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Introduction: The prevalence of type 2 diabetes (T2D) has significantly increased
over the past 20 years, currently affecting over 500 million people worldwide.
Projections suggest that this number could rise to over 700 million in the next
two decades. Despite advancements in medication and global health strategies
that promote healthy lifestyles, T2D remains a complex disease that impacts the
quality of life. Traditional treatment methods are becoming less effective,
highlighting the need for innovative approaches to prevention, diagnosis,
and treatment.

Methods: Two promising areas of research that could transform the
management of T2D are the use of biologically active substances derived from
the intestines and the integration of artificial intelligence (Al) in clinical
diagnostics. The human intestinal microbiota plays a crucial role in metabolic
processes, including glucose regulation and insulin sensitivity. Microbial
metabolites, including bile acids and short-chain fatty acids, have potential as
therapeutic agents for metabolic disorders. As digital medicine advances, Al is
increasingly utilized for real-time monitoring and personalized risk assessments.
The medical field is evolving from merely using biosensors for glucose tracking to
employing machine learning to analyze various biological indicators and
electronic medical records.

Results: Recent research at the intersection of microbiome studies and Al may
improve diagnostic accuracy and support tailored treatment strategies. This
study aims to analyze global experiences with the implementation of bioactive
substances from the intestines and the diagnostic potential of Al in developing a
new approach to enhancing the quality of life and treating T2D.

Discussion: We examine the diverse functions of microbial metabolites and the
current landscape of their therapeutic applications. Additionally, the review
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examines the current state of Al in diagnostics, with a particular focus on
microbiome parameters. As a result, we propose a novel model that combines
these two fields into an adaptive and personalized approach to treating patients
with T2D and improving their quality of life.

type 2 diabetes, artificial intelligence, microbiome, gut microbiota, digital twin systems,
deep learning models, closed-loop systems

1 Introduction
1.1 Burden of type 2 diabetes and obesity

The progress of civilization has brought remarkable achievements
in technology, modernization, healthcare, urbanization and
accelerated socio-economic development, ultimately enhanced
living standards worldwide. However, it has also affected daily
living patterns, particularly eating habits and levels of physical
activity. Sedentary lifestyles, widespread availability of energy-dense
processed foods and unhealthy eating habits have driven the growth
of obesity across the globe. Within the past twenty years, obesity has
become a global pandemic that negatively affects health, impacting
almost all organs of the human body (1-4).

Statistics indicate that between August 2021 and August 2023,
the prevalence of obesity among adults in the United States was
40.3%, with no significant differences between men and women.
Obesity was more common in adults aged 40-59 years than in those
aged 20-39 years or 260 years (5). A systematic review and meta-
analysis in Africa reported that 61.4% of adults are overweight or
obese, with prevalence ranging from 56.9% in East Africa to 88.5%
in Southern Africa (6). A study in the Middle East reported that
85.8% of individuals with T2D were classified as overweight or
obese (7). A recent meta-analysis (8) reported that 75.27% of
pediatric patients with T2D were obese, and 77.24% were obese at
diagnosis; obesity prevalence was higher among males compared to
females, and highest in North America.

A marked increase in obesity across all age groups has become
one of the main factors driving the rapid rise in cases of T2D.
Obesity has become a significant public health concern, now
ranking among the most common non-communicable diseases.
As body mass index (BMI) increases across different age groups, the
risk of developing T2D rises proportionally. Recent data indicate
that the incidence of T2D is rising rapidly among younger
populations. The results of numerous studies show that obesity
contributes to an increased risk of several long-term health
disorders. These include cardiovascular diseases, metabolic
syndrome, type 2 diabetes mellitus (T2D), chronic kidney disease,
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and various malignancies (9-11). This burden of T2D and obesity
underscores the need to understand its underlying molecular
mechanisms for developing innovative strategies.

Obesity has become a significant public health concern, now
ranking among the most common non-communicable diseases. As
body mass index (BMI) increases across different age groups, the
risk of developing type T2D rises proportionally. Recent data
indicate that the incidence of T2D is rising rapidly among
younger populations (12, 13).

1.2 Potential molecular mechanisms in T2D
pathogenesis

T2D and obesity are connected through shared mechanisms such
as chronic low-grade inflammation, B-cell dysfunction, and insulin
resistance (IR) (14, 15). Visceral obesity, defined by excess adipose
tissue around internal organs, induces a chronic inflammatory process
that disrupts metabolism and promotes IR. The accumulation of
visceral fat affects the rate of lipolysis and increases the release of free
fatty acids into the portal circulation, which subsequently modifies
liver metabolism and further contributes to IR (16, 17). Chronic
obesity induces a prolonged inflammatory response that leads to tissue
fibrosis and irreversible organ damage, thereby contributing to
multiple organ dysfunction (18). This inflammatory state results
from altered immune cell function in adipose tissue, skeletal muscle,
and liver. As a result, conditions that promote the development of IR
arise, leading to an increased risk of T2D (19, 20).

The inflammatory response activates inflammasome complexes,
specifically the NLRP3 inflammasome (21), which promote the
maturation and release of pro-inflammatory cytokines, particularly
interleukins IL-1f and IL-18. These mechanisms can provoke the
development of IR, which, in turn, contributes to the onset of T2D
(22). IR is considered a key cause of T2D. The accumulation and
activation of pro-inflammatory macrophages in adipose tissue is a
key driver of chronic low-grade inflammation. An increased number
of these macrophages produces factors that act in a paracrine or
systemic manner, disrupting insulin signaling in target cells (14, 23).
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Currently, a confirmed association exists between metabolic
disorders and the gut microbiota (24, 25). Gut microbiota dysbiosis
is known to trigger inflammatory processes that impair glucose
tolerance and promote IR (26). Although current studies present
differing views on whether obesity or inflammatory bowel diseases
are primary condition, intestinal inflammation can impair digestive
processes and contribute to obesity. Conversely, poor nutrition and
disturbances in intestinal homeostasis in overweight individuals can
alter gut microbiota, leading to dysbiosis, which is considered one of
the main causes of inflammation (24). Diet is a major factor
influencing the gut microbiome and can lead to dysbiosis. Research
has proven that disruption of mucosal barrier integrity enables
microbial signaling that activates the nuclear transcription factor
kappa B (NF-kB) and stimulates the production of pro-inflammatory
cytokines. In adipose tissue, which contains both adipocytes and
macrophages, the induction of monocyte chemoattractant protein-1
(MCP-1) expression promotes macrophage infiltration into
tissues (24).

The composition of gut microbiota plays a key role in obesity,
metabolic syndrome and T2D by contributing to decreased glucose
tolerance and IR. Alterations in gut microbiota composition have
been observed in preclinical animal models as well as in T2D patients
with associated complications, such as diabetic neuropathy,
nephropathy, osteoarthritis, retinopathy, cerebrovascular and
cardiovascular diseases, compared to healthy control participants.
The degree of gut microbiota dysbiosis correlated with disease
severity, and its restoration, achieved through probiotic
administration in both animals and human patients, demonstrated
improvement in symptoms and slowing of disease progression (26—
32). It is known that certain medications, notably metformin, which
is commonly used to treat T2D, affect gut microbiota composition,
demonstrating interaction with the intestinal microbiota through
modulation of inflammatory processes, regulation of glucose
homeostasis, influence on intestinal barrier permeability, and
promotion of short-chain fatty acid—producing bacteria (33-35).

Over the past decade, rapid advancements in microbial genome
sequencing technologies have triggered a wave of research
investigating the involvement of gut microbiota in various
pathologies, especially metabolic conditions. Although significant
progress has been made in understanding the complex interactions
between bacteria and the host organism, how gut bacteria directly
influence the prevention, development, or treatment of diseases
remains an active area of scientific investigation. This is especially
relevant in many pathologies where the impact of the gut
microbiota has been studied, including dysbiosis and its role in
the development of T2D and related complications. Current trends
in the study of bioactive substances produced by the microbiota
open new opportunities for both the prevention and individualized
treatment of metabolic diseases. These advances have driven the
integration of biomedical data with artificial intelligence (AI), which
not only allows more efficient analysis of large volumes of genomic,
metabolomic, and clinical information but also offers prospects for
early prediction of T2D development, risk stratification, and
optimization of therapeutic strategies. These mechanisms pave
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the way for innovative approaches, such as utilizing gut-derived
bioactive substances and Al for diagnosis and treatment.

1.3 Aim and perspectives

The aim of this article is to evaluate current evidence on the
involvement of gut microbiota and its bioactive metabolites in T2D,
as well as to review modern possibilities for using artificial
intelligence for early diagnosis, prediction of complications, and
personalized treatment approaches in patients with T2D. Special
attention is given to the interplay between the metabolic activity of
the microbiota and innovative Al-based diagnostic technologies,
which have the potential to transform the traditional therapeutic
paradigm for managing this disease.

