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Cardiovascular disease (CVD) remains the leading global cause of mortality, with

insulin resistance as a pivotal metabolic risk factor that promotes endothelial

dysfunction, inflammation, and atherosclerosis via mechanisms such as impaired

nitric oxide signaling and enhanced oxidative stress. The metabolic score for

insulin resistance (METS-IR), a non-insulin-based index derived from fasting

blood glucose, triglycerides, high-density lipoprotein cholesterol, and body

mass index, offers a practical surrogate for assessing insulin sensitivity.

However, its association with incident CVD has not been systematically

evaluated in a meta-analysis. This meta-analysis aimed to quantify the

relationship between baseline METS-IR and the incidence of composite CVD,

coronary artery disease (CAD), and stroke in adults without baseline CVD,

including categorical, continuous, and dose-response analyses. We searched

PubMed, EMBASE, Cochrane Library, and Web of Science up to August 2, 2025,

for cohort studies. Hazard ratios (HRs) were pooled using random-effects models

to account for heterogeneity for highest versus lowest METS-IR categories and

per standard deviation (SD) increment. Nonlinear dose-response relationships

were modeled with restricted cubic splines. Heterogeneity, sensitivity, and

publication bias were assessed. Eight cohort studies involving 437,283

participants were included. Highest vs. lowest METS-IR was associated with

increased risks (HR [95% CI]; I²): composite CVD (1.65 [1.36-2.02]; 85.6%), CAD

(1.82 [1.50-2.20]; 59.7%), stroke (1.47 [1.19-1.83]; 76.3%). Per SD increment:

composite CVD (1.16 [1.10-1.22]; 70.7%), CAD (1.18 [1.11-1.25]; 52.4%), stroke

(1.13 [1.06-1.19]; 67.9%). Dose-response analyses revealed a nonlinear

association for CAD (P for nonlinearity: 0.011), marginal nonlinearity for stroke

(P: 0.072), and suggested nonlinearity for composite CVD (P: 0.145), with

inflection points at METS-IR values of 40.56 (composite CVD), 38.24 (CAD),

and 48.88 (stroke), beyond which risks appeared to accelerate. Elevated METS-IR

independently predicts higher incidence of composite CVD, CAD, and stroke

with nonlinear thresholds for CAD, marginal nonlinear thresholds for stroke, and

potential nonlinear thresholds for composite CVD, despite moderate-to-high
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heterogeneity, supporting its integration into risk stratification and preventive

strategies for metabolic health management.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/

display_record.php?ID=CRD420251104293, identifier CRD420251104293.
KEYWORDS

METS-IR, insulin resistance, cardiovascular disease, coronary artery disease, stroke,
meta-analysis, cohort studies, dose-response relationship
Introduction

Cardiovascular disease (CVD) is the leading cause of death

globally, accounting for approximately 17.9 million deaths annually,

with projections estimating an increase to over 23 million by 2030

(1). As a core component of metabolic syndrome and type 2

diabetes, insulin resistance is considered a primary driver of CVD

(2–4). It contributes to endothelial dysfunction, inflammation, and

accelerated atherosclerosis through mechanisms such as impaired

nitric oxide signaling and enhanced oxidative stress (2–4).

Traditional methods for assessing insulin resistance, such as the

Homeostatic Model Assessment for Insulin Resistance (HOMA-

IR), rely on measurements of fasting insulin levels (5). However,

fasting insulin is not routinely measured in clinical practice. To

address this limitation, several novel insulin resistance surrogate

indices that do not require insulin measurement have been

developed, including the triglyceride-glucose (TyG) index,

triglyceride-glucose-body mass index (TyG-BMI) index, and

metabolic score for insulin resistance (METS-IR) (5–7).

Numerous meta-analyses synthesizing evidence on indices such as

TyG and HOMA-IR have demonstrated consistent associations

with CVD risk (8–10). Nonetheless, it remains unclear which

non-insulin-dependent surrogate index exhibits superior

predictive ability for CVD. Moreover, no meta-analysis has yet

summarized the association between METS-IR and CVD incidence

risk. Individual cohort studies have reported varying effect sizes for

METS-IR in predicting composite CVD, coronary artery disease

(CAD), and stroke (11, 12). However, these studies are often limited

by small sample sizes, geographic specificity, or inadequate

adjustment for confounding factors such as hypertension and

lipid-modifying treatments (11, 12). Compared with other non-

insulin-dependent surrogate indices such as TyG, METS-IR has

shown superior predictive value for visceral obesity, incident

diabetes, and metabolic disorders (7). This advantage has been

validated against the gold standard for insulin resistance assessment

—the hyperinsulinemic-euglycemic clamp technique (7). In terms

of applicability, METS-IR can be manually calculated using a

straightforward formula based on routinely available clinical

measurements (fasting blood glucose (FBG), triglycerides (TG),
02
high-density lipoprotein cholesterol (HDL-C), and BMI), making

it practical for everyday clinical use without specialized equipment

or analyses, as demonstrated in validation studies across diverse

populations (7, 13–15). In diverse populations, higher METS-IR

levels are associated with increased arterial stiffness and subclinical

atherosclerosis (13–15). Therefore, a rigorous meta-analysis is

warranted to quantify the predictive role of METS-IR in CVD

incidence risk.

