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Osteoporosis (OP) is a systemic bone disease characterized by reduced bone

mass and deterioration of bone microarchitecture. Its critical complication,

osteoporotic fractures (OPF), imposes a significant global disease burden.

Macrophages, serving as central regulators within the osteoimmune

microenvironment, dynamically modulate bone homeostasis and fracture

healing through polarization (into pro-inflammatory M1 and reparative M2

phenotypes) and metabolic reprogramming. In OPF, OP-inducing factors (such

as estrogen deficiency and aging) induce metabolic dysregulation in

macrophages by disrupting the balance between glycolysis and oxidative

phosphorylation (OXPHOS), causing aberrant succinate accumulation, and

depleting NAD+ levels. This dysregulation disrupts the orderly transition from

pro-inflammatory M1 to reparative M2 polarization, ultimately leading to

insufficient inflammatory initiation in the early fracture phase and impaired

osteogenic differentiation during later stages. Targeting this mechanism,

innovative therapeutic strategies centered on macrophage metabolic

reprogramming and polarization modulation are rapidly developing. These

include nanocarriers for mitochondrial function restoration, bioactive coatings

enabling time-programmed osseointegration, immunomodulatory smart

hydrogels, and functionalized composite biomaterials. These strategies

effectively promote osteoporotic bone regeneration by synergistically

optimizing osteoimmune homeostasis and the osteoblast-osteoclast balance.

This review systematically summarizes the immunometabolic mechanisms of

macrophages in OPF and explores targeted intervention strategies, providing

novel perspectives for the precision treatment of OPF.
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1 Introduction

Osteoporosis (OP) is a systemic skeletal disorder marked by low

bone mass, deteriorated bone microarchitecture, and consequently,

increased bone fragility and fracture susceptibility (1). Its global

prevalence is estimated at 19.7% (95% CI: 18.0%–21.4%) (2), rising

to 21.7% among the elderly (95% CI: 18.8%–25.0%) (3). In 2019, OP

incidence reached 41.5 million cases, reflecting a steady upward

trend (4). Osteoporotic fractures (OPF) are a major complication of

OP (5). Approximately 50% of women will experience at least one

OPF during their lifetime (6). The associated annual global

treatment costs are substantial, potentially reaching $25 billion

USD (7).

Macrophages are highly heterogeneous immune cells that are key

regulators of bone homeostasis within the osteoimmune

microenvironment (8, 9). In response to local cues, they polarize

into functionally distinct phenotypes (M1/M2) and release signaling

molecules, including cytokines and exosomes. These signals modulate

the activities of osteoblasts (OBs), osteoclasts (OCs), and bone

marrow stromal cells (BMSCs) to maintain skeletal equilibrium

(10–13). Furthermore, macrophages are indispensable for

orchestrating bone repair following injury (14–16).

OPF is frequently complicated by delayed healing or non-union

(17). While traditional theories of fracture repair have focused on

biomechanics and OBs/OCs balance, emerging evidence underscores

the central role of the osteoimmune microenvironment, where

macrophages act as key orchestrators (18). Under the pathological

state of osteoporosis, the impaired function of macrophages is an

important mechanism of delayed healing of OPF (19). Therefore,

deciphering the immunometabolic networks controlling

macrophages in OPF and developing macrophage-targeted

therapies to restore osteoimmune homeostasis may provide a

promising avenue for addressing current treatment limitations and

enabling precision intervention.

This review aims to systematically summarize the role of

macrophages in the pathogenesis and progression of OPF. We

will focus on the mechanisms underlying their immune

polarization, metabolic reprogramming, and interactions with

bone cells (OBs, OCs, BMSCs). We will elaborate on how OP-

related pathological factors impair fracture healing by disrupting

macrophage function. Furthermore, we will evaluate the potential

and challenges of innovative therapies targeting macrophage

immunometabolism for enhancing OPF repair. Ultimately, this

review seeks to provide perspectives and a theoretical foundation

for the future precision treatment of OPF.
2 Role of macrophages in bone
homeostasis

Bone homeostasis depends on the dynamic balance between

bone formation by OBs and bone resorption by OCs (20).

Macrophages, as important immune effector cells, help maintain

this equilibrium by directly influencing the activities of OBs, OCs,

and BMSCs (21). Their functional impact on bone metabolism is
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largely determined by their polarization state, which can shift

toward either the pro-inflammatory M1 or the anti-inflammatory

M2 phenotype.
2.1 Regulation of OBs by macrophages

OBs are essential for bone formation (22). Macrophages influence

OB differentiation and activity in a polarization-dependent manner

through the secretion of various factors. M2 macrophages generally

exert pro-osteogenic effects by releasing molecules such as BMP-2

and TGF-b1, which promote OBs differentiation and bone matrix

mineralization via activation of the canonical Smad/Runx2 signaling

pathway (23–26). In addition, M2-derived oncostatin M binds to the

gp130 receptor and activates the JAK/STAT signaling pathway,

thereby synergistically enhancing osteogenic differentiation (27).

Specific M2 subsets (e.g., CD301b+ macrophages) also secrete IGF-

1, promoting OBs differentiation via activation of the Akt/mTOR

signaling pathway (28). Furthermore, M2 macrophages enhance OBs

activity through chemokines (e.g., C-X-C motif chemokine ligand

(CXCL) 3, CXCL6, CXCL14) and exosomes that modulate

cytoskeletal and inflammatory pathways, and deliver osteogenic

miRNAs such as miR-26a-5p and miR-21a-5p (29–33).

In contrast, M1 macrophages primarily inhibit OBs activity

through the release of pro-inflammatory cytokines. Key effector

molecules such as TNF-a and IL-1b suppress the expression of

essential osteogenic transcription factors and inhibit the WNT/b-
catenin signaling pathway, thereby impairing OBs differentiation

and function (34–36). Although its role is complex, IL-6 in M1-

dominant environments often indirectly suppresses osteogenesis,

for example by upregulating TNF-a in OBs (37–40). Exosomes

derived from M1 macrophages have also been implicated in the

regulation of OB activity, though their precise mechanisms and

functional distinctions from M2-derived exosomes remain to be

fully elucidated (33, 41). It is also noteworthy that TNF-a exhibits a

dual role: brief, low-level exposure can promote osteogenesis, while

sustained, high-concentration exposure predominantly inhibits

it (42).
2.2 Regulation of OCs by macrophages

OCs andmacrophages share a commonmyeloid progenitor, which

can lead to a competitive relationship during their differentiation.

Macrophage polarization significantly influences osteoclastogenesis.

While M1 macrophages are generally considered to promote

osteoclastogenesis, their effects are highly context-dependent. Their

key pro-inflammatory cytokine, TNF-a, strongly enhances

RANKL-induced osteoclastogenesis and acts as an autocrine/

paracrine factor in OCs formation (21, 43–46). IL-1b has also been

shown to directly promote OCs formation and bone resorption in

the presence of RANKL and M-CSF (47, 48). However, IFN-g secreted
by M1 macrophages inhibits osteoclastogenesis in in vitro

RANKL-induced models (49), underscoring the context-dependent

nature of M1-mediated regulation.
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Converse ly , M2 macrophages genera l ly suppress

osteoclastogenesis. They inhibit RANKL-induced OCs formation by

interfering with TNF-a signaling and downregulating CSF2

expression (50). Characteristic anti-inflammatory cytokines, such as

IL-10 and IL-4, directly impede osteoclast differentiation (10, 21).

Furthermore, M2-derived exosomes serve as effective inhibitors by

deliveringmiRNAs (e.g., miR-1227-5p) or modulating pathways such

as STAT3 via CYLD (51, 52). Recent evidence indicates that these

exosomes can metabolically reprogram osteoclast precursors—for

example, by enhancing glutamine metabolism—and epigenetically

downregulate osteoclastogenic genes, and may even promote their

conversion into an M2-like phenotype. This establishes an important

negative feedback loop that restrains bone resorption (53).
2.3 Crosstalk between macrophages and
BMSCs

2.3.1 Influence of macrophages on BMSCs
Macrophage polarization significantly influences the osteogenic

differentiation of BMSCs. M2 macrophages promote osteogenic

differentiation and mineralization of BMSCs through the secretion

of factors such as BMP-2 and TGF-b1. These ligands activate the

Smad/Runx2 pathway in BMSCs, leading to upregulated expression

of key osteogenic markers including ALP, OCN, and COL1A1 (54–

58). Additionally, specific miRNAs (e.g., miR-26a-5p, miR-486, miR-

381) packaged within M2-derived exosomes enhance osteogenic gene

expression and contribute to bone repair (32, 59, 60).

The influence of M1 macrophages on BMSCs is primarily

dependent on the inflammatory state of the microenvironment

(61). Under low inflammatory conditions, M1 macrophages have

been observed to promote osteogenic differentiation and enhance

bone mineralization in co-culture systems (62, 63). This promotive

effect may be mediated through the induction of high autophagy

levels in BMSCs, which facilitates their migration and osteogenic

commitment (64, 65).

Conversely, under high-inflammatory conditions, classical M1

macrophages strongly inhibit osteogenesis. They secrete elevated

levels of TNF-a, IL-1b, and IL-6, which induce sustained activation

of the NF-kB pathway in BMSCs (66–68). Furthermore, M1

macrophages can transfer oxidatively damaged mitochondria to

BMSCs, disrupting redox homeostasis in the stem cells and thereby

impairing osteogenic differentiation (69). Additionally, exosomes

derived from hypoxia-induced M1 macrophages (e.g., those

containing miR-222) have been shown to significantly reduce

BMSCs viability and migratory capacity while promoting

apoptosis (70). This contrast illustrates the context-dependent

nature of M1 macrophage influence on bone formation.

2.3.2 Influence of BMSCs on macrophages
BMSCs are effective regulators of macrophage polarization.

Under inflammatory conditions, BMSCs secrete factors such as

prostaglandin E2 to promote macrophage transition from the pro-

inflammatory M1 to the anti-inflammatory M2 phenotype, thereby

enhancing the production of anti-inflammatory cytokines like IL-10
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(71, 72). Furthermore, activated BMSCs can upregulate BMAL1 in

macrophages via the KDM6B-BMAL1 axis, which suppresses the

TLR2/NF-kB pathway, reduces pyroptosis, and ultimately lowers the

M1/M2 ratio (73). BMSCs-derived exosomes—carrying molecules

such as miR-27a-3p, miR-146a, and lncRNA-CAHM—promote M2

polarization while suppressing M1 polarization through inhibition of

NF-kB signaling or direct targeting of downstream genes (74–77).