2 Methods

This review article summarizes the current evidence regarding
the role of gut microbiota and its bioactive metabolites in T2D. It also
explores the applications of Al for early diagnosis, risk prediction,
and personalized treatment of the condition. To achieve this, we
adopted a narrative review approach that incorporates elements of
systematic searching, ensuring comprehensive coverage of the topic.
This methodology was selected to integrate a diverse range of
biomedical data, including genomic, metabolomic, and clinical
information, while considering the interdisciplinary nature of the
subject. By doing so, we aim to evaluate the evidence, examine the
possibilities for AI integration, and analyze the interactions between
microbiota activity and diagnostic technologies.

3 Results
3.1 Human microbiota

Recently, the human microbiota has become a focal point in
many biomedical studies (36, 37). It includes all microorganisms
residing in the body, including bacteria, microscopic fungi,
protozoa, viruses, and archaea (38). Among the various
microorganisms, research has predominantly concentrated on
those within the domain Bacteria. It is now established that
approximately 15,000 bacterial species inhabit the human species
Homo sapiens (39). The microbiota of an individual typically
contains around 1000 bacterial species (40). Greater species
diversity in the microbiota is frequently associated with improved
health outcomes (41).

Early studies of the microbiota revealed a complex and
interdependent relationship between the host and its microbial
communities. The macroorganism provides the microbiota with a
comfortable ecological niche and nutrients, while the microbiota,
directly or indirectly, influences the functioning of all organs and
systems throughout the body. This dynamic interaction ultimately
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determines overall health, susceptibility to disease, and the
effectiveness of response to treatment and vaccination (42, 43).

The human gut microbiota is known to be the most numerous
microbial community in the body and, consequently, exerts a
significant impact on health. Based on the composition of
microbial associations and the characteristics of host organism’s
response, this influence can be both positive and negative. Ilya
Mechnikov, the Ukrainian researcher and Nobel laureate, was
among the first to highlight this relationship. He noted that
improving the microbiota of the large intestine through the
consumption of fermented dairy products has a health-promoting
effect and may even contribute to longevity (44).

Since the appearance and development of the holobiont
concept, there has been a growing understanding of the human
organism as a superorganism — a complex ecological system
inhabited by hundreds of microbial species (45). The microbiota
is thus considered an additional metabolic organ, whose activity is
integrated into the functioning of various organs and systems of the
macroorganism (46). Consequently, disruptions in the healthy
composition and metabolic activity of the microbiota are
observed in a variety human diseases, including gastrointestinal,
cardiovascular, and endocrine pathologies, immune and nervous
system dysfunctions, and various cancers (47, 48).

As noted above, bacterial microbiota is currently the most
extensively studied. It is well known that different bacterial
species possess unique metabolic properties that contribute to the
overall metabolism of the human organism. It becomes clear that in
pathological conditions, changes in the microbiota reflect and
impact the metabolism of the macroorganism.

Several pathological conditions, including metabolic syndrome,
obesity, T2D, non-alcoholic fatty liver disease, and cardiometabolic
syndrome, are linked to metabolic disturbances. Dysbiotic changes
in the gut microbiota occur in all these conditions (49-51).
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3.1.1 Gut microbiota composition in T2D: general
overview

One of the most common metabolic disorders in older adults is
T2D. Most patients with T2D are overweight and demonstrate IR in
multiple tissues, including muscle, liver, and adipose tissue, during
the early stages of the disease, which leads to a compensatory
increase in insulin production. These patients commonly present
not only with hyperglycemia but also with elevated triglycerides and
low-density lipoproteins, hypertension, enhanced platelet
adhesiveness and impaired microcirculation. All these factors
contribute to comorbidities such as neuropathies, nephropathies
and retinopathies, with atherosclerosis being one of the most
serious complications of T2D. Therefore, multidrug therapy
is frequently necessary to manage blood glucose and reduce
cardiovascular risk.

Multiple studies have shown that patients with T2D
demonstrate significant differences in gut microbiota composition
and metabolic activity compared with healthy individuals (52-54).
Thus, T2D develops against the background of intestinal dysbiosis,
which forms the basis for this metabolic disease. Typically, there is a
shift in bacterial populations, with a rise in pro-inflammatory
species and a reduction in bacteria that produce beneficial
metabolites. The overall diversity of bacterial species in T2D also
reduced. These microbiota modifications contribute to the
disruption of glucose and lipid metabolism in affected individuals.

Studies have shown that individuals with prediabetes have lower
abundances of butyrate-producing bacteria, including the genera
Roseburia and Faecalibacterium, as well as Akkermansia muciniphila.
Instead, the microbiota has an increased content of opportunistic
bacteria with pro-inflammatory properties (55, 56) (Figure 1).

Multiple studies of gut microbiota in European and Chinese
populations have shown that patients with T2D have lower levels of
butyrate-producing bacteria, including Roseburia intestinalis and
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FIGURE 1

Role of gut microbiota alterations in the pathophysiology of T2D (PAMP, Pathogen Associated Molecular Pattern; LPS, Lipopolysaccharide; PG,
Peptidoglycan; SCFA, Short Chain Fatty Acids; IL, Interleukin; TNF-o, Tumor Necrosis Factor-a).
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Faecalibacterium prausnitzii, while showing increased abundances
of Lactobacillus species and opportunistic bacteria belonging to
Bacteroides caccae, Clostridium hathewayi, Clostridium ramosum,
Clostridium symbiosum and Escherichia coli (57-59). Authors of
one study (59) noted that the quantity of Lactobacillus were
positively associated with fasting glucose and glycosylated
hemoglobin (HbAlc) levels, while Clostridium species correlated
negatively with these markers and plasma triglycerides, highlighting
a potential role in T2D development. Newly diagnosed T2D
patients showed higher levels of Lactobacillus and lower levels of
Clostridium coccoides and Clostridium leptum. Another study
involving the Henan Rural Cohort population reported that the
genera Prevotella_9 and Odoribacter were inversely correlated with
T2D, while the quantity of bacteria from the genus Blautia species
were positively associated with the disease (60). Notably, all three of
these bacterial genera produce of short-chain fatty acids (SCFAs).
However, Odoribacter species predominantly produce butyric and
acetic acids, Prevotella species mainly produce propionic and acetic
acids, and Blautia species primarily produce acetic acid, with some
species also capable of producing butyric acid. Therefore, when
discussing SCFAs, produced by the entire gut bacterial community,
the total amount and relative proportions of these acids in the gut
and peripheral blood are critically important. In a healthy organism,
the molar ratio of these acids (acetate: propionate: butyrate) is
approximately 3:1:1 (61). During the development of T2D, overall
SCFA levels are reduced, accompanied by a shift in their
distribution, with lower amounts of butyrate and propionate and
a higher proportion of acetate (60).

3.1.2 Mechanisms of gut microbiota influence on
T2D development

The gut microbiota exerts complex and multifactorial effects on
the human body. However, in our view, the role of the microbiota in
T2D can be summarized through several key mechanisms. Firstly,
commensal gut bacteria produce a variety of metabolites, including
SCFAs, aromatic and branched-chain amino acids, secondary bile
acids (sBAs), tryptophan and indole derivatives, and trimethylamine-

TABLE 1 The production of metabolites by gut microbiota.

10.3389/fendo.2025.1699954

N-oxide (TMAO), which play roles in the disease’s pathogenesis (62).
Under dysbiotic conditions, the normal composition of the gut
microbiota is disrupted, resulting in significant changes in its
metabolic activity. Studies in patients with T2D indicate that the
gut microbiota is enriched in pathways such as sugar transport across
membranes, which increases glucose uptake by cells; excretion of
branched-chain amino acids (BCAA), contributing to IR; methane
metabolism associated with the anaerobic gut environment;
xenobiotic degradation; metabolic transformations linked to drug
resistance; and sulfate reduction, which decreases insulin sensitivity.
Ongoing research continues to focus on identifying microbiota-
derived metabolite changes that could serve as biomarkers for
susceptibility to various diseases, including T2D (63). A summary
of key bioactive metabolites and their roles is provided in Table 1.

Secondly, under conditions of gut dysbiosis in T2D, the
microbiota shows an elevated presence of opportunistic pro-
inflammatory bacteria, initiating local intestinal inflammation.
This inflammation underlies a third mechanism - increased
intestinal wall permeability, often referred to as the ‘Tleaky gut’
phenomenon. As a result, various substances, known as pathogen-
associated molecular patterns (PAMPs), which possess pro-
inflammatory properties and are components of bacterial cells,
primarily bacterial cell walls such as peptidoglycans (PG) and
lipopolysaccharides (LPS), penetrate the intestinal mucosal barrier
more easily and enter the bloodstream. This results in pro-
inflammatory activation of vascular endothelial cells (70, 71) and
peripheral immune cells, which is generally a sign of systemic
inflammation (72, 73). Inflammation is a key precursor to
metabolic syndrome, increasing risks of hypertension, visceral
obesity, and dyslipidemia, which can damage pancreatic -cells
and reduce insulin secretion, contributing to T2D. While there is
evidence showing the beneficial effects of probiotics on IR and
glycemic control, there is limited research on their impact on
pancreatic -cell function in relation to T2D (74).

