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Introduction: Circulating microRNAs (miRNAs) are small non-coding RNAs that
regulate gene expression and play key roles in metabolic diseases, including
diabetes. This study aimed to identify circulating miRNA signatures linked to
glycemic status, vitamin D deficiency, aspirin consumption, and platelet activity in
individuals with type 2 diabetes, prediabetes, and healthy controls.

Methods: Plasma samples from 24 participants (14 with diabetes, 2 prediabetic,
and 8 non-diabetic controls) were analyzed using next-generation sequencing
to assess differences in miRNA expression.

Results: Although principal component analysis showed no group separation,
pairwise testing identified 131 miRNAs that were significantly altered between the
diabetic and control groups, as well as 141 miRNAs between the prediabetic and
control groups (FDR <0.05), with 56 overlapping between contrasts. Fourteen
miRNAs in the pre-diabetic group and twelve in the diabetic group overlapped
with literature-supported candidates, reinforcing their clinical relevance. In the
direct diabetes vs. prediabetes comparison, no miRNAs passed FDR. Still,
consistent trend-level decreases in diabetes were observed for hsa-miR-4776-
5p, hsa-miR-6778-3p, and hsa-miR-5002-3p, which were among the most
upregulated in prediabetes vs. controls. Sex-stratified analyses revealed distinct
mMiRNA expression patterns, emphasizing the influence of biological sex on
mMiRNA regulation in glucose metabolism. Correlation analyses highlighted
miRNAs associated with glucose/HbAlc, alongside relationships among vitamin
D status, glycemia, and platelet function.
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Discussion: Collectively, these data highlight the exploratory potential of
circulating miRNAs as candidate early biomarkers for glycemic dysregulation,
providing a foundation for future validation and development of improved
diagnostic and preventive strategies for type 2 diabetes.

type 2 diabetes, prediabetes, circulating microRNAs, biomarkers, glycemic control,
vitamin d, platelet aggregation, sex differences

Introduction

Diabetes is one of the leading non-communicable diseases,
ranking fourth, and affects over half a billion (537 million) adults
worldwide. It is estimated that the number of adults will reach 783
million by 2045 (1-3). This chronic metabolic disease is
characterized by high blood sugar levels caused by insulin
resistance or a lack of insulin, which can lead to serious health
complications such as heart disease, stroke, and kidney failure (4).
Over 90% of diabetes cases globally are Type 2 diabetes, which is
rapidly becoming a major public health concern due to multiple
polygenic and environmental factors like poor diet, sedentary
lifestyle, increasing age, ethnicity, family history, and obesity (1).
The diagnosis of Type 2 Diabetes Mellitus (T2DM) is based on
fasting glucose levels, two-hour plasma glucose concentrations
during an oral glucose tolerance test (OGTT), and/or
measurements of hemoglobin Alc (HbAlc). Lower thresholds for
these indicators are used to detect early stages of the disease.
Individuals showing early signs of dysglycemia may have an
increased risk of developing T2DM, requiring targeted preventive
interventions. These early stages are often called pre-diabetes (PD)
or intermediate hyperglycemia (IH) (5, 6). However, for clarity, the
term pre-diabetes will be used throughout this manuscript.

Identifying biomarkers for predicting the onset and progression
of diabetes is crucial for enabling early diagnosis and intervention.
MicroRNAs (miRNAs), which are small non-coding RNAs
approximately 22 nucleotides long, play a crucial role in post-
transcriptional gene regulation and can serve as potential
biomarkers for early detection due to their upstream position in
regulatory cascades (7-9). They work by binding to specific sequences
on target messenger RNAs, leading to either mRNA degradation or
translation inhibition. MiRNAs regulate essential genes and signaling
pathways involved in cellular processes such as insulin secretion,
insulin sensitivity, pancreatic beta-cell function, glucose metabolism/
homeostasis, platelet reactivity, and inflammation, all of which
become dysregulated in diabetes (8, 10-13). Examining miRNA
expression patterns in diabetic, pre-diabetic, and non-diabetic
patients can provide vital insights into the development of diabetes
(14). Additionally, analyzing miRNAs in diabetic patients can provide
a deeper understanding of the molecular mechanisms underlying
diabetes and its complications, facilitating the prediction of their
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development and enabling early interventions to mitigate their
impact on health. Thanks to advances in molecular and
computational methods, miRNAs offer advantages for early
diagnosis, particularly because they can be detected at low levels
(compared to proteins and metabolites) through amplification
techniques such as qPCR and are more stable than mRNA (9, 15).
Numerous studies have demonstrated altered expression of various
microRNAs (miRNAs) in patients with type 2 diabetes (T2D) (16-
19). A recent meta-analysis by Zhu et al. (2023) identified and
validated 16 miRNAs (from 404 differentially expressed miRNAs
across 156 studies) that are both statistically and biologically
significant in relation to type 2 diabetes (20).

We included aspirin use in our sample selection because
medications can influence circulating miRNA expression,
especially those linked to cardiovascular and inflammatory
pathways. Aspirin, commonly used for the prevention of
cardiovascular disease, affects several microRNAs (miRNAs)
related to vascular function, platelet activity, and inflammation,
including hsa-miR-21, hsa-miR-126, and hsa-miR-155. According
to Paseban et al. (2020), these miRNAs play a crucial role in the
pathophysiology of cardiometabolic conditions (21). By identifying
whether individuals were taking aspirin or not, we can control for
this potential confounder and thus increase the accuracy of
interpreting miRNA changes associated with diabetes.

Therefore, our study aims to explore variations in miRNA
expression in blood plasma samples from individuals with
diabetes compared to non-diabetic controls, building on the
foundational research established by Sultan et al. (2019) in our
laboratory. Sultan et al., 2019 investigated the relationship between
platelet aggregation, vitamin D levels, and glycemic control in
diabetic and pre-diabetic patients compared to healthy
individuals, concluding that glycemic control is inversely related
to high platelet aggregation and low vitamin D levels (22). Notably,
the plasma samples analyzed here were originally collected in the
study by Sultan et al. (2019), which focused on platelet aggregation,
vitamin D, and glycemic control but did not include microRNA
analysis. The novelty of the present study lies in applying next-
generation sequencing to this archived cohort to profile circulating
miRNAs, thereby expanding the scientific scope of the original
dataset. In this study, we applied NGS to this archived cohort, we
aimed to determine whether significant differences exist in miRNA
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TABLE 1 Clinical, biochemical, and demographic characteristics of the study cohort.
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Pre-