In summary, macrophages orchestrate bone remodeling through a

complex network of cytokines, chemokines, and exosomes, dictated by

their polarization state. Key pathways include BMP/Smad/Runx2

(osteogenesis), RANKL/RANK/OPG (osteoclastogenesis), and NF-kB
(inflammation-mediated bone suppression). Typically, M2

macrophages promote bone formation by synergizing with OBs and

BMSCs, while simultaneously inhibiting OCs activity. In contrast, M1

macrophages within inflammatory environments inhibit osteogenesis

and potentiate osteoclastogenesis. This crosstalk is bidirectional;

BMSCs provide critical feedback by secreting factors that promote

macrophages toward the pro-regenerative M2 phenotype. Together,

this dynamic feedback loop between macrophages, OBs, OCs, and

BMSCs is fundamental to maintaining bone homeostasis (Figure 1),

and its dysregulation is a pivotal immunometabolic mechanism driving

OPF pathogenesis and progression.
3 Macrophages in OP

OP is characterized by an imbalance in bone remodeling,

resulting from enhanced bone resorption and reduced bone

formation. Macrophages serve as central regulators of this process

by modulating inflammatory status and bone homeostasis through

immunometabolic reprogramming, which involves switching

metabolic pathways and accumulating specific metabolites (78–

81). Given the diverse etiologies of secondary osteoporosis, the

following sections will adhere to the framework of primary OP to

elucidate the role of the macrophage metabolism-polarization axis

in OP pathogenesis (Figure 2).
3.1 Estrogen deficiency

The ovariectomized (OVX) mice model, which mimics

postmenopausal osteoporosis, is widely used in related research.

Studies using this model have shown an increased M1/M2

macrophage ratio in the bone marrow of osteoporotic mice.

Under RANKL stimulation, aberrant differentiation of M2

macrophages into osteoclasts was observed, which contributed to

enhanced bone resorption. Estrogen supplementation was found to

reduce the M1 population and inhibit this macrophage-to-

osteoclast transition (82, 83), indicating that estrogen has an

important role in regulating macrophage polarization.

3.1.1 Estrogen deficiency and RANKL-induced
metabolic dysregulation

Mechanistically, estrogen deficiency impairs the ability of ERa to

inhibit NF-kB p65 nuclear translocation, thereby enhancing cellular
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responsiveness to RANKL (83). Under physiological conditions,

RANKL stimulation rapidly upregulates glucose transporters and

enhances glycolytic enzyme activity in macrophages to meet their

energy demands (84). Concurrently, RANKL induces high expression

of aconitate decarboxylase 1 (ACOD1), which promotes the

conversion of isocitrate to itaconate. Itaconate acts as an inhibitor

of succinate dehydrogenase (SDH), leading to succinate

accumulation and a disruption of the tricarboxylic acid (TCA)

cycle by blocking the conversion of succinate to fumarate (85).

Succinate contributes to enhanced bone resorption through several

mechanisms. First, it inhibits prolyl hydroxylases (PHDs), thereby

preventing the degradation of hypoxia-inducible factor 1-alpha

(HIF-1a). HIF-1a stabilization upregulates the secretion of pro-

inflammatory cytokines such as IL-1b, fostering a microenvironment

that supports M1 polarization (86, 87). Second, succinate activates

macrophages via the SUCNR1 receptor, promoting their polarization

toward the pro-inflammatory M1 phenotype and further facilitating

their differentiation into OCs (88). Additionally, ACOD1-mediated

itaconate accumulation and SDH inhibition impair electron transport

chain (ETC) function by reducing electron flux from succinate

oxidation, which worsens metabolic dysregulation (85).

3.1.2 Estrogen deficiency and mitochondrial
metabolic dysregulation

Upon binding to the ERa receptor on macrophages, estrogen

upregulates the mitochondrial deacetylase SIRT3. SIRT3 enhances

mitochondrial oxidative phosphorylation (OXPHOS) efficiency by

deacetylating and activating mitochondrial ETC complexes (89, 90).
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At the same time, SIRT3 activates key TCA cycle enzymes,

including isocitrate dehydrogenase and the pyruvate

dehydrogenase complex. This activation facilitates the conversion

of pyruvate and fatty acids to acetyl-CoA, promotes TCA cycle flux,

and thereby enhances mitochondrial OXPHOS capacity (91, 92).

Furthermore, estrogen promotes the phosphorylation of p53 at

Ser392 and facilitates its translocation to mitochondria. Within

mitochondria, p53 binds directly to the anti-apoptotic proteins

BCL-xL and BCL-2 through its DNA-binding domain. This

interaction activates the mitochondrial apoptosis pathway,

thereby reducing osteoclast formation (93, 94). In summary, by

enhancing mitochondrial OXPHOS and suppressing glycolysis,

estrogen attenuates M1 polarization of macrophages and

limits osteoclastogenesis.
3.2 Aging

Aging is a major risk factor for chronic diseases, including

metabolic disorders, cancer, and neurodegenerative diseases (95). In

bone metabolism, aging is a primary driver of osteoporosis. As the

global population ages, the associated disease burden is escalating

(96, 97). Aging not only directly disrupts bone remodeling balance

(98) but also accelerates bone loss through chronic inflammation

and metabolic dysregulation (99, 100).

Aging remodels the immunometabolic program of macrophages,

promoting a shift toward a pro-inflammatory phenotype.

Experimental evidence shows a significant upregulation of M1
FIGURE 1

The connection between macrophages and OBs, OCs, and BMSCs. This image describes the relationship between macrophages and OBs, OCs, and
BMSCs under different polarization states, including how M1 and M2 macrophages regulate OBs, OCs, and the mutual crosstalk between
macrophages and BMSCs. BMSCs, Bone marrow stromal cells; OBs, Osteoblast; OCs, Osteoclast.
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marker genes and an attenuated increase in M2 marker expression in

bone marrow-derived macrophages from aged mice (101).

Transcriptomic analysis of fracture callus further confirms that

senescent macrophages exhibit dominant pro-inflammatory (M1)

gene expression and dysregulation of immune-related networks

(102). Critically, metabolic reprogramming is the central driver of

this aging-associated polarization shift.

3.2.1 Mitochondrial dysfunction drives pro-
inflammatory polarization

Mitochondria are particularly vulnerable to aging-related changes.

In macrophages, aging impairs ETC function and OXPHOS capacity,

and is accompanied by a reduction in mitochondrial spare respiratory

capacity (103, 104). The aging process involves upregulation of

NADPH oxidase 4, resulting in reactive oxygen species (ROS)

accumulation that further disrupts mitochondrial energy metabolism

(105, 106). This metabolic disturbance triggers a compensatory shift

toward glycolysis. However, aging is associated with an overall decline

in glycolytic flux and reduced succinate levels, which exacerbates

macrophage dysfunction (107). Impaired mitochondrial OXPHOS

hinders effective reprogramming toward the anti-inflammatory (M2)

phenotype (108). At the same time, accumulated ROS activates the NF-

kB pathway, enhancing inflammatory responses and promoting

polarization toward the pro-inflammatory (M1) phenotype (109, 110).
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3.2.2 NAD+ deficiency exacerbates energy
metabolism imbalance

Aging is accompanied by a systemic decline in intracellular

levels of the essential cofactor nicotinamide adenine dinucleotide

(NAD+) (111–113). In macrophages under aging conditions, NAD+

synthesis becomes suppressed (113).

First, the de novo synthesis pathway is impaired. Macrophage de

novo NAD+ synthesis originates from tryptophan metabolism via the

kynurenine pathway (KP) (114). Upon immune challenge, indoleamine

2,3-dioxygenase 1 (IDO1) converts tryptophan into kynurenine, which

is subsequently metabolized to quinolinic acid (115, 116). Quinolinic

acid is then converted to nicotinic acid mononucleotide (NaMN) by

quinolinic acid phosphoribosyltransferase, and NaMN is ultimately

transformed into NAD+ via the Preiss-Handler pathway (117).

Critically, in aging, innate immune challenges activate the upstream

KP but restrict the downstream conversion of quinolinic acid to NAD+,

resulting in dysfunction of the de novo synthesis pathway (114).

Second, the salvage pathway is impaired. This pathway serves as

the primary source of NAD+ production during inflammatory stress.

In it, NAD+ degradation products—primarily nicotinamide (NAM)

—are converted to nicotinamide mononucleotide (NMN) by

nicotinamide phosphoribosyltransferase (NAMPT). NMN is then

transformed back into NAD+ by NMN adenylyltransferases (118–

120). The expression of the rate-limiting enzyme NAMPT is induced
FIGURE 2

Metabolic reprogramming of macrophages caused by estrogen deficiency and aging. This figure illustrates how estrogen deficiency and aging affect
macrophage metabolism and mediate macrophage polarization under OP. Because evidence of the role of gut microbiota and genetic mutations in
the regulation of macrophages in OP is limited, it is not shown. IDH, Isocitrate Dehydrogenase; SDH, Succinate Dehydrogenase; CoA, Coenzyme A;
OAA, Oxaloacetic Acid; MAL, Malic Acid; FUM, Fumaric Acid; SUCC, Succinic Acid; SCoA: Succinyl-CoA; a-KG, Alpha-Ketoglutaric Acid; TCA,
Tricarboxylic Acid Cycle; Glc, Glucose; GLUT1, Glucose Transporter 1; Pyr, Pyruvic Acid; LA, Lactic Acid; ER, Estrogen Receptor; ERE, Estrogen
Response Element; NAM, Nicotinamide; NMN, Nicotinamide Mononucleotide; NAMPT, Nicotinamide Phosphoribosyltransferase; Trp, Tryptophan;
KYMA, Kynurenic Acid; QA, Quinolinic Acid.
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by TNFa, IL-1b, LPS, IFNg, and hypoxia—all factors that increase

with age (121). Consequently, aging-associated inflammation can

reduce NAD+ regeneration efficiency by dysregulating NAMPT.

NAD+ is an essential cofactor for the deacetylase activity of

Sirtuin enzymes. The decline in NAD+ levels directly compromise

SIRT activity (122, 123). Reduced SIRT3 activity impairs

mitochondrial respiratory chain function and diminishes ATP

synthesis, hindering the transition to the anti-inflammatory (M2)

phenotype (124). Diminished SIRT3 activity also leads to impaired

deacetylation of antioxidant enzymes like superoxide dismutase

(SOD) 2, reducing cellular ROS-scavenging capacity and

exacerbating oxidative stress (124, 125). Concurrently, decreased

SIRT1 activity results in hyperactivation of the NF-kB pathway,

promoting M1 polarization (126). In redox metabolism, NAD+ acts

as a crucial electron carrier, accepting electrons from glycolysis and

the TCA cycle to form NADH, which then transfers these electrons

to the mitochondrial ETC for ATP production. Therefore, NAD+

deficiency exacerbates mitochondrial energy generation failure,

ultimately disrupting macrophage phenotypic plasticity (127, 128).

