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Cardiovascular disease (CVD) remains the leading global cause of mortality, with
insulin resistance as a pivotal metabolic risk factor that promotes endothelial
dysfunction, inflammation, and atherosclerosis via mechanisms such as impaired
nitric oxide signaling and enhanced oxidative stress. The metabolic score for
insulin resistance (METS-IR), a non-insulin-based index derived from fasting
blood glucose, triglycerides, high-density lipoprotein cholesterol, and body
mass index, offers a practical surrogate for assessing insulin sensitivity.
However, its association with incident CVD has not been systematically
evaluated in a meta-analysis. This meta-analysis aimed to quantify the
relationship between baseline METS-IR and the incidence of composite CVD,
coronary artery disease (CAD), and stroke in adults without baseline CVD,
including categorical, continuous, and dose-response analyses. We searched
PubMed, EMBASE, Cochrane Library, and Web of Science up to August 2, 2025,
for cohort studies. Hazard ratios (HRs) were pooled using random-effects models
to account for heterogeneity for highest versus lowest METS-IR categories and
per standard deviation (SD) increment. Nonlinear dose-response relationships
were modeled with restricted cubic splines. Heterogeneity, sensitivity, and
publication bias were assessed. Eight cohort studies involving 437,283
participants were included. Highest vs. lowest METS-IR was associated with
increased risks (HR [95% ClI; 12): composite CVD (1.65 [1.36-2.02]; 85.6%), CAD
(1.82 [1.50-2.20]; 59.7%), stroke (1.47 [1.19-1.83]; 76.3%). Per SD increment:
composite CVD (1.16 [1.10-1.22]; 70.7%), CAD (1.18 [1.11-1.25]; 52.4%), stroke
(1.13 [1.06-1.19]; 67.9%). Dose-response analyses revealed a nonlinear
association for CAD (P for nonlinearity: 0.011), marginal nonlinearity for stroke
(P: 0.072), and suggested nonlinearity for composite CVD (P: 0.145), with
inflection points at METS-IR values of 40.56 (composite CVD), 38.24 (CAD),
and 48.88 (stroke), beyond which risks appeared to accelerate. Elevated METS-IR
independently predicts higher incidence of composite CVD, CAD, and stroke
with nonlinear thresholds for CAD, marginal nonlinear thresholds for stroke, and
potential nonlinear thresholds for composite CVD, despite moderate-to-high
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heterogeneity, supporting its integration into risk stratification and preventive
strategies for metabolic health management.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/
display_record.php?ID=CRD420251104293, identifier CRD420251104293.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death
globally, accounting for approximately 17.9 million deaths annually,
with projections estimating an increase to over 23 million by 2030
(1). As a core component of metabolic syndrome and type 2
diabetes, insulin resistance is considered a primary driver of CVD
(2-4). It contributes to endothelial dysfunction, inflammation, and
accelerated atherosclerosis through mechanisms such as impaired
nitric oxide signaling and enhanced oxidative stress (2-4).

Traditional methods for assessing insulin resistance, such as the
Homeostatic Model Assessment for Insulin Resistance (HOMA-
IR), rely on measurements of fasting insulin levels (5). However,
fasting insulin is not routinely measured in clinical practice. To
address this limitation, several novel insulin resistance surrogate
indices that do not require insulin measurement have been
developed, including the triglyceride-glucose (TyG) index,
triglyceride-glucose-body mass index (TyG-BMI) index, and
metabolic score for insulin resistance (METS-IR) (5-7).
Numerous meta-analyses synthesizing evidence on indices such as
TyG and HOMA-IR have demonstrated consistent associations
with CVD risk (8-10). Nonetheless, it remains unclear which
non-insulin-dependent surrogate index exhibits superior
predictive ability for CVD. Moreover, no meta-analysis has yet
summarized the association between METS-IR and CVD incidence
risk. Individual cohort studies have reported varying effect sizes for
METS-IR in predicting composite CVD, coronary artery disease
(CAD), and stroke (11, 12). However, these studies are often limited
by small sample sizes, geographic specificity, or inadequate
adjustment for confounding factors such as hypertension and
lipid-modifying treatments (11, 12). Compared with other non-
insulin-dependent surrogate indices such as TyG, METS-IR has
shown superior predictive value for visceral obesity, incident
diabetes, and metabolic disorders (7). This advantage has been
validated against the gold standard for insulin resistance assessment
—the hyperinsulinemic-euglycemic clamp technique (7). In terms
of applicability, METS-IR can be manually calculated using a
straightforward formula based on routinely available clinical
measurements (fasting blood glucose (FBG), triglycerides (TG),
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high-density lipoprotein cholesterol (HDL-C), and BMI), making
it practical for everyday clinical use without specialized equipment
or analyses, as demonstrated in validation studies across diverse
populations (7, 13-15). In diverse populations, higher METS-IR
levels are associated with increased arterial stiffness and subclinical
atherosclerosis (13-15). Therefore, a rigorous meta-analysis is
warranted to quantify the predictive role of METS-IR in CVD
incidence risk.

