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Oleksandr Kovalchuk1, Oleksandr Korotkyi1, Volodymyr Bulda1

and Olena Lazarieva2

1Educational and Scientific Centre, Institute of Biology and Medicine, Taras Shevchenko National
University of Kyiv, Kyiv, Ukraine, 2Department of Therapy and Rehabilitation, National University of
Ukraine on Physical Education and Sport, Kyiv, Ukraine, 3Department of Normal Physiology, State
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Introduction: The prevalence of type 2 diabetes (T2D) has significantly increased

over the past 20 years, currently affecting over 500 million people worldwide.

Projections suggest that this number could rise to over 700 million in the next

two decades. Despite advancements in medication and global health strategies

that promote healthy lifestyles, T2D remains a complex disease that impacts the

quality of life. Traditional treatment methods are becoming less effective,

highlighting the need for innovative approaches to prevention, diagnosis,

and treatment.

Methods: Two promising areas of research that could transform the

management of T2D are the use of biologically active substances derived from

the intestines and the integration of artificial intelligence (AI) in clinical

diagnostics. The human intestinal microbiota plays a crucial role in metabolic

processes, including glucose regulation and insulin sensitivity. Microbial

metabolites, including bile acids and short-chain fatty acids, have potential as

therapeutic agents for metabolic disorders. As digital medicine advances, AI is

increasingly utilized for real-time monitoring and personalized risk assessments.

Themedical field is evolving frommerely using biosensors for glucose tracking to

employing machine learning to analyze various biological indicators and

electronic medical records.

Results: Recent research at the intersection of microbiome studies and AI may

improve diagnostic accuracy and support tailored treatment strategies. This

study aims to analyze global experiences with the implementation of bioactive

substances from the intestines and the diagnostic potential of AI in developing a

new approach to enhancing the quality of life and treating T2D.

Discussion: We examine the diverse functions of microbial metabolites and the

current landscape of their therapeutic applications. Additionally, the review
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examines the current state of AI in diagnostics, with a particular focus on

microbiome parameters. As a result, we propose a novel model that combines

these two fields into an adaptive and personalized approach to treating patients

with T2D and improving their quality of life.
KEYWORDS

type 2 diabetes, artificial intelligence, microbiome, gut microbiota, digital twin systems,
deep learning models, closed-loop systems
1 Introduction

1.1 Burden of type 2 diabetes and obesity

The progress of civilization has brought remarkable achievements

in technology, modernization, healthcare, urbanization and

accelerated socio-economic development, ultimately enhanced

living standards worldwide. However, it has also affected daily

living patterns, particularly eating habits and levels of physical

activity. Sedentary lifestyles, widespread availability of energy-dense

processed foods and unhealthy eating habits have driven the growth

of obesity across the globe. Within the past twenty years, obesity has

become a global pandemic that negatively affects health, impacting

almost all organs of the human body (1–4).

Statistics indicate that between August 2021 and August 2023,

the prevalence of obesity among adults in the United States was

40.3%, with no significant differences between men and women.

Obesity was more common in adults aged 40–59 years than in those

aged 20–39 years or ≥60 years (5). A systematic review and meta-

analysis in Africa reported that 61.4% of adults are overweight or

obese, with prevalence ranging from 56.9% in East Africa to 88.5%

in Southern Africa (6). A study in the Middle East reported that

85.8% of individuals with T2D were classified as overweight or

obese (7). A recent meta-analysis (8) reported that 75.27% of

pediatric patients with T2D were obese, and 77.24% were obese at

diagnosis; obesity prevalence was higher among males compared to

females, and highest in North America.

A marked increase in obesity across all age groups has become

one of the main factors driving the rapid rise in cases of T2D.

Obesity has become a significant public health concern, now

ranking among the most common non-communicable diseases.

As body mass index (BMI) increases across different age groups, the

risk of developing T2D rises proportionally. Recent data indicate

that the incidence of T2D is rising rapidly among younger

populations. The results of numerous studies show that obesity

contributes to an increased risk of several long-term health

disorders. These include cardiovascular diseases, metabolic

syndrome, type 2 diabetes mellitus (T2D), chronic kidney disease,
02
and various malignancies (9–11). This burden of T2D and obesity

underscores the need to understand its underlying molecular

mechanisms for developing innovative strategies.

Obesity has become a significant public health concern, now

ranking among the most common non-communicable diseases. As

body mass index (BMI) increases across different age groups, the

risk of developing type T2D rises proportionally. Recent data

indicate that the incidence of T2D is rising rapidly among

younger populations (12, 13).
1.2 Potential molecular mechanisms in T2D
pathogenesis

T2D and obesity are connected through shared mechanisms such

as chronic low-grade inflammation, b-cell dysfunction, and insulin

resistance (IR) (14, 15). Visceral obesity, defined by excess adipose

tissue around internal organs, induces a chronic inflammatory process

that disrupts metabolism and promotes IR. The accumulation of

visceral fat affects the rate of lipolysis and increases the release of free

fatty acids into the portal circulation, which subsequently modifies

liver metabolism and further contributes to IR (16, 17). Chronic

obesity induces a prolonged inflammatory response that leads to tissue

fibrosis and irreversible organ damage, thereby contributing to

multiple organ dysfunction (18). This inflammatory state results

from altered immune cell function in adipose tissue, skeletal muscle,

and liver. As a result, conditions that promote the development of IR

arise, leading to an increased risk of T2D (19, 20).

The inflammatory response activates inflammasome complexes,

specifically the NLRP3 inflammasome (21), which promote the

maturation and release of pro-inflammatory cytokines, particularly

interleukins IL-1b and IL-18. These mechanisms can provoke the

development of IR, which, in turn, contributes to the onset of T2D

(22). IR is considered a key cause of T2D. The accumulation and

activation of pro-inflammatory macrophages in adipose tissue is a

key driver of chronic low-grade inflammation. An increased number

of these macrophages produces factors that act in a paracrine or

systemic manner, disrupting insulin signaling in target cells (14, 23).
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Currently, a confirmed association exists between metabolic

disorders and the gut microbiota (24, 25). Gut microbiota dysbiosis

is known to trigger inflammatory processes that impair glucose

tolerance and promote IR (26). Although current studies present

differing views on whether obesity or inflammatory bowel diseases

are primary condition, intestinal inflammation can impair digestive

processes and contribute to obesity. Conversely, poor nutrition and

disturbances in intestinal homeostasis in overweight individuals can

alter gut microbiota, leading to dysbiosis, which is considered one of

the main causes of inflammation (24). Diet is a major factor

influencing the gut microbiome and can lead to dysbiosis. Research

has proven that disruption of mucosal barrier integrity enables

microbial signaling that activates the nuclear transcription factor

kappa B (NF-kB) and stimulates the production of pro-inflammatory

cytokines. In adipose tissue, which contains both adipocytes and

macrophages, the induction of monocyte chemoattractant protein-1

(MCP-1) expression promotes macrophage infiltration into

tissues (24).

The composition of gut microbiota plays a key role in obesity,

metabolic syndrome and T2D by contributing to decreased glucose

tolerance and IR. Alterations in gut microbiota composition have

been observed in preclinical animal models as well as in T2D patients

with associated complications, such as diabetic neuropathy,

nephropathy, osteoarthritis, retinopathy, cerebrovascular and

cardiovascular diseases, compared to healthy control participants.

The degree of gut microbiota dysbiosis correlated with disease

severity, and its restoration, achieved through probiotic

administration in both animals and human patients, demonstrated

improvement in symptoms and slowing of disease progression (26–

32). It is known that certain medications, notably metformin, which

is commonly used to treat T2D, affect gut microbiota composition,

demonstrating interaction with the intestinal microbiota through

modulation of inflammatory processes, regulation of glucose

homeostasis, influence on intestinal barrier permeability, and

promotion of short-chain fatty acid–producing bacteria (33–35).

Over the past decade, rapid advancements in microbial genome

sequencing technologies have triggered a wave of research

investigating the involvement of gut microbiota in various

pathologies, especially metabolic conditions. Although significant

progress has been made in understanding the complex interactions

between bacteria and the host organism, how gut bacteria directly

influence the prevention, development, or treatment of diseases

remains an active area of scientific investigation. This is especially

relevant in many pathologies where the impact of the gut

microbiota has been studied, including dysbiosis and its role in

the development of T2D and related complications. Current trends

in the study of bioactive substances produced by the microbiota

open new opportunities for both the prevention and individualized

treatment of metabolic diseases. These advances have driven the

integration of biomedical data with artificial intelligence (AI), which

not only allows more efficient analysis of large volumes of genomic,

metabolomic, and clinical information but also offers prospects for

early prediction of T2D development, risk stratification, and

optimization of therapeutic strategies. These mechanisms pave
Frontiers in Endocrinology 03
the way for innovative approaches, such as utilizing gut-derived

bioactive substances and AI for diagnosis and treatment.
1.3 Aim and perspectives

The aim of this article is to evaluate current evidence on the

involvement of gut microbiota and its bioactive metabolites in T2D,

as well as to review modern possibilities for using artificial

intelligence for early diagnosis, prediction of complications, and

personalized treatment approaches in patients with T2D. Special

attention is given to the interplay between the metabolic activity of

the microbiota and innovative AI-based diagnostic technologies,

which have the potential to transform the traditional therapeutic

paradigm for managing this disease.
2 Methods

This review article summarizes the current evidence regarding

the role of gut microbiota and its bioactive metabolites in T2D. It also

explores the applications of AI for early diagnosis, risk prediction,

and personalized treatment of the condition. To achieve this, we

adopted a narrative review approach that incorporates elements of

systematic searching, ensuring comprehensive coverage of the topic.

