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Background: Remnant cholesterol (RC) has been implicated in cardiovascular
and metabolic disorders, but its direct associations with biological aging remain
unclear. We aimed to examine the relationship between RC and two established
aging biomarkers, leukocyte telomere length (LTL) and serum o—Klotho, and to
evaluate the potential mediating roles of inflammation and oxidative stress.
Methods: This cross-sectional analysis included 1052 adults from a rural cohort
in northern China. Linear regressions and restricted cubic splines (RCS) assessed
linear and nonlinear relationships. Mediation models explored the mediating
effect of inflammation (TNFo, IL-6, IL-1B) and oxidative stress markers (SOD,
8-OHdQG).

Results: Participants with higher RC levels had lower LTL and a.-Klotho levels,
along with higher levels of TNFa, IL-6, IL-1B, and SOD. In adjusted linear
regression, RC showed negative associations with both LTL and a-Klotho
(BI95%CI]: -0.177[-0.262, -0.091] and -0.045[-0.066, -0.024]), independent of
conventional lipid profiles. Both relationships were nonlinear (P for nonlinear =
0.001 for LTL; 0.019 for a-Klotho). For LTL, the inverse association was confined
to 0.65-1.42 mmol/L (no significant associations outside this range), while for .-
Klotho it was observed only below 1.37 mmol/L (no associations above it). TNFa
and IL-6 partially mediated the relationship between RC and LTL (17.78% and
14.12%, respectively); while SOD partially mediated the association between RC
and a-Klotho (58.18%).
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Conclusions: RC is inversely and nonlinearly associated with both LTL and a-
Klotho, independent of traditional lipid profiles, with inflammation and oxidative
stress as partial mediators. From an aging perspective, these cross-sectional
findings support increased attention to early RC management alongside

traditional lipids.

remnant cholesterol, biological aging, leukocyte telomere length, serum a-Klotho,
inflammation, oxidative stress

1 Introduction

As the global population continues to age, age-related health
issues have emerged as major public health challenges worldwide
(1). Among the contributing factors, abnormal lipid metabolism has
been recognized as a key risk factor for numerous aging-associated
diseases, including type 2 diabetes mellitus (T2DM),
atherosclerosis, and cancers (2). Targeting lipid metabolism is
thus considered a promising strategy for clinical interventions to
delay aging.

Remnant cholesterol (RC), also known as triglyceride-rich
lipoprotein cholesterol, refers to the cholesterol content within
very low-density lipoproteins (VLDL) and chylomicron remnants,
excluding both high-density lipoproteins (HDL-C) and low-density
lipoproteins (LDL-C). Substantive evidence indicates that RC is
more strongly associated with cardiovascular disease (CVD) and
mortality than traditional lipid markers, such as LDL-C (3, 4).
Moreover, several large-scale studies have shown that elevated RC
levels predict an increased risk of T2DM and premature mortality
(5, 6). Despite its emerging importance in chronic diseases, the role
of RC in the biological aging process remains largely unexplored.

Telomeres are specialized DNA-protein structures at the ends
of eukaryotic chromosomes that preserve chromosomal stability
and genomic integrity. Telomere length progressively shortens with
each cell division and during the aging process, and telomere
attrition has been linked to increased risk of various metabolic
and age-related disorders (7, 8). a—Klotho is a single-pass
transmembrane protein encoded by the Klotho gene. Its
extracellular domain can be shed to generate a soluble form that
circulates in serum (serum o—Klotho), which is widely recognized
for its anti—aging functions (9). Mice with a-Klotho deficiency
exhibit a markedly shortened lifespan and display premature aging
phenotypes, such as atherosclerosis, muscle wasting, and
osteoporosis. Conversely, Klotho overexpression extends lifespan
(10). In humans, serum o-Klotho declines with age and relates to
adverse outcomes (11-13); moreover, better cardiovascular health
(Life’s Essential 8) has been linked to higher circulating o-Klotho,
highlighting its cardiometabolic relevance (14). As such, leukocyte
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telomere length (LTL) and serum o-Klotho levels are commonly
used biomarkers of biological aging and to evaluate anti-aging
interventions (7, 9). However, the association between RC and
these aging markers remains poorly defined.