An additional focus is the effect of medications on the gut
microbiota. Because patients with T2D typically receive
pharmacological treatment, it is challenging to distinguish which

Bacterial metabolites Bacterial species References
Acetic acid Prevotella spp., Bifidobacterium spp., Bacteroides spp., Akkermansia muciniphila, Clostridium (64-66)
spp., Streptococcus spp., Ruminococcus spp., Blautia hydrogenotrophica
Propionic acid Bacteroides spp., Megasphaera elsdenii, Veillonella spp., Coprococcus catus, Salmonella spp.,
Short chain fatty acids Akkermansia muciniphila, Phascolarctobacterium succinatutens, Dialister spp., Roseburia
inulinivorans, Blautia obeum
Butyric acid Coprococcus comes, C. catus, C. eutactus, Faecalibacterium prausnitzii, Eubacterium hallii,
Ruminococcus bromii, Eubacterium rectale, Anaerostipes spp.
Bile acid deconjugation Clostridium spp., Bifidobacterium spp., Enterococcus spp., Lactobacillus spp., Bacteroides spp., (52, 66, 67)
Methanobrevibacter smithii, Methanosphera stadmanae
Bile acid metabolites
Secondary bile acid
econ a‘ry read Clostridium spp., Eubacterium spp.
production
Escherichia spp., Proteus spp., Bacteroides spp., Clostridium spp., Peptostreptococcus spp., (68, 69)

Tryptophan metabolites
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microbiota changes are directly linked to the disease. Therefore, many
researchers are interested in identifying microbiota changes in
individuals at the prediabetic stage, prior to medication use.
Moreover, it is important to understand how pharmacotherapy for
T2D influences the microbiota and thereby partly contributes to its
therapeutic effectiveness in managing this metabolic disorder.

The pathogenesis of T2D involves numerous bacterial
metabolites, of which short-chain fatty acids represent a key group.

3.1.2.1 Short-chain fatty acids

In the large intestine, numerous bacterial species generate short-
chain fatty acids (SCFAs) by metabolizing complex carbohydrates
and proteins through various biochemical processes (64, 75). As
noted above, both their absolute concentrations and relative ratios
play a crucial role.

Although SCFAs are not produced by the human body itself,
but rather are bacterial metabolites, they have become closely linked
to molecular processes of energy generation and modulation of
cellular signaling pathways in various host organs and tissues
through a prolonged period of co-evolution between the
microbiota and the human body. SCFAs directly enter human
cells via active or passive transport and can also interact with
specific receptors to initiate signal transduction processes with
diverse biochemical outcomes.

Upon entering cells, SCFAs can be utilized as an energy source.
For example, human colonocytes use butyrate as their primary
energy substrate (76). Acetic and propionic acids are less efficient at
producing ATP molecules in the tricarboxylic acid cycle and are
therefore preferentially directed toward other metabolic pathways.
For example, acetate is used by hepatocytes for lipid and cholesterol
synthesis, while propionate undergoes hepatic conversion to
glucose through gluconeogenesis (77).

SCFAs exert biological effects through their interaction with a
specific group of receptors, collectively known as Free Fatty Acid
Receptors (FFARs), which belong to the family of G protein-
coupled receptors (GPCRs). The most studied SCFA receptors to
date include Free Fatty Acid Receptor 2 (FFAR2 (GPR43)), FFAR 3
(GPR41) and GPRI109A (HCA2) (78). These SCFA receptors are
expressed on a variety of cell types, including intestinal epithelial
cells (notably enteroendocrine I and L cells), o.- and B-cells of the
pancreas, and immune and neural cells.

Activation of FFAR3 by SCFAs has been demonstrated to
induce the release of the hormone peptide PYY by intestinal
endocrine cells. PYY enhances glucose uptake by adipose tissues
and skeletal muscles, slows intestinal motility, promotes insulin
secretion, and reduces appetite (79). Additionally, SCFAs binding to
FFAR2 (GPR43) stimulate the secretion of glucagon-like peptide-1
(GLP-1) from intestinal L-cells (80). Consequently, this process
enhances insulin secretion and decreased glucagon production by
pancreatic cells. Thus, SCFAs produced by the gut microbiota
modulate the secretion of hormones GLP-1 and PYY, which,
through the gut-brain axis, regulate both metabolic processes and
food intake (81). Moreover, SCFAs regulate blood glucose levels by
affecting membrane glucose transporter proteins. Several

Frontiers in Endocrinology

10.3389/fendo.2025.1699954

investigations have demonstrated an inverse association between
circulating acetate levels and glucose concentrations.

Furthermore, evidence indicates that SCFAs modulate the
synthesis of adipokines - hormones secreted by adipose tissue -
including adiponectin, leptin, and resistin, which play key roles in
the regulation of metabolic processes (82, 83).

The entry of SCFAs into human cells can influence gene
expression through the inhibition of histone deacetylases
(HDAC), leading to hyperacetylation of certain regions of the
genome. Among these metabolites, butyric acid demonstrates the
strongest activity. Its cellular entry is associated with modifications
in gene expression; for instance, it enhances the adiponectin-
mediated activation of the AMP-activated protein kinase (AMPK)
signaling pathway (84), stimulates mitochondrial biogenesis and the
process of B-oxidation of fatty acids, etc. (85). Through this
mechanism, butyric acid also promotes the upregulation of the
FOXP3 transcription factor expression, thereby promoting the
differentiation of T cells into regulatory T cells (Tregs) (86).

SCFAs, especially butyric acid, are crucial for preserving the
integrity of the intestinal epithelium, as they affect proteins
responsible for the formation of tight intercellular contacts - TJP
(Tight Junction Proteins). Butyric acid, through the interaction with
the GPR109A receptor, enhances the expression of several TJP:
claudin-3, occludin, and zonula occludens 1 (87). Increased
permeability of the gut epithelium leads to the transfer of bacteria
or bacterial cell components beyond the mucosal surface, thereby
initiating low-grade local and systemic inflammation. This, in turn,
is linked to the onset of IR and obesity.

Another important mechanism by which SCFAs influence
health and pathological conditions, including T2D, involves their
modulation of immune system function. Receptor for SCFAs are
expressed on various types of immune cell populations, such as
macrophages, neutrophils, dendritic cells, and group 3 innate
lymphoid cells (ILC3s), and T cells (88, 89), which indicates that
these cells are targets for the action of these bacterial metabolites.
An analysis of numerous original studies indicates that the impact
of SCFAs on immune mechanisms is complex, involving various
pathways, but is predominantly characterized by anti-inflammatory
effects (71, 73, 90, 91).

3.1.2.2 Secondary bile acids

Patients with T2D demonstrate distinct profiles of secondary bile
acids, a group of metabolites derived from bacterial activity, compared
to healthy individuals. As is known, these secondary bile acids are
produced from primary bile acids through microbial metabolism in
the gut. Studies estimate that approximately 5% of bile acid conjugates
undergo deconjugation and subsequent biochemical transformations
mediated by intestinal microbiota enzymes. Bacterial populations in
the ileum (representatives of the genera Clostridium, Bifidobacterium,
Enterococcus, Lactobacillus, Bacteroides, Methanobrevibacter smithii,
and Methanosphera stadtmanae) produce bile salt hydrolases (BSH),
enzymes responsible for the deconjugation of bile acids. In addition,
enzymes from other bacteria (Clostridium and Eubacterium) catalyze
7o-dehydroxylation reactions, converting primary bile acids into

frontiersin.org


https://doi.org/10.3389/fendo.2025.1699954
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Tseyslyer et al.

secondary bile acids, including deoxycholic acid (DCA), lithocholic
acid (LCA), and ursodeoxycholic acid (UDCA) (52, 92). The majority
of these secondary bile acids are eliminated via fecal excretion, but
approximately 2% of DCA and a small amount of LCA enter the
portal circulation.

Serving multiple physiological functions, bile acids, including
primary and secondary forms, function as signaling molecules and
can interact with specific receptors to initiate signaling cascades in
responsive cells. Bile acid receptors, collectively referred to as BARs
(Bile Acid Receptors). Among the most studied bile acid receptors
are the nuclear receptor FXR (Farnesoid X Receptor) and the
plasma membrane-expressed receptor GPBAR1 (G-Protein Bile
Acid Receptor 1; Takeda G protein-coupled receptor 5, TGR5) (93).
The nuclear receptor FXR is expressed in intestinal epithelial cells,
hepatocytes, and the vascular endothelium of the intestine and liver.
The GPBARI receptor is expressed on intestinal epithelial cells,
muscle and neuronal cells, intestinal and liver endothelial cells, and
in both white and brown adipose tissue. It is also widely present on
immune cells. Both receptors can recognize primary and secondary
bile acids, but their binding affinities differ, with TGR5 showing a
preference for secondary bile acids produced by the gut microbiota.

FXR and TGR5 receptors signaling plays a critical role in the
regulation of bile acid and lipid metabolism. Moreover, these
receptors mediate the effects of bile acids on inflammation and
cellular insulin responsiveness. For example, activation of FXR in
pancreatic B-cells induces Forkhead box a2 (Foxa2) expression,
which enhances insulin production (94). Similarly, stimulation of
TGR5 on enteroendocrine L-cells promotes the release of the
hormone GLP-1, thereby improving glucose homeostasis and
insulin sensitivity (95).