This meta-analysis aims to evaluate the association between

baseline METS-IR and the incidence of CVD outcomes (including

composite CVD, CAD, and stroke) in adult populations without

baseline CVD, as well as to explore the dose-response relationship

between this index and those outcomes. Ultimately, these findings

will provide evidence-based insights to facilitate the integration of

METS-IR into global frameworks for CVD prevention.
Methods

The protocol was registered with PROSPERO (International

Prospective Register of Systematic Reviews, https://www.crd.york.ac.uk/

PROSPERO) under registration number CRD420251104293. This

meta-analysis was conducted following Preferred Reporting Item

for Systematic Review and Meta-Analysis 2020 guidelines (PRISMA

2020). (Supplementary Material: Table S1).
Literature search

Articles published from the inception of the databases up to

August 2, 2025, were retrieved from PubMed, EMBASE, The

Cochrane Library, and Web of Science using the following title

terms: “cardiovascular disease”, “CVD”, “coronary artery disease”,

“Coronary Disease”, “CAD”, “CHD”, “stroke”, “Ischemic Attack,

Transient”, “Peripheral Arterial Disease”, “METS-IR”, and

“Metabolic Score for Insulin Resistance”. The search was

conducted by combining MeSH terms and free-text words, with

no language restrictions applied. The detailed search strategy is

described in Supplementary Material: Table S2.
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Study selection

This systematic review process followed a two-stage screening

approach in line with PRISMA guidelines to ensure comprehensive

and reproducible study selection. Two researchers independently

conducted the entire process from literature search and selection to

data analysis. We used Zotero 7.1-beta.41 + 355c61e6d (64-bit)

software (Corporation for Digital Scholarship, Vienna, Virginia,

USA) to organize all studies. After automatically and manually

removing duplicates, relevant literature was initially screened by

examining titles and abstracts. Subsequently, full texts of the

preliminarily screened literature were reviewed to determine the

final eligible studies. Any discrepancies during this process were

resolved by a third reviewer. The inclusion criteria for studies were

as follows: (1) being a cohort study published as a full text; (2)

including an adult population without CVD at baseline; (3)

measuring METS-IR at baseline and reporting specific values; (4)

having the primary outcome as a composite outcome of CVD and

secondary outcomes as individual CVD events; and (5) reporting

hazard ratios (HRs) after adjusting for potential confounding

factors. The formula for calculating METS-IR is: ln [(2×FBG (mg/

dL)) + TG (mg/dL)] × BMI (kg/m²))/(ln [HDL-C (mg/dL)]) (7).

The composite outcome of CVD was defined as the incidence of

CAD, stroke, transient ischemic attack, and peripheral arterial

disease. The diagnosis of CAD, stroke, transient ischemic attack,

and peripheral arterial disease was consistent with the criteria of the

original studies. Studies were excluded if they were reviews, meta-

analyses, abstract-only articles, or focused on other outcomes. If

there was an overlap in the population between different studies

from the same registry or group, only the study with the largest

sample size was included.
Data extraction and quality assessment

Two authors independently extracted relevant information

from eligible studies, and any discrepancies were resolved by

consensus. The extracted data included: (1) first author’s name,

year of publication, and country; (2) characteristics of the study

design; (3) participant characteristics, including health status,

sample size, age, and gender ratio; (4) METS-IR analysis model;

(5) follow-up duration; (6) reported outcomes and outcome

validation methods; and (7) confounding factors adjusted for in

multivariate analysis. For the included cohort studies, the

Newcastle-Ottawa Scale (NOS) was used to assess the quality and

strength of evidence for each outcome. This scale, which ranges

from 1 to 9 points, evaluates the quality of cohort studies based on

the selection of study groups, comparability between groups, and

ascertainment of the outcome of interest (16).
Statistical analysis

Hazard ratios (HRs) and their corresponding 95% confidence

intervals (CIs) were used as the general measure to assess the
Frontiers in Endocrinology 03
association between baseline METS-IR and the incidence of CVD,

CAD, stroke, transient ischemic attack, or peripheral arterial disease

in the adult population. For studies analyzing METS-IR as a

categorical variable, the HR for CVD incidence comparing the

highest METS-IR level to the lowest was extracted. For studies

analyzing METS-IR as a continuous variable, the HR for CVD

incidence per 1 standard deviation (SD) increase in METS-IR was

extracted. Data on HRs and their standard errors were calculated

from 95% CIs or P-values; these were then log-transformed for

variance stabilization and distribution standardization (17).