It is well established that chronic low-grade inflammation and
oxidative stress are key mechanisms by which RC promotes the
development of CVD and T2DM (15-17). These processes also
contribute significantly to the biological aging process and have
been implicated in both telomere shortening and o-Klotho
depletion (18-20). Accordingly, we hypothesize that elevated RC
may be associated with decreased LTL and o-Klotho levels through
inflammatory and oxidative pathways. Nonetheless, current
evidence supporting this hypothesis is limited. To date, only one
study in U.S. adults has reported a potential negative association
between RC and serum o-Klotho (21); however, it lacked a
mechanistic evaluation and has not been replicated in other
ethnic populations. Furthermore, research investigating the link
between RC and LTL is scarce.

Therefore, this study aims to investigate the relationship
between RC and two established aging biomarkers, LTL and
serum o-Klotho, in a Chinese cohort. Additionally, we seek to
elucidate the potential mediating roles of inflammation and
oxidative stress in these associations, thereby contributing to a
better understanding of RC’s role in aging and its potential as a
clinical target for aging-related interventions.

2 Materials and methods
2.1 Study population

This cross-sectional study was conducted using data from a long-
term, ongoing natural population cohort in the rural districts of
Changping, Beijing, China. The cohort, initiated in March 2014
(22), included adults aged 18-84 years and aimed to investigate the
relationships among nutrition, metabolism, and aging. Participants
were enrolled on a rolling basis, with follow-up assessments conducted
every 1 to 3 years for both initial and newly recruited subjects.
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A total of 1275 participants were initially enrolled, all of whom
voluntarily provided written informed consent. Individuals were
excluded based on the following criteria: (i) presence of severe
cardiovascular diseases, liver or renal insufficiency (n=77); (ii) use of
dietary supplements or drugs that may influence serum lipids (e.g.,
lipid-lowering medications) (n=46); and (iii) missing measurements of
LTL, serum o-Klotho, and serum lipids (n=100). Ultimately, 1052
eligible participants were included in the final analysis.

2.2 General characteristics and dietary
information collection

Face-to-face interviews were conducted by uniformly trained
physicians using a standardized questionnaire to collect baseline
information from study participants, including age, sex, dietary
information, medical history, and medication history. Dietary
information was collected using a 24-hour food recall, as
previously documented (22).

2.3 Anthropometric assessment

All participants were measured for height, weight, waist
circumference (WC), hip circumference (HC), systolic blood
pressure (SBP), and diastolic blood pressure (DBP), as detailed in
previous studies (23). Body mass index (BMI) was calculated as
body weight divided by height squared (kg/m?). The waist-to-hip
ratio (WHR) was the ratio of WC to HC.

2.4 Biochemical analysis

Venous blood samples were collected after an overnight fast of
more than 10 hours, to measure indicators correlated to serum
glucose and lipids. Fasting plasma glucose (FPG) was measured
using an oxidase method, while fasting insulin (F-INS) levels were
determined by chemiluminescence assays. Glycosylated
hemoglobin (HbAlc) was analyzed using high-performance liquid
chromatography, with intra-assay and inter-assay coefficients of
variation below 3% and 10%, respectively. Lipid profiles, involving
TG, TC, LDL-C, and HDL-C, were evaluated by an automated
analyzer. The LDL-C levels were calculated based on TC, HDL-C,
and TG levels according to the Friedewald formula unless TG was
significantly elevated (>4 mmol/L). RC was estimated as TC minus
HDL-C minus LDL-C (4, 24). Liver and Renal function indicators,
including alanine aminotransferase (ALT), aspartate
aminotransferase (AST), serum creatinine (sCr), and serum uric
acid (sUA), were also measured using the above method. The
estimated glomerular filtration rate (eGFR) was assessed using the
Chronic Kidney Disease Epidemiology Collaboration equation (25).
Additionally, insulin sensitivity and islet B-cell function were
evaluated using two fasting indices-homeostatic model
assessment of insulin resistance (HOMA-IR) and B-cell function
(HOMA-B), as previously described (26).
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2.5 LTL and o-Klotho measurements

Peripheral blood LTL analysis has been described in detail
previously (20). Briefly, the QIAamp DNA blood mid kit (Qiagen,
Hilden, Germany) was applied to extract genomic DNA in
leukocytes. Purified DNA samples were diluted and quantified
using a NanoDrop 1000 spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE, USA). LTL was represented as the
relative ratio of telomere repeat copy number to the single copy
number (T/S) using novel monochrome multiplex quantitative
PCR. The within-plate and between-plate CVs were 18% and 7%,
respectively. Due to non-batch measurement, the z scores
standardized LTL (z-LTL) was computed and applied for all
analyses to minimize the impact of potential batch shift (27).