Characteristics Total T2D Nonjaspirin T2D Aspirin—_associated T2D diabetic Healthy
patients (n=14) patients (n=8) patients (n=6) (n=2) controls (n=8)
Male (n) 8 4 4 1 2
Female (n) 6 4 2 1 6
Age (years) 65.07 64.63 + 2.55 65.67 + 2.23 65.50 + 7.78 63.50 + 4.14
Diabetes Duration
(years) 18.14 + 2.36* 2050 + 3.43* 15.00 + 2.91% 0.00 + 0.00 0.00 + 0.00
BMI (kg/m2) 3030 + 1.49 28.48 + 125 32.73 +2.93 23.20 + 2.55 25.80 + 2.10
HbAlc (%) 7.59 + 0.17* 7.84 +0.20* 7.26 +0.22* 590 + 0.14 532 +0.09
FBG (mg/dL) 177.29 + 8.46* 180.25 + 12.13* 173.33 + 12.40* 97.00 + NA 86.86 + 521
25(0H)D (nmol/L) 5347 + 4.70* 5256 + 6.25 54.68 + 7.77 56.00 + NA 78.16 + 7.11
Ca (mg/dL) 9.29 +0.17 9.45 +0.25 9.09 +0.22 10.43 + NA 9.05 + 0.24
TG (mg/dL) 155.36 + 23.37 137.50 + 25.14 179.17 + 43.97 218.00 + NA 91.14 + 19.89
Cr (mg/dL) 0.84 + 0.05 0.89 + 0.06 0.77 + 0.07 0.90 + NA 0.94 + 0.14
HDL (mg/dL) 43.86 + 2.88 43.49 + 3.88 4437 + 471 46.30 + NA 61.76 + 7.19
Cholesterol (mg/dL) 151.57 + 8.05 137.50 + 9.43* 170.33 + 10.17** 160.00 + NA 180.14 + 10.77
PLT (x10*/uL) 23271 + 11.72 21838 + 11.88 251.83 + 21.03 220.50 + 36.06 210.88 + 14.22
Platelet ?;jregaﬁon 49.07 + 9.28 73.26 + 9.00* 16.82 + 2.75% 89.60 + NA 40.90 + 12.07

This table summarizes the characteristics of 24 plasma samples analyzed in this study: 14 patients with type 2 diabetes mellitus (T2D), subdivided into non-aspirin users (n = 8) and aspirin users
(n = 6), 2 pre-diabetic individuals, and 8 healthy controls. Parameters include sex, age, diabetes duration, body mass index (BMI), fasting blood glucose (FBG), glycated hemoglobin (HbA1lc, %),
serum 25-hydroxyvitamin D [25(0OH)D], calcium (Ca, mg/dL), lipid profile [high-density lipoprotein (HDL), total cholesterol, triglycerides (TG)], creatinine (Cr, mg/dL), platelet count
(PLT, x10°/uL), and platelet aggregation (%). Data are presented as mean + standard deviation (SD). *p < 0.05 vs. healthy controls; **p < 0.05 vs. non-aspirin T2D group. NA indicates data not

available for the pre-diabetic group.

expression between these groups, ultimately identifying new
miRNAs that are directly related to T2DM (glucose and HbA1C
levels) or T2DM complications (vitamin D deficiency and platelet
activation). In the future, the study will validate these miRNAs in a
larger sample and investigate their potential target genes and the
associated biological processes.

Materials and methods
Ethical statement

This study was conducted in accordance with the principles of
the Declaration of Helsinki and received approval from the
institutional Helsinki Committee for Health Research Ethics at
Meir Medical Center (protocol 0138-16-MMC). All participants
provided written informed consent.

Study cohort

This study utilized plasma samples previously collected in our
laboratory from Sultan et al. (2019) to investigate the relationship
between platelet aggregation, vitamin D levels, and HbA1c in healthy
individuals and those with type 2 diabetes mellitus (T2DM). A total
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of 24 plasma samples were analyzed, including 14 diabetic subjects
(mean age 65 * 6.3 years), 2 pre-diabetic individuals (mean age 66 +
7.8 years), and 8 healthy controls (mean age 64 + 12 years). Inclusion
and exclusion criteria are detailed in Sultan et al. (2019) (22). While
the samples were previously described, their microRNA content has
not been studied. In this work, we applied next-generation
sequencing and bioinformatics pipelines to characterize circulating
miRNA expression.

Clinical data included age, sex, BMI, medication use (such as
vitamin D, multivitamins, anticoagulants, antiplatelet agents, and
antiaggregants), and major comorbidities. Additionally, all samples
were evaluated for blood biochemistry profiles [total cholesterol,
high-density lipoprotein (HDL), calcium (Ca, mg/dL)], complete
blood count (total platelets, mean platelet volume), HbAlc (%), and
serum 25-hydroxyvitamin D [25(OH)D] levels, measured using
standard automated clinical laboratory methods (22). These
variables were included in the statistical assessment where
possible, and subgroup analyses were performed by sex and
aspirin exposure to partially control for confounding.

The summary of clinical and biochemical data for these plasma
samples is provided in Table 1. This study aimed further to examine
microRNA expression differences in diabetic versus healthy
individuals using next-generation sequencing (NGS) and
computational approaches, thereby building on the foundational
work of Sultan et al. (2019).
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MicroRNA extraction

Frozen plasma samples were incubated in a water bath at 37 °C
until they were fully melted and the salts had dissolved. MicroRNA
was extracted from plasma samples (initial volume of 200 pL)
following the manufacturer’s instructions for the miRNAeasy
Serum/Plasma Advanced Kit (Qiagen Catalog No. 217204) and
quantified using a Nanodrop spectrophotometer (Nanodrop 2000,
Thermo Scientific). MicroRNA concentrations ranged from 7.9 to
50.1 ng/uL and were stored at -80 °C until further analysis. All
plasma samples were stored at —80 °C and subjected to a single thaw
cycle prior to RNA extraction. Each RNA sample underwent
quality-control assessment before library preparation and
sequencing, and any that did not meet QC standards were
excluded from analysis, including several pre-diabetic samples
that failed QC (as noted in the Discussion). Long-term storage
and freeze-thaw may nonetheless affect RNA integrity and are
acknowledged as potential limitations.

mMiRNA quantification and analysis

Raw sequencing data were processed using the nf-core/smrnaseq
pipeline (version 2.4.0) (23). Briefly, the reads were trimmed and
filtered with fastp (24) and then aligned with Bowtie to the miRBase
reference. Downstream analysis was performed using R language
libraries (version 4.4.2), with DESeq2 (version 1.48.1) (25) for
differential expression and ggplot2 for the figures. All microRNA
names were standardized according to miRBase version 22.1
nomenclature, using the species prefix “hsa-” to indicate Homo
sapiens, and presented in the format hsa-miR-###-3p/5p
throughout the manuscript, tables, and figures for consistency.