This methodology was selected to integrate a diverse range of

biomedical data, including genomic, metabolomic, and clinical

information, while considering the interdisciplinary nature of the

subject. By doing so, we aim to evaluate the evidence, examine the

possibilities for AI integration, and analyze the interactions between

microbiota activity and diagnostic technologies.
3 Results

3.1 Human microbiota

Recently, the human microbiota has become a focal point in

many biomedical studies (36, 37). It includes all microorganisms

residing in the body, including bacteria, microscopic fungi,

protozoa, viruses, and archaea (38). Among the various

microorganisms, research has predominantly concentrated on

those within the domain Bacteria. It is now established that

approximately 15,000 bacterial species inhabit the human species

Homo sapiens (39). The microbiota of an individual typically

contains around 1000 bacterial species (40). Greater species

diversity in the microbiota is frequently associated with improved

health outcomes (41).

Early studies of the microbiota revealed a complex and

interdependent relationship between the host and its microbial

communities. The macroorganism provides the microbiota with a

comfortable ecological niche and nutrients, while the microbiota,

directly or indirectly, influences the functioning of all organs and

systems throughout the body. This dynamic interaction ultimately
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determines overall health, susceptibility to disease, and the

effectiveness of response to treatment and vaccination (42, 43).

The human gut microbiota is known to be the most numerous

microbial community in the body and, consequently, exerts a

significant impact on health. Based on the composition of

microbial associations and the characteristics of host organism’s

response, this influence can be both positive and negative. Ilya

Mechnikov, the Ukrainian researcher and Nobel laureate, was

among the first to highlight this relationship. He noted that

improving the microbiota of the large intestine through the

consumption of fermented dairy products has a health-promoting

effect and may even contribute to longevity (44).

Since the appearance and development of the holobiont

concept, there has been a growing understanding of the human

organism as a superorganism — a complex ecological system

inhabited by hundreds of microbial species (45). The microbiota

is thus considered an additional metabolic organ, whose activity is

integrated into the functioning of various organs and systems of the

macroorganism (46). Consequently, disruptions in the healthy

composition and metabolic activity of the microbiota are

observed in a variety human diseases, including gastrointestinal,

cardiovascular, and endocrine pathologies, immune and nervous

system dysfunctions, and various cancers (47, 48).

As noted above, bacterial microbiota is currently the most

extensively studied. It is well known that different bacterial

species possess unique metabolic properties that contribute to the

overall metabolism of the human organism. It becomes clear that in

pathological conditions, changes in the microbiota reflect and

impact the metabolism of the macroorganism.

Several pathological conditions, including metabolic syndrome,

obesity, T2D, non-alcoholic fatty liver disease, and cardiometabolic

syndrome, are linked to metabolic disturbances. Dysbiotic changes

in the gut microbiota occur in all these conditions (49–51).
Frontiers in Endocrinology 04
3.1.1 Gut microbiota composition in T2D: general
overview

One of the most common metabolic disorders in older adults is

T2D. Most patients with T2D are overweight and demonstrate IR in

multiple tissues, including muscle, liver, and adipose tissue, during

the early stages of the disease, which leads to a compensatory

increase in insulin production. These patients commonly present

not only with hyperglycemia but also with elevated triglycerides and

low-density lipoproteins, hypertension, enhanced platelet

adhesiveness and impaired microcirculation. All these factors

contribute to comorbidities such as neuropathies, nephropathies

and retinopathies, with atherosclerosis being one of the most

serious complications of T2D. Therefore, multidrug therapy

is frequently necessary to manage blood glucose and reduce

cardiovascular risk.

Multiple studies have shown that patients with T2D

demonstrate significant differences in gut microbiota composition

and metabolic activity compared with healthy individuals (52–54).

Thus, T2D develops against the background of intestinal dysbiosis,

which forms the basis for this metabolic disease. Typically, there is a

shift in bacterial populations, with a rise in pro-inflammatory

species and a reduction in bacteria that produce beneficial

metabolites. The overall diversity of bacterial species in T2D also

reduced. These microbiota modifications contribute to the

disruption of glucose and lipid metabolism in affected individuals.

Studies have shown that individuals with prediabetes have lower

abundances of butyrate-producing bacteria, including the genera

Roseburia and Faecalibacterium, as well as Akkermansia muciniphila.

Instead, the microbiota has an increased content of opportunistic

bacteria with pro-inflammatory properties (55, 56) (Figure 1).

Multiple studies of gut microbiota in European and Chinese

populations have shown that patients with T2D have lower levels of

butyrate-producing bacteria, including Roseburia intestinalis and
FIGURE 1

Role of gut microbiota alterations in the pathophysiology of T2D (PAMP, Pathogen Associated Molecular Pattern; LPS, Lipopolysaccharide; PG,
Peptidoglycan; SCFA, Short Chain Fatty Acids; IL, Interleukin; TNF-a, Tumor Necrosis Factor-a).
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Faecalibacterium prausnitzii, while showing increased abundances

of Lactobacillus species and opportunistic bacteria belonging to

Bacteroides caccae, Clostridium hathewayi, Clostridium ramosum,

Clostridium symbiosum and Escherichia coli (57–59). Authors of

one study (59) noted that the quantity of Lactobacillus were

positively associated with fasting glucose and glycosylated

hemoglobin (HbA1c) levels, while Clostridium species correlated

negatively with these markers and plasma triglycerides, highlighting

a potential role in T2D development. Newly diagnosed T2D

patients showed higher levels of Lactobacillus and lower levels of

Clostridium coccoides and Clostridium leptum. Another study

involving the Henan Rural Cohort population reported that the

genera Prevotella_9 and Odoribacter were inversely correlated with

T2D, while the quantity of bacteria from the genus Blautia species

were positively associated with the disease (60). Notably, all three of

these bacterial genera produce of short-chain fatty acids (SCFAs).

However, Odoribacter species predominantly produce butyric and

acetic acids, Prevotella species mainly produce propionic and acetic

acids, and Blautia species primarily produce acetic acid, with some

species also capable of producing butyric acid. Therefore, when

discussing SCFAs, produced by the entire gut bacterial community,

the total amount and relative proportions of these acids in the gut

and peripheral blood are critically important. In a healthy organism,

the molar ratio of these acids (acetate: propionate: butyrate) is

approximately 3:1:1 (61). During the development of T2D, overall

SCFA levels are reduced, accompanied by a shift in their

distribution, with lower amounts of butyrate and propionate and

a higher proportion of acetate (60).

3.1.2 Mechanisms of gut microbiota influence on
T2D development

The gut microbiota exerts complex and multifactorial effects on

the human body. However, in our view, the role of the microbiota in

T2D can be summarized through several key mechanisms. Firstly,

commensal gut bacteria produce a variety of metabolites, including

SCFAs, aromatic and branched-chain amino acids, secondary bile

acids (sBAs), tryptophan and indole derivatives, and trimethylamine-
Frontiers in Endocrinology 05
N-oxide (TMAO), which play roles in the disease’s pathogenesis (62).

Under dysbiotic conditions, the normal composition of the gut

microbiota is disrupted, resulting in significant changes in its

metabolic activity. Studies in patients with T2D indicate that the

gut microbiota is enriched in pathways such as sugar transport across

membranes, which increases glucose uptake by cells; excretion of

branched-chain amino acids (BCAA), contributing to IR; methane

metabolism associated with the anaerobic gut environment;

xenobiotic degradation; metabolic transformations linked to drug

resistance; and sulfate reduction, which decreases insulin sensitivity.

Ongoing research continues to focus on identifying microbiota-

derived metabolite changes that could serve as biomarkers for

susceptibility to various diseases, including T2D (63). A summary

of key bioactive metabolites and their roles is provided in Table 1.

Secondly, under conditions of gut dysbiosis in T2D, the

microbiota shows an elevated presence of opportunistic pro-

inflammatory bacteria, initiating local intestinal inflammation.