Serum o-Klotho was measured by a commercially available
ELISA kit produced by IBL International, Japan. The assay had a
sensitivity of 6.15 pg/mL. The measurement range for serum o-
Klotho was 93.75 to 6000 pg/mL, with an intra-assay coefficient of
variation (CV) of 3.1% and an inter-assay CV of 6.9% (28).

2.6 Measurements of inflammation and
oxidative stress indicators

Serum concentrations of inflammatory cytokines, including
tumor necrosis factor oo (TNFo), interleukin-6 (IL-6), and
interleukin-1f (IL-1B), were measured using Luminex® X-MAP
technology (Luminex Corp., Austin, TX, USA). Oxidative stress
markers, including superoxide dismutase (SOD) activity and 8-
hydroxy-2-deoxyguanosine (8-OHAG), were assessed via enzyme-
linked immunosorbent assay (ELISA, Cloud-Clone Corp., Houston,
TX, USA). Sample processing and data analysis were conducted in
strict accordance with the manufacturer’s protocols.

2.7 Statistical analysis

Continuous variables were presented as means with standard
deviations (SD) for normally distributed data or as medians with
interquartile ranges (IQR) for skewed data. Categorical variables
were presented as frequencies with percentages. Baseline
characteristics across RC quartiles were compared using one-way
ANOVA for normally distributed continuous variables (Welch’s
ANOVA when variances were unequal), the Kruskal-Wallis test for
skewed continuous variables, and the chi-square test for categorical
variables. Normality was assessed using the Shapiro-Wilk test and
inspection of histograms and Q-Q plots; homogeneity of variances
was evaluated using Levene’s test. For variables with overall
differences (P<0.05), pairwise comparisons used Tukey’s HSD
after ANOVA (Games-Howell after Welch’s ANOVA) or Dunn’s
test with Bonferroni correction after the Kruskal-Wallis test.

Due to the non-normal distribution, o-Klotho levels were log-
transformed to achieve normality before analysis. Univariate linear
regression was employed to assess the relationship between
traditional lipid parameters, RC, and aging markers. Multivariate

frontiersin.org


https://doi.org/10.3389/fendo.2025.1700349
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Xing et al.

linear regression analyses were then conducted with RC treated as
both a continuous and a categorical variable (quartiles, using Q1 as
the reference), to assess its relationship with LTL and a-Klotho. Four
main models were constructed for potential covariate adjustments:
Model 1 was adjusted for age and sex; Model 2 further incorporated
BMI, WHR, ALT, AST, eGFR, SBP, DBP, HbAlc, FPG, TG, HDL-C,
LDL-C, and UA; Model 3 additionally accounted for total energy
intake based on Model 2; and Model 4 expanded on Model 3 by
including TNF-o,, IL-6, IL-1f, SOD, and 8-OHdG. Multicollinearity
among covariates was evaluated using variance inflation factors
(VIFs), with values >10 indicating pronounced multicollinearity.
And all variables in our models had VIFs <5. Nonlinear
relationships between RC and both aging biomarkers were explored
with restricted cubic splines (RCS) using knots at the 5th, 35th, 65th,
and 95th percentiles, with analysis and visualization via the plotRCS
package. When a nonlinear pattern was detected, threshold analysis
with the segmented package was used to identify inflection points,
and piecewise linear regression was subsequently fitted based on
those cut points.

Missing values of covariates in the model were imputed with the
missForest package in R (a random forest-based method) (8). The
algorithm accommodates both continuous and categorical data and
is robust to nonlinearity and outliers, with strong accuracy and
reliability. The number and percentage of missing values for each
covariate are provided in Supplementary Table S1.