This meta-analysis aims to evaluate the association between
baseline METS-IR and the incidence of CVD outcomes (including
composite CVD, CAD, and stroke) in adult populations without
baseline CVD, as well as to explore the dose-response relationship
between this index and those outcomes. Ultimately, these findings
will provide evidence-based insights to facilitate the integration of
METS-IR into global frameworks for CVD prevention.

Methods

The protocol was registered with PROSPERO (International
Prospective Register of Systematic Reviews, https://www.crd.york.ac.uk/
PROSPERO) under registration number CRD420251104293. This
meta-analysis was conducted following Preferred Reporting Item
for Systematic Review and Meta-Analysis 2020 guidelines (PRISMA
2020). (Supplementary Material: Table S1).

Literature search

Articles published from the inception of the databases up to
August 2, 2025, were retrieved from PubMed, EMBASE, The
Cochrane Library, and Web of Science using the following title
terms: “cardiovascular disease”, “CVD”, “coronary artery disease”,
“Coronary Disease”, “CAD”, “CHD”, “stroke”, “Ischemic Attack,
Transient”, “Peripheral Arterial Disease”, “METS-IR”, and
“Metabolic Score for Insulin Resistance”. The search was
conducted by combining MeSH terms and free-text words, with
no language restrictions applied. The detailed search strategy is

described in Supplementary Material: Table S2.
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Study selection

This systematic review process followed a two-stage screening
approach in line with PRISMA guidelines to ensure comprehensive
and reproducible study selection. Two researchers independently
conducted the entire process from literature search and selection to
data analysis. We used Zotero 7.1-beta.4l + 355c61e6d (64-bit)
software (Corporation for Digital Scholarship, Vienna, Virginia,
USA) to organize all studies. After automatically and manually
removing duplicates, relevant literature was initially screened by
examining titles and abstracts. Subsequently, full texts of the
preliminarily screened literature were reviewed to determine the
final eligible studies. Any discrepancies during this process were
resolved by a third reviewer. The inclusion criteria for studies were
as follows: (1) being a cohort study published as a full text; (2)
including an adult population without CVD at baseline; (3)
measuring METS-IR at baseline and reporting specific values; (4)
having the primary outcome as a composite outcome of CVD and
secondary outcomes as individual CVD events; and (5) reporting
hazard ratios (HRs) after adjusting for potential confounding
factors. The formula for calculating METS-IR is: In [(2xFBG (mg/
dL)) + TG (mg/dL)] x BMI (kg/m?))/(In [HDL-C (mg/dL)]) (7).
The composite outcome of CVD was defined as the incidence of
CAD, stroke, transient ischemic attack, and peripheral arterial
disease. The diagnosis of CAD, stroke, transient ischemic attack,
and peripheral arterial disease was consistent with the criteria of the
original studies. Studies were excluded if they were reviews, meta-
analyses, abstract-only articles, or focused on other outcomes. If
there was an overlap in the population between different studies
from the same registry or group, only the study with the largest
sample size was included.