Statistics

Statistical analysis employed paired t-tests, one-way ANOVA,
and Pearson correlations to assess differences between groups,
relationships among variables, and the significance of the results.
Adjusted p-values (FDR) < 0.05 were considered statistically
significant; results not meeting this threshold were classified as
trend-level and interpreted as exploratory.

Results

Notable differences in miRNA expression
among diabetic, pre-diabetic, and healthy
individuals

MicroRNA (miRNA) expression levels varied significantly
(FDR < 0.05) among the diabetic, pre-diabetic, and healthy
control groups (Supplementary Table S1). However, principal
component analysis (PCA) of global expression profiles revealed
no clear separation among the three groups (Figure 1A), indicating
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that factors other than disease status may influence overall
miRNA variation.

Differential analysis between diabetic and healthy individuals
identified 131 miRNAs with significantly altered expression (FDR <
0.05), of which 92 were downregulated and 39 were upregulated
(Figure 1B.1). This broad downregulation pattern suggests
suppression of miRNA-regulated pathways in diabetes. The most
significantly downregulated miRNAs included hsa-miR-4708-5p
(log,FC = -0.62, FDR = 9.4 x 10%), hsa-miR-152-5p (log,FC = -
0.80, FDR = 0.0012), hsa-miR-1197 (log,FC = -0.92, FDR =
0.0015), hsa-miR-4708-3p (log,FC = -0.84, FDR = 0.0038), and
hsa-miR-125b-5p (log,FC = -0.92, FDR = 0.0044). Conversely, a
subset of miRNAs showed significant upregulation, including hsa-
miR-20b-3p (log,FC = 1.07, FDR = 0.0084), hsa-miR-4663 (log,FC
= 0.74, FDR = 0.0125), hsa-miR-6079 (log,FC = 0.58, FDR =
0.0125), hsa-miR-516b-5p (log,FC = 0.47, FDR = 0.0125), and
hsa-miR-541-5p (log,FC = 0.50, FDR = 0.0173).

Among the 131 differentially expressed miRNAs, 12 overlapped
with the top 16 miRNAs reported in the recent meta-analysis by
Zhu et al. (2023) (20), including hsa-miR-29a-3p, hsa-miR-221-3p,
hsa-miR-126-3p, hsa-miR-26a-5p, hsa-miR-503-5p, hsa-miR-100-
5p, hsa-miR-101-3p, hsa-miR-103a-3p, hsa-miR-122-5p, hsa-miR-
199a-3p, hsa-miR-30b-5p, and hsa-miR-130a-3p (Supplementary
Table S2A). Supplementary Tables S2A, B summarize the overlap
between our findings and literature-validated miRNAs from Zhu
et al. (2023), highlighting reproducibility across independent
datasets. This overlap strengthens the clinical relevance of our
findings and highlights their potential as circulating biomarkers
for diabetes.

Similarly, we analyzed microRNA (miRNA) expression profiles
in pre-diabetic individuals compared to healthy controls. Of the
2,647 miRNAs analyzed, 141 showed significant differential
expression (FDR < 0.05), with 97 downregulated and 44
upregulated (Figure 1B.2). The most strongly downregulated
miRNAs included hsa-miR-545-5p (log,FC = -1.79, FDR =
0.0019), hsa-miR-1277-5p (log,FC = -1.88, FDR = 0.0031), hsa-
miR-1197 (log,FC = -1.14, FDR = 0.0032), hsa-miR-125b-5p
(log,FC = -1.19, FDR = 0.0057), and hsa-miR-3132 (log,FC = -
1.05, FDR = 0.0068). Conversely, significantly upregulated miRNAs
included hsa-miR-4429 (log,FC = 0.68, FDR = 0.0017), hsa-miR-
3661 (log,FC =1.12, FDR = 0.0017), hsa-miR-1295a (log,FC = 1.02,
FDR = 0.0017), hsa-miR-1295b-5p (log,FC = 0.95, FDR = 0.0031),
and hsa-miR-2116-3p (log,FC = 1.33, FDR = 0.0031).

These results indicate that pre-diabetic individuals already
exhibit a distinct miRNA expression signature relative to non-
diabetic controls, suggesting early regulatory shifts associated with
the development of diabetes. The complete list of significantly
altered miRNAs is provided in Supplementary Table S1B. Among
the 141 significantly dysregulated miRNAs, 14 overlapped with the
top 16 literature-validated candidates highlighted by Zhu et al.
(2023) (20) (Supplementary Table S2B). Supplementary Table S2B
provides the corresponding overlap for the pre-diabetic versus
control comparison. This overlap reinforces their exploratory
relevance in early dysglycemia and supports their potential as
candidate biomarkers pending validation for diabetes progression.
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FIGURE 1

Analysis of varying hsa-miR expression in type 2 diabetes (T2D) and pre-diabetic patients compared to controls. (A) Principal component analysis
(PCA) scatterplot of rlog-transformed hsa-miR expression profiles from 14 T2D patients (green), 2 pre-diabetic individuals (blue), and 8 controls (red),
and 8 controls (green). (B) Volcano plots showing differentially expressed hsa-miRs between (B.1) T2D vs. controls (B.2) pre-diabetic vs. controls.
Red points indicate significantly upregulated hsa-miRs, blue points indicate significantly downregulated hsa-miRs, and grey points represent non-
significant changes. log,FC, log, fold change; FDR, false discovery rate.
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Notably, 56 of the significantly dysregulated miRNAs overlapped
between diabetic and pre-diabetic groups, underscoring a shared
molecular signature across disease stages.