For the mechanistic analysis, PROCESS macro Version 3.4 (29)
was performed to investigate whether inflammation and oxidation
markers play mediation roles among these relationships. Statistical
significance of mediating effects was admitted if the 95% confidence
interval did not include zero, as previously described (23).

Statistical analyses were performed by SPSS Windows, version
26.0 (IBM Corp., Chicago, IL, USA) and R software (version 4.2). A
two-sided P-value<0.05 was considered statistically significant.

3 Results

3.1 Baseline characteristics of the study
population between different groups

The average age of the overall study population was 55.68 +
10.85 years, and 63.5% were female. Compared to participants in
the lower RC level groups, those in the higher RC level groups
exhibited poorer metabolic profiles, characterized by elevated WC,
WHR, ALT, AST, TC, TG, LDL-C, FPG, HOMA-IR, HOMA-B, as
well as decreased eGFR and HDL-C (all P <0.05). Regarding aging
biomarkers and inflammatory/oxidative stress indicators,
individuals in the higher RC quartiles had significantly lower
levels of z-LTL and serum o-Klotho, whereas TNF-a,, 1L-6, IL-1f,
and SOD levels were significantly higher. Additionally, significant
differences were also observed across RC groups in terms of age,
SBP, DBP, HbAlc, and total energy intake (all P <0.05). There were
no significant differences between groups for sex, BMI, and 8-
OHJG (all P > 0.05) (Table 1).
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3.2 The general linear regression of
different lipid parameters and aging
biomarkers

We first conducted univariate linear regression analyses to
assess the associations between various lipid markers and two
aging biomarkers. RC showed significant negative associations
with both LTL and a-Klotho (B [95%CI]: -0.161 [-0.226, -0.095]
and -0.029 [-0.045, -0.012], respectively; both P <0.001). For LTL,
we also observed the reverse associations of TC, LDL-C, and TG,
but all were weaker than that of RC. No traditional lipid marker was
significantly associated with o-Klotho. (Supplementary Table S2).

3.3 The linear regression of RC and aging
biomarkers in multivariate corrected
models

Subsequently, RC was entered as a continuous variable into
multiple linear regression models. In model 3, RC remained
significantly and negatively associated with both LTL and o-
Klotho, independent of age, sex, total energy intake, and various
metabolic parameters, including traditional lipid markers (8 [95%
CIJ: -0.177 [-0.262, -0.091] and -0.045[-0.066, -0.024], respectively;
both P <0.05). When RC was categorized into quartiles, the negative
associations with both aging markers became more pronounced
across increasing RC quartiles, with the strongest inverse
associations observed in the third quartile (Q3: B = -0.255 for
LTL; B = -0.062 for o-Klotho; both P<0.05). Although the
associations in the fourth quartile (Q4) were slightly weaker than
those in Q3, they remained stronger than in the second quartile
(Q2) (Table 2).

After further adjustment for inflammatory and oxidative stress
markers in model 4, the association between RC (as a continuous
variable) and LTL was attenuated but remained statistically
significant (B =-0.162, P<0.05), while the association with o.-
Klotho was no longer significant (§ =-0.017, P > 0.05). Similarly,
the quartile-based inverse trends between RC and the two aging
markers were also markedly attenuated (Table 2).

3.4 Non-linear relationship exploration
between RC and two aging biomarkers
through restricted cubic splines

Based on the results of linear regression using RC as a
categorical variable, the associations between RC and both aging
biomarkers appeared to be nonlinear. Therefore, RCS analyses were
performed to further investigate the dose-response relationships. As
shown in Figure 1, significant nonlinear associations were observed
for both LTL and o-Klotho (P for nonlinear = 0.001 and 0.019,
respectively). For LTL, two inflection points were identified at 0.645
and 1.424 mmol/L, whereas for o-Klotho a single inflection point
was observed at 1.374 mmol/L.
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TABLE 1 Baseline characteristics of participants across RC quartiles.