Data extraction and quality assessment

Two authors independently extracted relevant information
from eligible studies, and any discrepancies were resolved by
consensus. The extracted data included: (1) first author’s name,
year of publication, and country; (2) characteristics of the study
design; (3) participant characteristics, including health status,
sample size, age, and gender ratio; (4) METS-IR analysis model;
(5) follow-up duration; (6) reported outcomes and outcome
validation methods; and (7) confounding factors adjusted for in
multivariate analysis. For the included cohort studies, the
Newcastle-Ottawa Scale (NOS) was used to assess the quality and
strength of evidence for each outcome. This scale, which ranges
from 1 to 9 points, evaluates the quality of cohort studies based on
the selection of study groups, comparability between groups, and
ascertainment of the outcome of interest (16).

Statistical analysis

Hazard ratios (HRs) and their corresponding 95% confidence
intervals (CIs) were used as the general measure to assess the
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association between baseline METS-IR and the incidence of CVD,
CAD, stroke, transient ischemic attack, or peripheral arterial disease
in the adult population. For studies analyzing METS-IR as a
categorical variable, the HR for CVD incidence comparing the
highest METS-IR level to the lowest was extracted. For studies
analyzing METS-IR as a continuous variable, the HR for CVD
incidence per 1 standard deviation (SD) increase in METS-IR was
extracted. Data on HRs and their standard errors were calculated
from 95% CIs or P-values; these were then log-transformed for
variance stabilization and distribution standardization (17).
Heterogeneity was evaluated using the I” statistic and Cochran’s
Q test (18); if I* > 50% or P < 0.10, indicating significant
heterogeneity, a random-effects model was used to pool HR data.
Otherwise, a fixed-effects model was applied (19). Sensitivity
analyses were performed by excluding one individual study at a
time to test the stability of the results (20). If more than 10 studies
were included for each outcome, subgroup analyses were conducted
stratified by gender, age, and diabetes status (19). Publication bias
was graphically assessed using funnel plots. Additionally, when
necessary, Egger’s test (for 210 included studies) and the trim-and-
fill method were applied to further evaluate publication bias
(19, 21-23). The nonlinear mixed-effects model approach
proposed by Jiang et al. was adopted to directly integrate data
from all studies. Restricted cubic splines (RCS) were used to capture
the nonlinear association between METS-IR and the risk of
outcome incidence, while incorporating study-level random
effects to account for between-study variation, thereby achieving
overall modeling of the dose-response relationship (24). Meanwhile,
second derivative analysis was used to precisely locate the inflection
points of the curve (25). When METS-IR was reported in
categorical intervals, for closed intervals, the midpoint of the
upper and lower bounds of the interval was taken as the exposure
level; for open intervals, the interval length was set to that of the
adjacent group, and the midpoint was used as the mean exposure
level (26). Meta-analysis and statistical analyses were performed
using R software version 4.5.1 (R Core Team, Vienna, Austria). A P-
value < 0.05 was considered statistically significant.

Results
Study selection process

This study completed literature screening in accordance with
the PRISMA statement (Figure 1). A total of 674 relevant studies
were retrieved from databases (PubMed, EMBASE, The Cochrane
Library, Web of Science). After removing 256 duplicate records, the
remaining 418 studies underwent title and abstract screening, and
388 studies that did not meet the criteria were excluded. Through
full-text assessment, additional studies were excluded for the
following reasons: failure to report multivariable-adjusted HR
(n=14), population overlap (n=4), inclusion of participants with
baseline cardiovascular disease (CVD) (n=1), lack of specific
METS-IR values (n=1), and being non-cohort studies (n=2).
Finally, 8 cohort studies were included in the meta-analysis (27-34).
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Identification of new studies via databases
S
'§ Records identified from: Records removed before screening:
= Databases (n = 674) Duplicate records (n = 256)
é
Records screened Records excluded
(n=418) (n =388)
Reports sought for retrieval Reports not retrieved
(n=30) (n=0)
=
=
g Reports excluded:
& Not reporting multivaliate adjusted
HRs between METS-IR and relative
outcomes (n = 14)
Reports assessed for eligibility Overlap with the populations of
(n=30) included studies (n = 4)
Including participants with CVD at
baseline (n = 1)
Lack of specific METS-IR values (n = 1)
Non-cohort study (n = 2)
° g
2 New studies included in meta-
= analysis
S (n=8)
FIGURE 1