Heterogeneity was evaluated using the I² statistic and Cochran’s

Q test (18); if I² > 50% or P < 0.10, indicating significant

heterogeneity, a random-effects model was used to pool HR data.

Otherwise, a fixed-effects model was applied (19). Sensitivity

analyses were performed by excluding one individual study at a

time to test the stability of the results (20). If more than 10 studies

were included for each outcome, subgroup analyses were conducted

stratified by gender, age, and diabetes status (19). Publication bias

was graphically assessed using funnel plots. Additionally, when

necessary, Egger’s test (for ≥10 included studies) and the trim-and-

fill method were applied to further evaluate publication bias

(19, 21–23). The nonlinear mixed-effects model approach

proposed by Jiang et al. was adopted to directly integrate data

from all studies. Restricted cubic splines (RCS) were used to capture

the nonlinear association between METS-IR and the risk of

outcome incidence, while incorporating study-level random

effects to account for between-study variation, thereby achieving

overall modeling of the dose-response relationship (24). Meanwhile,

second derivative analysis was used to precisely locate the inflection

points of the curve (25). When METS-IR was reported in

categorical intervals, for closed intervals, the midpoint of the

upper and lower bounds of the interval was taken as the exposure

level; for open intervals, the interval length was set to that of the

adjacent group, and the midpoint was used as the mean exposure

level (26). Meta-analysis and statistical analyses were performed

using R software version 4.5.1 (R Core Team, Vienna, Austria). A P-

value < 0.05 was considered statistically significant.
Results

Study selection process

This study completed literature screening in accordance with

the PRISMA statement (Figure 1). A total of 674 relevant studies

were retrieved from databases (PubMed, EMBASE, The Cochrane

Library, Web of Science). After removing 256 duplicate records, the

remaining 418 studies underwent title and abstract screening, and

388 studies that did not meet the criteria were excluded. Through

full-text assessment, additional studies were excluded for the

following reasons: failure to report multivariable-adjusted HR

(n=14), population overlap (n=4), inclusion of participants with

baseline cardiovascular disease (CVD) (n=1), lack of specific

METS-IR values (n=1), and being non-cohort studies (n=2).

Finally, 8 cohort studies were included in the meta-analysis (27–34).
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Baseline characteristics of included studies

The 8 included studies (27–34) were published between 2021 and

2025 (Table 1), consisting of 7 prospective cohort studies (PC) (27–

31, 33, 34) and 1 retrospective cohort study (RC) (32), originating

from China (5 studies) (29–32, 34), South Korea (2 studies) (27, 33),

and Iran (1 study) (28). The total sample size was 437,283

participants, with individual study sizes ranging from 2,031 to

306,680. All participants had no CVD at baseline (among them,

Lv,2025 (34) included hypertensive participants without baseline

CVD; Yang,2023 (32) included hypertensive participants with

obstructive sleep apnea but without CVD; Yoon,2021 (33) included

participants without diabetes or CVD). The mean age ranged from

39.4 to 59.57 years, and the male proportion was 42.9% to 71.7%

(highest in Wu,2025 (31); lowest in Wang,2023 (29). Follow-up

durations ranged from 1.98 to 17.9 years (shortest in Lv,2025 (34);

longest in Tamehri,2024 (28). Primary outcomes included composite
Frontiers in Endocrinology 04
CVD, CAD, and stroke. Specifically, there were 317 to 5,820

composite CVD events (5 studies (29–32, 34); total 9,178 events),

198 to 1,216 CAD events (7 studies (27, 28, 30–34); total 4,579

events), and 119 to 4,659 stroke events (5 studies (28, 30–32, 34); total

6,891 events). All studies adjusted for confounders such as age, sex,

smoking, alcohol consumption, hypertension, diabetes, and lipid

profi les; some also adjusted for medication use (e.g.,

antihypertensives, hypoglycemics), physical indicators (e.g., BMI,

waist circumference), and sociodemographic factors (e.g.,

education, marital status).
Quality assessment of included studies

Study quality was assessed using the Newcastle-Ottawa Scale

(NOS) (Table 2). The 8 studies (27–34) scored 6 to 9 points,

indicating overall high quality. Evaluations focused on population
FIGURE 1

Flowchart of the database search and study identification process according to the PRISMA statement.
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TABLE 1 Characteristics of the included cohort studies.