The bile acid receptors discussed above are present on a range of
immune cells, including dendritic cells, macrophages, and NK-T
cells (96, 97), indicating that bile acids play a role in modulating
immunoreactivity. Research indicates that bile acids, including
secondary bile acids, suppress inflammation by decreasing the
secretion of pro-inflammatory cytokines IL-1f, IL-6, TNF-q, IL-
12, which are released by immune cells following pro-inflammatory
triggers such as exposure to lipopolysaccharide (LPS) (98, 99).

It should be noted that both primary and secondary bile acids can
exert toxic effects on the gut microbiota, thereby directly modulating
its composition within the intestine. Conversely, bacteria of certain
taxonomic groups can modulate bile acid production. For example,
members of the genus Clostridia promote production of bile acids by
suppressing FGF19 (Fibroblast Growth Factor 19), which normally
bile acid production through a cascade of molecular mechanisms
(100). Thus, there are complex reciprocal relationship between bile
acids and the intestinal microbiota.

In individuals with T2D, increased concentrations of both
primary and secondary bile acids have been observed, reflecting
dysregulation of bile acid metabolism involving both the host and
the gut microbiota.

3.1.2.3 Tryptophan derivatives
Certain intestinal bacteria metabolize the essential amino acid
tryptophan, obtained from the diet, into a variety of bioactive
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compounds, including indole and its derivatives, such as indole-
3-aldehyde (IAld), indole-3-acetic-acid (IAA), indole-3-propionic
acid (IPA), indoleacrylic acid, and indole-3-acetaldehyde (IAAld).
All of them are ligands for the aryl hydrocarbon receptor (AhR)
(68). This receptor is present in hepatocytes, intestinal epithelial
cells, skin, endothelial cells, lungs, and different populations of
immune cells. The ability to produce indole and its metabolites is
found in bacteria of the genera Escherichia, Proteus, Bacteroides,
Clostridium, Peptostreptococcus, Lactobacillus, Enterococcus,
Eubacterium, Anaerostipes, Bifidobacterium (101). The abundance
of these bacterial species in the gut microbiota, together with
the tryptophan content of the diet determine the levels of
corresponding metabolites produced in the gut and circulating in
the bloodstream (102-104). The effects of AhR activation are
context-dependent. For example, In intestinal epithelial cells, AhR
activation promotes cellular differentiation and increases the
expression of tight junction proteins, including ZO-1, Occludin,
Claudin-1, thereby enhancing epithelial barrier function (105). AhR
activation in immune cells (in Th17 and Th22 cells) stimulates the
secretion of IL-22, supporting mucosal integrity (106). AhR
signaling participates in M2-type macrophage activation, resulting
in IL-10 production (107) and promotes the differentiation of
tolerogenic dendritic cells (108).

Investigations of the association between indole derivatives and
T2D have shown the following: higher plasma concentrations of IPA
are linked to enhanced insulin secretion and sensitivity, reduced
chronic low-grade inflammation, accompanied by a decreased risk of
T2D onset (109). Another study demonstrated that serum IPA levels
were markedly reduced in patients with DKD and showed significant
correlations with urine albumin-to-creatinine ratio (UACR),
estimated glomerular filtration rate (eGFR), fasting blood glucose
and HbAlc (110). In a high-fat diet (HFD) mouse model,
intraperitoneal administration of IAA improved liver function,
reduced fasting glucose levels, and normalized the lipid profile (111).

3.1.3 Immunoreactivity and microbiota

Gut microbiota-stimulated immune mechanisms contribute
significantly to the development of T2D. Studies show that T2D
develops against the background of chronic low-grade systemic
inflammation. Factors that sustain this inflammation include
bacterial components (PAMPs or MAMPs) that enter the
bloodstream from the intestine, which becomes “leaky” (leaky
gut) and act systemically. Research has demonstrated that the
blood serum of individuals diagnosed with T2D presents with
markedly elevated levels of one of the most extensively studied
MAMPs, lipopolysaccharide (LPS). MAMPs interact with receptors,
such as Toll-like receptors (TLRs). These receptors are often found
on the cells of the epithelium and immune system. The stimulation
of these receptors results in the secretion of pro-inflammatory
cytokines (IL-1, IL-6, TNF-ar) by cells, exerting a systemic effect.
Impairment of normal functioning of pancreatic -cells and the
development of IR in various tissues have been associated with these
immune processes. Furthermore, systemic inflammation affects
endothelial function. Prolonged exposure to pro-inflammatory
factors activates endothelial cells, causing them to produce pro-
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inflammatory cytokines and express more adhesion molecules,
which promotes the attachment of activated leukocytes and
platelets. These processes play a role in the development of
atherosclerotic lesions (112-114).

As we can see, the described immune mechanisms involved in the
pathogenesis of T2D are interdependent with the gut microbiota. The
increased abundance of opportunistic bacteria with pro-inflammatory
properties in the microbiota leads to the translocation of bacteria and
their components into the bloodstream, thereby exacerbating the
systemic inflammatory response (53, 115).

3.1.4 Approaches to modulating the gut microbial
composition in individuals with T2D

So, the gut microbiota plays a central role in the pathogenesis of
T2D. What factors regulate the structure and metabolic activity of
intestinal microbiota? The key factors currently recognized for
modulating the gut microbiota include diet, physical activity,
probiotic use, and fecal microbiota transplantation (FMT).

In our view, the impact of diet on the microbiota is the most
important factor (116). The strongest evidence of how a human’s
diet affects their microbiota can be observed during the transition
from breastfeeding to an adult diet (117, 118). Research shows that
changes in diet, or even the regular consumption of certain foods,
can modify gut microbiota composition and function, leading to
improvements in both clinical outcomes and biochemical markers
in patients with T2D (119, 120).

Different regions of the world have their own national cuisines
and eating habits. The effect that different diets have on the gut
microbiota is currently being studied, as is the subsequent effect on
human health. For a long time, the Mediterranean diet (MeD) has
been one of the most researched diets in regard to its beneficial effect
on the microbiota and overall human health (121, 122). There are
many original studies and analytical summaries on the beneficial role
of the MeD in reducing the risk of type 2 diabetes and improving the
clinical picture and laboratory test results in already developed
disease. A large prospective study conducted in Spain showed that
adherence to the Mediterranean diet can prevent the onset of T2D
(123). Moreover, a comprehensive meta-analysis demonstrated that
following the MeD in individuals with T2D resulted in reductions in
fasting plasma glucose and insulin, HbAlc, BMI and body weight. In
addition, triglycerides and total cholesterol concentrations in plasma
decreased, while high-density lipoprotein concentrations increased.
Furthermore, patients demonstrated a decrease in blood pressure
(124). This positive effect of MeD is linked to its effects on the gut
microbiota (125). The low intake of animal proteins and the high
consumption of dietary fibers characteristic of this dietary pattern
lead to modifications in the microbiota composition, increasing the
number of bacteria such as Roseburia spp, Akkermansia muciniphila
and Faecalibacterium prausnitzii. These bacteria ferment dietary
fibers and produce SCFAs (126, 127) with various other health-
promoting metabolites.

Physical activity is an important factor that influence the
composition of the human gut microbiota positively. Research
has demonstrated that a lack of physical activity is linked to
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decreased gut microbiota diversity and an elevated Bacillota/
Bacteroidota ratio, which is frequently observed in metabolic
disorders (128). Moderate-intensity physical activity has been
shown to increase the levels of gut bacteria from the genera
Faecalibacterium, Veillonella, Lachnospira, and Bifidobacterium,
which are linked to improved metabolic profiles and anti-
inflammatory activity (129, 130). Multiple studies indicate that
moderate physical activity helps normalize gut microbiota
balance, potentially improving metabolic profiles and providing
an additional beneficial effect in the treatment of T2D.

Specialists in the treatment of T2D have also given positive
reviews on the correcting of the microbiota using probiotic
preparations. Numerous meta-analyses have examined the effect of
probiotic supplements on the effectiveness of treating T2D. They have
shown that the use of probiotics improves metabolic parameters such
as fasting glucose, insulin, and HbAlc in patients with T2D (131-
133). Most studies traditionally used currently available probiotics
based on bacteria of the Bifidobacterium and Lactobacillus genera.
Another study investigated the impact of a probiotic containing 12
bacterial strains (Bifidobacterium, Streptococcus and Lactobacillus)
adjunctive therapy for patients with T2D and hyperammonaemia.
After one month of supplementation, patients showed reduced
peripheral blood levels of fasting glucose and ammonia. In
addition, the patients experienced changes in their gut microbiota,
with a decrease in the number of bacteria species with pro-
inflammatory properties.

In light of the current success of probiotics, there is now talk of
developing the next-generation, which will be based on a wide
variety of bacteria with beneficial properties, such as Akkermansia
muciniphila, Faecalibacterium prausnitzii, Anaerobutyricum
soehngenii, Roseburia hominis, and Cristensenella minuta (134,
135), which will have a positive effect on human health in both
normal conditions and various pathological processes.