Next, differential expression analysis was performed to compare
miRNA profiles between diabetic and pre-diabetic patients. No
miRNAs met the threshold for statistical significance after adjusting
for multiple testing (FDR < 0.05), emphasizing the similarity between
these two groups. Several miRNAs displayed trend-level differences
(uncorrected p < 0.001) that are considered exploratory findings
rather than statistically significant results (Supplementary Table
S1C). The most prominent were hsa-miR-4776-5p (log,FC = -0.65,
FDR = 0.22), hsa-miR-6778-3p (log,FC = -1.02, FDR = 0.30), and
hsa-miR-5002-3p (log,FC = -0.99, FDR = 0.32), all downregulated in
diabetic compared to pre-diabetic individuals. Other miRNAs with
suggestive differences included hsa-miR-1304-3p (log,FC = -1.23,
FDR = 0.33) and hsa-miR-580-3p (log,FC = -0.88, FDR = 0.33).
Interestingly, these same miRNAs were among the most upregulated
in pre-diabetic individuals compared to healthy controls
(Supplementary Table S1B), suggesting possible biological trends
that require validation in larger cohorts.

Functional enrichment of differentially
expressed miRNAs

To explore the biological relevance of the 131 miRNAs that
were differentially expressed between diabetic and non-diabetic
patients, we conducted a functional enrichment analysis using the
TAM 2.0 (Tool for Annotations of MicroRNAs; http://
www.lirmed.com/tam2/)| (26, 27) platform. This analysis
provided insights into the potential roles of these miRNAs in
various physiological and pathological processes related to diabetes.

Several functional categories were significantly enriched among
the differentially expressed miRNAs. Notably, glucose metabolism
emerged as a relevant biological process (Fold enrichment = 2.62,
FDR = 0.2287), involving hsa-miR-124-1, hsa-miR-124-2, hsa-miR-
124-3, and both isoforms of hsa-miR-125b. Because this FDR value
exceeds conventional significance thresholds, this pathway is
considered a nominal enrichment and should be interpreted
cautiously. These miRNAs have been previously associated with
regulating insulin sensitivity, glucose homeostasis, and B-cell
function (28).

The most significantly enriched category was embryonic
development (Fold enrichment = 5.19, FDR = 0.0118), reflecting
broader regulatory roles of these miRNAs in developmental gene
networks. Other highly enriched categories included T-helper 17
(Th17) cell differentiation (Fold = 4.64, FDR = 0.0200), regulation
of stem cells (Fold = 2.60, FDR = 0.0216), and inflammation (Fold =
2.23, FDR = 0.0314), all of which are relevant to the inflammatory
and immune dysregulation observed in diabetes (29).

Furthermore, miRNAs were significantly associated with
processes related to cell differentiation (Fold = 2.36, FDR =
0.1354), cell death (Fold = 2.07, FDR = 0.1631), and cell
proliferation (Fold = 1.84, FDR = 0.3251). These enrichments are
below statistical significance and are reported as exploratory
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findings that may indicate biological trends warranting further
validation. These findings suggest a possible involvement of the
identified miRNAs in the altered tissue regeneration and turnover
observed in diabetes (30).

Other notable enriched categories included Osteogenesis (Fold
= 2.74, FDR = 0.0335), which is consistent with bone fragility and
impaired skeletal integrity in diabetic patients (31); vascular
inflammation (Fold = 2.94, FDR = 0.3142), which potentially
reflects underlying vascular complications (32); and Circadian
rhythm (Fold = 2.67, FDR = 0.2930), which is increasingly
recognized as a contributor to metabolic dysregulation (33).

Among the miRNAs, members of the hsa-miR-124 family (hsa-
miR-124-1, hsa-miR-124-2, hsa-miR-124-3) and hsa-miR-125b
(hsa-miR-125b-1, hsa-miR-125b-2) appeared in multiple enriched
categories, suggesting central regulatory roles in both metabolic and
immunological pathways. These miRNAs may represent promising
candidates for future functional studies, pending experimental
validation, rather than established biomarkers (6, 34).

Collectively, the enrichment analysis supports the hypothesis
that miRNA dysregulation in diabetes reflects not only impaired
metabolic processes but also broader disruptions in immune
regulation, cellular differentiation, and systemic homeostasis.
Pathways or categories with FDR > 0.2 were treated as nominal
enrichments and are interpreted cautiously.

From a disease perspective, differentially expressed miRNAs
were significantly associated with multiple diabetes-related
pathologies. Notably, diabetic nephropathy (FDR = 0.0171), acute
myocardial infarction (FDR = 0.0211), tuberculosis (pulmonary)
(FDR = 0.0234), rhinosinusitis (FDR = 0.0175), Machado-Joseph
disease (FDR = 6.24e-4), and myelodysplastic syndromes (FDR =
2.39¢-3) showed strong enrichment. Several other diseases with
strong associations (all FDR < 0.05) included: Neuroinflammation,
epilepsy, Alzheimer’s disease, acute kidney injury, stroke, HIV
infection, and Hepatitis C virus infection.

Interestingly, although Type 2 diabetes mellitus (T2DM) was
present in the dataset, its false discovery rate (FDR) exceeded the
significance threshold (FDR = 1). This suggests that the
differentially expressed miRNAs may serve as more reliable
indicators of diabetic complications than of the disease itself.

Several microRNAs (miRNAs) have been consistently
implicated in various diseases, particularly members of the hsa-
miR-124, hsa-miR-125b, hsa-miR-181a, hsa-miR-221, and hsa-
miR-194 families. These miRNAs create a core regulatory
signature associated with inflammatory and metabolic disorders,
different malignancies, and neurodegenerative conditions. The
presence of these miRNAs in diverse yet pathophysiologically
interconnected diseases indicates a broader role for miRNA-
mediated regulation in the systemic manifestations of diabetes.

TAM 2.0 tissue enrichment analysis of miRNAs differentially
expressed between prediabetic and non-diabetic individuals
revealed significant associations with various tissues. Notably, the
eye showed the strongest enrichment (FDR = 0.0262), with
associated miRNAs including hsa-miR-182, hsa-miR-3183, and
hsa-miR-7158, suggesting early retinal or neuro-ocular
involvement, even before the onset of clinical diabetes. Additional
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tissues with significant enrichment included the artery (FDR =
0.1006), stomach (FDR = 0.1207), bone (FDR = 0.2056), adipose
tissue (FDR = 0.2056), and smooth muscle (FDR = 0.1926).

Functional annotation of miRNAs differing between prediabetic
and non-diabetic plasma samples revealed enrichment in several
biological processes relevant to metabolic dysfunction, immune
regulation, and cellular differentiation. The top enriched functions
(FDR < 0.05) included Glucose Metabolism (FDR = 0.0188),
highlighting the strong association of these miRNAs with early
dysregulation in metabolic pathways, Cell Differentiation (FDR =
0.0401) and Inflammation (FDR = 0.0489), both critical in the
pathogenesis of insulin resistance and prediabetes, and Neuron
Differentiation (FDR = 0.0492) and Regulation of Stem Cell
Functions (FDR = 0.0545), suggesting possible neuroendocrine
and regenerative component alterations in prediabetic individuals.