Flowchart of the database search and study identification process according to the PRISMA statement

Baseline characteristics of included studies

The 8 included studies (27-34) were published between 2021 and
2025 (Table 1), consisting of 7 prospective cohort studies (PC) (27-
31, 33, 34) and 1 retrospective cohort study (RC) (32), originating
from China (5 studies) (29-32, 34), South Korea (2 studies) (27, 33),
and Iran (1 study) (28). The total sample size was 437,283
participants, with individual study sizes ranging from 2,031 to
306,680. All participants had no CVD at baseline (among them,
Lv,2025 (34) included hypertensive participants without baseline
CVD; Yang,2023 (32) included hypertensive participants with
obstructive sleep apnea but without CVD; Yoon,2021 (33) included
participants without diabetes or CVD). The mean age ranged from
39.4 to 59.57 years, and the male proportion was 42.9% to 71.7%
(highest in Wu,2025 (31); lowest in Wang,2023 (29). Follow-up
durations ranged from 1.98 to 17.9 years (shortest in Lv,2025 (34);
longest in Tamehri,2024 (28). Primary outcomes included composite
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CVD, CAD, and stroke. Specifically, there were 317 to 5,820
composite CVD events (5 studies (29-32, 34); total 9,178 events),
198 to 1,216 CAD events (7 studies (27, 28, 30-34); total 4,579
events), and 119 to 4,659 stroke events (5 studies (28, 30-32, 34); total
6,891 events). All studies adjusted for confounders such as age, sex,
smoking, alcohol consumption, hypertension, diabetes, and lipid
profiles; some also adjusted for medication use (e.g.,
antihypertensives, hypoglycemics), physical indicators (e.g., BMI,
waist circumference), and sociodemographic factors (e.g.,
education, marital status).

Quality assessment of included studies
Study quality was assessed using the Newcastle-Ottawa Scale

(NOS) (Table 2). The 8 studies (27-34) scored 6 to 9 points,
indicating overall high quality. Evaluations focused on population
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TABLE 1 Continued
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TABLE 1 Continued
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RG, retrospective cohort; PC, prospective cohort; BMI, body mass index; WHR, waist-to-hip ratio; eGFR, estimated glomerular filtration rate; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; CAD, coronary
artery disease; CVD, cardiovascular disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; CRP, C-reactive protein; AHI, apnea hypopnea index; OSA, obstructive sleep apnea; DM, diabetes mellitus; ACEIs, angiotensin-

converting enzyme inhibitors; ARBs, angiotensin receptor blockers; CCBs, calcium channel blockers.
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TABLE 2 Details of quality evaluation via the Newcastle—Ottawa Scale.
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selection (representativeness, exposed/unexposed groups), group
comparability (confounder adjustment), and outcome
ascertainment (follow-up duration, assessment methods).
Tamehri,2024 (28), Wang,2023 (29), and Wu,2023 (30) scored
highest (9 points); Yoon,2021 (33) and Lv,2025 (34) scored lowest
(6 points), mainly due to lower representativeness of exposed/
unexposed cohorts. All studies excluded baseline outcome events
and adjusted for key confounders, indicating low bias risk.

Association between METS-IR and the risk
of composite CVD incidence

A random-effects model pooled effect sizes from 5 studies
(Figure 2A), showing that the highest baseline METS-IR group
had an increased CVD risk compared to the lowest (HR = 1.65, 95%
CL: 1.36-2.02, I’=85.6%, 1°=0.0356, P<0.0001). This was aligned
with the continuous analysis (5 studies; per 1-SD increase: HR =
1.16, 95% CI: 1.10-1.22, I’=70.7%, 1°=0.0019, P<0.0001, Figure 2B).

Funnel plots indicated asymmetry for both categorical
(Figure 3A, trim-and-fill estimated 2 missing studies, SE = 1.6604;
adjusted HR = 1.55, 95% CI: 1.28-1.86, Supplementary Material:
Figure SI1A, 4A) and continuous analyses (Figure 3B, 3 missing
studies, SE = 1.4845; adjusted HR = 1.11, 95% CI: 1.05-1.17;
Supplementary Material: Figures S1B, 4B), suggesting potential
missing negative-result studies. Sensitivity analyses confirmed
robust results: categorical HR ranged from 1.58-1.82; continuous
HR ranged from 1.16-1.17 (all P<0.0001; Figures 5A, B). Omitting
Lv,2025 (34) led to the most pronounced I* reductions (e.g., to 0%
for composite CVD; Figures 5-7). Due to fewer than 10 studies,
Egger’s test and subgroup analyses were not performed.