Modifications to the microbiota through the use of probiotics or
dietary interventions occur relatively slowly, typically manifesting after
1-3 months of exposure. A faster way to modulate the gut microbiota
is through fecal microbiota transplantation (FMT). This approach is
currently being actively developed and has already proven effective in
treating pathological conditions, including recurrent Clostridioides
difficile infection (CDI), inflammatory bowel disease (IBD), irritable
bowel syndrome (IBS), neurodegenerative disorders and autoimmune
diseases (136-139). However, the number of studies on the application
of FMT to patients with T2D is still limited, preventing definitive
conclusions regarding the efficacy of this procedure. Some authors
have reported positive effects of FMT (140), whereas others observed
no beneficial outcomes in patient groups with high IR (141).
Therefore, research in this area is ongoing.

The available evidence clearly indicates the critical role of the
gut microbiota in the pathogenesis of T2D (142).

3.1.5 Influence of regional dietary patterns on gut
microbiota and T2D

Regional dietary patterns have a significant influence on gut
microbiota composition and, consequently, the pathophysiology of
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type 2 diabetes (T2D). Diets vary widely across geographic regions
due to cultural, economic, and environmental factors, which impact
the production of microbial metabolites, such as short-chain fatty
acids (SCFAs), and their role in maintaining metabolic health. For
instance, high-corn diets, prevalent in Latin America, are rich in
dietary fiber, which promotes the growth of SCFA-producing
bacteria such as Faecalibacterium and Roseburia. These bacteria
are associated with enhanced insulin sensitivity and reduced
inflammation, potentially mitigating the risk of T2D (125). In
contrast, high-red-meat diets, common in Australia, may increase
the abundance of pro-inflammatory bacteria and elevate levels of
metabolites, such as trimethylamine-N-oxide (TMAO), which is
linked to insulin resistance and an increased risk of T2D (62). These
regional differences highlight the need for further research to
elucidate how specific dietary patterns shape microbiota-T2D
interactions, particularly in underrepresented populations. Such
studies could inform the development of tailored dietary
interventions to optimize gut microbial profiles and improve T2D
management globally.

3.2 Current applications of artificial
intelligence and machine learning in the
diagnosis and management of diabetes
mellitus

3.2.1 Machine learning models for early
diagnosis, risk assessment, and complication
prediction

Artificial intelligence, particularly machine learning methods,
plays a central role in the early detection of diabetes mellitus,
assessment of disease risk, and prediction of complications such as
diabetic retinopathy, nephropathy, and cardiovascular disorders. To
analyze large datasets, including electronic health records (EHRs),
genetic profiles, and lifestyle indicators, various models are
employed, including logistic regression, decision trees, random
forest, support vector machines (SVM), and deep neural networks.

Nomura et al. demonstrated that machine learning models
achieved area under the receiver operating characteristic curve
(AUC) values ranging from 0.71 to 0.80 when predicting the
development of T2D over a five-year period. These predictions
were based on clinical parameters, including HbAlc levels, body
mass index (BMI), and genetic predisposition (143). For instance, a
logistic regression model proposed by Choi et al. showed an AUC of
0.78 for predicting T2D in hospitalized patients using demographic
and laboratory data (144). Ravaut et al. reported an AUC of 0.80
when analyzing administrative health data for T2D risk assessment
(145). Similarly, Yun et al. developed a deep learning-based system
for risk stratification of T2D using retinal images, enabling the
detection of early pathological changes with accuracy comparable to
expert assessments (146).
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For patients with T2D, the risk of complications is a significant
concern, and substantial attention has been focused on the use of Al in
this context. For instance, Betzler et al. utilized deep learning
techniques to predict diabetic nephropathy using retinal
photographs, achieving an area under the curve (AUC) of 0.85 (147).
Machine learning (ML) models are also applied to assess cardiovascular
risk in individuals with diabetes mellitus. In the ORFAN STUDY Chan
et al. demonstrated that AI can predict cardiovascular alterations in
patients without obstructive coronary artery disease using computed
tomography (CT) data combined with clinical parameters (148). These
models integrate imaging data with biomarkers, such as glucose levels
and lipid profiles, to generate comprehensive risk profiles.

Khalid et al. highlights the effectiveness of Gradient Boosting
and XGBoost algorithms, which can predict T2D with an AUC of
up to 0.87 based on a combination of genetic data and EHRs (149).
Furthermore, deep learning methods have demonstrated the ability
to detect subclinical manifestations of diabetic complications, such
as microvascular alterations, thereby enhances the accuracy of early
diagnosis. These ML algorithms can be further enhanced by
integrating gut microbiota data, such as metabolomic profiles
(e.g., short-chain fatty acids) from Section 3.1, to identify novel
biomarkers, like cysteine or phenyllactate, that correlate with
insulin resistance (150).

Several ML algorithms have been employed to enhance T2D
management. Random Forest and XGBoost, tree-based ensemble
methods, excel in ranking feature importance using techniques such
as Shapley Additive Explanations (SHAP), which helps identify key
biomarkers, including HbA ¢, folate, and metabolites like cysteine
and aspartate, in metabolomic studies (145). These algorithms are
robust for high-dimensional datasets and have shown high accuracy
in predicting T2D risk and complications, such as distal symmetric
polyneuropathy (144). Support Vector Machines (SVMs) are
effective for classifying molecular biomarkers, such as long non-
coding RNAs (IncRNAs), in high-dimensional genetic data, and for
diagnosing T2D using clinical and imaging data (144). Deep Neural
Networks (DNNs) are particularly suited for multimodal data
integration, capturing complex non-linear patterns in time-series
data (e.g., continuous glucose monitoring) and retinal photographs
to predict glycemic control and diabetic retinopathy progression
(151). Ensemble methods like Voting and Stacking combine the
strengths of multiple models to improve generalization and
biomarker ranking across metabolomics and genetics. Logistic
Regression, while simpler, serves as a baseline for interpretable
risk assessment and is often used in ensemble approaches (145).

Recent studies have demonstrated the efficacy of these
algorithms in the management of T2D. For instance, a machine
learning model using administrative health data achieved an AUC
of 0.957 for predicting T2D onset within five years (145). Another
study utilizing DNNs on retinal photographs reported an AUC
of 0.934 for detecting diabetic kidney disease, highlighting
the potential of AI in early detection of complications (144).
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Additionally, XGBoost models applied to the NHANES dataset
identified novel metabolomic biomarkers, such as phenyllactate,
with an AUC of 0.86 for insulin resistance prediction (120, 152).
These advancements underscore the synergy between AI-driven
diagnostics and gut microbiota research, enabling the identification
of novel therapeutic targets and personalized interventions.

A comprehensive comparison of these ML algorithms,
including their applications in T2D biomarker identification and
diagnosis, their advantages and limitations, and performance

metrics, is provided in Table 2.

10.3389/fendo.2025.1699954

3.2.2 Analysis of continuous glucose monitoring
data using machine learning methods

Continuous glucose monitoring (CGM) systems generate large
volumes of data that AT can use to predict glycemic events such as
hypoglycemia and hyperglycemia. Deep learning algorithms,

particularly convolutional neural networks (CNNs) and recurrent

to identify patterns and predict glucose levels.

neural networks (RNNs), effectively analyze CGM time-series data

A meta-analysis by Kodama et al. showed that models like

RNN s and long short-term memory (LSTM) networks can achieve

TABLE 2 Machine learning algorithms for biomarker identification and diagnosis of type 2 diabetes.