This inflammation underlies a third mechanism - increased

intestinal wall permeability, often referred to as the ‘leaky gut’

phenomenon. As a result, various substances, known as pathogen-

associated molecular patterns (PAMPs), which possess pro-

inflammatory properties and are components of bacterial cells,

primarily bacterial cell walls such as peptidoglycans (PG) and

lipopolysaccharides (LPS), penetrate the intestinal mucosal barrier

more easily and enter the bloodstream. This results in pro-

inflammatory activation of vascular endothelial cells (70, 71) and

peripheral immune cells, which is generally a sign of systemic

inflammation (72, 73). Inflammation is a key precursor to

metabolic syndrome, increasing risks of hypertension, visceral

obesity, and dyslipidemia, which can damage pancreatic b-cells
and reduce insulin secretion, contributing to T2D. While there is

evidence showing the beneficial effects of probiotics on IR and

glycemic control, there is limited research on their impact on

pancreatic b-cell function in relation to T2D (74).

An additional focus is the effect of medications on the gut

microbiota. Because patients with T2D typically receive

pharmacological treatment, it is challenging to distinguish which
TABLE 1 The production of metabolites by gut microbiota.

Bacterial metabolites Bacterial species References

Short chain fatty acids

Acetic acid Prevotella spp., Bifidobacterium spp., Bacteroides spp., Akkermansia muciniphila, Clostridium
spp., Streptococcus spp., Ruminococcus spp., Blautia hydrogenotrophica

(64–66)

Propionic acid Bacteroides spp., Megasphaera elsdenii, Veillonella spp., Coprococcus catus, Salmonella spp.,
Akkermansia muciniphila, Phascolarctobacterium succinatutens, Dialister spp., Roseburia
inulinivorans, Blautia obeum

Butyric acid Coprococcus comes, C. catus, C. eutactus, Faecalibacterium prausnitzii, Eubacterium hallii,
Ruminococcus bromii, Eubacterium rectale, Anaerostipes spp.

Bile acid metabolites

Bile acid deconjugation Clostridium spp., Bifidobacterium spp., Enterococcus spp., Lactobacillus spp., Bacteroides spp.,
Methanobrevibacter smithii, Methanosphera stadmanae

(52, 66, 67)

Secondary bile acid
production

Clostridium spp., Eubacterium spp.

Tryptophan metabolites
Escherichia spp., Proteus spp., Bacteroides spp., Clostridium spp., Peptostreptococcus spp.,
Lactobacillus spp., Enterococcus spp., Eubacterium spp., Anaerostipes spp., Bifidobacterium spp.

(68, 69)
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microbiota changes are directly linked to the disease. Therefore, many

researchers are interested in identifying microbiota changes in

individuals at the prediabetic stage, prior to medication use.

Moreover, it is important to understand how pharmacotherapy for

T2D influences the microbiota and thereby partly contributes to its

therapeutic effectiveness in managing this metabolic disorder.

The pathogenesis of T2D involves numerous bacterial

metabolites, of which short-chain fatty acids represent a key group.

3.1.2.1 Short-chain fatty acids

In the large intestine, numerous bacterial species generate short-

chain fatty acids (SCFAs) by metabolizing complex carbohydrates

and proteins through various biochemical processes (64, 75). As

noted above, both their absolute concentrations and relative ratios

play a crucial role.

Although SCFAs are not produced by the human body itself,

but rather are bacterial metabolites, they have become closely linked

to molecular processes of energy generation and modulation of

cellular signaling pathways in various host organs and tissues

through a prolonged period of co-evolution between the

microbiota and the human body. SCFAs directly enter human

cells via active or passive transport and can also interact with

specific receptors to initiate signal transduction processes with

diverse biochemical outcomes.

Upon entering cells, SCFAs can be utilized as an energy source.

For example, human colonocytes use butyrate as their primary

energy substrate (76). Acetic and propionic acids are less efficient at

producing ATP molecules in the tricarboxylic acid cycle and are

therefore preferentially directed toward other metabolic pathways.

For example, acetate is used by hepatocytes for lipid and cholesterol

synthesis, while propionate undergoes hepatic conversion to

glucose through gluconeogenesis (77).

SCFAs exert biological effects through their interaction with a

specific group of receptors, collectively known as Free Fatty Acid

Receptors (FFARs), which belong to the family of G protein-

coupled receptors (GPCRs). The most studied SCFA receptors to

date include Free Fatty Acid Receptor 2 (FFAR2 (GPR43)), FFAR 3

(GPR41) and GPR109A (HCA2) (78). These SCFA receptors are

expressed on a variety of cell types, including intestinal epithelial

cells (notably enteroendocrine I and L cells), a- and b-cells of the
pancreas, and immune and neural cells.

Activation of FFAR3 by SCFAs has been demonstrated to

induce the release of the hormone peptide PYY by intestinal

endocrine cells. PYY enhances glucose uptake by adipose tissues

and skeletal muscles, slows intestinal motility, promotes insulin

secretion, and reduces appetite (79). Additionally, SCFAs binding to

FFAR2 (GPR43) stimulate the secretion of glucagon-like peptide-1

(GLP-1) from intestinal L-cells (80). Consequently, this process

enhances insulin secretion and decreased glucagon production by

pancreatic cells. Thus, SCFAs produced by the gut microbiota

modulate the secretion of hormones GLP-1 and PYY, which,

through the gut–brain axis, regulate both metabolic processes and

food intake (81). Moreover, SCFAs regulate blood glucose levels by

affecting membrane glucose transporter proteins. Several
Frontiers in Endocrinology 06
investigations have demonstrated an inverse association between

circulating acetate levels and glucose concentrations.

Furthermore, evidence indicates that SCFAs modulate the

synthesis of adipokines - hormones secreted by adipose tissue -

including adiponectin, leptin, and resistin, which play key roles in

the regulation of metabolic processes (82, 83).

The entry of SCFAs into human cells can influence gene

expression through the inhibition of histone deacetylases

(HDAC), leading to hyperacetylation of certain regions of the

genome. Among these metabolites, butyric acid demonstrates the

strongest activity. Its cellular entry is associated with modifications

in gene expression; for instance, it enhances the adiponectin-

mediated activation of the AMP-activated protein kinase (AMPK)

signaling pathway (84), stimulates mitochondrial biogenesis and the

process of b-oxidation of fatty acids, etc. (85). Through this

mechanism, butyric acid also promotes the upregulation of the

FOXP3 transcription factor expression, thereby promoting the

differentiation of T cells into regulatory T cells (Tregs) (86).

SCFAs, especially butyric acid, are crucial for preserving the

integrity of the intestinal epithelium, as they affect proteins

responsible for the formation of tight intercellular contacts - TJP

(Tight Junction Proteins). Butyric acid, through the interaction with

the GPR109A receptor, enhances the expression of several TJP:

claudin-3, occludin, and zonula occludens 1 (87). Increased

permeability of the gut epithelium leads to the transfer of bacteria

or bacterial cell components beyond the mucosal surface, thereby

initiating low-grade local and systemic inflammation. This, in turn,

is linked to the onset of IR and obesity.

Another important mechanism by which SCFAs influence

health and pathological conditions, including T2D, involves their

modulation of immune system function. Receptor for SCFAs are

expressed on various types of immune cell populations, such as

macrophages, neutrophils, dendritic cells, and group 3 innate

lymphoid cells (ILC3s), and T cells (88, 89), which indicates that

these cells are targets for the action of these bacterial metabolites.

An analysis of numerous original studies indicates that the impact

of SCFAs on immune mechanisms is complex, involving various

pathways, but is predominantly characterized by anti-inflammatory

effects (71, 73, 90, 91).

3.1.2.2 Secondary bile acids

Patients with T2D demonstrate distinct profiles of secondary bile

acids, a group of metabolites derived from bacterial activity, compared

to healthy individuals. As is known, these secondary bile acids are

produced from primary bile acids through microbial metabolism in

the gut. Studies estimate that approximately 5% of bile acid conjugates

undergo deconjugation and subsequent biochemical transformations

mediated by intestinal microbiota enzymes. Bacterial populations in

the ileum (representatives of the genera Clostridium, Bifidobacterium,

Enterococcus, Lactobacillus, Bacteroides, Methanobrevibacter smithii,

and Methanosphera stadtmanae) produce bile salt hydrolases (BSH),

enzymes responsible for the deconjugation of bile acids. In addition,

enzymes from other bacteria (Clostridium and Eubacterium) catalyze

7a-dehydroxylation reactions, converting primary bile acids into
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secondary bile acids, including deoxycholic acid (DCA), lithocholic

acid (LCA), and ursodeoxycholic acid (UDCA) (52, 92). The majority

of these secondary bile acids are eliminated via fecal excretion, but

approximately 2% of DCA and a small amount of LCA enter the

portal circulation.

Serving multiple physiological functions, bile acids, including

primary and secondary forms, function as signaling molecules and

can interact with specific receptors to initiate signaling cascades in

responsive cells. Bile acid receptors, collectively referred to as BARs

(Bile Acid Receptors). Among the most studied bile acid receptors

are the nuclear receptor FXR (Farnesoid X Receptor) and the

plasma membrane–expressed receptor GPBAR1 (G-Protein Bile

Acid Receptor 1; Takeda G protein-coupled receptor 5, TGR5) (93).