3.2.3 Autophagy defects amplify mitochondrial
dysfunction and inflammation

Autophagy plays a critical role in regulating macrophage

metabolism and polarization (129, 130). Aging is associated with

a significant decline in macrophage autophagy, potentially linked to

suppressed expression of the autophagy-related gene ATG5 (131,

132). Impaired mitophagy leads to the accumulation of

dysfunctional mitochondria, exacerbating ROS production and

OXPHOS deficiency (133, 134). Under specific conditions like

hyperglycemia, mitochondrial-derived ROS can induce lysosomal

dysfunction, further obstructing autophagic flux and promoting M1

polarization (135).

3.2.4 Cellular senescence regulates polarization
via metabolic reprogramming

Cellular senescence is frequently associated with downregulation of

SIRT4 expression (136). In macrophages, SIRT4 modulates immune

function by regulating branched-chain amino acid (BCAA)

metabolism (137). BCAA catabolism depends on the branched-chain

a-keto acid dehydrogenase (BCKDH) complex, whose activity requires

functional dihydrolipoamide branched-chain transacylase E2 (DBT).

SIRT4 ablation or downregulation leads to excessive itaconylation of

DBT, reducing its enzymatic activity. This diminishes BCKDH activity,

impairing BCAA breakdown and causing BCAA accumulation (137).

The resulting BCAA buildup promotes pro-inflammatory polarization

and impedes the transition to the anti-inflammatory phenotype

(138, 139).

Although current studies have not directly established SIRT4

downregulation in senescent macrophages, the age-related decline

in NAD+ may affect SIRT4 activity, potentially initiating this

pathological cascade. Additionally, cellular senescence is marked

by telomere damage; such telomere dysfunction disrupts

mitochondrial metabolism in macrophages and activates the

NLRP3 inflammasome through the PGC-1a/TNFAIP3 axis, thus

promoting M1 polarization (140).
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3.3 Gut microbiota

Gut dysbiosis represents a significant risk factor for OP (141, 142).

Studies have revealed distinct compositional differences in

gut microbiota between OP patients and healthy individuals (143),

with proposed mechanisms involving microbial metabolites,

immunoinflammatory modulation, and altered nutrient absorption

(144–146). Although the precise mechanisms remain to be fully

elucidated, the contribution of gut microbiota to OP pathogenesis

has become increasingly evident, with macrophage polarization and

metabolic reprogramming potentially serving as an intermediate link.

Multiple microbial metabolites—including short-chain fatty

acids (SCFA), bile acids, choline metabolites, indole derivatives,

and vitamins—directly regulate macrophage polarization and

metabolism (147).

SCFA including acetate, propionate, and butyrate, modulates bone

metabolism through distinct mechanisms. For example, acetate reduces

osteoclast numbers via T and B cells, while propionate and butyrate

prevent OVX-induced bone loss by decreasing osteoclast formation

(148). Although the regulatory effects of SCFA on macrophages have

been documented in some studies—for instance, acetate enhances

macrophage bactericidal activity (149). Propionate can promote the

polarization of macrophages to anti-inflammatory M2 type by

regulating the expression of transferrin receptor 1 and ferritin heavy

chain 1 mediated by hypoxia-inducible factor (150). Butyrate can

inhibit the M1 polarization of macrophages (151), the activation of

inflammasomes, and reduce the production of osteoclasts, thereby

improving osteolysis (152). However, the literature on the role of SCFA

in regulating macrophage polarization and metabolic reprogramming

in the context of OP is scarce and needs to be further explored.

In addition, bile acids derived from gut microbiota modulate

macrophage polarization. For instance, under high-fat conditions,

bile acids promote M1 polarization and pro-inflammatory cytokine

production (153). They can also induce lipid peroxidation and suppress

M2 polarization via the ROS/p38 MAPK/DGAT1 pathway,

influencing disease processes such as acute myeloid leukemia (154).

Trimethylamine oxide (TMAO), an oxidized metabolite of choline,

enhances intracellular ROS levels and promotes osteoclast

differentiation from macrophages (155). In contrast, indole-3-

propionic acid inhibits osteoclast differentiation. Melatonin, a

tryptophan-derived microbial metabolite, regulates TMAO

metabolism and macrophage polarization, reduces inflammatory

levels, and thereby ameliorates osteoporosis (156). These findings

collectively indicate that gut microbiota metabolites can regulate both

macrophage behavior and osteoporosis. However, direct evidence

linking gut microbiota, their metabolites, macrophage polarization,

and osteoporosis remains limited, suggesting that macrophages may

act as an intermediate in the gut microbiota–OP axis, a hypothesis that

requires further validation.
3.4 Genetic factors

Genetic predisposition is a major cause of primary OP.

Mutations in genes such as WNT1, PLS3, and XYLT2 directly
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impair osteocyte function, thereby contributing to OP pathogenesis

(157). However, the mechanistic links between genetic

determinants and OP development remain unexplored from the

perspective of macrophage biology, representing a promising

avenue for future investigation.
4 Macrophage polarization and
metabolic reprogramming during
fracture healing

Fracture healing is a complex process involving three

overlapping phases: inflammatory, repair, and remodeling (158).

Throughout these stages, macrophages play a crucial role by

coordinating inflammatory responses, clearing debris, promoting

angiogenesis, stimulating bone formation, and guiding tissue

remodeling (159–161) (Figure 3).
4.1 Inflammatory phase

During the early inflammatory phase of fracture healing, disruption

of the local blood supply creates a hypoxic microenvironment, leading

to stabilization and elevated expression of HIF-1a (162). As a

transcription factor, activated HIF-1a binds to promoters of multiple
Frontiers in Endocrinology 07
metabolic enzymes, upregulating glycolytic genes while suppressing

OXPHOS (163, 164). This HIF-1a-driven glycolytic shift is a key

mechanism promoting macrophage transition toward a pro-

inflammatory phenotype (165). Although glycolysis generates

pyruvate in macrophages, impaired TCA cycle flux leads to

accumulation of citrate and succinate (166–168). Citrate is further

metabolized to itaconate, which exerts antimicrobial effects, while

succinate amplifies pro-inflammatory cytokine production in M1

macrophages (88, 169, 170). Under hypoxic conditions, HIF-1a
overexpression also enhances the pentose phosphate pathway (PPP)

in M1-like macrophages. The PPP generates nicotinamide adenine

dinucleotide phosphate (NADPH), which helps modulate oxidative

stress and sustain pro-inflammatory functions (165, 171–173).

Furthermore, HIF-1a activates the NLRP3 inflammasome through

the PI3K/AKT/mTOR signaling axis, thereby reinforcing the

phenotypic effects of metabolic reprogramming (174).

M1 macrophages contribute to essential inflammatory

responses by releasing cytokines such as TNF-a, IL-1b, IL-6, and
CCL2, which aid in the clearance of pathogens and cellular debris

(175). Through CCL2 secretion, they recruit BMSCs and promote

prostaglandin E2 (PGE2) production via the COX-2–PGE2 axis.

PGE2 then activates downstream signaling pathways in

mesenchymal stem cells, facilitating osteogenic differentiation (62,

176). Concurrently, M1-derived vascular endothelial growth factor

(VEGF) stimulates neovascularization, helping to alleviate hypoxia

in the local microenvironment (177). Furthermore, within the early
FIGURE 3

Macrophages in fracture healing. This figure depicts the changes and roles of macrophages during fracture healing, highlighting the metabolic
reprogramming changes and contrasting with the characteristics of macrophages in the healing process of OPF. Pyr, Pyruvic acid; TCA, Tricarboxylic
acid cycle; SUCC, Succinic acid; BMSCs, Bone marrow stromal cells; OPF, Osteoporotic fractures; PPP, Pentose phosphate pathway; MAR1,
Macrophage scavenger receptor 1; Fas, Fatty acid; FAO, Fatty acid oxidation; OXPHOS, Oxidative phosphorylation; OBs, Bsteoblast.
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inflammatory milieu of fracture sites, IL-1b-stimulated M1

macrophages secrete inflammatory cytokines that enhance the

expression and activity of nerve growth factor (NGF). By binding

to tropomyosin receptor kinase A (TrkA) receptors, NGF promotes

reinnervation, thereby supporting neural regeneration and

functional recovery during bone repair (178–180).
4.2 Repair and remodeling phase

During the repair and remodeling phase, macrophages

predominantly polarize toward the M2 phenotype (177). This

phenotypic shift begins as early as the late inflammatory stage of

fracture healing. The transition from M1 to M2 polarization

appears to be facilitated by neovascularization that alleviates

hypoxic conditions, leading to downregulation of glycolytic

enzymes and restoration of OXPHOS in macrophages (177, 181,

182). Pro-inflammatory cytokines released by M1 macrophages

during inflammation recruit immune cells; subsequently,

microenvironmental cells (e.g., Th2 lymphocytes or BMSCs)

secrete IL-4 and IL-10, modifying the immunoinflammatory

milieu to further promote M2 polarization (183, 184). IL-4

activates the STAT6 pathway via IL-4Ra, inducing mitochondrial

fatty acid oxidation (FAO) in M2 macrophages and upregulating

the expression of CD36, CPT1, and PPARg. This enhances

mitochondrial respiratory chain activity and supports OXPHOS

functionality (185, 186).

During endochondral ossification, macrophages phagocytose

apoptotic chondrocytes, resulting in metabolic and polarization

changes—a process referred to as efferocytosis (187–189). Studies

have shown that apoptotic bodies derived from M2 macrophages

contribute to regulating the M1/M2 balance (190). During

efferocytosis, arginine from apoptotic cells is hydrolyzed by

arginase 1 to produce ornithine and urea; ornithine is then

catalyzed by ornithine decarboxylase (ODC) to generate

putrescine, which enhances efferocytic efficiency and induces anti-

inflammatory gene expression in macrophages (191, 192).

Concurrently, the expression of macrophage scavenger receptor

(MSR1) is upregulated. MSR1 activates the PI3K/AKT pathway,

upregulates PGC1a expression, enhances mitochondrial OXPHOS,

and promotes metabolic reprogramming along with M2

polarization (193). Moreover, fatty acids released from apoptotic

chondrocytes can be taken up by macrophages via MSR1,

subsequently activating PPAR-g. This promotes fatty acid

oxidation (FAO) in macrophages and stimulates BMP7

production, which facilitates osteogenic differentiation of BMSCs

(194). These mechanisms act together to regulate macrophage

metabolic reprogramming and polarization, thus supporting

fracture healing.