Dose-response analysis using a mixed-effects model with
restricted cubic splines (P for nonlinearity =0.145, Figure 2C) did
not show statistically significant nonlinearity but suggested a
potential pattern: HR remained near 1 at low METS-IR, rising
with increases and widening CIs. An exploratory inflection point
was identified at approximately 40.56, beyond which risk appeared
to accelerate.

Association between METS-IR and the risk
of coronary artery disease incidence

Pooled results from 7 studies (Figure 8A) indicated a higher
CAD risk in the highest METS-IR group (HR = 1.82, 95% CI: 1.50-
2.20, I’=59.7%, 1°=0.0370, P<0.0001). The continuous analysis (6
studies; per 1-SD: HR = 1.18, 95% CI: 1.11-1.25, I’=52.4%,
12=0.0029, P<0.0001, Figure 8B) was consistent.

Funnel plots showed asymmetry for both categorical
(Figure 3C, 3 missing studies, SE = 1.6850, adjusted HR = 1.59,
95% CI: 1.32-1.92, Supplementary Material: Figures S2A, 4C) and
continuous analyses (Figure 3D, 3 missing studies, SE = 1.6385;
adjusted HR = 1.13, 95% CI: 1.07-1.20; Supplementary Material:
Figures S2B, 4D). Sensitivity analyses showed stable results:
categorical HR ranged from 1.72-1.94; continuous HR ranged
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A Study log[Hazard Ratio] SE Weight (%) Hazard Ratio (Random, 95% Cl) Hazard Ratio 95% CI

Wang,2023 0.5822 0.18 14.9 L 3 1.79 0.22 0.94 [1.25;2.57]
Wu,2023 0.5878 0.19 145 - 1.80 0.22 0.96 [1.24;2.61]
Wu,2025 0.5710 0.08 251 1.77 0.42 0.72 [1.53; 2.05]
Yang,2023 0.7178 0.15 176 = 2.05 0.42 1.02 [1.52;2.77]
Lv,2025 0.2231 0.04 28.0 1.25 0.15 0.30 [1.16; 1.35]
Overall (Random effects model) 100.0 * 1.65 [1.36; 2.02]
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Forest plots (A, B) and nonlinear dose-response curve (C) for the association between METS-IR and CVD risk, analyzed as a categorical variable
(highest vs. lowest; A) and continuous variable (per 1-SD increment; (B). In forest plots, the diamond represents the pooled effect estimate; colored
squares indicate study weights, and black horizontal lines denote 95% Cls of individual study effect sizes. The dose-response curve was fitted using
restricted cubic spline regression; the red line shows the pooled association, with the red shaded area representing 95% Cls. The blue dashed line
marks the key inflection point (METS-IR = 40.56). METS-IR, metabolic score for insulin resistance; CVD, cardiovascular disease; Cl, confidence

interval; SD, standard deviation.

from 1.16-1.19 (all P<0.0001, Figures 6A, B). Omitting Lv,2025 (34)
yielded the most pronounced I’ reductions (e.g., from 59.7% to
44.6% for CAD categorical analysis, Figures 5-7). Fewer than 10
studies precluded further tests.

Dose-response analysis (P for nonlinearity=0.011; Figure 8C)
exhibited nonlinearity: HR was near 1 at low levels, with an upward
trend and widening CIs. The inflection point was at approximately
38.24, indicating accelerated risk beyond this threshold.

Association between METS-IR and the risk
of stroke incidence

Pooled from 5 studies (Figure 9A) indicated that the highest

METS-IR increased stroke risk (HR = 1.47, 95% CI: 1.19-1.83,
1’=76.3%, 1°=0.0337, P = 0.0005). The continuous analysis
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(5 studies; per 1-SD: HR = 1.13, 95% CI: 1.06-1.19, 1>=67.9%,
1°=0.0021, P<0.0001, Figure 9B) aligned with this finding.