The TAM 2.0 enrichment analysis of miRNAs differentially
expressed between prediabetic and non-diabetic individuals
identified significant associations with several disease categories.
The most significantly enriched disease terms included Diabetic
Nephropathy (FDR = 8.18 x 107), Rhinosinusitis (FDR = 7.23 x
10%), Myelodysplastic Syndromes (FDR = 0.0188), Acute Kidney
Injury (FDR = 0.0262), and Medulloblastoma (FDR = 0.0281).
Additional terms with strong enrichment included Toxic Epidermal
Necrolysis, Stroke, Hemorrhagic, Early-Stage Colon Carcinoma, and
Cervical Neoplasms, all with FDR < 0.05. A set of core miRNAs, hsa-
miR-124-2, hsa-miR-124-1, hsa-miR-124-3, hsa-miR-125 b-1, hsa-
miR-125 b-2, and hsa-miR-135a-2 were recurrently implicated across
a range of enriched disease phenotypes, particularly in cancer,
neurological, and inflammatory contexts.

Compared to the diabetic group, the prediabetic group
exhibited a broader and more diverse disease enrichment profile
that includes cancers (e.g., pancreatic, colon, prostate),
neuroinflammatory, and autoimmune diseases. It also showed
stronger associations with neoplasms and immune-related
conditions, possibly reflecting early dysregulation before the onset
of overt hyperglycemia. The prediabetic group shared miRNA
signatures with the diabetic group, indicating early activation of
pathological pathways (notably hsa-miR-124 and hsa-miR-125b
families), while also possessing unique signatures in prediabetes
that may suggest distinct regulatory responses.

Differential expression of miRNAs by sex

To gain a deeper understanding of the molecular mechanisms
underlying sex differences in diabetes progression, we
comprehensively analyzed circulating miRNA expression across
various glycemic states, taking into account sex. Considering the
established biological and clinical disparities between males and
females in metabolic diseases, our approach aimed to delineate
miRNA signatures associated with sex, diabetes, and prediabetes.
We first assessed sex-based differences in miRNA expression
independent of disease status, followed by targeted comparisons
within diabetic males and females. Subsequently, we examined
differential expression patterns between diabetic and control groups,
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as well as between prediabetic and control groups, with sex included as
a covariate. This stratified analysis facilitated the identification of both
shared and unique miRNA signatures associated with glucose
dysregulation (Supplementary Table S3). Supplementary Table S3
provides the complete list of miRNAs differentially expressed by sex
and glycemic status, including their log, fold changes and FDR values.

mMiRNA expression differences between
males and females independent of disease
status

To investigate sex-specific differences in miRNA expression,
regardless of disease status, we conducted a differential expression
analysis comparing all male participants to all female participants.
This analysis revealed a set of miRNAs significantly upregulated in
males, including hsa-miR-4289 (log,FC = 2.41, FDR = 9.78 x 10’5),
hsa-miR-4432 (log,FC = 2.59, FDR = 0.0016), and hsa-miR-514a-
5p (log,FC = 1.70, FDR = 0.0036), each demonstrating strong
statistical significance (uncorrected p < 5 x 10°). All values were
adjusted for multiple testing, and uncorrected p-values are reported
for transparency but interpreted as exploratory. These results
suggest substantial sex-based differences in the expression of
specific miRNAs, which may contribute to the underlying
biological and pathophysiological disparities observed between
males and females in diabetes and related metabolic disorders.
Additional miRNAs with moderate fold changes but high statistical
significance were also identified, indicating a broader regulatory
divergence by sex that warrants further investigation.

Differential miRNA expression in diabetic
males versus diabetic females

Next-generation sequencing identified several miRNAs that were
differentially expressed between diabetic males and females. Notably,
hsa-miR-4289 and hsa-miR-4432 were significantly downregulated in
males compared to females, with log, fold changes of -2.50 and -2.94,
respectively, and false discovery rates (FDRs) of 0.011. These findings
suggest potential sex-specific regulatory roles of miRNAs in diabetes.
Additional miRNAs, such as hsa-miR-3143 and hsa-miR-514a-5p,
also displayed trends of downregulation in males, albeit with higher
FDR values. In contrast, hsa-miR-520e-3p was upregulated in males
(log, fold change = 2.19); however, this change did not achieve
statistical significance after FDR correction.

Differential miRNA expression in diabetic
versus control subjects accounting for sex

Analysis of miRNA expression profiles between diabetic and
control individuals, adjusted for sex, revealed 40 miRNAs with
significant differential expression (FDR < 0.05). Among the most
upregulated in diabetes were hsa-let-7i-5p (log,FC = 2.52), hsa-
miR-221-3p (log,FC = 2.47), hsa-let-7d-5p (log,FC = 2.21), and
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hsa-miR-126-3p (log,FC = 2.18), suggesting their potential
involvement in diabetes-related pathways. Conversely, miRNAs
such as hsa-miR-6751-3p (log,FC = -2.47), hsa-miR-520e-3p
(log,FC = -1.41), and hsa-miR-196b-3p (log,FC = -1.17) were
significantly downregulated in diabetic individuals. These findings
indicate a broad miRNA signature associated with diabetes that is
resilient to sex differences, highlighting candidates for further
investigation as potential biomarkers or therapeutic targets.
Enrichment analysis showed that significant miRNAs were
enriched in diabetes-related biological processes. Major functions
included cell proliferation (13 miRNAs, FDR = 7.01 X 10'8),
hematopoiesis (10 miRNAs, FDR = 1.86 x 10’6), and inflammation
(13 miRNAs, FDR = 3.77 x 10°°). Other pathways enriched were stem
cell regulation (FDR = 3.01 x 107), apoptosis (FDR = 0.0294), and
angiogenesis (FDR = 0.0461). Several diabetes-related pathways were
also enriched, including glucose metabolism (FDR = 0.0143), insulin
resistance, vascular inflammation (FDR = 2.61 x 10’4), and immune
response (FDR = 1.98 x 107). Disease association analysis revealed
significant enrichment for type 2 diabetes mellitus (FDR = 0.0451),
diabetic retinopathy, and diabetic vasculopathy, as well as
cardiovascular conditions such as acute myocardial infarction (FDR
=621 x 10 and coronary heart disease (FDR = 3.87 x 107%).
Additionally, the miRNAs were enriched in various neoplastic,
autoimmune, and neurodegenerative disease pathways, indicating
broader systemic involvement. Tissue and cell type specificity analysis
revealed that differentially expressed miRNAs were predominantly
found in vascular-associated and immune-related cells, including
endothelial cells, renal epithelial cells, monocytes, and
hematopoietic progenitor cells. Overall, these findings suggest that
the identified miRNAs play a role in regulating inflammation,
vascular remodeling, and metabolic homeostasis in diabetes.