The nuclear receptor FXR is expressed in intestinal epithelial cells,

hepatocytes, and the vascular endothelium of the intestine and liver.

The GPBAR1 receptor is expressed on intestinal epithelial cells,

muscle and neuronal cells, intestinal and liver endothelial cells, and

in both white and brown adipose tissue. It is also widely present on

immune cells. Both receptors can recognize primary and secondary

bile acids, but their binding affinities differ, with TGR5 showing a

preference for secondary bile acids produced by the gut microbiota.

FXR and TGR5 receptors signaling plays a critical role in the

regulation of bile acid and lipid metabolism. Moreover, these

receptors mediate the effects of bile acids on inflammation and

cellular insulin responsiveness. For example, activation of FXR in

pancreatic b-cells induces Forkhead box a2 (Foxa2) expression,

which enhances insulin production (94). Similarly, stimulation of

TGR5 on enteroendocrine L-cells promotes the release of the

hormone GLP-1, thereby improving glucose homeostasis and

insulin sensitivity (95).

The bile acid receptors discussed above are present on a range of

immune cells, including dendritic cells, macrophages, and NK-T

cells (96, 97), indicating that bile acids play a role in modulating

immunoreactivity. Research indicates that bile acids, including

secondary bile acids, suppress inflammation by decreasing the

secretion of pro-inflammatory cytokines IL-1b, IL-6, TNF-a, IL-
12, which are released by immune cells following pro-inflammatory

triggers such as exposure to lipopolysaccharide (LPS) (98, 99).

It should be noted that both primary and secondary bile acids can

exert toxic effects on the gut microbiota, thereby directly modulating

its composition within the intestine. Conversely, bacteria of certain

taxonomic groups can modulate bile acid production. For example,

members of the genus Clostridia promote production of bile acids by

suppressing FGF19 (Fibroblast Growth Factor 19), which normally

bile acid production through a cascade of molecular mechanisms

(100). Thus, there are complex reciprocal relationship between bile

acids and the intestinal microbiota.

In individuals with T2D, increased concentrations of both

primary and secondary bile acids have been observed, reflecting

dysregulation of bile acid metabolism involving both the host and

the gut microbiota.

3.1.2.3 Tryptophan derivatives

Certain intestinal bacteria metabolize the essential amino acid

tryptophan, obtained from the diet, into a variety of bioactive
Frontiers in Endocrinology 07
compounds, including indole and its derivatives, such as indole-

3-aldehyde (IAld), indole-3-acetic-acid (IAA), indole-3-propionic

acid (IPA), indoleacrylic acid, and indole-3-acetaldehyde (IAAld).

All of them are ligands for the aryl hydrocarbon receptor (AhR)

(68). This receptor is present in hepatocytes, intestinal epithelial

cells, skin, endothelial cells, lungs, and different populations of

immune cells. The ability to produce indole and its metabolites is

found in bacteria of the genera Escherichia, Proteus, Bacteroides,

Clostridium, Peptostreptococcus, Lactobacillus, Enterococcus,

Eubacterium, Anaerostipes, Bifidobacterium (101). The abundance

of these bacterial species in the gut microbiota, together with

the tryptophan content of the diet determine the levels of

corresponding metabolites produced in the gut and circulating in

the bloodstream (102–104). The effects of AhR activation are

context-dependent. For example, In intestinal epithelial cells, AhR

activation promotes cellular differentiation and increases the

expression of tight junction proteins, including ZO-1, Occludin,

Claudin-1, thereby enhancing epithelial barrier function (105). AhR

activation in immune cells (in Th17 and Th22 cells) stimulates the

secretion of IL-22, supporting mucosal integrity (106). AhR

signaling participates in M2-type macrophage activation, resulting

in IL-10 production (107) and promotes the differentiation of

tolerogenic dendritic cells (108).

Investigations of the association between indole derivatives and

T2D have shown the following: higher plasma concentrations of ІРА

are linked to enhanced insulin secretion and sensitivity, reduced

chronic low-grade inflammation, accompanied by a decreased risk of

T2D onset (109). Another study demonstrated that serum IPA levels

were markedly reduced in patients with DKD and showed significant

correlations with urine albumin-to-creatinine ratio (UACR),

estimated glomerular filtration rate (eGFR), fasting blood glucose

and HbA1c (110). In a high-fat diet (HFD) mouse model,

intraperitoneal administration of IAA improved liver function,

reduced fasting glucose levels, and normalized the lipid profile (111).

3.1.3 Immunoreactivity and microbiota
Gut microbiota-stimulated immune mechanisms contribute

significantly to the development of T2D. Studies show that T2D

develops against the background of chronic low-grade systemic

inflammation. Factors that sustain this inflammation include

bacterial components (РАМРs or MAMPs) that enter the

bloodstream from the intestine, which becomes “leaky” (leaky

gut) and act systemically. Research has demonstrated that the

blood serum of individuals diagnosed with T2D presents with

markedly elevated levels of one of the most extensively studied

MAMPs, lipopolysaccharide (LPS). MAMPs interact with receptors,

such as Toll-like receptors (TLRs). These receptors are often found

on the cells of the epithelium and immune system. The stimulation

of these receptors results in the secretion of pro-inflammatory

cytokines (IL-1, IL-6, TNF-a) by cells, exerting a systemic effect.

Impairment of normal functioning of pancreatic b-cells and the

development of IR in various tissues have been associated with these

immune processes. Furthermore, systemic inflammation affects

endothelial function. Prolonged exposure to pro-inflammatory

factors activates endothelial cells, causing them to produce pro-
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inflammatory cytokines and express more adhesion molecules,

which promotes the attachment of activated leukocytes and

platelets. These processes play a role in the development of

atherosclerotic lesions (112–114).

As we can see, the described immune mechanisms involved in the

pathogenesis of T2D are interdependent with the gut microbiota. The

increased abundance of opportunistic bacteria with pro-inflammatory

properties in the microbiota leads to the translocation of bacteria and

their components into the bloodstream, thereby exacerbating the

systemic inflammatory response (53, 115).

3.1.4 Approaches to modulating the gut microbial
composition in individuals with T2D

So, the gut microbiota plays a central role in the pathogenesis of

T2D. What factors regulate the structure and metabolic activity of

intestinal microbiota? The key factors currently recognized for

modulating the gut microbiota include diet, physical activity,

probiotic use, and fecal microbiota transplantation (FMT).

In our view, the impact of diet on the microbiota is the most

important factor (116). The strongest evidence of how a human’s

diet affects their microbiota can be observed during the transition

from breastfeeding to an adult diet (117, 118). Research shows that

changes in diet, or even the regular consumption of certain foods,

can modify gut microbiota composition and function, leading to

improvements in both clinical outcomes and biochemical markers

in patients with T2D (119, 120).

Different regions of the world have their own national cuisines

and eating habits. The effect that different diets have on the gut

microbiota is currently being studied, as is the subsequent effect on

human health. For a long time, the Mediterranean diet (MeD) has

been one of the most researched diets in regard to its beneficial effect

on the microbiota and overall human health (121, 122). There are

many original studies and analytical summaries on the beneficial role

of the MeD in reducing the risk of type 2 diabetes and improving the

clinical picture and laboratory test results in already developed

disease. A large prospective study conducted in Spain showed that

adherence to the Mediterranean diet can prevent the onset of T2D

(123). Moreover, a comprehensive meta-analysis demonstrated that

following the MeD in individuals with T2D resulted in reductions in

fasting plasma glucose and insulin, HbA1c, BMI and body weight. In

addition, triglycerides and total cholesterol concentrations in plasma

decreased, while high-density lipoprotein concentrations increased.

Furthermore, patients demonstrated a decrease in blood pressure

(124). This positive effect of MeD is linked to its effects on the gut

microbiota (125). The low intake of animal proteins and the high

consumption of dietary fibers characteristic of this dietary pattern

lead to modifications in the microbiota composition, increasing the

number of bacteria such as Roseburia spp, Akkermansia muciniphila

and Faecalibacterium prausnitzii. These bacteria ferment dietary

fibers and produce SCFAs (126, 127) with various other health-

promoting metabolites.

Physical activity is an important factor that influence the

composition of the human gut microbiota positively. Research

has demonstrated that a lack of physical activity is linked to
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decreased gut microbiota diversity and an elevated Bacillota/

Bacteroidota ratio, which is frequently observed in metabolic

disorders (128). Moderate-intensity physical activity has been

shown to increase the levels of gut bacteria from the genera

Faecalibacterium, Veillonella, Lachnospira, and Bifidobacterium,

which are linked to improved metabolic profiles and anti-

inflammatory activity (129, 130). Multiple studies indicate that

moderate physical activity helps normalize gut microbiota

balance, potentially improving metabolic profiles and providing

an additional beneficial effect in the treatment of T2D.