In addition, M2 macrophages upregulate arginase-1 activity,

shifting arginine metabolism away from the iNOS-dependent

pathway—characteristic of M1 macrophages—and toward the

synthesis of polyamines and proline. This metabolic shift

promotes collagen deposition, cell proliferation, and angiogenesis

(195, 196). Finally, PDGF-BB derived from M2 macrophages helps
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maintain neovascular stability, thereby supporting osteogenesis and

nutrient delivery during bone remodeling (197).

Collectively, macrophages coordinate fracture healing through

temporally regulated metabolic reprogramming and phenotypic

switching (177). Initially, macrophages polarize toward the M1

phenotype via glycolytic metabolism, which enables clearance of

necrotic debris, release of pro-inflammatory and chemotactic

factors for BMSC recruitment, initiation of bone repair, and

VEGF-mediated angiogenesis (198). As inflammation resolves,

macrophage metabolism shifts toward OXPHOS, accompanied by

a phenotypic transition from M1 to M2 (199). This transition

further promotes osteogenic differentiation and mineral

deposition by BMSCs, along with PDGF-BB release that stabilizes

vasculature and consolidates newly formed bone (18). The

metabolic plasticity of macrophages thus constitutes a regulatory

hub for adapting to microenvironmental changes during bone

regeneration (18).
4.3 Macrophages in OPF healing

In OPF healing, macrophage metabolism and polarization are

disrupted by multiple pathological factors, leading to delayed union

or nonunion (200). As described in earlier sections, estrogen

deficiency impairs ERa-mediated inhibition of NF-kB p65

nuclear translocation, enhancing macrophage responsiveness to

RANKL (83). RANKL stimulation induces high expression of

ACOD1, promotes itaconate accumulation, and inhibits SDH,

thereby disrupting the TCA cycle and leading to succinate

accumulation (85). The accumulated succinate activates

macrophages via the SUCNR1 receptor, driving polarization

toward the pro-inflammatory M1 phenotype while suppressing

OXPHOS, which is required for M2 polarization (88).

Experimental evidence supports this mechanism. Compared

with the control group, the population of M2 macrophages in the

callus of OVX mice was substantially reduced at 14 days post-

fracture (DPF), concurrently showing decreased IL-4 secretion and

a marked increase in IL-6 expression (201).

Aging exacerbates macrophage dysfunction through NAD+

deficiency, impaired autophagy, and cellular senescence, collectively

leading to mitochondrial respiratory chain dysfunction, elevated

oxidative stress, and enhanced inflammation—all of which favor

M1 polarization. In aged rats with senile osteoporosis (SOP),

transcriptomic analyses revealed significant upregulation of

inflammation-related genes in macrophages. Serum levels of pro-

inflammatory factors (IL-6 and TNF-a) were more than threefold

higher than in young rats, whereas anti-inflammatory mediators such

as IL-10 were markedly reduced (202, 203). These findings further

support the concept that aging disrupts metabolic reprogramming

and polarization in macrophages, thereby impairing osteoporotic

fracture healing.

However, targeted studies examining the specific metabolic

alterations in macrophages within the OPF microenvironment

remain relatively limited. Key unresolved questions include

whether macrophages in OPF exhibit metabolic dysregulation
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similar to that observed in osteoporosis alone, or whether these

alterations are further exacerbated in the fracture context.

Elucidating these mechanisms represents an important direction

for future research on macrophage-centered interventions for OPF.
5 Therapeutic strategies targeting
macrophages

As core regulators of the OPF immune microenvironment,

macrophages directly orchestrate bone repair progression through

their metabolic reprogramming and phenotypic polarization. Recent

therapeutic advances in targeted macrophage therapies—leveraging

innovative biomaterial design and delivery technologies—are

demonstrating significant efficacy in modulating inflammatory

responses and restoring osteoblast-osteoclast equilibrium.

To identify relevant therapeutic strategies, we conducted a

literature search of the PubMed and Web of Science (WOS)

databases using the following keywords: “Macrophages,”

“Osteoporosis,” “Fracture,” “Bone defect,” “Bone healing,” “Fracture

healing,” “Bone repair,” “Bone regeneration,” and “Osteogenesis.” The

search was limited to publications from the last decade, up to July 4,

2024. After excluding review articles and irrelevant studies, 49

publications were included in the analysis (Figure 4).

Based on the retrieved literature, this section systematically

describes recent advances in drug delivery systems, surface
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modification technologies, hydrogels, and related biomaterials

(Figure 5), with a focus on their mechanisms of action,

therapeutic benefits, and translational challenges. The primary

effects of different types of biomaterials on macrophage behavior

are summarized in Table 1.
5.1 Drug delivery systems

Drug delivery systems use carriers to achieve active or passive

targeting of macrophages, enabling precise modulation of their

metabol i sm and polar i za t ion whi le improv ing drug

bioavailability (Table 2).

5.1.1 Regulating metabolic reprogramming
Metabolic reprogramming acts as an intrinsic driver of

macrophage phenotypic polarization. Targeting this process to

modulate macrophage function offers a promising strategy for

improving fracture healing under osteoporotic conditions.

For example, Qin et al. developed bone-targeted nanoparticles

(ZIF−H2S−SDSSD) functionalized with SDSSD peptide for osseous

delivery. These particles remain stable under physiological pH (7.4)

with minimal Zn2+ release, but degrade under acidic conditions to

release H2S and Zn2+ ions, achieving responsive drug release. The

released H2S and Zn
2+ alleviate inflammation by reducing succinate

accumulation in the TCA cycle and suppressing HIF-1a expression.
FIGURE 4

Flow chart of literature screening.
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H2S also protects mitochondrial function by decreasing

mitochondrial reactive oxygen species (mtROS) production. In

vitro, ZIF-H2S-SDSSD promotes macrophage repolarization from

the M1 to the M2 phenotype, downregulating pro-inflammatory

mediators while upregulating anti-inflammatory factors. In vivo, the

treatment alters the macrophage composition at fracture sites—

decreasing CD86+ M1 macrophages and increasing CD206+ M2

macrophages—and reprograms cellular metabolism by attenuating

glycolysis, enhancing TCA cycle flux, and reducing succinate

accumulation. Additionally, the nanoparticles suppress osteoclast-

related genes (e.g., Ctsk, Mmp9) and activate osteogenic markers

(e.g., Runx2, OCN), significantly improving osseointegration (204).

Wang et al. developed poly (L-lactic acid) mesoporous silica

nanoparticle (PLLA-MSN@VGX-1027) microspheres targeting

mitochondrial function for immunomodulation. In vitro, the released

VGX-1027 upregulates key proteins regulating mitochondrial

dynamics (MFN2, OPA1, DRP1), enhances metabolic activity and

ATP production, and thereby promotes M2 polarization. It also

scavenges reactive oxygen species through intrinsic SOD/catalase

activity, thereby reducing oxidative damage. In osteoporotic mice, the

microspheres enhancedM2macrophage infiltration at bone defect sites
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and accelerated regeneration via the macrophage–miR-5106–SIK2/3–

Runx2 signaling axis. With sustained VGX-1027 release over 28 days,

covering the critical healing phase, this approach demonstrates

substantial therapeutic potential (205).

5.1.2 Regulating pro-inflammatory gene
expression

Modulating macrophage phenotypic switching through inhibition

of pro-inflammatory gene expression represents a viable therapeutic

strategy. For instance, Cao et al. developed gelatin microspheres co-

loaded with Mg2+ and alendronate (GMA MSs). The released Mg2+

suppresses M1 polarization by inhibiting the NF-kB signaling pathway,

thereby improving the local inflammatory microenvironment through

upregulation of IL-10 and TGF-b and downregulation of TNF-a and

IFN-g. In parallel, hydrogen (H2) generated during material

degradation scavenges reactive oxygen species and alleviates oxidative

stress, resulting in dual modulation of inflammatory and redox

homeostasis. Furthermore, Mg2+ activates osteogenic gene

expression, promoting osteogenic differentiation of MC3T3-E1 cells.

In vivo studies demonstrated reduced osteoclast numbers at defect sites

and markedly increased new bone formation (206).
FIGURE 5

The method of treating osteoporotic fractures and bone defects by targeting macrophages. This figure describes the main approaches to target
macrophages for the treatment of osteoporotic fractures and bone defects, including drug delivery systems, surface improvement technologies,
hydrogels, alloys, bioceramics, etc. The alloy material in the picture uses the lattice of Zn and Cu. The actual alloy material may be made of other
metals or more metals, and the lattice may not be the same as in the picture.
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In a similar approach, Arcos et al. developed mesoporous

bioactive nanoparticles loaded with ipriflavone (MBNP-IP). This

system was shown to suppress NF-kB expression in macrophages,

reducing the secretion of pro-inflammatory cytokines such as IL-6

and TNF-a and thereby alleviating local inflammation. Its ability to

promote osseointegration was further validated in OVX rabbit

models (207). In parallel, Casarrubios et al. confirmed that

ipriflavone-loaded nanospheres (NanoMBG-Ips) enhance

VEGFR2 secretion by M2 macrophages, consequently accelerating

angiogenesis in osteoporotic fracture healing (208).

5.1.3 Regulate macrophage polarization
Oth e r b i oma t e r i a l - b a s e d app r o a ch e s modu l a t e

macrophage polarization to improve inflammatory and immune

microenvironments and enhance osteogenesis. For example, Peng

et al. developed folic acid-targeted liposomes (RSV@DTPF) that

employ a ROS-responsive release mechanism to scavenge reactive

oxygen species while promoting M2 polarization and rebalancing

cytokine profiles—specifically reducing TNF-a and increasing

IL-10. These liposomes also stimulate osteogenic differentiation of

bone marrow stromal cells (BMSCs) while suppressing osteoclast-

related genes (e.g., Acp, Mmp9, Ctsk, Traf6), thereby significantly

inhibiting osteoclastogenesis and osteoclast maturation (209).
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Liu et al. designed a tantalum-based scaffold (MZIF-8-PDA@

PTa) that remodels the inflammatory microenvironment by

inhibiting M1 polarization and promoting M2 transition in vitro,

while also activating the p38-MAPK pathway to upregulate

osteogenic markers such as Runx2 and Ocn. In OVX rat models,

the scaffold markedly enhanced osseointegration (210). In a

complementary approach, Zhou et al. developed an interleukin-4-

loaded extracellular vesicle–gel system (IL-4/BEVs BP@GelMA)

that effectively induces M2 polarization. In vivo results

demonstrated synergistic upregulation of osteogenic factors (e.g.,

Runx2, Ocn) and angiogenic markers (e.g., VEGF, CD31),

collectively accelerating fracture repair (211).