Study, Study Number of Mean ages Male Mets-IR Follow-up
)

Outcome
validation

Outcomes
reported

Variables
adjusted

ICD-10 CAD (987)

age, sex, BMI,
smoking,
alcohol intake, TC,
eGFR,
CRP, diabetes
medication,
hypertension
medication,
dyslipidemia
medication,
DM and mean
arterial
blood pressure

ICD-10
CAD(1080),
stroke(267)

age, sex, smoking,
diabetes,
hypertension,
non-HDL-C, pulse
rate,
serum creatinine,
metabolic
syndrome,
lipidlowering drug
use,
and family history
of premature CVD

ICD-10
Composite
CVD(572)

age, sex, education
level,
exercise frequency,
HDL-C,
LDL-C,
hypertension,
family history of
CVD,
waist
circumference,
smoking and
drinking

Common
definitions

Composite
CVD(396),
CAD(247),
stroke(169)

age, sex, high
WHR,
energy intake from
fat,
energy intake from
carbohydrate,

(Continued)

H
e
e
t
al.
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3
8
9
/fe

n
d
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.2
0
2
5
.16

9
9
9
8
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Fro
n
tie

rs
in

E
n
d
o
crin

o
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n
tie

rsin
.o
rg

0
5

year
Country Design

population participants (years) (%) analysis duration (year

Ryu,2025 (27) Korea PC

Participants
from
the KoGES
cohort
without CVD,
Participants
from
the HERAS–
HIRA cohort
without CVD

28,437 47.6 51.1
categorical;
continuous

12,
4.2

Tamehri,2024
(28)

Iran PC
Community
population
without CVD

10,214 42.2 56.0
categorical;
continuous

17.9

Wang,2023
(29)

China PC
Community
population
without CVD

4,712 39.4 42.9
categorical;
continuous

5.7

Wu,2023 (30) China PC
Community
population
without CVD

6,489 49.03 53.4
categorical;
continuous

10.6
s
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TABLE 1 Continued

Study, Study Number of Mean ages Male Mets-IR Follow-up
)

Outcome
validation

Outcomes
reported

Variables
adjusted

education,
tobacco use,
alcohol use,
physical activity,
DM,
TC, hypertension,
LDL-C,
family history of
CVD,
antihypertensive
drugs,
and antidiabetic
drugs
or insulin

ICD-10

Composite
CVD(2073),
CAD(519),
stroke(1677)

age, physical
activity,
education level,
diabetes,
eGFR,
hypertension,
sex, current
smoking,
BMI, current
drinking
and dyslipidaemia

Medical record
review

Composite
CVD(317),
CAD(198),
stroke(119)

age, sex, drinking
status,
history of diabetes,
DBP,
SBP, eGFR, TC,
LDL-C, FBG,
AHI, ACEIs/ARBs,
CCBs,
smoking status,
diuretics,
OSA therapy and
b-Blockers

ICD-10 CAD(332)

age, sex, smoking
status,
alcohol intake,
eGFR,
mean arterial
blood pressure,

(Continued)

H
e
e
t
al.

10
.3
3
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/fe
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9
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E
n
d
o
crin

o
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n
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rsin
.o
rg

0
6

year
Country Design

population participants (years) (%) analysis duration (year

Wu,2025 (31) China PC

participants
from
the Kailuan
Study
Arterial Stiffness
Subcohort
without CVD

59,777 49.5 71.7
categorical;
continuous

5.97

Yang,2023
(32)

China RC

Adults
with
hypertension
and OSA
without CVD

2,031 49.58 68.76
categorical;
continuous

6.8

Yoon,2021
(33)

Korea PC
Adults without
diabetes
or CVD

17,943 44.7 51 categorical 2.4
s
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TABLE 1 Continued

Study, Study Number of
s

Mean ages
(years)

Male
(%)

Mets-IR
analysis

Follow-up
duration (years)

Outcome
validation

Outcomes
reported

Variables
adjusted

hypertension
medication,
physical activity,
total cholesterol
and
high-sensitivity
C-reactive protein

59.57 53.48
categorical;
continuous

1.98 ICD-10

Composite
CVD(5820),
CAD(1216),
stroke(4659)

age, sex, marriage,
smoke,
antihypertensive
drugs,
antidiabetic drugs,
SBP,
DBP, LDL-C,
education,
lipid lowering
drugs,
exercise and drink

ratio; eGFR, estimated glomerular filtration rate; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; CAD, coronary
ood pressure; FBG, fasting blood glucose; CRP, C-reactive protein; AHI, apnea hypopnea index; OSA, obstructive sleep apnea; DM, diabetes mellitus; ACEIs, angiotensin-
blockers.

H
e
e
t
al.