Specialists in the treatment of T2D have also given positive

reviews on the correcting of the microbiota using probiotic

preparations. Numerous meta-analyses have examined the effect of

probiotic supplements on the effectiveness of treating T2D. They have

shown that the use of probiotics improves metabolic parameters such

as fasting glucose, insulin, and HbA1c in patients with T2D (131–

133). Most studies traditionally used currently available probiotics

based on bacteria of the Bifidobacterium and Lactobacillus genera.

Another study investigated the impact of a probiotic containing 12

bacterial strains (Bifidobacterium, Streptococcus and Lactobacillus)

adjunctive therapy for patients with T2D and hyperammonaemia.

After one month of supplementation, patients showed reduced

peripheral blood levels of fasting glucose and ammonia. In

addition, the patients experienced changes in their gut microbiota,

with a decrease in the number of bacteria species with pro-

inflammatory properties.

In light of the current success of probiotics, there is now talk of

developing the next-generation, which will be based on a wide

variety of bacteria with beneficial properties, such as Akkermansia

muciniphila, Faecalibacterium prausnitzii, Anaerobutyricum

soehngenii, Roseburia hominis, and Cristensenella minuta (134,

135), which will have a positive effect on human health in both

normal conditions and various pathological processes.

Modifications to the microbiota through the use of probiotics or

dietary interventions occur relatively slowly, typically manifesting after

1–3 months of exposure. A faster way to modulate the gut microbiota

is through fecal microbiota transplantation (FMT). This approach is

currently being actively developed and has already proven effective in

treating pathological conditions, including recurrent Clostridioides

difficile infection (CDI), inflammatory bowel disease (IBD), irritable

bowel syndrome (IBS), neurodegenerative disorders and autoimmune

diseases (136–139). However, the number of studies on the application

of FMT to patients with T2D is still limited, preventing definitive

conclusions regarding the efficacy of this procedure. Some authors

have reported positive effects of FMT (140), whereas others observed

no beneficial outcomes in patient groups with high IR (141).

Therefore, research in this area is ongoing.

The available evidence clearly indicates the critical role of the

gut microbiota in the pathogenesis of T2D (142).

3.1.5 Influence of regional dietary patterns on gut
microbiota and T2D

Regional dietary patterns have a significant influence on gut

microbiota composition and, consequently, the pathophysiology of
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type 2 diabetes (T2D). Diets vary widely across geographic regions

due to cultural, economic, and environmental factors, which impact

the production of microbial metabolites, such as short-chain fatty

acids (SCFAs), and their role in maintaining metabolic health. For

instance, high-corn diets, prevalent in Latin America, are rich in

dietary fiber, which promotes the growth of SCFA-producing

bacteria such as Faecalibacterium and Roseburia. These bacteria

are associated with enhanced insulin sensitivity and reduced

inflammation, potentially mitigating the risk of T2D (125). In

contrast, high-red-meat diets, common in Australia, may increase

the abundance of pro-inflammatory bacteria and elevate levels of

metabolites, such as trimethylamine-N-oxide (TMAO), which is

linked to insulin resistance and an increased risk of T2D (62). These

regional differences highlight the need for further research to

elucidate how specific dietary patterns shape microbiota-T2D

interactions, particularly in underrepresented populations. Such

studies could inform the development of tailored dietary

interventions to optimize gut microbial profiles and improve T2D

management globally.
3.2 Current applications of artificial
intelligence and machine learning in the
diagnosis and management of diabetes
mellitus

3.2.1 Machine learning models for early
diagnosis, risk assessment, and complication
prediction

Artificial intelligence, particularly machine learning methods,

plays a central role in the early detection of diabetes mellitus,

assessment of disease risk, and prediction of complications such as

diabetic retinopathy, nephropathy, and cardiovascular disorders. To

analyze large datasets, including electronic health records (EHRs),

genetic profiles, and lifestyle indicators, various models are

employed, including logistic regression, decision trees, random

forest, support vector machines (SVM), and deep neural networks.

Nomura et al. demonstrated that machine learning models

achieved area under the receiver operating characteristic curve

(AUC) values ranging from 0.71 to 0.80 when predicting the

development of T2D over a five-year period. These predictions

were based on clinical parameters, including HbA1c levels, body

mass index (BMI), and genetic predisposition (143). For instance, a

logistic regression model proposed by Choi et al. showed an AUC of

0.78 for predicting T2D in hospitalized patients using demographic

and laboratory data (144). Ravaut et al. reported an AUC of 0.80

when analyzing administrative health data for T2D risk assessment

(145). Similarly, Yun et al. developed a deep learning–based system

for risk stratification of T2D using retinal images, enabling the

detection of early pathological changes with accuracy comparable to

expert assessments (146).
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For patients with T2D, the risk of complications is a significant

concern, and substantial attention has been focused on the use of AI in

this context. For instance, Betzler et al. utilized deep learning

techniques to predict diabetic nephropathy using retinal

photographs, achieving an area under the curve (AUC) of 0.85 (147).

Machine learning (ML)models are also applied to assess cardiovascular

risk in individuals with diabetes mellitus. In the ORFAN STUDY Chan

et al. demonstrated that AI can predict cardiovascular alterations in

patients without obstructive coronary artery disease using computed

tomography (CT) data combined with clinical parameters (148). These

models integrate imaging data with biomarkers, such as glucose levels

and lipid profiles, to generate comprehensive risk profiles.

Khalid et al. highlights the effectiveness of Gradient Boosting

and XGBoost algorithms, which can predict T2D with an AUC of

up to 0.87 based on a combination of genetic data and EHRs (149).

Furthermore, deep learning methods have demonstrated the ability

to detect subclinical manifestations of diabetic complications, such

as microvascular alterations, thereby enhances the accuracy of early

diagnosis. These ML algorithms can be further enhanced by

integrating gut microbiota data, such as metabolomic profiles

(e.g., short-chain fatty acids) from Section 3.1, to identify novel

biomarkers, like cysteine or phenyllactate, that correlate with

insulin resistance (150).

Several ML algorithms have been employed to enhance T2D

management. Random Forest and XGBoost, tree-based ensemble

methods, excel in ranking feature importance using techniques such

as Shapley Additive Explanations (SHAP), which helps identify key

biomarkers, including HbA1c, folate, and metabolites like cysteine

and aspartate, in metabolomic studies (145). These algorithms are

robust for high-dimensional datasets and have shown high accuracy

in predicting T2D risk and complications, such as distal symmetric

polyneuropathy (144). Support Vector Machines (SVMs) are

effective for classifying molecular biomarkers, such as long non-

coding RNAs (lncRNAs), in high-dimensional genetic data, and for

diagnosing T2D using clinical and imaging data (144). Deep Neural

Networks (DNNs) are particularly suited for multimodal data

integration, capturing complex non-linear patterns in time-series

data (e.g., continuous glucose monitoring) and retinal photographs

to predict glycemic control and diabetic retinopathy progression

(151). Ensemble methods like Voting and Stacking combine the

strengths of multiple models to improve generalization and

biomarker ranking across metabolomics and genetics. Logistic

Regression, while simpler, serves as a baseline for interpretable

risk assessment and is often used in ensemble approaches (145).

Recent studies have demonstrated the efficacy of these

algorithms in the management of T2D. For instance, a machine

learning model using administrative health data achieved an AUC

of 0.957 for predicting T2D onset within five years (145). Another

study utilizing DNNs on retinal photographs reported an AUC

of 0.934 for detecting diabetic kidney disease, highlighting

the potential of AI in early detection of complications (144).
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Additionally, XGBoost models applied to the NHANES dataset

identified novel metabolomic biomarkers, such as phenyllactate,

with an AUC of 0.86 for insulin resistance prediction (120, 152).

These advancements underscore the synergy between AI-driven

diagnostics and gut microbiota research, enabling the identification

of novel therapeutic targets and personalized interventions.

A comprehensive comparison of these ML algorithms,

including their applications in T2D biomarker identification and

diagnosis, their advantages and limitations, and performance

metrics, is provided in Table 2.
Frontiers in Endocrinology 10
3.2.2 Analysis of continuous glucose monitoring
data using machine learning methods

Continuous glucose monitoring (CGM) systems generate large

volumes of data that AI can use to predict glycemic events such as

hypoglycemia and hyperglycemia. Deep learning algorithms,

particularly convolutional neural networks (CNNs) and recurrent

neural networks (RNNs), effectively analyze CGM time-series data

to identify patterns and predict glucose levels.

A meta-analysis by Kodama et al. showed that models like

RNNs and long short-term memory (LSTM) networks can achieve
TABLE 2 Machine learning algorithms for biomarker identification and diagnosis of type 2 diabetes.

Algorithm Category
Application in identifying

T2D biomarkers
Application in

disease diagnosis
Advantages Limitations

Performance
examples

Random
Forest

Tree-based
Ensemble

Used for feature importance ranking
(e.g., Shapley Additive Explanations)
to identify biomarkers such as blood
glucose levels, HbA1c, folate, lncRNA
in metabolomics and genetics.
Effective for high-dimensional data
with nutritional markers.