Indicators Overall (h=1052) Q1 (n=270) (<0.530) Q2 (n=259) (0.53 Q3 (n=262) (1.020~1.380) Q4 (n=261) (>1.380)
Age (y) 55.68 + 10.85 56.34 + 11.50 57.54 + 10.73 53,02 + 10.69™ 55.79 + 9.97°¢ <0.001*
Female 638 (63.5) 148 (58.3) 158 (62.7) 163 (65.7) 169 (67.6) 0.144
Male 366 (36.5) 106 (41.7) 94 (37.3) 85 (34.3) 81 (32.4)
BMI (kg/m?) 26.41 + 7.83 26.51 + 14.20 26.36 + 3.57 26.25 + 391 26.52 + 3.78 0.977
WC (cm) 89.00 + 10.60 88.49 + 11.27 88.77 + 9.97 88.45 + 11.53 90.29 + 9.44% 0.028*
WHR 0.93 (0.89, 0.95) 0.90 (0.84, 0.93) 0.91 (0.88, 0.95) 0.95 (0.93, 0.96) 0.95 (0.93, 0.96) <0.001*
SBP (mmHg) 129.78 + 17.27 131.07 + 16.96 131.80 + 17.25 127.55 + 16.80° 128.66 + 17.80 0.018*
DBP (mmHg) 78.20 + 10.82 78.70 + 10.36 80.11 + 11.11 76.77 + 10.58™ 77.19 + 10.97° 0.002*
ALT (UL) 2080 (1545, 28.02) (14.013.0203.00) (15.33,.(;(;.25) (17.;;.8351.45) (17.8?;)298)3" <0001
AST (U/L) 21.95 (18.00, 26.00) (18.0201,‘02(31.00) (18.(?(:,.(;(4)1‘65) (19.12(?,.256.42) (19.2;,3 2)70.82)3" <0001
eGFR . a a
(L /min/1.73m%) 9421 + 19.27 99.08 + 20.11 93.70 + 18.59 93.65 + 18.12 90.35 + 19.28 <0.001%
sUA (umol/L) 297.23 + 79.19 290.18 + 71.87 305.15 + 78.58" 288.12 + 79.40° 305.45 + 85.26° 0.014*
TC (mmol/L) 513 + 1.09 4.53 + 0.90 4.70 +0.96 5.13 + 0.68" 6.16 + 0.97* <0.001*
X 1. L. 2.24
TG (mmol/L) 1.39 (097, 2.06) (0.7?,917.22) (1.10,526.00) (0.99,315.98)a (155, 3.71) <0.001*
HDL-C (mmol/L) 127 +0.35 134 +0.28 1.26 + 0.50 124 +0.27° 1.26 + 0.29° 0.007*
LDL-C (mmol/L) 2.85 + 0.76 2.81 +0.76 2.77 +0.79 2.65 + 0.57 3.18 + 0.80° <0.001*
FPG (mmol/L) 6.05 (5.48, 7.30) 6.00 (5.30, 7.50) 6.10 (5.40, 8.00)* 5.92 (5.51, 6.60)" 6.22 (5.63, 7.17)* 0.025*
HbAlc (%) 5.70 (5.40, 6.53) 5.80 (5.40, 6.70) 5.80 (5.40, 7.00) 5.60 (5.30, 6.10)* 5.80 (5.43, 6.40)° <0.001*
HOMA-IR 2.56 (1.67, 4.02) 1.92 (1.34, 3.17) 2.75 (1.71, 4.03)* 2.69 (1.78, 4.01)* 2.97 (2.07, 4.97) <0.001*
HOMA-B 68.63 (4185, 100.10) (33.8513,;81.21) (38.8??;1,78) (49.647,5i?)§.90)“b (so,oz,l.li):w)“ <0001
Energy (kcal/d) 1379.71 (1037.81, 1777.43) 1271.09 (963.95, 1698.50) 1325.15 (986.53, 1674.15) 1452.36 (1126.87, 1809.49)* 1440.59 (1094.07, 1811.41) 0.002*
z-LTL 0.02 + 0.58 0.15 + 0.54 0.08 + 0.59 -0.06 + 0.61°° -0.10 + 0.53% <0.001%
o-Klotho (pg/mL) 809.24 + 264.64 884.81 + 294.93 816.11 + 271.04* 759.34 + 228.84 775.02 + 241.26" <0.001*
TNFa (pg/mL) 5.57 (3.64, 8.18) 4.95 (3.28, 6.71) 531 (3.49, 7.30) 6.13 (4.08, 10.76)" 6.31 (3.75, 10.04)™ <0.001*
(Continued)
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TABLE 2 The multiple linear regression between RC and LTL and serum ca--klotho.