10
.3
3
8
9
/fe
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d
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0
2
5
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9
9
9
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o
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n
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rsin
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0
7

year
Country Design

population participan

Lv,2025 (34) China PC

Community
population
with
hypertension
and without
CVD

306,680

RC, retrospective cohort; PC, prospective cohort; BMI, body mass index; WHR, waist-to-hip
artery disease; CVD, cardiovascular disease; SBP, systolic blood pressure; DBP, diastolic b
converting enzyme inhibitors; ARBs, angiotensin receptor blockers; CCBs, calcium channe
t

l
l
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selection (representativeness, exposed/unexposed groups), group

comparabil i ty (confounder adjustment), and outcome

ascertainment (follow-up duration, assessment methods).

Tamehri,2024 (28), Wang,2023 (29), and Wu,2023 (30) scored

highest (9 points); Yoon,2021 (33) and Lv,2025 (34) scored lowest

(6 points), mainly due to lower representativeness of exposed/

unexposed cohorts. All studies excluded baseline outcome events

and adjusted for key confounders, indicating low bias risk.
Association between METS-IR and the risk
of composite CVD incidence

A random-effects model pooled effect sizes from 5 studies

(Figure 2A), showing that the highest baseline METS-IR group

had an increased CVD risk compared to the lowest (HR = 1.65, 95%

CI: 1.36-2.02, I²=85.6%, t²=0.0356, P<0.0001). This was aligned

with the continuous analysis (5 studies; per 1-SD increase: HR =

1.16, 95% CI: 1.10-1.22, I²=70.7%, t²=0.0019, P<0.0001, Figure 2B).
Funnel plots indicated asymmetry for both categorical

(Figure 3A, trim-and-fill estimated 2 missing studies, SE = 1.6604;

adjusted HR = 1.55, 95% CI: 1.28-1.86, Supplementary Material:

Figure S1A, 4A) and continuous analyses (Figure 3B, 3 missing

studies, SE = 1.4845; adjusted HR = 1.11, 95% CI: 1.05-1.17;

Supplementary Material: Figures S1B, 4B), suggesting potential

missing negative-result studies. Sensitivity analyses confirmed

robust results: categorical HR ranged from 1.58-1.82; continuous

HR ranged from 1.16-1.17 (all P<0.0001; Figures 5A, B). Omitting

Lv,2025 (34) led to the most pronounced I² reductions (e.g., to 0%

for composite CVD; Figures 5–7). Due to fewer than 10 studies,

Egger’s test and subgroup analyses were not performed.

Dose-response analysis using a mixed-effects model with

restricted cubic splines (P for nonlinearity =0.145, Figure 2C) did

not show statistically significant nonlinearity but suggested a

potential pattern: HR remained near 1 at low METS-IR, rising

with increases and widening CIs. An exploratory inflection point

was identified at approximately 40.56, beyond which risk appeared

to accelerate.
Association between METS-IR and the risk
of coronary artery disease incidence

Pooled results from 7 studies (Figure 8A) indicated a higher

CAD risk in the highest METS-IR group (HR = 1.82, 95% CI: 1.50-

2.20, I²=59.7%, t²=0.0370, P<0.0001). The continuous analysis (6

studies; per 1-SD: HR = 1.18, 95% CI: 1.11-1.25, I²=52.4%,

t²=0.0029, P<0.0001, Figure 8B) was consistent.
Funnel plots showed asymmetry for both categorical

(Figure 3C, 3 missing studies, SE = 1.6850, adjusted HR = 1.59,

95% CI: 1.32-1.92, Supplementary Material: Figures S2A, 4C) and

continuous analyses (Figure 3D, 3 missing studies, SE = 1.6385;

adjusted HR = 1.13, 95% CI: 1.07-1.20; Supplementary Material:

Figures S2B, 4D). Sensitivity analyses showed stable results:

categorical HR ranged from 1.72-1.94; continuous HR ranged
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from 1.16-1.19 (all P<0.0001, Figures 6A, B). Omitting Lv,2025 (34)

yielded the most pronounced I² reductions (e.g., from 59.7% to

44.6% for CAD categorical analysis, Figures 5–7). Fewer than 10

studies precluded further tests.

Dose-response analysis (P for nonlinearity=0.011; Figure 8C)

exhibited nonlinearity: HR was near 1 at low levels, with an upward

trend and widening CIs. The inflection point was at approximately

38.24, indicating accelerated risk beyond this threshold.
Association between METS-IR and the risk
of stroke incidence

Pooled from 5 studies (Figure 9A) indicated that the highest

METS-IR increased stroke risk (HR = 1.47, 95% CI: 1.19-1.83,

I²=76.3%, t²=0.0337, P = 0.0005). The continuous analysis
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(5 studies; per 1-SD: HR = 1.13, 95% CI: 1.06-1.19, I²=67.9%,

t²=0.0021, P<0.0001, Figure 9B) aligned with this finding.