Differential miRNA expression in
prediabetic versus control subjects
accounting for sex

Differential expression analysis of miRNAs between prediabetic
and control individuals, adjusted for sex, revealed seven with
statistically significant differences (FDR < 0.05). Among these,
hsa-miR-4800-5p, hsa-miR-4693-3p, hsa-miR-5002-3p, hsa-miR-
3661, and hsa-miR-4429 were significantly upregulated in the
prediabetic group, with log, fold changes ranging from 0.84 to
2.87. In contrast, hsa-miR-1277-5p and hsa-miR-1204 were
significantly downregulated (log, fold changes of -2.22 and -1.04,
respectively). These sex-adjusted results suggest a panel of miRNAs
that may reflect early regulatory changes associated with the
transition from normoglycemia to prediabetes.

Enrichment analysis revealed distinct associations across
disease, tissue, and cell-type categories. Among disease terms,
acute ischemic stroke exhibited the most substantial enrichment,
particularly with hsa-miR-4429, which was upregulated in the
dataset (fold enrichment = 58.5, Bonferroni-adjusted p = 0.002).
At the cell-type level, particular enrichment was noted for hsa-miR-
4800, omental adipocytes (hsa-miR-4693), and retinal pigment
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epithelial cells (hsa-miR-3661 and hsa-miR-5002), with fold
enrichments exceeding 17 and Bonferroni-adjusted p-values <
0.01. Additional enrichment in gingival epithelial cells, mast cells,
and neural stem cells suggests involvement of various biological
systems. These findings highlight the potential functional
significance of sex-biased miRNAs in the transition from
prediabetes to diabetes, particularly in vascular, metabolic, and
neural contexts.

Aspirin effect differential analysis

Supplementary Table S4 summarizes all miRNAs assessed for
aspirin-associated differential expression across diabetic subgroups,
including fold-change values and corresponding p- and FDR-
adjusted significance levels.

Differential miRNA expression in diabetic
individuals taking versus not taking aspirin

To investigate the potential influence of aspirin intake on
circulating miRNA profiles in individuals with diabetes, we
conducted a differential expression analysis comparing diabetic
patients who took aspirin with those who did not receive aspirin
therapy. While several miRNAs showed moderate fold changes and
strong unadjusted p-values, none passed the threshold for statistical
significance after correction for multiple testing (FDR < 0.05).
Among the top-ranked candidates based on unadjusted p-values
were hsa-miR-4263 (log,FC = 1.03, unadjusted p = 1.12 x 10,
hsa-miR-548s (log,FC = 0.98, p = 3.75 x 107*), and hsa-miR-204-5p
(log,FC = 1.35, p = 6.01 x 10°*), all of which were upregulated in the
aspirin group. Despite these trends, none remained statistically
significant after FDR adjustment, suggesting that while aspirin
may influence the expression of specific miRNAs, these effects are
subtle or variable in this cohort. Although none of the differences
reached statistical significance after FDR correction, these
unadjusted results are reported as exploratory and should be
interpreted as trend-level findings. Further studies with larger
sample sizes may help clarify the regulatory impact of aspirin on
miRNA expression in diabetes.

Differential miRNA expression in diabetic
patients not taking aspirin versus non-
diabetic controls

To evaluate miRNA expression differences associated with
diabetes independent of aspirin therapy, we compared diabetic
patients not taking aspirin with non-diabetic control individuals.
This analysis identified only three significantly differentially
expressed miRNAs. Notably, hsa-miR-4708-5p showed the strongest
downregulation in the diabetic group (log, fold change = -0.54; FDR =
2.27 x 10™*), along with hsa-miR-4482-5p and hsa-miR-152-5p, both
of which were also downregulated with FDR values < 0.05. Additional
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miRNAs such as hsa-miR-4708-3p and hsa-miR-1197 displayed
similar downregulation patterns, although their FDR values were
above the significance threshold. These patterns are therefore
described as exploratory and not statistically confirmed. These
findings suggest that specific miRNAs may be potential markers of
diabetes-related dysregulation, independent of anti-inflammatory
drug influence. The consistent downregulation of miRNAs involved
in regulatory and metabolic processes underscores their potential role
in the pathophysiology of diabetes.

Differential miRNA expression in diabetic
patients taking aspirin versus non-diabetic
controls

To determine whether aspirin use impacts miRNA expression
patterns in diabetic individuals compared to non-diabetic controls,
we analyzed circulating miRNA profiles in diabetic patients
undergoing aspirin therapy versus healthy controls. This
comparison revealed several miRNAs with significant differential
expression. Notably, hsa-miR-4708-5p was the most significantly
downregulated miRNA in the aspirin-treated diabetic group (log,
fold change = -0.61; FDR = 6.2 x 107). Additionally, miRNAs such
as hsa-miR-6513-5p and hsa-miR-20b-3p were significantly
upregulated (log,FC = 0.75 and 1.22; FDR = 0.016 and 0.020,
respectively). Other miRNAs, including hsa-miR-8054 and hsa-
miR-3149, were downregulated and reached statistical significance
(FDR = 0.020). These findings suggest that aspirin therapy may lead
to specific changes in miRNA expression in diabetic patients
compared to healthy controls, with implications for anti-
inflammatory or metabolic regulatory mechanisms.

Although several miRNAs showed nominal significance, none
remained significant after multiple-testing correction. These
observations represent exploratory trends rather than definitive
differences and illustrate the potential modifying role of medications,
which should be investigated in larger, independent cohorts.

Correlation analysis

Supplementary Table S5 summarizes the complete correlation
matrix for all biochemical and clinical traits across the study
population and within sex- and disease-specific subgroups.