LTL Immol/L increment Q1 Q2 (@K Q4

model 1 -0.171(-0.236,-0.105)* 1(ref) -0.061(-0.159,0.037) -0.243(-0.342,-0.144)* -0.263(-0.361,-0.164)*
model 2 -0.184(-0.269,-0.098)* 1(ref) -0.038(-0.138,0.061) -0.260(-0.362,-0.158)* -0.235(-0.350,-0.120)*
model 3 -0.177(-0.262,-0.091)* 1(ref) -0.038(-0.137,0.062) -0.255(-0.358,-0.153)* -0.230(-0.345,-0.114)*
model 4 -0.162(-0.250,-0.075)* 1(ref) -0.033(-0.133,0.066) -0.241(-0.345,-0.137)* -0.217(-0.334,-0.010)*
a-Klotho 1mmol/L increment Q1 Q2 Q3 Q4

model 1 -0.030(-0.046,-0.014)* 1(ref) -0.032(-0.056,-0.007)* -0.065(-0.090,-0.041)* -0.054(-0.078,-0.029)*
model 2 -0.045(-0.066,-0.024)* 1(ref) -0.030(-0.054,-0.005)* -0.062(-0.087,-0.037)* -0.058(-0.086,-0.030)*
model 3 -0.017 (-0.045,0.011) 1(ref) -0.023(-0.048,0.002) -0.043(-0.073,-0.013)* -0.034(-0.069,-0.001)*
model 4 -0.017(-0.045,-0.011) 1(ref) -0.030(-0.054,-0.005)* -0.062(-0.087,-0.037)* -0.058(-0.086,-0.030)*

Model 1 was adjusted for age and sex; model 2 was adjusted for BMI, WHR, ALT, AST, eGFR, SBP, DBP, HbAlc, FBG, TG, HDL-C, LDL-C, and sUA; model 3 was further adjusted for total
energy intake based on model 2; and model 4 was further adjusted for TNF-a, IL-6, IL-1B, SOD, and 8-OHdG. The z-LTL and log-transformed a-klotho were analyzed in all models. *P<0.05
means statistical difference.

potential link between higher RC and accelerated biological aging.  threshold-based relationships reported between RC and aging-
Linear regression analysis confirmed negative associations between  related diseases (35-37). For example, RC showed an inverse L-
RC and both aging biomarkers, independent of age, sex, and  shaped relationship with nonalcoholic fatty liver disease, with a
multiple metabolic confounders, including traditional lipid  turning point around 0.96 mmol/L (35). A similar nonlinear pattern
markers (TG, LDL-C, HDL-C). Unlike prior studies that focused = was reported for stroke risk in a Chinese cohort, positive below 1.78
on aging-related diseases (5, 6), our study is the first to shift the = mmol/L and nonsignificant above (36). Another research on
focus directly to biological aging itself, using validated aging  sarcopenia also supports the finding, with a turning point near
biomarkers as outcomes. We newly identified a negative  1.33 mmol/L (37). These patterns suggest a critical range below
association between RC and LTL, providing preliminary evidence =~ which RC exerts greater biological impact, while levels above the
that elevated RC may contribute to telomere shortening.  threshold may represent a saturation effect. In other words, beyond
Additionally, we confirmed and extended prior findings from a  this “saturation point”, compensatory mechanisms may partially
U.S. population by demonstrating a similar inverse relationship  attenuate the detrimental effects of RC, implying a potential window
between RC and serum o.-Klotho in a Chinese cohort (21). These  for earlier RC management. However, reported RC thresholds vary
consistent results across diverse populations suggest that RC may  across studies, likely due to the differences in populations, sample
serve as a more sensitive lipid-related biomarker of aging than  size, and modeling choices. Future research in large and diverse
conventional lipids. cohorts is needed to validate these thresholds and clarify their
Importantly, our findings also demonstrated nonlinear  clinical relevance.
associations between RC and aging biomarkers. For o-Klotho, the Mechanistically, mediation analyses confirmed that
inverse association was evident only below 1.37 mmol/L. For LTL,a  inflammation and oxidative stress, two well-established
significant inverse association was observed within 0.65-1.42 mmol/  contributors to aging, partially explained the associations between
L; however, in clinical lipid management, greater attention should =~ RCand aging biomarkers. Specifically, TNF-o and IL-6 significantly
be paid to elevated RC levels. Overall, these patterns mirror prior — mediated the relationship between RC and LTL. Chronic low-grade