Furthermore, sulfated chitosan nanoparticles (Fg@SCS NPs@

rhBMP-2) and gastrodin-functionalized scaffolds (PU/n-HA) have

been shown to promote M2 polarization and resolve inflammation

(212, 213). Additionally, PU/n-HA scaffolds effectively recruit BMSCs

and enhance their activation through improved mitochondrial

biogenesis and restored mitochondrial network homeostasis.

Drug delivery systems show considerable therapeutic potential;

however, several limitations require attention. These include

challenges in controlling release kinetics, minimizing off-target

effects, and improving the physicochemical properties of drug

carriers and synthetic bone matrices. Such issues currently hinder
TABLE 1 Table of macrophage regulation strategies in osteoporotic bone repair based on biomaterials.

Material category Core macrophage-targeting mechanisms Overall therapeutic impact

Drug Delivery Systems

• Metabolic reprogramming (e.g., succinate/HIF-1a, mitochondrial
function) Precise spatiotemporal control over macrophage phenotype,

promoting an anti-inflammatory and pro-regenerative
microenvironment.

• Suppression of pro-inflammatory signaling (e.g., NF-kB)

• Direct induction of M2 polarization

Surface Modification

• Ion-mediated immunomodulation (e.g., Sr2+, Zn2+, Mn2+ via
PI3K/Akt, NF-kB)

Sustained, surface-driven immunomodulation to enhance
osseointegration and mitigate early-stage complications.

• Metabolic regulation (e.g., citrate-induced glycolysis inhibition)

• Anti-inflammatory drug/coating release

• Temporal regulation of M1-to-M2 transition

Hydrogels

• Potent ROS scavenging and antioxidant upregulation

Dynamic response to the injury microenvironment, effectively
resolving oxidative stress and inflammation.

• Anti-inflammatory polarization (e.g., via TLR4/NF-kB
inhibition)

• Recruitment and instruction of host cells via released factors

Bioceramics

• Immunomodulation via ionic release or physical cues (e.g.,
piezoelectricity) Creation of a pro-osteogenic immune environment that supports

bone formation and angiogenesis.
• Inhibition of NF-kB signaling and RANKL-induced
osteoclastogenesis

Alloy Materials

• M1 suppression via ion release (e.g., Zn2+, Cu2+) and NF-kB
inhibition Integration of favorable mechanical properties with inherent

immunomodulatory, antibacterial, and osteogenic effects.
• Activation of pro-regenerative pathways (e.g., Wnt/b-catenin)

Other Materials

• M2 polarization via ion release or bioactive compounds

Resolution of inflammation and oxidative stress through diverse
pharmacological and material-based mechanisms.

• Activation of cytoprotective pathways (e.g., Nrf2/HO-1/GPX4)

• Modulation of inflammatory signaling (e.g., TLR/MyD88)
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TABLE 2 Drug delivery system.

Drug Cell
hages

Osteoclast
differentiation

Osteogenic
differentiation

Inflammation and OS Others Ref.

M2↑
Ctsk, Mmp9,

Nfatc1, Atp6v0d2↓
RUNX2, SP7, OCN,

OPN↑
IL-1b, IL-6↓; IL-10, TGF-b↑;

mtROS↓
/ (204)

2↑ / RUNX2↑
TNF-a, IL-1a, IL-6↓; IL-10,

TGF-b, Arg-1; O2-/·OH/H2O2↓
/ (205)

M2↑ Trap↓ ALP, OCN, OPN↑
TNF-a, IFN-g↓

IL-10, TGF-b↑; ROS↓
/ (206)

1↓ / / / / (207)

R2 is
d by M2

/ / /
VEGFR2

↑
(208)

M2↑
Acp, Mmp9, Ctsk,

Traf6↓
RUNX2, COL-1↑ TNF-a↓, IL-10↑, ROS↓ / (209)

M2↑ /
RUNX2, OCN,
BMP2, ALP↑

TNF-a, IL-6↓; IL-4, IL-10↑ / (210)

2↑ /
RUNX2, OCN,
BMP2, COL-1↑

TNF-a, IL-1b↓; IL-4, TGF-b↑
VEGF,
CD31↑

(211)

2↑ / / TNF-a, IL-1b↓ / (213)

M2↑ /
COL-1, OSX, TGF-
B1, RUNX2, BMP2↑

/ / (212)

s silica Nanoparticles; PLLA, Poly-L-lactic acid; ALN, Alendronate; MBNP, Mesoporous bioactive Nanoparticles; IP, Ipriflavone;
Down-regulate or inhibit, ↑, Up-regulate or promote (The meanings of ↓ and ↑ in the subsequent table are the same as here).
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Material Carrier
loading

Response
model

Animal models Macro

ZIF-H2S-SDSSD
NPs

ZIF-8
NPs,
SDSSD

H2S PH
BMM,
BMSCs

OVX
mice

Fracture of
femur

M1↓

PLLA-
MSN@VGX-1027

PLLA,
MSN

VGX-1027 /
BMM,
BMSCs

OVX
mice

Femoral
drilling
defects

M

GMA MSs GelMA Mg, ALN PH
RAW264.7,
MC3T3-E1

OVX
mice

Skull defect M1↓

MBNP-IP MBNP IP / RAW264.7
OVX
rabbit

Defect of
femur

M

NanoMBG-Ips MNPs IP /
EPCs, RAW

264.7
/ /

VEG
promote

RSV@DTPF DTPF RSV ROS RAW264.7
OVX
SD
rats

Periodontal
defect

M1↓

MZIF-8-
PDA@Pta

MZIF-8-
PDA

Melatonin,
ZIF-8 NPs

/
RAW264.7,
BMSCs

OVX
SD
rats

Defect of
femoral
condyle

M1↓

IL-4/BEVs-
BP@GelMA

GelMA
IL-4,

BEVs-BP
/

RAW 264.7,
VECs, BMSCs

OVX
mice

Fracture of
femur

M

Gastrodin-
functionalized

scaffolds
PU/n-HA Gastrodin / /

OVX
SD
rats

Defect of
femur

M

Fg@SCS
NPs@rhBMP-2

SCS NPs rhBMP-2 / BMSCs
OVX
mice

Fracture of
femur

M1↓

OVX, Ovariectomized; NPs, Nanoparticles; BMMs, Bone marrow macrophages; BMSCs, Bone marrow stromal cells; MSN, Mesoporou
MNPs, Mesoporous nanospheres; DTPF, Distearoylphosphatidylethanolamineh-Tioktal-Polyethylene glyco-Folate; RSV, Resveratrol; ↓
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effective clinical translation. Future research should focus on

developing materials with tunable release profiles—enabling both

rapid and sustained drug release—and optimizing carrier systems to

better navigate the complex bone microenvironment.
5.2 Surface modification techniques

Surface modification techniques alter implant surface properties

through physical, chemical, or electrochemical methods to improve

osseointegration, stimulate osteogenesis, reduce infection risks, and

decrease complications (214). By functionalizing materials to

modulate macrophage responses, these techniques enable

improved macrophage regulation while maintaining the inherent

physical properties of the base material (Table 3).
5.2.1 Metal ion-releasing coatings
Surface modification techniques enable the functionalization of

materials to release specific ions—such as Sr2+, Mn2+, Zn2+, and Ag+

—thereby modulating macrophage responses.

Sr2+ ions effectively modulate macrophage polarization. For

instance, Zhang et al. developed Sr2+-anchored polyetheretherketone

implants (PEEK-PDA-Sr), Du et al. designed strontium carbonate

scaffolds (SrCO3@PCL/PDA), and Wang et al. fabricated nano-

wogonin-composited strontium-doped titanium (Ti-MAO/Sr/LBL

WNP). In vitro and in vivo studies demonstrated that these materials

sustain Sr2+ release, effectively suppressing pro-inflammatory M1

polarization while promoting anti-inflammatory M2 polarization in

macrophages. Additionally, they enhance osteogenic differentiation

and inhibit osteoclast activity (215–217). Mechanistically, Sr2+

activates the PI3K/Akt signaling pathway to improve mitochondrial

function while inhibiting NF-kB, thereby suppressing M1 polarization

(216, 218).

Mn2+ ions exhibit context-dependent effects on macrophage

polarization. While some studies report promotion of M1

polarization (219), others describe inhibition of M1 polarization

(220). These varied outcomes appear to depend on chemical

speciation, delivery system characteristics, and microenvironmental

signals. Wang et al. developed Mn2+-modified titanium implants

(Ti@PDA+Mn) that suppress M1 polarization and promote M2

polarization through scavenging reactive oxygen species and

upregulating antioxidant genes (including SIRT1, SOD2, and CAT).

This approach also effectively enhances osteogenic differentiation

while inhibiting osteoclastogenesis (221).

Furthermore, silver nanotube coatings (Ag@TiO2-NTs)

developed by Wang et al. enable sustained Ag+ release, which

enhances macrophage autophagy and suppresses the NF-kB
pathway (222). Separately, zinc-peptide metal-phenolic

nanocoatings (ABL@ZnTA) designed by Xu et al. release Zn2+

under infectious conditions, inhibiting iNOS and TNF-a expression

while promoting IL-10 and TGF-b secretion in macrophages,

thereby achieving both antibacterial and osteogenic outcomes (223).

Leveraging the similar ionic behavior between Ga3+ and Fe3+,

Piñera-A et al. modified titanium surfaces with gallium-doped

perovskite layers. The released Ga3+ binds to transferrin and
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enters cells via transferrin receptor 1. This uptake competitively

inhibits cellular iron absorption, disrupts iron metabolism, and

accelerates the Fenton reaction, promoting ROS accumulation and

ultimately leading to ferroptosis. Consequently, this process inhibits

macrophage differentiation into osteoclasts (224). These

functionalized coatings typically exhibit biphasic ion release

profiles, characterized by an initial burst followed by a sustained

release phase. Such release kinetics help suppress bacterial infection

in early stages while providing continuous stimulation for bone

regeneration in later phases.

5.2.2 Regulate metabolic reprogramming
Certain biomaterials modulate immune responses by regulating

macrophage metabolism. For example, Wu et al. developed citrate-

functionalized scaffolds (CPC@PCL/CaCit). Citrate released from

these scaffolds binds to specific sites on key glycolytic enzymes,

thereby inhibiting their activity and redirecting metabolic flux

toward the TCA cycle. This metabolic shift enhances oxidative

phosphorylation, supporting an M2-like polarization state (225).

