had already begun to catabolize 25-(OH)D,
showing measurable levels of 24,25-(OH),D, while others did not
(143). This suggests the possibility of a personalized threshold for
metabolism (143). In the study by Hermann et al., low VMR (< 4%)
was found to be associated with significantly higher PTH levels,
increased bone metabolism, and elevated all-cause mortality,
regardless of serum 25-(OH)D concentration (144).

An additional clinical use of the VMR is its role as a biomarker
for identifying loss-of-function mutations in the CYP24A1 gene.
The loss of 24-hydroxylase function can result in severe
hypercalcemia in infants or milder forms of hypercalcemia in
adults, depending on the specific pathogenic variant (PV) (145).
The measurement of 24,25-(OH),D; is crucial for distinguishing
patients with CYP24A1 mutations from those with other causes of
PTH-independent hypercalcemia, including intoxication. In cases
of suspected CYP24A1 mutations, the VMR is typically expressed
oppositely compared to vitD status assessment, with 25-(OH)D as
the numerator and 24,25-(OH),D5 as the denominator. A VMR
ratio exceeding 80 (a reference range of 5 to 25) indicates a genetic
defect in the CYP24A1 gene (146).

4.3 Fibroblast growth factor 23

FGF23 is a 32kDa glycoprotein composed of 251 amino acids,
classified within the FGF family of signaling molecules (147). It is a
phosphaturic hormone primarily secreted by osteocytes and
osteoblasts. FGF23 expression is increased by calcitriol, PTH, and
high dietary phosphate intake. It acts on the FGF23 receptor, which is
mainly expressed in the proximal tubules of the kidney and parathyroid
gland cells. The FGF23 receptor is a complex consisting of a tyrosine
kinase FGF receptor and the o-Klotho coreceptor. a-Klotho is a
transmembrane protein predominantly expressed in the distal
tubules of the kidneys. a-Klotho associates with FGF receptors and
functions as a cofactor for FGF23, facilitating its binding to target
receptors and activation of downstream signaling pathways.

The main effect of FGF23 is exerted in the renal proximal
tubule, where it inhibits phosphate reabsorption and suppresses
calcitriol production. By downregulating sodium-phosphate
cotransporters NaPi2a and NaPi2c, FGF-23 promotes phosphate
excretion in urine. It also reduces the renal conversion of 25-(OH)D
to 1,25-(OH),D, leading to decreased calcitriol levels and,
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consequently, reduced intestinal absorption of calcium and
phosphate. These combined actions result in a decrease in serum
phosphate levels. Additionally, FGF23 suppresses PTH synthesis
and secretion by acting directly on the parathyroid glands.

The FGF23/Klotho axis has a well-established role in the
pathogenesis of chronic kidney disease-mineral and bone
disorder (CKD-MBD), with FGF23 levels rising in the early stages
of CKD (148). However, recent findings highlight broader
involvement of FGF23 in the physiology of bone remodeling
(149), suggesting its potential utility as a bone turnover marker.
FGF23 may affect bone mineralization and osteoblasts by regulating
key markers such as OPN and alkaline phosphatase (150). FGF23
may also influence bone resorption by modulating osteoclast
development (151), although further research is needed to clarify
its direct effects and the specific role in this process.

4.3.1 Analytical consideration

FGF23 can be detected using various immunoassay methods in
serum or plasma. The majority of commercially available assays
detect intact FGF23 (iFGF23), but there are also methods available
to measure the C-terminal fragment (cFGF23). iFGF23 detects the
active hormone but is less stable due to preanalytical degradation
and diurnal variation (152). cFGF23 assays offer greater stability
and lower biological variability, but they also detect inactive
fragments that may exert counter-regulatory effects on the active
hormone, potentially complicating interpretation in studies focused
on FGF23 biological activity (153). No international standard exists
for FGF23 assays, and available comparisons reveal significant
variability and lack of harmonization, especially among intact
FGF23 tests (154), while C-terminal assay comparisons are
currently unavailable. FGF23 serum concentrations are
significantly higher in females than in males and remain relatively
stable throughout adulthood, with a slight increase in old age (155).

Elevated FGF23 has been linked to postmenopausal
osteoporosis, with several studies showing a negative correlation
between serum FGF23 levels and BMD in postmenopausal women
(156, 157). By comparison, evidence regarding osteoporosis in aging
men is less consistent, with studies reporting either weak or no
significant associations between FGF23 levels and BMD (158, 159).
Currently, available evidence remains insufficient to support the use
of serum FGF23 as a reliable marker in the evaluation of
osteoporosis in the elderly. Given the role of FGF23 in the
pathogenesis of chronic kidney disease, the protein has been
investigated as a potential biomarker of osteoporosis in patients
with CKD or end-stage renal disease (ESRD). While elevated FGF23
has been identified as a fracture risk factor in CKD patients, no
studies have demonstrated a negative correlation between FGF23
levels and bone mineral density (160, 161).