Funnel plots indicated categorical symmetry (Figure 3E, 0

missing studies; Supplementary Material: Figure S3A) but

continuous asymmetry (Figure 3F, 1 missing study, SE = 1.7124;

adjusted HR = 1.11, 95% CI: 1.05-1.19; Supplementary Material:

Figures S3B, 4E). Sensitivity analyses confirmed robustness:

categorical HR ranged from 1.38-1.67; continuous HR ranged

from 1.08-1.17 (all P<0.05, Figures 7A, B). Omittig Lv,2025 (34)

led to the most pronounced I² reductions (e.g., to 0% for stroke

continuous analysis, Figures 5–7). Due to fewer than 10 studies,

Egger’s test and subgroup analyses were omitted.

Dose-response analysis (P for nonlinearity=0.072, Figure 9C)

showed marginal nonlinearity: HR was approximately 1 at low METS-

IR levels, with an upward trend and widening CIs. The inflection point

was at approximately 48.88, beyond which risk accelerated.
FIGURE 2

Forest plots (A, B) and nonlinear dose-response curve (C) for the association between METS-IR and CVD risk, analyzed as a categorical variable
(highest vs. lowest; A) and continuous variable (per 1-SD increment; (B). In forest plots, the diamond represents the pooled effect estimate; colored
squares indicate study weights, and black horizontal lines denote 95% CIs of individual study effect sizes. The dose-response curve was fitted using
restricted cubic spline regression; the red line shows the pooled association, with the red shaded area representing 95% CIs. The blue dashed line
marks the key inflection point (METS-IR = 40.56). METS-IR, metabolic score for insulin resistance; CVD, cardiovascular disease; CI, confidence
interval; SD, standard deviation.
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Discussion

Main findings

The main findings of this meta-analysis are that higher METS-

IR levels are significantly associated with increased risks of

composite CVD, CAD, and stroke in adults without baseline

CVD. Specifically, the pooled hazard ratios (HRs) for the highest

versus lowest METS-IR categories were 1.65 (95% CI: 1.36-2.02) for

composite CVD, 1.82 (1.50-2.20) for CAD, and 1.47 (1.19-1.83) for

stroke. Dose-response analyses further revealed nonlinear

relationships for CAD (P = 0.011; inflection at approximately

38.24), marginal nonlinearity for stroke (P = 0.072; inflection at

approximately 48.88), and a potential nonlinear pattern for

composite CVD (P = 0.145; exploratory inflection at

approximately 40.56), beyond which risks accelerate. These results

were consistent across categorical and continuous analyses, with

moderate-to-high heterogeneity (I²=52.4%-85.6%).
Comparison with other studies

These findings align with prior meta-analyses on other insulin

resistance surrogates, such as HOMA-IR and TyG, which also
Frontiers in Endocrinology 10
demonstrate independent predictive value for CVD. For instance,

a meta-analysis of 65 studies involving over 500,000 participants

without diabetes reported that HOMA-IR was associated with a

higher risk of coronary heart disease (HR = 1.46 per SD) compared

to glucose (HR = 1.21) or insulin (HR = 1.04) alone (35). This is

similar to our observed HR of 1.18 per SD for METS-IR and CAD.

Additionally, a study of HOMA-IR trajectories in 6,755 Koreans

showed that increasing patterns over approximately 5 years elevated

CVD incidence (HR = 1.59) and mortality (HR = 2.33) (36),

complementing our nonlinear dose-response curves. Compared to

TyG, METS-IR’s HR for CAD (1.82) is comparable to reported

values [2.01 (37); 1.94 (8)], though slightly lower, possibly due to

our focus on Asian cohorts or differences in adjustments. For

composite CVD, METS-IR’s HR (1.65) matches that of TyG-

BMI’s [1.62 (9)], indicating equivalent predictive utility despite

METS-IR’s simpler components.
Biological mechanisms

IR, often accompanied by compensatory hyperinsulinemia,

serves as an independent risk factor for numerous diseases,

including type 2 diabetes, CVD, cellular senescence, tumors, and

neurodegenerative disorders (2–4, 38, 39). Specifically, in the context
FIGURE 3

Funnel plots assessing publication bias in the meta-analysis of the association between METS-IR and CVD, CAD, and stroke risks. (A) METS-IR as a
categorical variable and CVD risk; (B) METS-IR as a continuous variable and CVD risk; (C) METS-IR as a categorical variable and CAD risk; (D) METS-
IR as a continuous variable and CAD risk; (E) METS-IR as a categorical variable and stroke risk; (F) METS-IR as a continuous variable and stroke risk.
Gray dots represent individual included studies. METS-IR, metabolic score for insulin resistance; CVD, cardiovascular disease; CAD, coronary artery
disease.
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of CVD, IR and hyperinsulinemia contribute to vascular and

myocardial damage through several interconnected mechanisms. IR

impairs endothelial function by reducing nitric oxide bioavailability,

promoting oxidative stress, and activating pro-inflammatory

pathways such as NF-kB, leading to endothelial dysfunction,

inflammation, and accelerated atherosclerosis (3, 4, 40).