5.2.3 Anti-inflammatory coatings
Certain materials function through anti-inflammatory

mechanisms. For instance, Chai et al. developed an icariin-

modified sulfonated polyetheretherketone system (ICA-PDA@

SPEEK), where the loaded icariin exhibits anti-inflammatory

properties by promoting M2 macrophage polarization, reducing

pro-inflammatory cytokine secretion, and increasing anti-

inflammatory factor production (226). Likewise, sulfonated

polyetheretherketone modified with graphene oxide (SPEEK@

PDA-GO) or laponite (SPEEK@PDA-LAP) inhibits macrophage

pyroptosis and osteoclast activation through suppression of the

STAT3-mediated NLRP3/caspase-1/IL-1b signaling axis (227, 228).

5.2.4 Coatings that inhibit osteoclast
differentiation

Another category of functional coatings functions by

suppressing osteoclast differentiation from macrophages. Zhou

et al. designed an intelligent supramolecular coating (SCP-P(A)-

K) that releases the anti-resorptive drug alendronate (ALN) to

inhibit osteoclastogenesis (229). Similarly, Xia et al. developed a

titanium-based system (Ti-(BSA@GYY)) that suppresses osteoclast

differentiation through modulation of the OPG/RANKL pathway

(230). Additionally, Takanche et al. reported that Ch-GNPs/c-myb

nanoparticles inhibit RANKL signaling and the JNK pathway while

blocking NF-kB nuclear translocation, thereby effectively

preventing osteoclast differentiation of macrophages (231).

5.2.5 Temporally regulated macrophage
modulation coatings

An emerging strategy involves the temporal regulation of

macrophage function through smart coating design. Wang et al.

developed a Ti-ALN-acBSP coating capable of sequentially

regulating macrophage responses. During the early phase, the

coating releases acidic bone sialoprotein (acBSP) to polarize

macrophages toward the M1 phenotype. This establishes an
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TABLE 3 Surface modification technology.

Matrix Surface Roughness Cell Osteoclast Osteogenic
differentiation

Inflammation and
OS

Others Ref.

ALP, OPN, Runx2,
Col-I, OCN↑

ROS↓, SIRT1, SOD2,
CAT↑

/ (215)

RUNX2, COL1, SP7,
ALP, BMP2, OPN,

BGLAP↑

IL-1 b, TNF-a, IL-6↓;
ROS↓

/ (216)

COL-I, ALP, OPG,
BMP-2↑

IL-1b, TNF-a↓; TGF-b1,
IL-10↑

/ (217)

BMP-2↑
ROS↓, SIRT1, SOD2,

CAT↑
/ (221)

RUNX2, COL1,
ALP↑

iNOS, TNF-a, IL-1b↓; IL-
4, IL-10, TGF-b↑; ROS↓

Anti-S.
aureus
infection

(223)

ALP, RUNX2, OCN,
OPN↑

TGF-b↑, TNF-a↓ / (222)

RUNX2, COL1A1,
ALP↑

ROS↓ / (224)

ALP, COL-1,
RUNX2↑

TNF-a, IL-6↓; IL-4, IL-10↑ / (227)

ALP, OCN, BMP-2↑
NLRP3, IL-1b, IL-1b↓;

ROS↓
/ (228)

OCN, OPN↑ / / (225)

RUNX2, ALP, OCN,
OPN, COL1↑

/ / (230)

ALP, RUNX-2, OPN,
COL-1↑

IL-6, TNF-a, CCL-2↓;
ROS↓

/ (229)

BMP-2↑ TNF-a, IL-6↓; IL-4, IL-10↑ VEGF↑ (226)

(Continued)
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Material
material coating (nm) model

Animal models Macrophages
differentiation

PEEK-PDA-Sr PEEK Sr, PDA 47.13±2.34
BMMs,
BMSCs

OVX SD
rats

Defect of
femur

M1↓, M2↑ TRAP↓

SrCO3@PCL/
PDA

PCL PDA /
BMSCs,
BMDMs,
RAW264.7

OVX SD
rats

Skull
defect

M1↓, M2↑
NFATc1, TRAP,

CTSK, MMP9, DC-
STAMP↓

Ti-MAO/Sr/
LBLWNP

Ti
Sr,

LBLWNP
93.1±7.9

RAW264.7,
OBs

OVX SD
rats

Defect of
femur

M1↓, M2↑ /

Ti@PDA+Mn Ti Mn, PDA 33.9±1.75
BMM,
BMSCs

OVX rats
Femoral
bone
defects

M1↓, M2↑ TRAP↓

ABL@ZnTA Ti ABL@ZnTA /
MC3T3-E1,
RAW264.7

Rats
infected
with S.
aureus

Defect of
femur

M1↓, M2↑ /

Ag@TiO2-
NTs

TiO2-NTs Ag /
RAW264.7,
MC3T3-E1

OVX rats / M1↓, M2↑
CTSK, NFATc1, c-

Fos, TRAP↓

Ga-Ti Ti Ga /
RAW264.7,
hMSCs

/ /
Osteoclast

differentiation↓
NFATc1, TRAP,

MMP9↓

SPEEK@PDA-
GO

SPEEK PDA, GO 140±16.1
RAW264.7,
BMMs,
BMSCs

OVX SD
rats

Defect of
femur

M1↓, M2↑ TRAP↓

SPEEK@PDA-
LAP

SPEEK PDA, LAP 139±6.56
RAW264.7,
BMMs,
BMSCs

OVX SD
rats

Defect of
femur

Pyroptosis↓
NFATc1, c-Fos,

Cath-K↓

CPC@PCL/
CaCit

CPC@PCL CaCit /
RAW264.7,
BMDM,

MC3T3-E1
OVX rats

Defect of
femoral
condyle

M1↓, M2↑ TRAP↓

Ti-
(BSA@GYY)

Ti
BSA@GYY
NPs, PDA

55.5±5.6
BMSCs,

RAW264.7
OVX SD

rats
Defect of
femur

Osteoclast
differentiation↓

c-Fos, NFATC1,
CTSK, TRAP↓

SCP-P(A)-K CF/PEEK KRSR, ALN /
RAW264.7,
MC3T3-E1

Rabbits
with iron
overload

Defect of
femur

M1↓ /

ICA-
PDA@SPEEK

SPEEK PDA, ICA /
BMDMs,
rBMSCs

OVX SD
rats

Defect of
femoral
condyle

M1↓, M2↑
TRAP, CTSK,
NFATc1↓
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appropriate inflammatory microenvironment while promoting

the secretion of osteogenic factors such as oncostatin M and pro-

angiogenic factors including VEGF, thereby initiating repair

processes. In later stages, alkaline phosphatase secreted by

osteoblasts triggers coating degradation, which induces apoptosis

of pro-inflammatory macrophages, resolving local inflammation

(232). This sequential immunomodulatory strategy better

replicates the physiological shift in macrophage phenotypes

during normal bone healing, providing a promising framework

for designing biomaterials with temporally controlled macrophage-

regulating properties.
5.3 Hydrogels

As localized delivery carriers, smart hydrogels enable dynamic

release of active components in response to microenvironmental

changes, while providing tunable mechanical properties and high

biocompatibility (Table 4).

5.3.1 Antioxidant hydrogels
Numerous hydrogel systems demonstrate notable antioxidant

properties. For instance, Chen et al. developed a methacrylated

gelatin hydrogel incorporating a fibroblast activation protein

inhibitor (FAPI) and MnO2 nanoparticles (FAPI-MMS-Gel). Both

in vitro and in vivo studies confirmed that FAPI-MMS-Gel reduces

reactive oxygen species (ROS) levels in bone marrow stromal cells

and bone marrowmacrophages (BMMs) by upregulating antioxidant

genes such as SIRT1 and SOD2, while also suppressing the NF-kB
pathway to promote M2 macrophage polarization (233). JJiang et al.

designed an H2S-sustained-release hydrogel (PESATO/MCys-Ca)

and demonstrated that its ROS-responsive H2S release significantly

decreases intracellular ROS in macrophages, inhibits M1 polarization

and osteoclast-related genes (e.g., Acp5, Mmp9), and upregulates

osteogenic markers (e.g., Runx2, Ocn) (234). Li et al. developed a

thermosensitive resveratrol/dexamethasone gel that effectively

scavenges DPPH radicals and promotes macrophage transition

from M1 to M2 phenotype (235). Other systems, including

MnO2@Pol/HA (Ye et al.), EGCG/APBA composite hydrogel

(Ding et al.), and kaempferol aerogel (Jin et al.), also efficiently

eliminate ROS, promote the shift from M1 to M2 polarization, and

reduce pro-inflammatory cytokine levels (e.g., TNF-a, IL-1b, IL-6)
(236–238). Collectively, these antioxidant hydrogels alleviate

inflammatory and oxidative stress, reduce M1 polarization while

enhancing M2 polarization, thereby establishing a more favorable

microenvironment for osseointegration in osteoporotic fractures and

bone defects.

5.3.2 ROS-independent hydrogels
Some hydrogel materials function independently of ROS

modulation. For example, Liu et al. developed an SDF-1a-
functionalized chitosan hydrogel that promotes BMSCs migration

and osteogenic differentiation in vitro, while suppressing M1

polarization and enhancing M2 macrophage polarization in vivo

(239). Sun et al. designed a PEG/nHAp/CS hydrogel that inhibits
T
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TABLE 4 Hydrogel material.

ophages
Osteoclast

differentiation
Osteogenic

differentiation
Inflammation and OS Others Ref.