Algorithm Category

Application in identifying
T2D biomarkers

Application in
disease diagnosis

Advantages

Limitations

Performance
examples

Predicting T2D risk,

High resistance to

Used for feature importance ranking e overfitting, Less effective on
. X classifying stages (e.g., AUC 0.99
(e.g., Shapley Additive Explanations) . . handles very large
- o prediabetes/T2D), detecting i i (symptoms), 0.835
to identify biomarkers such as blood o K K imbalanced data, datasets without
Random Tree-based complications like distal i o (long-term
glucose levels, HbAlc, folate, IncRNA . interpretable tuning; “black .
Forest Ensemble ; . . symmetric polyneuropathy. .. prognosis);
in metabolomics and genetics. R X through feature box” without .
R R R i Used for early diagnosis X . accuracy 0.975 with
Effective for high-dimensional data X ! R importance; Shapley Additive ! R
. " with electronic medical . . feature interactions.
with nutritional markers. . . performs well with = Explanations.
records and imaging.
tabular data.
Predicting insulin High accuracy, Prone to
. . . R . L R AUC 0.957
Identification of key biomarkers resistance, complications handles missing overfitting (NHANES), 086
XGBoost . (e.g., cysteine, aspartate, phenyllactate) | (hypoglycemia, distal data, without o ]
X Gradient i o g X X o o (insulin resistance);
(Gradient . via Shapley Additive Explanations in symmetric polyneuropathy), | regularization regularization;
. Boosting . L . . . . . . accuracy 71-73%
Boosting) metabolomics; ranking risk factors like = long-term risk, and precise against overfitting; ~ requires .
. . i for the following
BMI, blood glucose levels. diagnosis with electronic scales to large hyperparameter
ear.
medical records. datasets. tuning. ¥
Effective in high-
dimensional Slow training on
. . . o . AUC 0.95
Detection of molecular biomarkers Diagnosis with clinical and spaces, resistant to | large datasets;
Support o R i i K i K (IncRNA), 0.928
Kernel-based | (e.g., IncRNA) in high-dimensional imaging data; ensembles for | overfitting due to requires .
Vector K . i R ) K R K L (clinical data);
i Classifier genetic data; classification based on detecting retinopathy and margins; suitable normalization; .
Machine i > X sensitivity 95%,
metabolites. progression. for non-linear less .
. . specificity 86%.
boundaries with interpretable.
kernels.
Captures complex
Predicting glycemic control, | non-linear Requires large AUC 0.934 (fused
Analysis of multimodal data .g g q 8 (
. X . progression from patterns; scales to datasets; data), accuracy 92-
Deep Neural Neural (electronic medical records + genetics/ i X . X .
N . . . prediabetes; processing time | large datasets; computationally = 94% (pipelines);
Networks Networks imaging) to identify novel biomarkers . . ) .
. L series and images for supports intensive; prone low RMSE for
(e.g., metabolites, genetic risks). i K X ; o
diagnosis. multimodal to overfitting. glucose prediction.
integration.
. . Increased
Combining for biomarker rankin. Multiclass classification Leverages complexity and Accuracy 99.3%, F1
X R R s g (healthy/prediabetes/T2D); strengths of base P Y 0.993 (DT/SVM/
Voting, Combined from various sources (metabolomics + i L K computation
) Lo X . long-term risk prediction models; improves . XGBoost); AUC
Stacking Models genetics); improves interpretability . . . L time; depends .
. . . with electronic medical generalization and 0.884 (weighted
with Shapley Additive Explanations. . on base model .
records. balances metrics. i voting).
quality.
Assumes linear
Baseline for detecting simple . . Simple, relationships; AUC 0.746-0.884
. . X . Baseline risk diagnosis; X i
Logistic Linear biomarkers (e.g., nutritional markers); interpretable (odds = performs poorly | (in ensembles);
K i . ensembles for current T2D X X i K
Regression Model used in ensembles for interpretable ratios); effective on non-linear baseline for

coefficients.

status.

for small datasets.

data; sensitive to
multicollinearity.

comparisons.
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a mean absolute error of 10-15 mg/dL in predicting glucose levels
30 minutes before an event (153). Jaloli and Cescon developed a
hybrid CNN-LSTM model that can predict long-term glucose levels
in people with type 1 diabetes mellitus (T1D) with up to 90%
accuracy (154). The Guardian Connect System by Medtronic,
approved by the U.S. Food and Drug Administration (FDA) in
2018, uses predictive algorithms to provide alerts up to one hour
before a potential hypoglycemic event, with 98.5% accuracy at 30
minutes before onset (11).

The main challenges in glucose prediction are delays associated
with food and insulin absorption, as well as CGM errors, which
account for approximately 9% of the mean absolute relative
difference for the most accurate sensors. To overcome these
limitations, multimodal models are employed that integrate CGM
data with information on physical activity, nutrition, and sleep
obtained from individual wearable devices. For example, Guan et al.
demonstrated that integrating CGM data with fitness tracker
information improves glucose prediction accuracy by 15% (155).
Closed-Loop Insulin Delivery Systems, such as the artificial
pancreas, implement these models to automatically regulate
insulin delivery, thereby reducing glycemic variability by 25% in
patients with T1D.

3.2.3 Integration of microbiome data into
diagnostic algorithms
3.2.3.1 The development of diagnostic algorithms based
on the microbiome is a growing area of research

The gut microbiome plays a crucial role in metabolic processes
and the development of T2D, particularly through its influence on
insulin resistance and inflammatory responses. Al algorithms are
applied to analyze metagenomic data, which reflect the composition
of the microbiota, as well as metabolomic profiles, including SCFAs,
to create diagnostic models.

10.3389/fendo.2025.1699954

Lagou et al. demonstrated that multimodal models integrating
metagenomic data with EHRs achieved an AUC of 0.82 for
predicting the risk of T2D (150). Liu et al. developed a gradient
boosting-based algorithm that analyzes the composition of the
microbiota and its metabolites to identify metabolic phenotypes
of T2D. Notably, elevated butyrate levels are associated with
reduced IR, making it a potential biomarker (156). Karlsson et al.
found that a decrease in bacteria of the genus Roseburia correlates
with an increased risk of developing T2D, which may inform the
development of bioactive therapeutic strategies (58).

AT algorithms also enable the analysis of complex interactions
between the microbiome and metabolic pathways. For example, Qin
et al. developed a catalog of gut microbiome genes used to identify
biomarkers of T2D, including genes associated with the synthesis of
SCFAs (157). Algorithms such as SVM and Random Forest have
been shown to effectively classify microbial profiles for predicting
metabolic disorders.

Figure 2 illustrates the workflow for integrating gut microbiome
data (metagenomic and metabolomic profiles) with machine
learning algorithms to facilitate the early diagnosis and risk
prediction of T2D, highlighting key stages from data collection to

personalized intervention recommendations.

3.2.3.2 Patient stratification based on microbiota
composition and bioactive profiles

Al can categorize patients with diabetes based on their microbiota
composition, enabling personalized treatment strategies. For example,
the DayTwo platform employs algorithms to analyze metagenomic
data and predict glycemic responses based on dietary intake. A study
by Zeevi et al. demonstrated that such algorithms can predict
individual glycemic responses with up to 70% accuracy using
microbiota composition and dietary data (158). This approach
facilitates the development of personalized dietary recommendations
that reduce glycemic spikes.

: Machine Output and
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Data Collection | Learning Model Prediction
|
*Normalization of .
*Metagenomic : ).(GBOOSt (for |
Dats Metagenomic Data biomarker ‘ *T2D Risk Score
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*Electronic Health : dimensional data | ol |
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an Issing values feature ranking) | Recommendations
FIGURE 2

Pipeline for machine learning integration with gut microbiome data in T2D diagnosis.
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Stratification also facilitates the identification of patient subgroups
with varying risk of complications. A study by Gonzalez-Rivas et al.
demonstrated that AI platforms can classify patients according to their
level of insulin resistance based on microbiota composition, enabling
tailored probiotic therapy. Specifically, probiotic strains such as
Lactobacillus and Bifidobacterium, increase butyrate levels, which are
associated with reduced inflammatory markers and improved
glycemic control. These platforms employ clustering methods (e.g.,
k-means) and causal inference analyses to tailor therapy to metabolic
profiles, thereby reducing the risk of complications, such as diabetic
nephropathy, by 15-20% (159).

3.2.3.3 Platforms for analyzing metagenomic and
metabolomic data

Modern platforms, such as IBM Watson Health and Google
DeepMind, are applied to process large-scale metagenomic and
metabolomic datasets. For instance, the DayTwo platform integrates
microbiome data with EHRs to generate personalized dietary
recommendations (158).

Processing multimodal data is a complex task that requires
algorithmic advancements to ensure interpretability and scalability.
For example, deep learning methods, such as autoencoders, enable
dimensionality reduction while preserving key biomarkers, but they
demand substantial computational resources (160).

3.2.4 Digital pathology and biomarker
identification

3.2.4.1 Identification of microbial metabolites associated
with disease progression

Al algorithms play a crucial role in discovering new biomarkers,
including microbial metabolites that influence the progression of
T2D. Deep learning enables the analysis of metabolomic profiles to
identify metabolites, such as butyrate and propionate, which
correlate with IR. A study by Santhanam et al. demonstrated that
these methods can assess body composition, including visceral fat,
through CT and MRI image analysis, which is an important risk
factor for the development of T2D (161). Specifically, the
algorithms revealed that elevated levels of visceral fat are
associated with a 30% higher risk of developing T2D.

Karlsson et al. highlighted that metagenomic data can be used to
identify biomarkers of T2D, including metabolites that influence
inflammatory processes (58). Algorithms such as k-means clustering
enable the categorization of metabolic profiles to identify new
therapeutic targets.

3.2.4.2 Image analysis and systems biology in synergy
with microbiome data

Digital pathology using Al algorithms is widely applied
for diagnosing diabetic complications, particularly diabetic
retinopathy. For example, Rice et al. developed a deep learning
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system for automated detection of retinopathy from fundus images,
achieving 97% sensitivity and 95% specificity (162). Dai et al.
developed a deep learning system to predict the progression of
diabetic retinopathy, achieving an AUC of 0.90 (151). These
systems integrate retinal images with clinical data to create
complex diagnostic models.

Such methods also allow the establishment of associations
between microbial metabolites and pathological tissue changes.
For example, a study by Liu et al. demonstrated that 21 identified
microbial genera are important biomarkers for T1D. Their AUC
values were 0,962 and 0.745 on discovery set and validation set.
Functional analysis indicated that 10 microbial genera were
significantly positively correlated with D-arginine and D-
ornithine metabolism, transcriptional spliceosome activity, steroid
hormone biosynthesis and glycosaminoglycan degradation (156).
These findings support the prediction of disease progression and
the development of personalized therapeutic strategies.