Funnel plots indicated categorical symmetry (Figure 3E, 0
missing studies; Supplementary Material: Figure S3A) but
continuous asymmetry (Figure 3F, 1 missing study, SE = 1.7124;
adjusted HR = 1.11, 95% CI: 1.05-1.19; Supplementary Material:
Figures S3B, 4E). Sensitivity analyses confirmed robustness:
categorical HR ranged from 1.38-1.67; continuous HR ranged
from 1.08-1.17 (all P<0.05, Figures 7A, B). Omittig Lv,2025 (34)
led to the most pronounced I* reductions (e.g., to 0% for stroke
continuous analysis, Figures 5-7). Due to fewer than 10 studies,
Egger’s test and subgroup analyses were omitted.

Dose-response analysis (P for nonlinearity=0.072, Figure 9C)
showed marginal nonlinearity: HR was approximately 1 at low METS-
IR levels, with an upward trend and widening CIs. The inflection point
was at approximately 48.88, beyond which risk accelerated.
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Funnel plots assessing publication bias in the meta-analysis of the association between METS-IR and CVD, CAD, and stroke risks. (A) METS-IR as a

categorical variable and CVD risk; (B) METS-IR as a continuous variable and CVD risk; (C) METS-IR as a categorical variable and CAD risk; (D) METS-
IR as a continuous variable and CAD risk; (E) METS-IR as a categorical variable and stroke risk; (F) METS-IR as a continuous variable and stroke risk.
Gray dots represent individual included studies. METS-IR, metabolic score for insulin resistance; CVD, cardiovascular disease; CAD, coronary artery

disease.

Discussion
Main findings

The main findings of this meta-analysis are that higher METS-
IR levels are significantly associated with increased risks of
composite CVD, CAD, and stroke in adults without baseline
CVD. Specifically, the pooled hazard ratios (HRs) for the highest
versus lowest METS-IR categories were 1.65 (95% CI: 1.36-2.02) for
composite CVD, 1.82 (1.50-2.20) for CAD, and 1.47 (1.19-1.83) for
stroke. Dose-response analyses further revealed nonlinear
relationships for CAD (P = 0.011; inflection at approximately
38.24), marginal nonlinearity for stroke (P = 0.072; inflection at
approximately 48.88), and a potential nonlinear pattern for
composite CVD (P
approximately 40.56), beyond which risks accelerate. These results

0.145; exploratory inflection at

were consistent across categorical and continuous analyses, with
moderate-to-high heterogeneity (I’=52.4%-85.6%).

Comparison with other studies

These findings align with prior meta-analyses on other insulin
resistance surrogates, such as HOMA-IR and TyG, which also

Frontiers in Endocrinology

10

demonstrate independent predictive value for CVD. For instance,
a meta-analysis of 65 studies involving over 500,000 participants
without diabetes reported that HOMA-IR was associated with a
higher risk of coronary heart disease (HR = 1.46 per SD) compared
to glucose (HR = 1.21) or insulin (HR = 1.04) alone (35). This is
similar to our observed HR of 1.18 per SD for METS-IR and CAD.
Additionally, a study of HOMA-IR trajectories in 6,755 Koreans
showed that increasing patterns over approximately 5 years elevated
CVD incidence (HR = 1.59) and mortality (HR = 2.33) (36),
complementing our nonlinear dose-response curves. Compared to
TyG, METS-IR’s HR for CAD (1.82) is comparable to reported
values [2.01 (37); 1.94 (8)], though slightly lower, possibly due to
our focus on Asian cohorts or differences in adjustments. For
composite CVD, METS-IR’s HR (1.65) matches that of TyG-
BMTP’s [1.62 (9)], indicating equivalent predictive utility despite
METS-IR’s simpler components.