Correlations among clinical and
biochemical traits

Pearson correlation analyses were performed across the entire
study population (Figure 2) and within subgroups (Supplementary
Table S5) defined by disease status and sex to assess the relationships
between clinical and laboratory phenotypic variables. In the overall
group, strong positive correlations were noted between whole blood
platelet count (PLT_X10*/uL) and platelet-rich plasma platelet count
(PRP_PLT_X10%) (r = 0.86, p = 5.88 x 10°®), diabetes duration and
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HbAlc (r = 0.82, p = 1.41 X 10'6), and HbAlc and glucose levels
(r=0.78,p = 2.03 x 10), indicating consistently strong links between
glycemic exposure and current metabolic status. Inversely, vitamin D
levels (vitD25_nmol_L) correlated with glucose (r = -0.52, p = 0.013),
HbAlc (r = -0.45, p = 0.034), and platelet aggregation response
(ADPI1_agg slope, r = -0.49, p = 0.021), suggesting a relationship
between lower vitamin D status, glycemic control, and platelet
activity as described previously by our lab at Sultan et al., 2018.
Subgroup analyses demonstrated similar patterns, in which sex-
stratified analyses revealed significant correlations between platelet
parameters in both females (r = 0.82) and males (r = 0.89), along
with additional correlations between diabetes duration and glucose
(r = 0.68), and HbAlc (r=0.81) in males, and in females (r=0.8).
In females, vitamin D levels positively correlated with serum calcium
(r =0.61, p = 0.045) and creatinine (r = 0.64, p = 0.034), whereas in
males, vitamin D was inversely associated with platelet aggregation
(r=-0.75, p = 0.008). These results highlight potential metabolic and
hemostatic functions of vitamin D across different sex and
disease categories.

Correlations between phenotypic traits and
circulating hsa-miRs

All correlation analyses are descriptive and exploratory;
reported associations do not imply causality. Several miRNAs
exhibited notable associations with metabolic traits, particularly
those related to glucose. Among them, hsa-miR-4799-5p displayed
a glucose correlation pattern influenced by diabetes status
(Figure 3A), whereas hsa-miR-1282 correlated with glucose levels
independent of diabetes (Figure 3B). Additionally, hsa-miR-3657
revealed contrasting relationships with glycemic markers: it was
positively correlated with HbAlc, an indicator of long-term
glycemic control (Figure 3C), but negatively correlated with
glucose, reflecting short-term glycemia (Figure 3D). Despite the
strong relationships between vitamin D and metabolic measures, no
significant correlations were identified between miRNAs and
vitamin D (vitD25_nmol_L) levels in this dataset. These results
underscore the complexity of miRNA-phenotype interactions and
suggest that specific miRNAs may play distinct roles in regulating
short- and long-term glycemic control, potentially affecting the
molecular pathophysiology of diabetes.

Discussion

This study provides a comprehensive analysis of circulating
microRNA (miRNA) profiles in diabetic, pre-diabetic, and healthy
individuals, utilizing next-generation sequencing (NGS) to uncover
differentially expressed miRNAs and their associations with key
metabolic, inflammatory, and vascular phenotypes (16, 35).
Importantly, our work encompasses various layers of analysis,
including disease status, sex, vitamin D levels, platelet function,
and aspirin use, thereby providing a multifaceted perspective on
miRNA regulation in diabetes pathophysiology (36, 37).

frontiersin.org


https://doi.org/10.3389/fendo.2025.1699100
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Abu-Toamih Atamni et al.

10.3389/fendo.2025.1699100

AUC_aggregation_ADP1uM X X X X X X XX X XX
slope_aggregation_ ADP1uM (X) (<) <) X . X X XXX X X
X_max_aggregation_ADP1uM X X X X X X X X X X X X X
AUC_aggregation_collagen0_25 }X{ X X X X XXX X XXX
slope_aggregation_collagen0_25 X X X X X X X X X X X X X
X_max_aggregation_collagen0_25 X X X X X XXX X XXX
PRP_PLT X103 X X X X X X X X X X X @K
MPV_IL X 3080 X X X X XX R X X @ corr
PLT_X10_3_ul X X X & X X R X X X XX m
HL X PPORO XQP X@XXIQVIR RO X 05
createninXXXXXXXXX.XXXXXXXXXX 0o
trig XXXXXXXX.X.XXXXXXXXX .'05
gucose X X @@ X X @)X X @ X X X X X XX 10
Ca XXXXXX‘XXXXXXXXXXXXX
cholesterol XXXX.XXXX XX XX XX
vit25_nmol L X R R @EX X @RI R X X X X R R X @ X
IR T T T YT TR DEERLL L PE I
Diabetes_duration X X (@)@ X X @ X X K X & X X KX X X X
BMI X @ X XX XXX XXX XX XXX XXXX
age.XXXX HKHXHKKX XXX XX XXX
C X LR NV O 2 2 OLAA DY DO PO P
) %j)‘tb\\o‘zp\?i&i\; %\é c;\ogoc-’ \; é@}\ QS:Q? <§ i é?é@;@§r§§\$
& \Q'i””é‘ © él\‘ X PN S S
o X RIT T T IO
® OS5 P P
SES LSS
S S &2
®+;0Q®®0/_\_ 3

FIGURE 2

Correlation matrix of clinical, biochemical, and platelet function variables. The heatmap depicts Pearson correlation coefficients among selected
traits. Colors range from red (strong positive correlation, r = +1) to blue (strong negative correlation, r = —1). Only statistically significant correlations
(p < 0.05) are displayed as colored circles, while non-significant correlations are marked with an “x". Circle size is proportional to correlation

strength. AUC_aggregation_ADP1uM, area under the curve for adenosine di
aggregation slope for ADP (1 uM); X_max_aggregation_ADP1uM, maximum

phosphate (1 uM)—-induced aggregation; slope_aggregation_ADP1uM,
aggregation for ADP (1 uM); AUC_aggregation_collagen0_25, area under

the curve for collagen (0.25 ng/mL)—-induced aggregation; slope_aggregation_collagen0_25, aggregation slope for collagen (0.25 pg/mL);
X_max_aggregation_collagen0_25, maximum aggregation for collagen (0.25 ug/mL); MPV_fL, mean platelet volume (fL); PRP_PLT_X10°%, platelet-

rich plasma platelet count (x10%/uL); HDL, high-density lipoprotein choleste

rol; creatinine, serum creatinine; trig, triglycerides; glucose, fasting blood

glucose; Ca, calcium; cholesterol, total cholesterol; vitD25, 25-hydroxyvitamin D (nmol/L); HbAlc, glycated hemoglobin; Diabetes_duration, years

since diagnosis; BMI, body mass index.