Hyperinsulinemia exacerbates these effects by stimulating vascular

smooth muscle cell proliferation, migration, and extracellular matrix

deposition, which fosters plaque formation and vascular stiffness (40).

Additionally, in the myocardium, IR disrupts fatty acid metabolism,

inducing lipotoxicity, mitochondrial dysfunction, and increased

susceptibility to ischemia, contributing to diabetic cardiomyopathy

and heart failure (41–43). These pathophysiological processes form

the basis of the association between elevated METS-IR, as a surrogate

marker of IR, and the increased incidence of composite CVD, CAD,
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and stroke observed in our meta-analysis. Observed heterogeneity

(I²=52.4%-85.6%) likely stems from study diversity, including

baseline characteristics (e.g., hypertension, non-diabetes), follow-up

durations (1.98-17.9 years), and geography (e.g., longer follow-up in

Tamehri et al. (28)amplifying cumulative effects). The nonlinear

patterns suggest threshold effects, where low METS-IR yields

gradual risk increases, but exceeding inflections amplifies oxidative

stress and lipotoxicity, driving sharper CVD escalation (41–43).
Strengths

One key strength of this meta-analysis is that it represents the

first comprehensive summary of the link between METS-IR and

incident CVD. We pooled data from eight high-quality cohort
FIGURE 4

Funnel plots after trim-and-fill adjustment for publication bias in associations between METS-IR and cardiovascular risks. (A) METS-IR as a
categorical variable vs. CVD risk; (B) METS-IR as a continuous variable vs. CVD risk; (C) METS-IR as a categorical variable vs. CAD risk; (D) METS-IR as
a continuous variable vs. CAD risk; (E) METS-IR as a continuous variable vs. stroke risk. Black dots represent originally included studies; gray dots
represent studies imputed by the trim-and-fill method. METS-IR, metabolic score for insulin resistance; CVD, cardiovascular disease; CAD, coronary
artery disease.
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FIGURE 5

Leave-one-out sensitivity analyses of the meta-analysis for METS-IR and CVD risk. Blue squares denote the pooled HR for each leave-one-out
scenario, with horizontal lines indicating 95% CIs. The diamond at the bottom represents the overall pooled HR from the random-effects model. (A)
METS-IR as a categorical variable; (B) METS-IR as a continuous variable. METS-IR, metabolic score for insulin resistance; CVD, cardiovascular
disease; HR, hazard ratio; CI, confidence interval.
FIGURE 6

Leave-one-out sensitivity analyses of the meta-analysis for METS-IR and CAD risk. Blue squares denote the pooled HR for each leave-one-out
scenario, with horizontal lines indicating 95% CIs. The diamond at the bottom represents the overall pooled HR from the random-effects model.
(A) METS-IR as a categorical variable; (B) METS-IR as a continuous variable. METS-IR, metabolic score for insulin resistance; CAD, coronary artery
disease; HR, hazard ratio; CI, confidence interval.
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studies (NOS scores: 6-9; total N = 437,283) from China, Korea, and

Iran, all of which adjusted for major confounders like age, sex,

smoking, hypertension, diabetes, and lipids profiles. Our use of

advanced techniques, like restricted cubic splines for dose-response

modeling, provides detailed thresholds that could prove useful in

clinical settings. The results held up well in sensitivity analyses (with

stable HRs) and trim-and-fill adjustments (maintaining significance

even after accounting for potential missing studies), despite

some heterogeneity.
Limitations

This meta-analysis, while robust, has several limitations that

warrant consideration. First, with only eight studies included,

despite the large overall sample size—we could not perform

subgroup analyses, as our predefined criteria required at least 10

studies. Second, we detected possible publication bias in the

analyses for composite CVD and CAD using trim-and-fill

methods, which suggested 2–3 missing studies with null results;

while sensitivity tests showed the findings were robust, the actual

effect sizes might be slightly smaller (e.g., adjusted HRs: 1.55 [95%

CI: 1.28-1.86] for composite CVD; 1.59 [1.32-1.92] for CAD).