5 New nomenclature of biochemical
indices of bone status

According to the recently published recommendations by the
Joint International Osteoporosis Foundation (IOF) Working Group
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and the International Federation of Clinical Chemistry and
Laboratory Medicine (IFCC) Committee on Bone Metabolism, all
biochemical indicators reflecting skeletal metabolism are now
collectively referred to as Bone Status Indices (BSIs) (162). This
unified nomenclature replaces the traditional concept of BTM and
expands it to include structural markers, bone cell enzymes, as well
as hormonal and regulatory components. Structural BSIs comprise
indices derived from type I collagen metabolism, including PINP,
NTX-I, CTX-I and their variants (162). Enzymatic groups are
represented by BALP, TRACP5b, and cathepsin K (CTSK), while
regulatory components encompass endocrine and paracrine
mediators such as PTH, vitD metabolites, FGF23, OC, Wnt/(3-
catenin inhibitors (sclerostin, DKK-1), TNF superfamily members
(RANKL, OPG), and factors involved in cell migration and
adhesion, such as PSTN, OPN and secreted protein acidic and
rich in cysteine (SPARC) (162). This classification emphasizes the
integrative nature of bone metabolism and facilitates
standardization of terminology, abbreviations, and measurement
units for BSIs, supporting consistent interpretation of biochemical
bone status.

6 “Omics” approaches to assessment
of bone turnover

In recent years, there has been growing interest in the “omics”
techniques. Among these techniques, metabolomics allows to
analyze entire panels of low weight compounds (< 1500 Da)
produced by structures of a selected magnitude: from single cells
to entire organisms (163). This approach offers a unique insight into
metabolic processes and often enables us to uncover new
biomarkers, with potential clinical relevance. The development of
metabolomics (targeted and untargeted) would not have been
possible without the analytical advancement: mainly mass-
spectrometry based methods and nuclear magnetic resonance
(NMR) spectroscopy (164).

Given the complex and not fully understood process of bone
remodeling and its disturbances, the application of metabolomics is
studied intensively in the context of bone formation and resorption
(165, 166). In the study of Bellissimo et al., bone formation
biomarker PINP was associated with multiple metabolic
pathways including several amino acids (alanine, beta-alanine,
arginine, aspartate, glutamate and proline, the latter being one of
main components of collagen type I), vitamin C (crucial for the
procollagen hydroxylation and secretion), B vitamins (i.a., thiamine
and niacin, precursors of coenzymes involved in catabolic
reactions), tricarboxylic acid (TCA) cycle, and pyruvate
metabolism (167, 168). In contrast, the serum concentration of
bone resorption biomarker CTX was associated with fatty acids and
lipid metabolism pathways (167). The results correspond with the
observation that actively resorbing osteoclasts are rich in
mitochondria ensuring high capacity of beta-oxidation of the fatty
acids and osteoclasts may be mainly supported by energy-dense
lipid, rather than carbohydrate catabolism (167, 169). Another
metabolomic study led by Hartley et al. on individuals with high
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bone mass (Z-score >+3.2), measuring absolute concentrations of
more than 150 metabolic traits using NMR spectroscopy, identified
an association between beta-CTX concentration and plasma citrate
— first product of TCA cycle (170). However, cellular metabolism of
the soft tissues is not the main source of citrate in the bloodstream -
around 80% of citrate is bound in the bones with hydroxyapatite
and enters circulation after the bone is resorbed (171). Alongside
with the assessment of low-weight metabolic compounds of bone
turnover, novel analytical techniques also allow to determine entire
panels of proteins. In a proteomic study, led by Bhattacharyya et al.,
the use of surface enhanced laser desorption ionization (SELDI)
time-of-flight mass spectrometry (TOF-MS) allowed to determine a
proteomic profile discriminating postmenopausal patients with
high and low/normal bone turnover (172). Furthermore, four of
the discriminatory peaks were identified as fragments of interalpha-
trypsin-inhibitor heavy chain H4 precursor (ITIH4), kallikrein-
sensitive glycoprotein present in the blood, which may serve as a
biomarker of increased osteoclast activity (172).

In the context of bone remodeling assessment, the application
of metabolomics and other “omics” techniques provides a
comprehensive, dynamic, and informative view. It may also
clarify the link about cellular metabolism and bone remodeling,
and eventually support the personalized choice of therapy and
monitoring. However, metabolomics is remarkably limited by
biological variability of determined panels, platform-dependent
coverage, large amounts of generated data, lack of
standardization, which hinder reproducibility and clinical
translation. In addition, many associations between determined
compounds and bone remodeling remain correlative rather than
causal, underlining the need for validation and integration with
well-established BTM.

7 Conclusions

The understanding of bone remodeling has advanced beyond
the scope of traditional BTM, which provide only limited specificity
and do not reflect osteocyte activity. Emerging biomarkers,
including proteins, lipids, miRNAs, and the application of
“omics” techniques, offer deeper insight into the cellular and
molecular mechanisms regulating skeletal integrity and are
potential therapeutic targets. Simultaneously, hormonal
modulators such as PTH, vitD, and FGF23 coordinate this
process, influencing not only systemic mineral balance but also
local bone cell activity, thereby integrating mineralization with
overall remodeling dynamics. However, novel BTM cannot be
viewed as substitutes for classical BTM but rather as
complementary tools, and further studies are required to clarify
their role in specific clinical settings.
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