Predicting T2D risk,
classifying stages (e.g.,
prediabetes/T2D), detecting
complications like distal
symmetric polyneuropathy.
Used for early diagnosis
with electronic medical
records and imaging.

High resistance to
overfitting,
handles
imbalanced data,
interpretable
through feature
importance;
performs well with
tabular data.

Less effective on
very large
datasets without
tuning; “black
box” without
Shapley Additive
Explanations.

AUC 0.99
(symptoms), 0.835
(long-term
prognosis);
accuracy 0.975 with
feature interactions.

XGBoost
(Gradient
Boosting)

Gradient
Boosting

Identification of key biomarkers
(e.g., cysteine, aspartate, phenyllactate)
via Shapley Additive Explanations in
metabolomics; ranking risk factors like
BMI, blood glucose levels.

Predicting insulin
resistance, complications
(hypoglycemia, distal
symmetric polyneuropathy),
long-term risk, and precise
diagnosis with electronic
medical records.

High accuracy,
handles missing
data,
regularization
against overfitting;
scales to large
datasets.

Prone to
overfitting
without
regularization;
requires
hyperparameter
tuning.

AUC 0.957
(NHANES), 0.86
(insulin resistance);
accuracy 71-73%
for the following
year.

Support
Vector
Machine

Kernel-based
Classifier

Detection of molecular biomarkers
(e.g., lncRNA) in high-dimensional
genetic data; classification based on
metabolites.

Diagnosis with clinical and
imaging data; ensembles for
detecting retinopathy and
progression.

Effective in high-
dimensional
spaces, resistant to
overfitting due to
margins; suitable
for non-linear
boundaries with
kernels.

Slow training on
large datasets;
requires
normalization;
less
interpretable.

AUC 0.95
(lncRNA), 0.928
(clinical data);
sensitivity 95%,
specificity 86%.

Deep Neural
Networks

Neural
Networks

Analysis of multimodal data
(electronic medical records + genetics/
imaging) to identify novel biomarkers
(e.g., metabolites, genetic risks).

Predicting glycemic control,
progression from
prediabetes; processing time
series and images for
diagnosis.

Captures complex
non-linear
patterns; scales to
large datasets;
supports
multimodal
integration.

Requires large
datasets;
computationally
intensive; prone
to overfitting.

AUC 0.934 (fused
data), accuracy 92-
94% (pipelines);
low RMSE for
glucose prediction.

Voting,
Stacking

Combined
Models

Combining for biomarker ranking
from various sources (metabolomics +
genetics); improves interpretability
with Shapley Additive Explanations.

Multiclass classification
(healthy/prediabetes/T2D);
long-term risk prediction
with electronic medical
records.

Leverages
strengths of base
models; improves
generalization and
balances metrics.

Increased
complexity and
computation
time; depends
on base model
quality.

Accuracy 99.3%, F1
0.993 (DT/SVM/
XGBoost); AUC
0.884 (weighted
voting).

Logistic
Regression

Linear
Model

Baseline for detecting simple
biomarkers (e.g., nutritional markers);
used in ensembles for interpretable
coefficients.

Baseline risk diagnosis;
ensembles for current T2D
status.

Simple,
interpretable (odds
ratios); effective
for small datasets.

Assumes linear
relationships;
performs poorly
on non-linear
data; sensitive to
multicollinearity.

AUC 0.746-0.884
(in ensembles);
baseline for
comparisons.
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a mean absolute error of 10–15 mg/dL in predicting glucose levels

30 minutes before an event (153). Jaloli and Cescon developed a

hybrid CNN-LSTMmodel that can predict long-term glucose levels

in people with type 1 diabetes mellitus (T1D) with up to 90%

accuracy (154). The Guardian Connect System by Medtronic,

approved by the U.S. Food and Drug Administration (FDA) in

2018, uses predictive algorithms to provide alerts up to one hour

before a potential hypoglycemic event, with 98.5% accuracy at 30

minutes before onset (11).

The main challenges in glucose prediction are delays associated

with food and insulin absorption, as well as CGM errors, which

account for approximately 9% of the mean absolute relative

difference for the most accurate sensors. To overcome these

limitations, multimodal models are employed that integrate CGM

data with information on physical activity, nutrition, and sleep

obtained from individual wearable devices. For example, Guan et al.

demonstrated that integrating CGM data with fitness tracker

information improves glucose prediction accuracy by 15% (155).

Closed-Loop Insulin Delivery Systems, such as the artificial

pancreas, implement these models to automatically regulate

insulin delivery, thereby reducing glycemic variability by 25% in

patients with T1D.
3.2.3 Integration of microbiome data into
diagnostic algorithms
3.2.3.1 The development of diagnostic algorithms based
on the microbiome is a growing area of research

The gut microbiome plays a crucial role in metabolic processes

and the development of T2D, particularly through its influence on

insulin resistance and inflammatory responses. AI algorithms are

applied to analyze metagenomic data, which reflect the composition

of the microbiota, as well as metabolomic profiles, including SCFAs,

to create diagnostic models.
Frontiers in Endocrinology 11
Lagou et al. demonstrated that multimodal models integrating

metagenomic data with EHRs achieved an AUC of 0.82 for

predicting the risk of T2D (150). Liu et al. developed a gradient

boosting–based algorithm that analyzes the composition of the

microbiota and its metabolites to identify metabolic phenotypes

of T2D. Notably, elevated butyrate levels are associated with

reduced IR, making it a potential biomarker (156). Karlsson et al.

found that a decrease in bacteria of the genus Roseburia correlates

with an increased risk of developing T2D, which may inform the

development of bioactive therapeutic strategies (58).

AI algorithms also enable the analysis of complex interactions

between the microbiome and metabolic pathways. For example, Qin

et al. developed a catalog of gut microbiome genes used to identify

biomarkers of T2D, including genes associated with the synthesis of

SCFAs (157). Algorithms such as SVM and Random Forest have

been shown to effectively classify microbial profiles for predicting

metabolic disorders.

Figure 2 illustrates the workflow for integrating gut microbiome

data (metagenomic and metabolomic profiles) with machine

learning algorithms to facilitate the early diagnosis and risk

prediction of T2D, highlighting key stages from data collection to

personalized intervention recommendations.

3.2.3.2 Patient stratification based on microbiota
composition and bioactive profiles

AI can categorize patients with diabetes based on their microbiota

composition, enabling personalized treatment strategies. For example,

the DayTwo platform employs algorithms to analyze metagenomic

data and predict glycemic responses based on dietary intake. A study

by Zeevi et al. demonstrated that such algorithms can predict

individual glycemic responses with up to 70% accuracy using

microbiota composition and dietary data (158). This approach

facilitates the development of personalized dietary recommendations

that reduce glycemic spikes.
FIGURE 2

Pipeline for machine learning integration with gut microbiome data in T2D diagnosis.
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Stratification also facilitates the identification of patient subgroups

with varying risk of complications. A study by González-Rivas et al.

demonstrated that AI platforms can classify patients according to their

level of insulin resistance based on microbiota composition, enabling

tailored probiotic therapy. Specifically, probiotic strains such as

Lactobacillus and Bifidobacterium, increase butyrate levels, which are

associated with reduced inflammatory markers and improved

glycemic control. These platforms employ clustering methods (e.g.,

k-means) and causal inference analyses to tailor therapy to metabolic

profiles, thereby reducing the risk of complications, such as diabetic

nephropathy, by 15–20% (159).
3.2.3.3 Platforms for analyzing metagenomic and
metabolomic data

Modern platforms, such as IBM Watson Health and Google

DeepMind, are applied to process large-scale metagenomic and

metabolomic datasets. For instance, the DayTwo platform integrates

microbiome data with EHRs to generate personalized dietary

recommendations (158).

Processing multimodal data is a complex task that requires

algorithmic advancements to ensure interpretability and scalability.

For example, deep learning methods, such as autoencoders, enable

dimensionality reduction while preserving key biomarkers, but they

demand substantial computational resources (160).

3.2.4 Digital pathology and biomarker
identification
3.2.4.1 Identification of microbial metabolites associated
with disease progression

AI algorithms play a crucial role in discovering new biomarkers,

including microbial metabolites that influence the progression of

T2D. Deep learning enables the analysis of metabolomic profiles to

identify metabolites, such as butyrate and propionate, which

correlate with IR. A study by Santhanam et al. demonstrated that

these methods can assess body composition, including visceral fat,

through CT and MRI image analysis, which is an important risk

factor for the development of T2D (161). Specifically, the

algorithms revealed that elevated levels of visceral fat are

associated with a 30% higher risk of developing T2D.

Karlsson et al. highlighted that metagenomic data can be used to

identify biomarkers of T2D, including metabolites that influence

inflammatory processes (58). Algorithms such as k-means clustering

enable the categorization of metabolic profiles to identify new

therapeutic targets.