Biological mechanisms

IR, often accompanied by compensatory hyperinsulinemia,
serves as an independent risk factor for numerous diseases,
including type 2 diabetes, CVD, cellular senescence, tumors, and
neurodegenerative disorders (2-4, 38, 39). Specifically, in the context
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Funnel plots after trim-and-fill adjustment for publication bias in associations between METS-IR and cardiovascular risks. (A) METS-IR as a
categorical variable vs. CVD risk; (B) METS-IR as a continuous variable vs. CVD risk; (C) METS-IR as a categorical variable vs. CAD risk; (D) METS-IR as
a continuous variable vs. CAD risk; (E) METS-IR as a continuous variable vs. stroke risk. Black dots represent originally included studies; gray dots
represent studies imputed by the trim-and-fill method. METS-IR, metabolic score for insulin resistance; CVD, cardiovascular disease; CAD, coronary

artery disease.

of CVD, IR and hyperinsulinemia contribute to vascular and
myocardial damage through several interconnected mechanisms. IR
impairs endothelial function by reducing nitric oxide bioavailability,
promoting oxidative stress, and activating pro-inflammatory
pathways such as NF-kB, leading to endothelial dysfunction,
inflammation, and accelerated atherosclerosis (3, 4, 40).
Hyperinsulinemia exacerbates these effects by stimulating vascular
smooth muscle cell proliferation, migration, and extracellular matrix
deposition, which fosters plaque formation and vascular stiffness (40).
Additionally, in the myocardium, IR disrupts fatty acid metabolism,
inducing lipotoxicity, mitochondrial dysfunction, and increased
susceptibility to ischemia, contributing to diabetic cardiomyopathy
and heart failure (41-43). These pathophysiological processes form
the basis of the association between elevated METS-IR, as a surrogate
marker of IR, and the increased incidence of composite CVD, CAD,
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and stroke observed in our meta-analysis. Observed heterogeneity
(I=52.4%-85.6%) likely stems from study diversity, including
baseline characteristics (e.g., hypertension, non-diabetes), follow-up
durations (1.98-17.9 years), and geography (e.g., longer follow-up in
Tamehri et al. (28)amplifying cumulative effects). The nonlinear
patterns suggest threshold effects, where low METS-IR yields
gradual risk increases, but exceeding inflections amplifies oxidative
stress and lipotoxicity, driving sharper CVD escalation (41-43).

Strengths
One key strength of this meta-analysis is that it represents the

first comprehensive summary of the link between METS-IR and
incident CVD. We pooled data from eight high-quality cohort
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Leave-one-out sensitivity analyses of the meta-analysis for METS-IR and stroke risk. Blue squares denote the pooled HR for each leave-one-out
scenario, with horizontal lines indicating 95% Cls. The diamond at the bottom represents the overall pooled HR from the random-effects model.
(A) METS-IR as a categorical variable; (B) METS-IR as a continuous variable. METS-IR, metabolic score for insulin resistance; HR, hazard ratio; Cl,

confidence interval.

studies (NOS scores: 6-9; total N = 437,283) from China, Korea, and
Iran, all of which adjusted for major confounders like age, sex,
smoking, hypertension, diabetes, and lipids profiles. Our use of
advanced techniques, like restricted cubic splines for dose-response
modeling, provides detailed thresholds that could prove useful in
clinical settings. The results held up well in sensitivity analyses (with
stable HRs) and trim-and-fill adjustments (maintaining significance
even after accounting for potential missing studies), despite
some heterogeneity.

Limitations

This meta-analysis, while robust, has several limitations that
warrant consideration. First, with only eight studies included,
despite the large overall sample size—we could not perform
subgroup analyses, as our predefined criteria required at least 10
studies. Second, we detected possible publication bias in the
analyses for composite CVD and CAD using trim-and-fill
methods, which suggested 2-3 missing studies with null results;
while sensitivity tests showed the findings were robust, the actual
effect sizes might be slightly smaller (e.g., adjusted HRs: 1.55 [95%
CIL: 1.28-1.86] for composite CVD; 1.59 [1.32-1.92] for CAD).
Third, differences in how METS-IR was categorized, and
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endpoints were defined (e.g., ICD-10 codes vs. medical records)
may have affected the pooled estimates, though we addressed this
with random-effects models and sensitivity checks. The moderate-
to-high heterogeneity (I°=52.4%-85.6%) across outcomes probably
arises from variations in follow-up length, geographic settings, and
baseline participant risks; for example, excluding Lv et al. (2025)
(34)—which had the shortest follow-up at 1.98 years—sharply
lowered I? (e.g., from 85.6% to 0% for composite CVD categorical
analysis and 67.9% to 0% for stroke continuous analysis), since
shorter studies might miss longer-term effects and increase type II
error risk (44). Fourth, the observational nature of the cohorts limits
our ability to infer causality, as unmeasured confounders like
genetics could play a role. Finally, since most cohorts were from
Asia, the results may not generalize well, calling for replication in
African, European, and Latino populations.