3.2.5 Convergence toward personalized
therapeutic platforms

3.2.5.1 Therapeutic platforms based on gut-derived
bioactive compounds

Bioactive metabolites synthesized by the gut microbiota,
particularly SCFAs, such as butyrate and propionate, play a crucial
role in regulating metabolic and inflammatory processes associated
with T2D. As noted above, these compounds influence IR, glycemic
control, and levels of inflammatory markers, such as C-reactive
protein. Al enables the development of therapeutic platforms that
analyze microbiota composition and its metabolites to design
individualized strategies, including the use of probiotics, postbiotics,
and dietary recommendations.

A study by Zeevi et al. demonstrated that these algorithms
facilitate personalized dietary recommendations, which help reduce
postprandial glycemic spikes in patients with T2D, ultimately
lowering the risk of complications such as diabetic retinopathy
and cardiovascular disease. They employed the DayTwo platform,
which uses AI algorithms, including gradient boosting, to analyze
gut microbiome metagenomic data and predict diet-based glycemic
responses, achieving up to 70% accuracy in forecasting individual
glycemic responses (158).

3.2.5.1.1 Integration of omics data with lifestyle information
The integration of multimodal omics data, including microbiome,
metabolomic, and genomic profiles, with lifestyle information (diet,
physical activity, and sleep) forms the foundation for the development
of personalized therapeutic platforms. A study by Lagou et al. further
demonstrated that multimodal models combining UK Biobank
genomic data, gut microbiome metagenomic profiles, and EHRs
achieved an AUC of 0.85 for predicting the risk of developing T2D
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(150). These models employ gradient boosting algorithms, such as
XGBoost, and deep learning methods to identify biomarkers,
including SCFAs, that correlate with metabolic phenotypes.

For example, elevated levels of butyrate are associated with
reduced IR, whereas a decrease in the genus Faecalibacterium is
associated with an increased risk of developing T2D (150). A study
by Kannenberg et al. demonstrated that an AI platform based on
digital twins reduced HbAlc by 1.2% over 12 months in patients
with T2D by adapting dietary recommendations based on
microbiome and metabolome data (163). Integration of data from
individual monitoring devices, such as fitness trackers, enables the
creation of comprehensive risk profiles.

Qin et al. developed a catalog of gut microbiome genes, which is
used to identify biomarkers of T2D, including genes associated with
SCFAs synthesis (157). Algorithms such as SVM and Random
Forest enable the classification of metabolic profiles with up to 80%
accuracy for predicting the risk of developing T2D.

Integration of lifestyle data, such as dietary caloric intake and
physical activity, improves predictive accuracy by 10-15%. For
example, the Twin Health platform uses multimodal data to
generate personalized nutrition plans that reduce glycemic peaks
in patients with T2D.

3.2.5.1.2 Adaptive algorithms for real-time monitoring and
therapy correction

Adaptive algorithms, such as reinforcement learning (RL) and
RNNGs, enable real-time patient monitoring and dynamic therapy
correction. A study by Guan et al. showed that RL algorithms
optimize insulin dosing in T2D, reducing the risk of hypoglycemia
by 30% compared to traditional methods (155). These algorithms
integrate data from CGM, physical activity, and EHRs to develop
dynamic therapeutic strategies.

The Advisor Pro system by DreaMed Diabetes, approved by the
FDA in 2018, uses algorithms to analyze CGM data and provide real-
time insulin dosing recommendations, improving glycemic control in
patients with T1D (164). A meta-analysis by Kodama et al. established
that such models reduce the incidence of hypoglycemic events by 20%
compared to traditional methods. LSTM-based algorithms achieve a
mean absolute error of 10-15 mg/dL when predicting glucose levels 30
minutes in advance, enabling timely therapy corrections (153).

The main challenges include delays in CGM data (5-10
minutes) and the need to standardize information from multiple
sources, such as wearable devices and EHRs (155). To overcome
these challenges, multimodal models are employed, integrating
CGM with information on diet, physical activity, and sleep.

These models facilitate the development of closed-loop systems
that automatically regulate microdoses of insulin, thereby reducing
glycemic variability and improving overall metabolic control.
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3.2.5.2 Potential of remote care, digital twins, and closed-
loop systems
3.2.5.2.1 Remote care

Remote care platforms, such as MyWay Digital Health, enable
patient monitoring through telemedicine systems by analyzing CGM
data, EHRs, and information from individual monitoring devices. A
study by Mackenzie et al. demonstrated that such platforms increase
therapy adherence by 20% through personalized recommendations
and remote consultations (165). Telemedicine reduces barriers to
healthcare access, particularly in resource-limited settings, such as
rural areas, remote regions, or low-income countries.

The BlueStar platform by WellDoc employs machine learning
methods to analyze CGM data and provide lifestyle recommendations,
reducing HbAlc by 0.8% over six months in patients with T2D (160).
A study by Xu et al. demonstrated that telemedicine platforms
increase healthcare accessibility by 25% compared to traditional
approaches (166). These platforms integrate data from individual
monitoring devices, such as Fitbit or Apple Watch, to generate
comprehensive health profiles.

3.2.5.2.2 Digital twins

Digital twins are virtual patient models that integrate CGM,
microbiome, genomic, and lifestyle data to simulate metabolic
profiles. A study by Kannenberg et al. demonstrated that digital twins
can predict diabetes-related complications with up to 85% accuracy and
optimize therapy through personalized dietary and pharmacological
interventions. For instance, the Twin Health platform employs digital
twins to design individualized nutrition plans, reducing postprandial
glycemic peaks in patients with T2D by 20% (163).

Digital twins also enable the modeling of long-term therapeutic
outcomes. Gonzalez-Rivas et al. showed that digital twins
integrating microbiome and genomic data can predict the risk of
diabetic nephropathy with 80% accuracy (159). These models apply
deep learning algorithms to analyze multimodal data and construct
individualized risk profiles.

3.2.5.2.3 Closed-loop systems

Closed-loop systems, such as the artificial pancreas, use
algorithms to automatically regulate insulin delivery based on
CGM data. A study by Sheng et al. reported that such systems
reduce glycemic variability by 25% in patients with T1D (167). RL
algorithms adapt to changes in physiological condition, providing
continuous therapy adjustments. For example, the Control-IQ
system by Tandem Diabetes Care, approved by the FDA in 2019,
reduces the incidence of hypoglycemia by 30% (168).

Unsworth et al. demonstrated that closed-loop systems
integrating CGM and individual monitoring devices improve
glycemic control in children with T1D, lowering HbAlc by 0.5%
over six months (164).

frontiersin.org


https://doi.org/10.3389/fendo.2025.1699954
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Tseyslyer et al.

TABLE 3 Comparison of Al platforms for T2D management, highlighting
their functions, evidence, and limitations.

Evidence

Platform Function Limitations

base

Limited to diet:
Personalized dietary trmitec to dietary

A interventions;
recommendations based .
DayTwo i X requires (158)
on gut microbiome . .
. microbiome
analysis .
profiling

Holistic digital twin for
tabolic health
Twin Health o 00H¢ ea' .
management, including

glycemic control
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continuous data (161)
input

Glucose monitoring and | Focuses on

mySugr behavioral coaching via lifestyle, less on (163)
app microbiome
Hardware-
" Automated insulin arcware
MiniMed delivery with closed-loo dependent; not (164)
780G Y P | microbiome-
system .
integrated

4 Discussion

4.1 Limitations, challenges, and ethical
issues of Al in T2D management

Despite growing enthusiasm for the use of gut-derived bioactive
compounds and Al in clinical practice, particularly in the monitoring
of patients with T2D, several challenges limit their widespread
implementation. We aimed to systematize and outline the key
limitations that currently constrain the scalability of AI in
diabetes management.

4.1.1 The heterogeneity of the gut microbiome

remains one of the most critical barriers, complicating the
standardization of bioactive markers and their application in
predictive models. High interindividual variability in the gut
microbiota composition of patients with T2D (169-171) prevents the
direct extrapolation of findings from one population to another. It is
crucial to highlight that a significant area for future research involves
examining data from regions that were underrepresented in our review,
particularly Latin America and Australia. Additionally, it is important
to investigate how various dietary patterns—such as high-corn diets in
Latin America and high-red-meat diets in Australia—affect the
production of SCFAs and the composition of gut microbiota, as well
as their influence on T2D. This complicates the identification of
universal diagnostic and therapeutic targets.

4.1.2 The technical limitations

There are problems with data unification and quality. Incomplete,
unrepresentative or unstructured datasets, in particular, contribute to
model bias and limited generalizability. The implementation of closed-
loop systems and machine learning algorithms is constrained by the
high cost of these systems, the need for data standardization to ensure
compatibility across different devices, and subsequent unification and
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scalability. Currently, most machine learning algorithms are trained on
limited demographic or regional datasets, which can lead to reduced
effectiveness for smaller, underrepresented populations or patients
from different parts of the world (172). Pagano et al. reviewed
current machine learning models and noted that most studies focus
on binary classification tasks, whereas the multidimensional clinical
scenarios (173), which are typical for T2D, remain underdeveloped,
limiting the scalability of these technologies for global application.