.
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FIGURE 1
The nonlinear relationship between RC and two aging biomarkers. (a) RC and LTL; (b) RC and o-Klotho. The model was adjusted for age, sex, BMI,
WHR, ALT, AST, eGFR, SBP, DBP, HbAlc, FPG, LDL-C, HDL-C, TG, sUA, and total energy intake.
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(a) (b)

Indirect effect
-0.032(-0.044,-0.002)*

Total effect
-0.180(-0.266,-0.095)*

Indirect effect
-0.025(-0.028,-0.005)*

Total effect

-0.177(-0.262,-0.091)*

10.3389/fendo.2025.1700349

(c)

Indirect effect
-0.010(-0.080,0.008)

Total effect
-0.177(-0.262,-0.091)

Direct effect
-0.148(-0.249,-0.074)*

(d)

Indirect effect
-0.013(-0.108,0.047)

Total effect
-0.170(-0.259,-0.079)*
Direct effect
-0.157(-0.285,-0.083)*

FIGURE 2

Direct effect
-0.152(-0.254,-0.080)*

Direct effect
-0.167(-0.259,-0.075)*

(e)

Indirect effect
-0.000(-0.005,0.003)

Total effect
-0.177(-0.262,-0.091)*

Direct effect
-0.177(-0.292,0.091)*

The mediation effect of inflammation and oxidative stress in the relationship between RC and LTL. (a-e) the mediation model of TNFo, IL-6, IL-1B,
SOD, 8-OHdG on the correlation between RC and LTL. The model was adjusted for age, sex, BMI, WHR, ALT, AST, eGFR, SBP, DBP, HbAlc, FPG,
LDL-C, HDL-C, TG, sUA, and total energy intake. The z-LTL and log-transformed TNFa, IL-6, IL-1B, SOD, and 8-OHdG were analyzed in the model.

*P<0.05 means statistical difference.

inflammation is known to suppress telomerase activity, impair
telomere maintenance, and accelerate cellular senescence, with
cumulative inflammatory burden, particularly involving TNF-o
and IL-6, being inversely associated with LTL (18, 38). RC has
also been shown to promote immune activation and vascular
dysfunction, leading to sustained inflammatory responses (39).

(a) (b)

Indirect effect
0.003(-0.002,0.008)

Total effect
-0.045(-0.066,-0.024)*

Indirect effect
0.000(-0.003,0.004)

Total effect
-0.045(-0.066,-0.024)*

Our findings align with these mechanisms and provide further
evidence that RC may be correlated with telomere shortening via
inflammatory pathways.

In addition, SOD was identified as a significant mediator of the
inverse association between RC and o.-Klotho. As a key antioxidant,
SOD can mitigate reactive oxygen (ROS) production by converting

(9

Indirect effect
-0.004(-0.012,0.005)

Total effect
-0.045(-0.066,-0.024)*

aKlotho

Direct effect
-0.048(-0.069,-0.027)*

(d)

Indirect effect
-0.032(-0.050,-0.014)*

Total effect
-0.055(-0.077, -0.034)*

Direct effect
-0.024(-0.053,-0.012)*

aKlotho

FIGURE 3

Direct effect
-0.045(-0.067,-0.024)*

Direct effect
-0.042(-0.064,-0.019)*

(e)

Indiect effect
0.000(-0.001,0.001)