Implications and future directions

Despite these limitations, our findings carry important
implications for clinical practice and public health. METS-IR
stands out as an easy-to-use biomarker for assessing CVD risk in
adults without symptoms, outperforming some traditional IR
measures because it draws on standard lab values (7). With HRs
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like 1.65 for composite CVD, 1.82 for CAD, and 1.47 for stroke
(comparing highest to lowest categories), it could help spot high-risk
individuals early, especially those with hypertension or other
metabolic issues—and steer them toward lifestyle tweaks or
medications to stay below key inflection points (11, 32, 45). On a
broader scale, its simple, low-cost nature makes it ideal for
widespread screening in areas where advanced tests aren’t feasible
(7, 12, 46, 47), fitting well with worldwide efforts to prevent CVD
through better metabolic control (10, 48, 49). To build on this, future

10.3389/fendo.2025.1699985

studies should test these associations in more diverse groups, such as
non-Asian ethnicities or younger adults, to improve generalizability
and refine the inflection points. We also need mechanistic research to
unpack the nonlinear patterns—for CAD, stroke, and composite
CVD—by examining how METS-IR’s elements (like BMI, fasting
blood glucose, and TG/HDL-C) interact with factors such as
endothelial dysfunction or inflammation. Head-to-head
comparisons with other surrogates, like the TyG index, could reveal
if METS-IR adds unique value in combined models. Finally, long-

A Study log[Hazard Ratio] SE Weight (%) Hazard Ratio (Random, 95% Cl) Hazard Ratio 95% CI
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FIGURE 8
Forest plots (A, B) and nonlinear dose-response curve (C) for the association

between METS-IR and CAD risk, analyzed as a categorical variable

(highest vs. lowest; (A) and continuous variable (per 1-SD increment; (B). In forest plots, the diamond represents the pooled effect estimate; colored

squares indicate study weights, and black horizontal lines denote 95% Cls of
restricted cubic spline regression; the red line shows the pooled association,

individual study effect sizes. The dose-response curve was fitted using
with the red shaded area representing 95% Cls. The blue dashed line
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interval; SD, standard deviation.
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Forest plots (A, B) and nonlinear dose-response curve (C) for the association

between METS-IR and stroke risk, analyzed as a categorical variable

(highest vs. lowest; (A) and continuous variable (per 1-SD increment; (B). In forest plots, the diamond represents the pooled effect estimate; colored

squares indicate study weights, and black horizontal lines denote 95% Cls of
restricted cubic spline regression; the red line shows the pooled association,

individual study effect sizes. The dose-response curve was fitted using
with the red shaded area representing 95% Cls. The blue dashed line

marks the key inflection point (METS-IR = 48.88). METS-IR, metabolic score for insulin resistance; Cl, confidence interval; SD, standard deviation.

term trials that lower METS-IR through diet or exercise would help
establish causality and quantify how much risk can be reduced.

Conclusion

In summary, this meta-analysis demonstrates that higher
METS-IR is significantly associated with increased risks of

Frontiers in Endocrinology 15

composite CVD, CAD, and stroke, with nonlinear dose-response
relationships for CAD, marginal nonlinear dose-response
relationships for stroke, and a potential nonlinear dose-response
relationship for composite CVD, including critical inflection points
beyond which risk accelerates. These findings validate METS-IR as
a valuable tool for cardiovascular risk assessment and provide
practical thresholds for clinical practice. Despite limitations, the
consistency of results across large, well-designed cohort studies
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supports the utility of METS-IR in guiding preventive strategies for
cardiovascular disease.
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