3.2.4.2 Image analysis and systems biology in synergy
with microbiome data

Digital pathology using AI algorithms is widely applied

for diagnosing diabetic complications, particularly diabetic

retinopathy. For example, Rice et al. developed a deep learning
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system for automated detection of retinopathy from fundus images,

achieving 97% sensitivity and 95% specificity (162). Dai et al.

developed a deep learning system to predict the progression of

diabetic retinopathy, achieving an AUC of 0.90 (151). These

systems integrate retinal images with clinical data to create

complex diagnostic models.

Such methods also allow the establishment of associations

between microbial metabolites and pathological tissue changes.

For example, a study by Liu et al. demonstrated that 21 identified

microbial genera are important biomarkers for T1D. Their AUC

values were 0,962 and 0.745 on discovery set and validation set.

Functional analysis indicated that 10 microbial genera were

significantly positively correlated with D-arginine and D-

ornithine metabolism, transcriptional spliceosome activity, steroid

hormone biosynthesis and glycosaminoglycan degradation (156).

These findings support the prediction of disease progression and

the development of personalized therapeutic strategies.
3.2.5 Convergence toward personalized
therapeutic platforms
3.2.5.1 Therapeutic platforms based on gut-derived
bioactive compounds

Bioactive metabolites synthesized by the gut microbiota,

particularly SCFAs, such as butyrate and propionate, play a crucial

role in regulating metabolic and inflammatory processes associated

with T2D. As noted above, these compounds influence IR, glycemic

control, and levels of inflammatory markers, such as C-reactive

protein. AI enables the development of therapeutic platforms that

analyze microbiota composition and its metabolites to design

individualized strategies, including the use of probiotics, postbiotics,

and dietary recommendations.

A study by Zeevi et al. demonstrated that these algorithms

facilitate personalized dietary recommendations, which help reduce

postprandial glycemic spikes in patients with T2D, ultimately

lowering the risk of complications such as diabetic retinopathy

and cardiovascular disease. They employed the DayTwo platform,

which uses AI algorithms, including gradient boosting, to analyze

gut microbiome metagenomic data and predict diet-based glycemic

responses, achieving up to 70% accuracy in forecasting individual

glycemic responses (158).
3.2.5.1.1 Integration of omics data with lifestyle information

The integration of multimodal omics data, including microbiome,

metabolomic, and genomic profiles, with lifestyle information (diet,

physical activity, and sleep) forms the foundation for the development

of personalized therapeutic platforms. A study by Lagou et al. further

demonstrated that multimodal models combining UK Biobank

genomic data, gut microbiome metagenomic profiles, and EHRs

achieved an AUC of 0.85 for predicting the risk of developing T2D
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(150). These models employ gradient boosting algorithms, such as

XGBoost, and deep learning methods to identify biomarkers,

including SCFAs, that correlate with metabolic phenotypes.

For example, elevated levels of butyrate are associated with

reduced IR, whereas a decrease in the genus Faecalibacterium is

associated with an increased risk of developing T2D (150). A study

by Kannenberg et al. demonstrated that an AI platform based on

digital twins reduced HbA1c by 1.2% over 12 months in patients

with T2D by adapting dietary recommendations based on

microbiome and metabolome data (163). Integration of data from

individual monitoring devices, such as fitness trackers, enables the

creation of comprehensive risk profiles.

Qin et al. developed a catalog of gut microbiome genes, which is

used to identify biomarkers of T2D, including genes associated with

SCFAs synthesis (157). Algorithms such as SVM and Random

Forest enable the classification of metabolic profiles with up to 80%

accuracy for predicting the risk of developing T2D.

Integration of lifestyle data, such as dietary caloric intake and

physical activity, improves predictive accuracy by 10–15%. For

example, the Twin Health platform uses multimodal data to

generate personalized nutrition plans that reduce glycemic peaks

in patients with T2D.
3.2.5.1.2 Adaptive algorithms for real-time monitoring and
therapy correction

Adaptive algorithms, such as reinforcement learning (RL) and

RNNs, enable real-time patient monitoring and dynamic therapy

correction. A study by Guan et al. showed that RL algorithms

optimize insulin dosing in T2D, reducing the risk of hypoglycemia

by 30% compared to traditional methods (155). These algorithms

integrate data from CGM, physical activity, and EHRs to develop

dynamic therapeutic strategies.

The Advisor Pro system by DreaMed Diabetes, approved by the

FDA in 2018, uses algorithms to analyze CGM data and provide real-

time insulin dosing recommendations, improving glycemic control in

patients with T1D (164). A meta-analysis by Kodama et al. established

that such models reduce the incidence of hypoglycemic events by 20%

compared to traditional methods. LSTM-based algorithms achieve a

mean absolute error of 10–15 mg/dL when predicting glucose levels 30

minutes in advance, enabling timely therapy corrections (153).

The main challenges include delays in CGM data (5–10

minutes) and the need to standardize information from multiple

sources, such as wearable devices and EHRs (155). To overcome

these challenges, multimodal models are employed, integrating

CGM with information on diet, physical activity, and sleep.

These models facilitate the development of closed-loop systems

that automatically regulate microdoses of insulin, thereby reducing

glycemic variability and improving overall metabolic control.
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3.2.5.2 Potential of remote care, digital twins, and closed-
loop systems
3.2.5.2.1 Remote care

Remote care platforms, such as MyWay Digital Health, enable

patient monitoring through telemedicine systems by analyzing CGM

data, EHRs, and information from individual monitoring devices. A

study by Mackenzie et al. demonstrated that such platforms increase

therapy adherence by 20% through personalized recommendations

and remote consultations (165). Telemedicine reduces barriers to

healthcare access, particularly in resource-limited settings, such as

rural areas, remote regions, or low-income countries.

The BlueStar platform by WellDoc employs machine learning

methods to analyze CGMdata and provide lifestyle recommendations,

reducing HbA1c by 0.8% over six months in patients with T2D (160).

A study by Xu et al. demonstrated that telemedicine platforms

increase healthcare accessibility by 25% compared to traditional

approaches (166). These platforms integrate data from individual

monitoring devices, such as Fitbit or Apple Watch, to generate

comprehensive health profiles.
3.2.5.2.2 Digital twins

Digital twins are virtual patient models that integrate CGM,

microbiome, genomic, and lifestyle data to simulate metabolic

profiles. A study by Kannenberg et al. demonstrated that digital twins

can predict diabetes-related complications with up to 85% accuracy and

optimize therapy through personalized dietary and pharmacological

interventions. For instance, the Twin Health platform employs digital

twins to design individualized nutrition plans, reducing postprandial

glycemic peaks in patients with T2D by 20% (163).

Digital twins also enable the modeling of long-term therapeutic

outcomes. González-Rivas et al. showed that digital twins

integrating microbiome and genomic data can predict the risk of

diabetic nephropathy with 80% accuracy (159). These models apply

deep learning algorithms to analyze multimodal data and construct

individualized risk profiles.

3.2.5.2.3 Closed-loop systems

Closed-loop systems, such as the artificial pancreas, use

algorithms to automatically regulate insulin delivery based on

CGM data. A study by Sheng et al. reported that such systems

reduce glycemic variability by 25% in patients with T1D (167). RL

algorithms adapt to changes in physiological condition, providing

continuous therapy adjustments. For example, the Control-IQ

system by Tandem Diabetes Care, approved by the FDA in 2019,

reduces the incidence of hypoglycemia by 30% (168).

Unsworth et al. demonstrated that closed-loop systems

integrating CGM and individual monitoring devices improve

glycemic control in children with T1D, lowering HbA1c by 0.5%

over six months (164).
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4 Discussion

4.1 Limitations, challenges, and ethical
issues of AI in T2D management

Despite growing enthusiasm for the use of gut-derived bioactive

compounds and AI in clinical practice, particularly in the monitoring

of patients with T2D, several challenges limit their widespread

implementation. We aimed to systematize and outline the key

limitations that currently constrain the scalability of AI in

diabetes management.
4.1.1 The heterogeneity of the gut microbiome
remains one of the most critical barriers, complicating the

standardization of bioactive markers and their application in

predictive models. High interindividual variability in the gut

microbiota composition of patients with T2D (169–171) prevents the

direct extrapolation of findings from one population to another. It is

crucial to highlight that a significant area for future research involves

examining data from regions that were underrepresented in our review,

particularly Latin America and Australia. Additionally, it is important

to investigate how various dietary patterns—such as high-corn diets in

Latin America and high-red-meat diets in Australia—affect the

production of SCFAs and the composition of gut microbiota, as well

as their influence on T2D. This complicates the identification of

universal diagnostic and therapeutic targets.
4.1.2 The technical limitations
There are problems with data unification and quality. Incomplete,

unrepresentative or unstructured datasets, in particular, contribute to

model bias and limited generalizability. The implementation of closed-

loop systems and machine learning algorithms is constrained by the

high cost of these systems, the need for data standardization to ensure

compatibility across different devices, and subsequent unification and
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scalability. Currently, most machine learning algorithms are trained on

limited demographic or regional datasets, which can lead to reduced

effectiveness for smaller, underrepresented populations or patients

from different parts of the world (172). Pagano et al. reviewed

current machine learning models and noted that most studies focus

on binary classification tasks, whereas the multidimensional clinical

scenarios (173), which are typical for T2D, remain underdeveloped,

limiting the scalability of these technologies for global application.