Third, differences in how METS-IR was categorized, and
Frontiers in Endocrinology 13
endpoints were defined (e.g., ICD-10 codes vs. medical records)

may have affected the pooled estimates, though we addressed this

with random-effects models and sensitivity checks. The moderate-

to-high heterogeneity (I²=52.4%-85.6%) across outcomes probably

arises from variations in follow-up length, geographic settings, and

baseline participant risks; for example, excluding Lv et al. (2025)

(34)—which had the shortest follow-up at 1.98 years—sharply

lowered I² (e.g., from 85.6% to 0% for composite CVD categorical

analysis and 67.9% to 0% for stroke continuous analysis), since

shorter studies might miss longer-term effects and increase type II

error risk (44). Fourth, the observational nature of the cohorts limits

our ability to infer causality, as unmeasured confounders like

genetics could play a role. Finally, since most cohorts were from

Asia, the results may not generalize well, calling for replication in

African, European, and Latino populations.
Implications and future directions

Despite these limitations, our findings carry important

implications for clinical practice and public health. METS-IR

stands out as an easy-to-use biomarker for assessing CVD risk in

adults without symptoms, outperforming some traditional IR

measures because it draws on standard lab values (7). With HRs
FIGURE 7

Leave-one-out sensitivity analyses of the meta-analysis for METS-IR and stroke risk. Blue squares denote the pooled HR for each leave-one-out
scenario, with horizontal lines indicating 95% CIs. The diamond at the bottom represents the overall pooled HR from the random-effects model.
(A) METS-IR as a categorical variable; (B) METS-IR as a continuous variable. METS-IR, metabolic score for insulin resistance; HR, hazard ratio; CI,
confidence interval.
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like 1.65 for composite CVD, 1.82 for CAD, and 1.47 for stroke

(comparing highest to lowest categories), it could help spot high-risk

individuals early, especially those with hypertension or other

metabolic issues—and steer them toward lifestyle tweaks or

medications to stay below key inflection points (11, 32, 45). On a

broader scale, its simple, low-cost nature makes it ideal for

widespread screening in areas where advanced tests aren’t feasible

(7, 12, 46, 47), fitting well with worldwide efforts to prevent CVD

through better metabolic control (10, 48, 49). To build on this, future
Frontiers in Endocrinology 14
studies should test these associations in more diverse groups, such as

non-Asian ethnicities or younger adults, to improve generalizability

and refine the inflection points. We also need mechanistic research to

unpack the nonlinear patterns—for CAD, stroke, and composite

CVD—by examining how METS-IR’s elements (like BMI, fasting

blood glucose, and TG/HDL-C) interact with factors such as

endothelial dysfunction or inflammation. Head-to-head

comparisons with other surrogates, like the TyG index, could reveal

if METS-IR adds unique value in combined models. Finally, long-
FIGURE 8

Forest plots (A, B) and nonlinear dose-response curve (C) for the association between METS-IR and CAD risk, analyzed as a categorical variable
(highest vs. lowest; (A) and continuous variable (per 1-SD increment; (B). In forest plots, the diamond represents the pooled effect estimate; colored
squares indicate study weights, and black horizontal lines denote 95% CIs of individual study effect sizes. The dose-response curve was fitted using
restricted cubic spline regression; the red line shows the pooled association, with the red shaded area representing 95% CIs. The blue dashed line
marks the key inflection point (METS-IR = 38.24). METS-IR, metabolic score for insulin resistance; CAD, coronary artery disease; CI, confidence
interval; SD, standard deviation.
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term trials that lower METS-IR through diet or exercise would help

establish causality and quantify how much risk can be reduced.
Conclusion

In summary, this meta-analysis demonstrates that higher

METS-IR is significantly associated with increased risks of
Frontiers in Endocrinology 15
composite CVD, CAD, and stroke, with nonlinear dose-response

relationships for CAD, marginal nonlinear dose-response

relationships for stroke, and a potential nonlinear dose-response

relationship for composite CVD, including critical inflection points

beyond which risk accelerates. These findings validate METS-IR as

a valuable tool for cardiovascular risk assessment and provide

practical thresholds for clinical practice. Despite limitations, the

consistency of results across large, well-designed cohort studies
FIGURE 9

Forest plots (A, B) and nonlinear dose-response curve (C) for the association between METS-IR and stroke risk, analyzed as a categorical variable
(highest vs. lowest; (A) and continuous variable (per 1-SD increment; (B). In forest plots, the diamond represents the pooled effect estimate; colored
squares indicate study weights, and black horizontal lines denote 95% CIs of individual study effect sizes. The dose-response curve was fitted using
restricted cubic spline regression; the red line shows the pooled association, with the red shaded area representing 95% CIs. The blue dashed line
marks the key inflection point (METS-IR = 48.88). METS-IR, metabolic score for insulin resistance; CI, confidence interval; SD, standard deviation.
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supports the utility of METS-IR in guiding preventive strategies for

cardiovascular disease.
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