↓, M2↑ /
RUNX2, ALP, COL-1,
BSP, OPN, OCN↑

IL-1b, IL-6↓; IL-4, IL-10, TGF-
b1↑; ROS↓

VEGF↑ (237)

↓, M2↑ /
RUNX2, ALP, COL-1,

OCN↑
TNF-a, IL-1b, IL-6↓; TGF-b,

PDGF↑; ROS↓
/ (236)

M1↓ RANKL, TRAP↓
OPG, RUNX 2, BMP-

2, ALP, OCN↑
ROS↓

New blood
vessels↑

(234)

iferation↑,
teoclast
entiation↓

CTSK, MMP9, c-
Fos, NFATc1↓

ALP, RUNX2, COL-1,
OPN↑

/
CD31, vWF,
PDGFF-BB↑

(241)

↓, M2↑
c-Fos, NFATc1,
ACP5, MMP9,

CTSK↓

ALP, SPP1, RUNX2,
COL-1, BGLAP↑

IL-1b, TNF-a↓; IL-10, TGF-b↑;
SIRT1, SOD2, NRF2↑; ROS↓

/ (233)

↓, M2↑ /
RUNX2, ALP, OCN,

BGLAP, SPP1↑
TNF-a↓, ROS↓

New blood
vessels↑

(235)

↓, M2↑ / RUNX2, OCN↑ IL-1b↓, IL-10↑ / (240)

↓, M2↑ /
RUNX2, OCN, ALP,

BMP1, COL-1↑
IL-1b, TNF-a, INOS↓; IL-10,

Arg1↑
/ (239)

↓, M2↑ c-Fos, MMP9↓
RUNX2, ALP, OPN,

OCN↑
ROS↓

New blood
vessels↑

(238)

inate-S-aroylthiooxime; PEGDA, Poly(ethylene glycol) diacrylate; Mcys, ROS-responsive microspheres containing cysteine; MMS, MnO2-coated
-lactide; CHAp, Carbonated hydroxyapatite microspheres; DEX, Dexamethasone; tetra-PEG, extra-armed poly(ethylene glycol); nHAp, Nano-
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Material Composition Cell model Animal models Macr

ROS-scavenging
hydrogel

EGCG, APBA /
OVX
rabbits

Defect of
femur

M

MnO2@Pol/HA
Poloxamer 407,
HA, MnO2 NPs

/
OVX
rabbits

Radius defect M

PESATO/MCys-Ca
SA-SATO, PEGDA,

Mcys, Ca
RAW264.7, BMSC,

HUVEC
OVX
SD rats

Defect of
femur

GelMA-QK/Sr-
LDH@PDA

Sr-LDH@PDA,
GelMA, QK
peptide

BMMs, BMSCs,
bEnd.3

OVX
SD rats

Defect of
femoral
condyle

Pro
O

diffe

FAPI-MMS-Gel
MMS, FAPi, m-
PGA/GelMA

BMMs, BMSCs
OVX
SD rats

Defect of
femoral
condyle

M

DEX@CHAp/
Res@CHAp/Col I/

PLEL

PLEL, CHAp, DEX,
RES, Col-I

RAW264.7, BMSCs,
HUVESs

OVX
SD rats

Defect of
femur

M

PEG/nHAp/CS
tetra-PEG, nHAp,

CS
BMMs, RAW 264.7

OVX
SD rats

Skull defect M

SDF-1a/CS/GP/
HEC

CS, GP, HEC BMSCs
OVX
rats

Alveolar bone
defect

M

Gel/Alg-Kae aerogel GelMA, Alg, KAE
RAW264.7, BMSCs,
HUVECs, BMMs

OVX
rats

Defect of
femur

M

EGCG, Epigallocatechin-3-gallate; APBA, 3-Acrylamido phenylboronic acid; HA, Hyaluronic acid; SA-SATO, Sodium Alg
CaP microspheres; FAPi, Fibroblast Activation Protein Inhibitor; PLEL, poly(D,L-lactide)-poly(ethylene glycol)-poly(D,L
hydroxyapatite; CS, Short-chain chitosan; GP, b-Glycerophosphate; HEC, Hydroxyethyl Cellulose; KAE, Kaempferol.
1
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l
s
r

1

1

1

1
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M1 polarization and promotes M2 polarization by antagonizing the

TLR4/NF-kB pathway, thereby shifting the local microenvironment

toward an anti-inflammatory state. This hydrogel also enhances

osteogenesis via the cAMP/PKA/CREB pathway. In OVX Sprague-

Dawley rats with calvarial defects, implantation with PEG/nHAp/

CS hydrogel increased the proportion of CD206+ M2 macrophages,

decreased CD86+ M1 macrophages, and markedly reduced

osteoclast numbers (240). He et al. developed an Sr-LDH/GelMA-

QK hydrogel that promotes macrophage proliferation, suppresses

osteoclast differentiation, enhances endothelial cell migration, and

upregulates vasculogenesis-related genes (e.g., CD31, vWF). Animal

studies demonstrated that this material inhibits osteoclast

maturation, increases PDGF-BB release, and promotes H-type

vessel formation to support osseointegration in osteoporotic bone

(241). Additionally, Li et al. designed a Gel-Ale-Mg@PDA

nanocomposite scaffold that induces M2 macrophage polarization

through controlled Mg2+ release and promotes osteogenic

differentiation of BMSCs (242).

While hydrogel-based strategies demonstrate therapeutic

potential, further optimization is needed for hydrogel

compositions and the controlled-release kinetics of bioactive

molecules. Future studies should also clarify the complex

interactions among hydrogels, macrophages, and other cell types

during bone regeneration, particularly to address challenging

pathological conditions (18, 243).
5.4 Biological ceramics

Although bioceramics were previously the main focus of research,

current studies on bioceramic-assisted osseointegration have

progressively shifted toward composite materials incorporating

bioceramics (Table 5).

For example, Wang et al. developed a piezoelectric PKNN

ceramic that maintains stable piezoelectric performance under

physiological conditions, effectively reduces M1 macrophage

polarization markers, promotes M2 phenotypic transition, and

synergistically enhances osteogenic differentiation of BMSCs via

the Runx2 pathway (244). Chu et al. designed a La-LDH

nanohybrid scaffold that inhibits osteoclast differentiation of

BMMs through suppression of NF-kB signaling, while

upregulating the OPG/RANKL ratio to stimulate osteogenesis

(245). The PTHrP-1-TBC scaffold enables sustained release of

PTHrP-1, which inhibits M1 polarization and activates the pro-

angiogenic factor VEGF, thus establishing a synergistic pro-

angiogenic and osteoinductive microenvironment (246).

Furthermore, strontium silicate particles (SrSiO3/Sr2SiO4) reduce

M1 polarization and enhance M2 polarization, thereby promoting

BMSCs migration (247). Xiong et al. developed a conductive RGO/

ZS/CS scaffold that promotes BMSCs osteogenesis via silicon/zinc

ion release and inhibits macrophage-derived osteoclastogenesis; its

extracts significantly upregulate angiogenic genes (VEGF, bFGF) in

HUVECs, thereby enhancing neovascularization (248). Rumian

et al. immobilized AlN-loaded PLGA microparticles on a ceramic

scaffold to form a composite material that inhibits osteoclast
Frontiers in Endocrinology 17
differentiation of macrophages (249). Feito et al. developed

NanoMBG-75S, which reduces oxidative stress and promotes M2

polarization of macrophages (250). Meanwhile, Gómez-Cerezo

et al. designed an MBG-PCL-zol scaffold that effectively inhibits

osteoclastogenesis; however, in vivo studies indicate that high local

concentrations of released zoledronic acid may trigger

inflammatory responses, requiring further optimization (251).

Most bioceramic implants demonstrate favorable

biocompatibility and bioactivity. Combined with modern additive

manufacturing techniques, they allow precise design of pore

structure and morphology, enhancing their functional versatility.
5.5 Alloy materials

Alloy materials represent a well-established class of implants

used to enhance osseointegration (Table 5). For instance, Ji et al.

developed a zinc-based alloy (Zn-2Cu-0.5Zr) in which released Zn2

+ significantly reduces ROS levels in macrophages and suppresses

pro-inflammatory cytokine secretion, while also activating theWnt/

b-catenin signaling pathway. Both in vitro and in vivo studies

confirmed that this material promotes M2 macrophage

polarization and accelerates bone regeneration (202). In another

approach, copper-modified titanium alloy (Ti6Al4V-Cu)

upregulates COMMD1 to inhibit NF-kB phosphorylation, thereby

reshaping the macrophage polarization balance within

inflammatory microenvironments. Concurrently, it suppresses

osteoclast differentiation and promotes osteoblast-derived

extracellular matrix (OBECM) formation (252, 253).

Alloy implants are widely employed in fracture and bone defect

repair owing to their excellent mechanical properties and the capacity

of released metal ions to exert antibacterial and osteogenic effects.

Current developments in implant alloys emphasize biodegradable

designs to avoid secondary surgical procedures. However, several

challenges remain for biodegradable alloy materials. For instance, a

standardized system for evaluating the cytotoxicity of degradable

metals in vitro has not yet been established. The properties and

biological effects of alloys vary with the types, proportions, and

microstructure of constituent metals, making extensive experimental

validation necessary to identify optimal compositions. In addition, the

mechanical properties of such materials gradually decline during

degradation, which may restrict their use in load-bearing sites and in

the context of delayed fracture healing.
5.6 Other materials

Bone cement and certain specialized compounds have been

shown to facilitate the repair of osteoporotic fractures or bone

defects by regulating macrophage polarization (Table 5). For

example, Dai et al. developed a magnesium-doped bone cement

(Mg-BG-BC) that promotes the transition of macrophages from the

M1 to the M2 phenotype through Mg2+ release and modulation of

the TLR/MyD88 signaling pathway, while also enhancing the

osteogenic differentiation of BMSCs (254). Separately, Li et al.
frontiersin.org
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TABLE 5 Bioceramics, alloys and other materials.

Biological ceramics

g
n on

Inflammation
and OS

Others Ref.

A
TNF-a, IL-1, IL-6↓;
Arg-1, IL-4, IL-10,
Tgfb1↑

/ (244)

NO↓, Urea↑ / (247)

N CN↑ IL-1b, iNOS, CCR7↓
BFGF, VEGF
↑

(246)

nx CN,
P

/ / (245)

/ / (249)

/ / (251)

L- N, VEGF, BFGF,
eNOS↑

(248)

IL-6↓, TNF-a↑, ROS↓ / (250)

L- NX2,
N ↑

TNF-a, IL-6, IL-1b↓;
IL-10↑; ROS↓

/ (202)

IL-1b, IL-6, TNF-a↓;
IL-10↑

/ (252)

FA TRAP↓
IL-1b, IL-6, TNF-a↓;
IL-10↑

/ (253)

A CN,
X

CXCL-11, NOS2, IL-
1b↓; Arg-1, CCL-17↑

/ (254)

O OL-1↑ / / (255)

(Continued)
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LP↑
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1, CO

1, RU
, OCN

Tc1,

LP, O
↑

PN, C
Material Cell models Animal models Macrophages
Osteoclast
differentiation

Osteo
differe

PKNN
RAW264.7, rBMSCs-
OVX

/ / M1↓, M2↑ / RUNX2

Strontium silicate
L929, hMSCs, RAW
264.7

/ / M1↓, M2↑ / /

PTHrP-1-TBC
BMSCs, BMMs,
HUVECs, RAW264.7

SD rats Skull defect M1↓
TRAP, CTSK,
RANK, NFATc1↓

ALP, RU

La-LDH rBMSCs-OVX, BMMs OVX rats Skull defect
Osteoclast
differentiation↓

NFATc1, c-Fos,
CTSK, CTR, TRAP,
V-ATPase d2, DC-
STAMP↓

ALP, Ru
COL-I,

Sodium alendronate loaded
poly(L-lactide-co-glycolide)
microparticles immobilized on
ceramic scaffolds

MG-63, PBMCs Minipigs
Tooth
extraction
socket

Osteoclast
differentiation↓

/ /

MBG-PCL-zol Saos-2, RAW264.7 OVX ovine
Long bone
defect

Osteoclast
differentiation↓

/ /

RGO/ZS/CS
mBMSCs, RAW264.7,
HUVECs

/ /
Osteoclast
differentiation↓

TRAP, NFATc1,
MMP9, CAR2↓

ALP, CO
RUNX2

NanoMBG-75S RAW 264.7, J774A.1 / / M2↑ / /

Alloy

Zn-2Cu-0.5Zr
RAW264.7, BMSCs,
MC3T3-E1

SOP rats
Tibial
fracture

M1↓, M2↑ /
ALP, CO
OSX, OP

Ti6Al4V-Cu BMMs-OVX / / M1↓, M2↑ / /

Ti6Al4V-6wt.%Cu BMMs-OVX / / M1↓, M2↑ / CTSK, N

Bone cement

Mg-BG-BC BMSCs, RAW264.7 / / M1↓, M2↑ /
RUNX2
OPN, O

CMC/OPC BMSCs, RAW264.7 BALB/C mice / M1↓, M2↑ / RUNX2
,

O

↑

,
S

,
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introduced a novel bone cement formulation (CMC/OPC) that

effectively induces M2 polarization of macrophages (255). In

another approach, Zhao et al. constructed a G-O-A@Mg porous

adhesive loaded with Mg2+ and alendronate, which modulates

macrophage polar izat ion whi le inhib i t ing osteoc las t

differentiation (256).