4.1.3 The opacity of decision-making processes
Deep neural networks, frequently used to analyze CGM,

microbiome or metagenomic data, have a complex structure and low

transparency in decision-making. Most AI models are “black boxes”,

meaning they produce results without explanation. This complicates

their use in clinical practice, where explainable logic is required. For

example, even high-accuracy models, such as CNN-LSTM that predict

glucose levels with 90% accuracy, raise questions about the underlying

mechanisms of their decisions (154).
4.1.4 Interdisciplinary barriers
Computational models used to study the dynamic behavior of

complex systems require a comprehensive combination of biological,

clinical, and computer data (149). However, this requires interoperable

tools, shared repositories and agreed modelling standards (174). These

factors significantly complicate collaboration between specialists in

bioinformatics, microbiology, clinical nutrition and endocrinology.
4.1.5 Ethical aspects
Ethical aspects involve a wide range of diverse moral and legal

responsibilities. Systems that process personal medical information,

including genomics, microbiome or physical activity data, always carry

risks of data breaches or unauthorized use. Integrating AI into

healthcare raises new ethical challenges, including issues of informed

consent, protection of confidential information and algorithmic

transparency. Modern AI systems analyze multimodal data: from

daily lifestyle to microbiota, metabolomics, genomics, etc., which

requires the development of new legal mechanisms to protect

privacy. Current regulatory approaches, such as GDPR in the EU

and HIPAA in the USA, are not fully adapted to the specific

characteristics of AI models that process multimodal data

streams (175).

The use of autonomous or semi-autonomous systems, such as

artificial pancreases and voice-activated digital assistants, raises

questions about responsibility for clinical decisions. Even with

high prediction accuracy (up to 92% for glucose prediction), AI

systems are unable to fully consider the psycho-emotional,

behavioral, and social factors that are critical for the long-term

management of chronic diseases (167). Even the most advanced

models can produce inaccurate predictions, especially if the data is

incomplete or of poor quality. This can lead to incorrect insulin

dosing or missed complications. The ethical dilemma of who is

responsible for decisions made by AI remains unresolved. Is it the

doctor, the patient, or the developer? This question becomes

particularly acute in cases of complications or harm.
TABLE 3 Comparison of AI platforms for T2D management, highlighting
their functions, evidence, and limitations.

Platform Function Limitations
Evidence
base

DayTwo

Personalized dietary
recommendations based
on gut microbiome
analysis

Limited to dietary
interventions;
requires
microbiome
profiling

(158)

Twin Health

Holistic digital twin for
metabolic health
management, including
glycemic control

High cost; requires
continuous data
input

(161)

mySugr
Glucose monitoring and
behavioral coaching via
app

Focuses on
lifestyle, less on
microbiome

(163)

MiniMed
780G

Automated insulin
delivery with closed-loop
system

Hardware-
dependent; not
microbiome-
integrated

(164)
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Currently, adaptive management strategies and international

collaboration are necessary to address the global challenges of AI

development, ensuring a balance between innovation and the

protection of individual rights and societal values (176).
4.1.6 Inequity in access to technology
High-tech solutions that require continuous internet access,

modern smartphones or sensor devices (e.g., CGM) may be
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inaccessible to low-income patients. The rapid pace of AI

development may also pose barriers for older adults. This threatens

to exacerbate healthcare disparities among different socioeconomic

groups (177).
4.1.7 Overreliance on technology
Current solutions, such as closed-loop algorithms, mobile

monitoring apps, voice assistants and digital coaches, have already
FIGURE 3

The role of explainable AI (XAI) in medical practice.
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demonstrated clinical benefits, including improvements in HbA1c

levels, reductions in BMI and enhanced self-management. Platforms

such as DiabetesCoach (178) or Healthy at Home (179), have been

implemented as part of digital coaching programs with measurable

behavioral effects. However, the increasing integration of digital

technologies in T2D management raises discussions regarding not

only their effectiveness, but also the potential risks of overreliance.
Frontiers in Endocrinology 16
Patients may lose self-management skills if they rely solely on

closed-loop algorithms. In the absence of device access or in the

event of technical failure, such dependence poses risks of clinical

complications. At the same time, emotional dependence may

develop: digital assistants, especially those that adapt to user

behavior, can create a sense of social presence. These quasi-social

bonds, formed in the absence of human interaction, can contribute
FIGURE 4

The synergy of gut-derived bioactive compounds and artificial intelligence tools - next-generation solutions for T2D management.
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to digital alienation and impair social skills. Patients who interact

daily with algorithms may gradually lose the ability for empathy and

social flexibility (180, 181). This is especially dangerous in cases of

system failure - patients who rely solely on technology may be

unprepared to act independently. Idealizing an AI partner can also

lead to unrealistic expectations of real people, causing frustration in

interpersonal relationships. This is not just a side effect of

digitalization; it is potentially a new form of patient vulnerability.
4.2 Conclusions and future perspectives

Bioactive compounds originating from the gut microbiota, such

as short-chain fatty acids, secondary bile acids, and tryptophan

metabolites, present a new therapeutic opportunity in metabolic

health. Their ability to modulate hormone secretion, epithelial

barrier permeability, immune response regulation, and metabolic

homeostasis positions these molecules as promising targets for

interventions in T2D. At the same time, the rapid advancement

of AI technologies provides unprecedented opportunities to process

large datasets and decipher complex bioinformatic interactions

among the genome, metabolome, microbiome, and behavioral

determinants. This enables the identification of individual

response patterns to diet or therapy (182), providing a basis for

personalized, adaptive therapeutic models, that account not only for

metabolic markers but also for psychological status, social

determinants, and healthcare access (183).

Integrating gut microbiota data with the analytical capabilities

of AI models (digital twin systems, deep learning models, and

closed-loop systems) has already demonstrated positive outcomes

in optimizing glycemic control, predicting complications, and

individualizing therapy. Platforms such as DayTwo, Twin Health,

mySugr and MiniMed 780G confirm the practical feasibility of

integrating AI with microbiome-based approaches in next-

generation endocrinology. A comparison of these AI platforms is

presented in Table 3.

Together, these directions represent a paradigm shift: moving

from universal treatment protocols toward dynamic, microbiome-

oriented, and ethically personalized medicine. However, large-scale

implementation of this model in clinical practice requires overcoming

the challenges outlined above. Future research should prioritize:
Fron
- building open-access, well-annotated databases encompassing

medical, metagenomic, and behavioral information for

effective AI model training;

- developing explainable AI (XAI) models to enhance decision-

making transparency, increase trust among clinicians and

patients, and support ethical informed consent. We propose

a block diagram that clearly illustrates the critical role of

explainable AI (XAI) models (Figure 3);

- establishing regulatory and legal mechanisms to govern

certification, liability, data protection, and algorithmic fairness;
tiers in Endocrinology 17
- integrating intelligent models into telemedicine, which is

particularly important for populations with limited

healthcare access (165).

- developing standardized clinical protocols for integrating

microbiota-based interventions and AI-driven platforms,

such as DayTwo and Twin Health, into routine T2D

management. This includes training clinicians to utilize AI

tools for real-time monitoring and adjustment of personalized

dietary and probiotic interventions, as well as incorporating

these technologies into existing clinical guidelines to ensure

seamless adoption in diverse healthcare settings.
To enhance the global applicability of findings on gut

microbiota and T2D, there is a critical need for broader, multi-

regional studies that investigate how various dietary patterns impact

the interactions between microbiota and T2D. Regional diets, such

as those high in corn in Latin America or high in red meat in

Australia, likely affect the production of microbial metabolites, such

as SCFA, as well as the overall composition of the microbiota. These

factors can significantly impact the risk and progression of T2D.

Our research group aims to address this gap in future studies by

including populations from Latin America, Australia, and other

underrepresented regions. These efforts will enhance the

generalizability of our results and support the development of

tailored, region-specific interventions for T2D management.

In summary, harnessing the synergy between bioactive microbiota

components and AI not only optimizes T2D management but also

drives the creation of a new digital medicine paradigm: a hybrid

system in which advanced technologies enhance clinical expertise,

respect patient autonomy, and provide the foundation for ethically

and scientifically grounded microbiome-oriented therapy. Realizing

this potential requires interdisciplinary consortia that unite experts in

medicine, biology, ethics, and law. Only through such integrative

efforts is it possible to establish a balanced implementation of

innovations, where inclusivity, safety, humanity, and personalization

define a new era in the fight against diabetes (Figure 4).
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