4.1.3 The opacity of decision-making processes

Deep neural networks, frequently used to analyze CGM,
microbiome or metagenomic data, have a complex structure and low
transparency in decision-making. Most Al models are “black boxes”,
meaning they produce results without explanation. This complicates
their use in clinical practice, where explainable logic is required. For
example, even high-accuracy models, such as CNN-LSTM that predict
glucose levels with 90% accuracy, raise questions about the underlying
mechanisms of their decisions (154).

4.1.4 Interdisciplinary barriers

Computational models used to study the dynamic behavior of
complex systems require a comprehensive combination of biological,
clinical, and computer data (149). However, this requires interoperable
tools, shared repositories and agreed modelling standards (174). These
factors significantly complicate collaboration between specialists in
bioinformatics, microbiology, clinical nutrition and endocrinology.

4.1.5 Ethical aspects

Ethical aspects involve a wide range of diverse moral and legal
responsibilities. Systems that process personal medical information,
including genomics, microbiome or physical activity data, always carry
risks of data breaches or unauthorized use. Integrating Al into
healthcare raises new ethical challenges, including issues of informed
consent, protection of confidential information and algorithmic
transparency. Modern Al systems analyze multimodal data: from
daily lifestyle to microbiota, metabolomics, genomics, etc., which
requires the development of new legal mechanisms to protect
privacy. Current regulatory approaches, such as GDPR in the EU
and HIPAA in the USA, are not fully adapted to the specific
characteristics of AI models that process multimodal data
streams (175).

The use of autonomous or semi-autonomous systems, such as
artificial pancreases and voice-activated digital assistants, raises
questions about responsibility for clinical decisions. Even with
high prediction accuracy (up to 92% for glucose prediction), Al
systems are unable to fully consider the psycho-emotional,
behavioral, and social factors that are critical for the long-term
management of chronic diseases (167). Even the most advanced
models can produce inaccurate predictions, especially if the data is
incomplete or of poor quality. This can lead to incorrect insulin
dosing or missed complications. The ethical dilemma of who is
responsible for decisions made by Al remains unresolved. Is it the
doctor, the patient, or the developer? This question becomes
particularly acute in cases of complications or harm.
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THE ROLE OF EXPLAINABLE Al (XAl) IN MEDICAL PRACTICE

TRANSPARENCY IN
DECISION-MAKING

« understanding Al model
predictions

= explanation of risk factors

SUPPORT FOR
CLINICAL DECISIONS

« verification of the model's
logic

- decision-making regarding

» identification of significant
indicators

« justification of lifestyle
changes

: : treatment
- trust in recommendations
PERSONALIZED INCREASING TRUST IN Al
RECOMMENDATIONS

« explanation of the
decision-making process

« ethical interaction with
technology

FIGURE 3
The role of explainable Al (XAl) in medical practice.

Currently, adaptive management strategies and international
collaboration are necessary to address the global challenges of AI
development, ensuring a balance between innovation and the
protection of individual rights and societal values (176).

4.1.6 Inequity in access to technology
High-tech solutions that require continuous internet access,
modern smartphones or sensor devices (e.g, CGM) may be
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inaccessible to low-income patients. The rapid pace of AI
development may also pose barriers for older adults. This threatens
to exacerbate healthcare disparities among different socioeconomic

groups (177).

4.1.7 Overreliance on technology
Current solutions, such as closed-loop algorithms, mobile
monitoring apps, voice assistants and digital coaches, have already
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demonstrated clinical benefits, including improvements in HbAlc
levels, reductions in BMI and enhanced self-management. Platforms
such as DiabetesCoach (178) or Healthy at Home (179), have been
implemented as part of digital coaching programs with measurable
behavioral effects. However, the increasing integration of digital
technologies in T2D management raises discussions regarding not
only their effectiveness, but also the potential risks of overreliance.

INTESTINAL BIOACTIVE SUBSTANCES
ARE KEY TARGETS FOR THERAPY

SCFA (short-chain fatty acids)

* GLP-1, PYY secretion

« Effect on glycemia

« Support of epithelial barrier
« Secondary bile acids

« Activation of FXR, TGR5

« Improvement of insulin
sensitivity

A\ 4

« Tryptophan derivatives
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 Anti-inflammatory
effect

« differentiation of
T cells

* Improvement of
metabolism, reduction of
inflammation

NEW APPROACH TO
T2D THERAPY

10.3389/fendo.2025.1699954

Patients may lose self-management skills if they rely solely on
closed-loop algorithms. In the absence of device access or in the
event of technical failure, such dependence poses risks of clinical
complications. At the same time, emotional dependence may
develop: digital assistants, especially those that adapt to user
behavior, can create a sense of social presence. These quasi-social
bonds, formed in the absence of human interaction, can contribute

Al IS THE DRIVER OF
PERSONALIZED MEDICINE
Al PLATFORMS:
« DayTwo
« Twin Health
* mySugr
« MiniMed 780G
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Microbiome Analysis
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+ Clinical Validity
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Integrating Al into the discovery and application of bioactive substances
produced by the intestinal microbiota is a shift from reactive to proactive
medicine. The era of personalized microbiome-centric approaches to diabetes
treatment is dawning.

The synergy of gut-derived bioactive compounds and artificial intelligence tools - next-generation solutions for T2D management.
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to digital alienation and impair social skills. Patients who interact
daily with algorithms may gradually lose the ability for empathy and
social flexibility (180, 181). This is especially dangerous in cases of
system failure - patients who rely solely on technology may be
unprepared to act independently. Idealizing an Al partner can also
lead to unrealistic expectations of real people, causing frustration in
interpersonal relationships. This is not just a side effect of
digitalization; it is potentially a new form of patient vulnerability.

4.2 Conclusions and future perspectives

Bioactive compounds originating from the gut microbiota, such
as short-chain fatty acids, secondary bile acids, and tryptophan
metabolites, present a new therapeutic opportunity in metabolic
health. Their ability to modulate hormone secretion, epithelial
barrier permeability, immune response regulation, and metabolic
homeostasis positions these molecules as promising targets for
interventions in T2D. At the same time, the rapid advancement
of A technologies provides unprecedented opportunities to process
large datasets and decipher complex bioinformatic interactions
among the genome, metabolome, microbiome, and behavioral
determinants. This enables the identification of individual
response patterns to diet or therapy (182), providing a basis for
personalized, adaptive therapeutic models, that account not only for
metabolic markers but also for psychological status, social
determinants, and healthcare access (183).

Integrating gut microbiota data with the analytical capabilities
of AI models (digital twin systems, deep learning models, and
closed-loop systems) has already demonstrated positive outcomes
in optimizing glycemic control, predicting complications, and
individualizing therapy. Platforms such as DayTwo, Twin Health,
mySugr and MiniMed 780G confirm the practical feasibility of
integrating AI with microbiome-based approaches in next-
generation endocrinology. A comparison of these Al platforms is
presented in Table 3.

Together, these directions represent a paradigm shift: moving
from universal treatment protocols toward dynamic, microbiome-
oriented, and ethically personalized medicine. However, large-scale
implementation of this model in clinical practice requires overcoming
the challenges outlined above. Future research should prioritize:

- building open-access, well-annotated databases encompassing
medical, metagenomic, and behavioral information for
effective AT model training;

- developing explainable AI (XAI) models to enhance decision-
making transparency, increase trust among clinicians and
patients, and support ethical informed consent. We propose
a block diagram that clearly illustrates the critical role of
explainable AT (XAI) models (Figure 3);

- establishing regulatory and legal mechanisms to govern
certification, liability, data protection, and algorithmic fairness;
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- integrating intelligent models into telemedicine, which is
particularly important for populations with limited
healthcare access (165).

- developing standardized clinical protocols for integrating
microbiota-based interventions and Al-driven platforms,
such as DayTwo and Twin Health, into routine T2D
management. This includes training clinicians to utilize AI
tools for real-time monitoring and adjustment of personalized
dietary and probiotic interventions, as well as incorporating
these technologies into existing clinical guidelines to ensure
seamless adoption in diverse healthcare settings.

To enhance the global applicability of findings on gut
microbiota and T2D, there is a critical need for broader, multi-
regional studies that investigate how various dietary patterns impact
the interactions between microbiota and T2D. Regional diets, such
as those high in corn in Latin America or high in red meat in
Australia, likely affect the production of microbial metabolites, such
as SCFA, as well as the overall composition of the microbiota. These
factors can significantly impact the risk and progression of T2D.
Our research group aims to address this gap in future studies by
including populations from Latin America, Australia, and other
underrepresented regions. These efforts will enhance the
generalizability of our results and support the development of
tailored, region-specific interventions for T2D management.

In summary, harnessing the synergy between bioactive microbiota
components and Al not only optimizes T2D management but also
drives the creation of a new digital medicine paradigm: a hybrid
system in which advanced technologies enhance clinical expertise,
respect patient autonomy, and provide the foundation for ethically
and scientifically grounded microbiome-oriented therapy. Realizing
this potential requires interdisciplinary consortia that unite experts in
medicine, biology, ethics, and law. Only through such integrative
efforts is it possible to establish a balanced implementation of
innovations, where inclusivity, safety, humanity, and personalization
define a new era in the fight against diabetes (Figure 4).
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