Total effect
-0.045(-0.066,-0.024)*

Direct effect
-0.045(-0.066,-0.024)*

aKlotho

The mediation effect of inflammation and oxidative stress in the relationship between RC and a-Klotho protein. (a—e): the mediation model of TNFa,
IL-6, IL-1B, SOD, 8-OHdG on the correlation between RC and a-Klotho. The model was adjusted for age, sex, BMI, WHR, ALT, AST, eGFR, SBP, DBP,
HbAlc, FPG, LDL-C, HDL-C, TG, sUA, and total energy intake. The log-transformed a-Klotho, TNFa, IL-6, IL-1B, SOD, and 8-OHdG were analyzed in

the model. *P<0.05 means statistical difference.
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superoxide anions into hydrogen peroxide. Elevated SOD levels are
generally considered an adaptive protective response (40). We
observed that individuals with higher o-Klotho protein levels had
the lowest SOD levels; meanwhile, SOD showed a positive
correlation with RC and a negative correlation with a-Klotho.
Given that o-Klotho protein displays antioxidant properties while
RC promotes oxidative stress (13, 14), we speculate that individuals
with higher o-Klotho protein may exist a lower oxidative stress
response, thereby diminishing the requirement for antioxidant
enzymes such as SOD. Conversely, lipid metabolism disorders
induce oxidative stress, leading to a compensatory increase in
SOD expression to counteract oxidative damage. These results
suggest that elevated SOD may serve as an indirect marker of
RC-related oxidative stress and lower o-Klotho levels. However, no
significant association was found between RC and direct oxidative
markers such as 8-OHdAG, possibly due to measurement limitations
or population-specific factors. Moreover, some studies have pointed
out that overactive SOD may lead to the accumulation of hydrogen
peroxide and induce secondary oxidative damage (41). Whether
this paradoxical role of SOD also influences the relationship
between RC and o.-Klotho warrants further investigation.

Notably, while inflammation mediated the RC-LTL association
and oxidative stress mediated the RC-a-Klotho link, we did not
observe overlapping mediation effects across both biomarkers. This
suggests that distinct biological pathways may differentially
influence telomere shortening and a-Klotho reduction, reflecting
heterogeneity in aging mechanisms. Future studies using broader
biomarker panels and omics approaches are needed to clarify these
divergent pathways.

To our knowledge, this is the first study to investigate the negative
and nonlinear associations between RC and two critical aging
biomarkers (LTL and serum o.-Klotho). Meanwhile, it also provides
novel insights into the mediating role of inflammation and oxidative
stress in these associations, identifying TNFow and IL-6 as mediators
in the negative relationship between RC and LTL, and SOD as a
mediator in the adverse association between RC and o-Klotho
protein. These findings highlight the unique value of RC, beyond
traditional lipid markers, in linking dyslipidemia and biological aging,
while supporting the involvement of inflammation and oxidative
stress as potential mechanistic pathways.

However, several limitations should be acknowledged. First, the
cross-sectional nature of the study precludes causal inference,
underscoring the need for validation in prospective longitudinal
cohorts. Second, the moderate sample size and the recruitment of
participants from a single rural community may limit the external
validity of our findings. Third, despite the adjustment of known
confounders, unmeasured or unknown factors (such as dietary
patterns, smoking, drinking, or genetic susceptibility) may still
affect the results. Finally, the exploration of the mechanism in
this study remains preliminary. Although five inflammatory and
oxidative stress factors were detected, the differences between
different aging markers were still not sufficiently elucidated.
Additionally, we acknowledge that our mediation analyses were
conducted using cross-sectional data and should be interpreted as
statistical mediation only; temporal ordering cannot be established
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and residual confounding cannot be excluded. Future research
should incorporate broader biomarker panels, longitudinal
tracking, and multicenter cohorts to better clarify the role and
mechanism of RC in aging.

5 Conclusion

This study revealed negative and nonlinear associations
between RC and two aging biomarkers, LTL and serum o.-Klotho,
in the Chinese population, independent of traditional lipid
parameters and multiple metabolic factors. Inflammation and
oxidative stress may partly mediate these links. From an aging
perspective, these cross-sectional findings suggest that greater
attention to early RC management in addition to traditional lipids
should be warranted, pending validation in longitudinal and
interventional research.
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