Furthermore, Huang et al. demonstrated that the natural

compound picein (C14H18O7) exhibits notable anti-inflammatory

and antioxidant properties. It promotes M2 macrophage

polarization, suppresses ferroptosis in BMSCs, and enhances

osteogenic differentiation through activation of the Nrf2/HO-1/

GPX4 signaling pathway (257).

Several natural compounds have demonstrated potential in

ameliorating osteoporosis and enhancing fracture healing, with

certain compounds exhibiting modulatory effects on macrophage

function. For instance, maltol—a natural compound derived from red

ginseng—alleviates postmenopausal osteoporosis by promoting

RNF213-mediated ubiquitination of CDK14 in macrophages,

thereby suppressing M1 polarization and reducing TNFSF12-

induced osteoblast apoptosis (258). Similarly, naringenin promotes

M2 polarization of macrophages and reduces the secretion of pro-

inflammatory factors, promoting bone formation while inhibiting

bone resorption, thereby ameliorating pathological bone loss (259).

Although these studies did not jointly analyze osteoporosis, fracture

healing, and macrophage regulation, they suggest that such natural

compounds may facilitate the healing of osteoporotic fractures and

bone defects through macrophage-mediated mechanisms.

In addition, combining such natural compounds with other

biomaterials represents a viable approach to broaden their

therapeutic applicability and enhance treatment efficacy. For

example, Zhou et al. developed a dual-targeted nanoplatform that

delivers baicalein to fracture sites, where it reduces inflammation,

promotes osteogenic differentiation of BMSCs, and accelerates

fracture healing by inducing macrophage M2 polarization (260).

Separately, Pan et al. constructed a PU/n-HA scaffold for sustained

gastrodin release, thereby modulating macrophage responses and

facilitating bone repair (213). These collective findings support the

potential of natural compounds—either alone or integrated with

biomaterials—as a macrophage-targeting strategy worthy of further

investigation for managing osteoporotic fractures.
6 Challenges and future directions

Although macrophage-targeted therapies hold promise for treating

OPF, their clinical translation faces several challenges. While current

evidence indicates that macrophage metabolic reprogramming and

polarization influence OP progression, the precise impact of key OP-

inducing factors—such as aging and estrogen deficiency—on these

cellular processes remains incompletely characterized in existing

experimental models. Moreover, the spatiotemporal heterogeneity,

polarization transitions, and metabolic adaptations of macrophage

subpopulations during OPF healing have yet to be fully elucidated,

requiring more systematic and high-resolution analysis in

physiologically relevant settings.
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Emerging research on the gut-bone and neuro-osteal axes has

advanced our understanding of osteoporosis pathogenesis.

However, their crosstalk with macrophage-mediated bone

metabolism—particularly in the context of OPF—is not yet fully

understood. Furthermore, the expression dynamics of macrophage

subtypes and inflammatory mediators during fracture healing

under osteoporotic conditions, such as in postmenopausal or

aging models, have not yet been fully characterized. Deeper

mechanistic studies are essential to clarify these regulatory

networks and establish a solid foundation for future

therapeutic development.

During normal fracture healing, macrophages require a

coordinated transition from the pro-inflammatory M1 phenotype

to the reparative M2 phenotype. While current therapeutic

strategies primarily focus on promoting M2 polarization and

suppressing M1 polarization, achieving optimal repair outcomes

likely requires precise temporal regulation of macrophage

phenotypic switching. Experimental evidence indicates that

although existing approaches enhance osseointegration, greater

therapeutic efficacy could be attained through dynamic control of

polarization timing. For example, the Ti-ALN-acBSP coating

enables temporal regulation of M1 macrophage responses

through cellular crosstalk involving macrophages, OBs, and OCs,

providing a promising paradigm for future temporally controlled

strategies (232). However, most currently available biomaterials

lack the capacity for precise spatiotemporal control over

macrophage polarization, which may result in suboptimal bone

regeneration and limited clinical efficacy in osteoporotic bone

defects (205).

Concerning experimental models, most current studies on

osteoporotic fractures and bone defects utilize animal models—

particularly ovariectomized rats—to simulate human OPF

conditions. However, these models do not fully recapitulate the

human condition due to interspecies differences in both local

microenvironment and mechanical properties, which may limit

their translational relevance. Moreover, while ovariectomy-based

models are widely used to simulate postmenopausal osteoporosis,

research focusing on macrophage regulation in aged models

remains limited, despite the higher clinical incidence of OPF in

elderly populations. The pathogenic mechanisms underlying

estrogen deficiency-induced osteoporosis differ substantially from

those of age-related bone loss, which may influence the therapeutic

efficacy of biomaterial-based interventions (203). Additionally,

surgically created fractures and bone defects may not accurately

mimic the pathophysiological processes of spontaneous

osteoporotic fractures. These collective limitations reduce the

clinical predictive value of current animal models and affect the

generalizability of resulting findings (261).

Future studies should integrate spatial metabolomics with single-

cell epigenetic sequencing to delineate the metabolism–epigenetics

interaction network of macrophage subpopulations in OPF. Such

multi-omics integration would improve understanding of

macrophage dynamics and functional regulation during OPF

healing, thereby informing targeted therapeutic strategies.
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For instance, Xue et al. demonstrated that combining single-cell

RNA sequencing with spatial metabolomics can effectively elucidate

how drug treatments alleviate tissue damage by reshaping

macrophage metabolism and promoting M2 polarization. Their

study provides a methodological paradigm for linking

transcriptional programs with spatial metabolic microenvironments

to unravel disease mechanisms (262). Adopting such an integrated

approach in OPF research will help uncover the metabolic–epigenetic

regulatory network of macrophages and offer reliable insights for

precise immunomodulatory therapy.

Furthermore, more clinically relevant animal models of

osteoporotic fracture should be established. These could include

aging-based OPF models or patient-derived xenograft systems

involving transplantation of bone marrow from elderly osteoporosis

patients into immunodeficient mice, better replicating the human

“inflammaging” microenvironment. Alternatively, advanced

organoid models incorporating osteoporotic bone matrix, vascular

networks, and patient-derived macrophages could be developed to

enable longitudinal monitoring of microenvironmental dynamics

during OPF healing.
7 Conclusions

In summary, this review systematically outlines the

immunometabolic regulatory network of macrophages in OPF

and its therapeutic relevance. We have highlighted how OP-

related pathological factors—such as estrogen deficiency and

aging—impair macrophage metabolic reprogramming and

polarization dynamics through mechanisms including glycolysis/

OXPHOS imbalance, succinate accumulation, and NAD+

deficiency, ultimately contributing to delayed fracture healing. A

range of emerging macrophage-targeted strategies are thoroughly

discussed, spanning metabolic regulatory nanocrystals (e.g., ZIF-

H2S-SDSSD), temporally responsive implant coatings (e.g., Ti-

ALN-acBSP), immunomodulatory hydrogels, and functionally

enhanced biomaterials. These interventions facilitate bone

regeneration by remodeling the osteoimmune microenvironment

and rebalancing osteogenic and osteoclastic activities.

However, several research gaps remain: the spatiotemporal

distribution of macrophage subsets during OPF healing is not yet

fully mapped; existing aging-related OPF models exhibit

translational limitations; insights into cross-system interactions

such as the gut-bone axis and their link to macrophage

metabolism are still insufficient; and most therapeutic systems

lack precise temporal control over the M1-to-M2 transition.

Future research should prioritize the integration of spatial

metabolomics with single-cell multi-omics profiling to establish

more accurate inflammaging models, investigate novel neuro–

immune and gut–bone regulatory targets, and develop smart

biomaterials capable of dynamically guiding macrophage

metabolism and polarization. Such advances will be crucial for

translating immunometabolic precision therapies into clinical

OPF management.
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Glossary

acBSP Acidic bone sialoprotein
Frontiers in Endocrino
ACOD1 Aconitate decarboxylase 1
ALN Alendronate
BCAA Branched-chain amino acid
BCKDH Branched-chain a-keto acid dehydrogenase
BMMs Bone marrow macrophages
BMSCs Bone marrow stromal cells
CXCL C-X-C motif chemokine ligand
DBT Dihydrolipoamide branched-chain transacylase E2
DPF Days post-fracture
ETC Electron transport chain
FAO Fatty acid oxidation
FAPI Fibroblast activation protein inhibitor
Fas Fatty acids
GO Graphene oxide
LAP Laponite
mtROS Mitochondrial ROS
NADPH Nicotinamide adenine dinucleotide phosphate
NAM Nicotinamide
NaMN Nicotinic acid mononucleotide
logy 28
NAMPT Nicotinamide phosphoribosyltransferase
NGF Nerve growth factor
NMN NAM mononucleotide
OBs Osteoblasts
OCs Osteoclasts
OP Osteoporosis
OPF Osteoporotic fracture
OVX Ovariectomized
PGE2 Prostaglandin E2
PPP Pentose phosphate pathway
RANKL Receptor Activator of Nuclear Factor Kappa-B Ligand
ROS Reactive oxygen species
SCFA Short-chain fatty acids
SDH Succinate dehydrogenase
SOD Superoxide dismutase
SOP Senile osteoporosis
TCA Tricarboxylic acid
TrkA Tropomyosin receptor kinase A
TMAO Trimethylamine oxide
VEGF Vascular endothelial growth factor
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