This study is particularly unique in its integration of glycemic
control, vitamin D status, and platelet function with miRNA
expression patterns, a multidimensional approach not commonly
applied in previous studies (38, 39). Additionally, our subgroup
analyses, which compare diabetic patients who use aspirin with
those who do not, along with sex-specific miRNA patterns, offer
essential insights into the molecular diversity of diabetes that are
frequently neglected (40-42). The aspirin-related comparisons in this
study were exploratory, as no differences remained significant after
multiple-testing correction, and should therefore be interpreted as
trend-level observations pending validation in larger cohorts.

This study identified several miRNAs, particularly hsa-miR-
4799-5p and hsa-miR-3657, showing distinct correlations with
glycemic levels. These findings highlight the complex roles of
miRNAs in regulating glucose homeostasis in both short and long
terms. Previous research by Li et al. (2020) noted hsa-miR-4799-5p in
a hypertension-related co-expression network with indirect links to
insulin signaling (43). Our study suggests a potential direct
association between this miRNA and glucose levels, indicating its
broader role in metabolic regulation, while this observation should be
interpreted as exploratory rather than a confirmed functional role.
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While hsa-miR-4799-5p demonstrated a modest increase in
individuals with diabetes compared to controls (log2FC = 0.76, p =
0.0127), it did not achieve statistical significance after false discovery
rate (FDR) correction (FDR = 0.123). Therefore, this observation is
considered a trend-level finding that requires validation in larger
datasets. Nonetheless, its robust association with glycemic traits
suggests a potential functional role in metabolic regulation that
differential expression analysis may not adequately address.

Similarly, hsa-miR-3657 shows a negative correlation with
fasting glucose and a positive correlation with HbAlc, indicating
varying responses to hyperglycemia. To our knowledge, this is the
first study suggesting an association between hsa-miR-3657 and
metabolic traits, indicating its potential role in transitioning from
acute (glucose levels) to chronic (HbA1C) glycemic dysregulation.
Further studies are needed to clarify the roles of these miRNAs in
metabolic tissues and evaluate their potential as candidate
biomarkers or therapeutic targets for type 2 diabetes.

A key strength is its high-throughput, unbiased miRNA
profiling using NGS, which allows for the detection of thousands
of circulating miRNAs simultaneously (44, 45). Additionally,
combining multiple bioinformatics tools, including enrichment
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FIGURE 3

Correlations between circulating hsa-miRs and glucose-regulation—related phenotypic traits. (A) Positive correlation between hsa-miR-4799-5p
expression and fasting glucose levels (mg/dL) in diabetic patients compared to controls. (B) Positive correlation between hsa-miR-1282 expression
and fasting glucose levels (mg/dL). (C) Negative correlation between hsa-miR-3657 expression and HbAlc (%), reflecting long-term glycemic
control. (D) Positive correlation between hsa-miR-3657 expression and fasting glucose levels (mg/dL), reflecting short-term glycemic status. Lines
represent linear regression fits (green, control group; red, diabetic group). Abbreviations: hsa-miR, human microRNA; HbAlc, glycated hemoglobin.

Frontiers in Endocrinology 11 frontiersin.org


https://doi.org/10.3389/fendo.2025.1699100
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Abu-Toamih Atamni et al.

analyses via TAM 2.0, helps identify potential biological pathways
and tissue associations related to early diabetic changes, such as
vascular remodeling, inflammation, and immune responses (26).
Given the exploratory nature of this research, future studies
should aim to validate the most promising miRNAs, such as hsa-
miR-4776-5p, hsa-miR-5002-3p, and hsa-miR-4800-5p, using
quantitative PCR (qPCR) in larger, well-characterized cohorts.
These investigations should include longitudinal sampling to
monitor how miRNA expression changes during the progression
and treatment of diabetes. In particular, expanding the pre-diabetic
group is crucial for understanding the early miRNA alterations that
occur before hyperglycemia appears, which could aid in the
development of new early diagnosis and prevention strategies (49).

Limitations

This study has several limitations. The cohort size was small (n =
24), particularly in the pre-diabetic group (n = 2), which limits
statistical power and generalizability. Therefore, the findings should
be viewed as exploratory, although the overlap with literature-
validated miRNAs strengthens confidence in their relevance (46, 47).

This study has several limitations. The cohort size was small
(n = 24), particularly in the pre-diabetic group (n = 2), which
substantially reduces statistical power and the ability to generalize
results. The findings should therefore be interpreted as exploratory
and hypothesis-generating rather than confirmatory, although the
overlap with literature-validated miRNAs strengthens confidence in
their relevance (46, 47).

The plasma samples were originally collected for the Sultan et al.
(2019) study (22), which focused on platelet aggregation, vitamin D,
and glycemic control but did not assess microRNAs. The novelty of
our work lies in applying next-generation sequencing to this archived
cohort, thereby expanding the scope of the dataset. During the
COVID-19 pandemic, research laboratory activity was suspended,
and by the time NGS analysis resumed, several archived pre-diabetic
samples did not meet quality control standards, leaving only two
suitable for inclusion. All plasma samples were stored at —80 °C and
subjected to a single thaw cycle prior to RNA extraction; however,
long-term storage and freeze-thaw may affect RNA integrity and are
acknowledged as potential limitations. In addition, all RNA samples
underwent quality-control assessment before sequencing, and any that
did not meet QC standards were excluded from analysis. Potential
batch effects related to sequencing runs or library preparation cannot
be entirely ruled out, although identical protocols and simultaneous
processing were applied to minimize variability. Moreover, the study
did not include downstream functional or mechanistic validation,
which remains an important next step.

Finally, while we recorded clinical variables (age, sex, BMI,
comorbidities, medications) and performed stratified analyses,
residual confounding cannot be excluded. Unmeasured lifestyle
factors such as diet and physical activity, as well as other
medications, may have influenced results and should be considered
in future studies. Moreover, the associations observed between miRNAs
and platelet aggregation, vitamin D, and HbA 1c are correlational rather
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than causal and require validation in larger, prospective studies (48).
Similarly, all correlation analyses were descriptive and intended to
highlight potential relationships rather than infer causation.

In summary, our study highlights circulating microRNAs as
candidate molecular signals involved in the regulation of glycemic
control and diabetes-associated vascular processes. Several of the
identified miRNAs, including those with consistent associations
across glycemic traits and published datasets, may represent
exploratory indicators of metabolic dysregulation. By integrating
miRNA profiles with biochemical traits, platelet activity, and sex-
specific differences, this work provides a foundation for future
validation studies aimed at developing more personalized
approaches to diabetes risk assessment (42, 49).
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