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Background: Pubertal girls with higher body mass index (BMI) or total body fat (TBF)
have higher androgens. We demonstrated that several bile acids (BAs) were associated
with BMI, TBF, and androstenedione in an untargeted metabolomics study.
Objective: To investigate the relationship between body composition, BAs, and
androgens in pubertal girls.

Methods: Blood samples were collected at up to seven study visits that included
Tanner staging, breast ultrasound, and dual-energy x-ray absorptiometry. Serum
total testosterone, free testosterone (FT), androstenedione, dehydroepiandrosterone
sulfate, and 18 BAs were measured by liquid chromatography mass spectrometry.
Generalized estimating equations estimated associations between TBF percent or
BMI z-score, hormones, and BAs adjusted for time since enrollment, age, menarche
status, race, and breast morphological stage. Exposures were taken from the
preceding study visit (lagged).

Results: Eighty-two participants (aged 10.9 + 1.4 SD years; 55% non-Hispanic
White, 29% non-Hispanic Black, 11% Hispanic, 6% Other; 65% normal weight, 35%
overweight/obese) contributed an average of 2.59 samples. BAs were stable over
time and not associated with menarchal status. BMI and TBF were negatively
associated with total BAs (prpr = 0.0001). FT was nominally positively associated
with two primary, conjugated BAs: taurocholic acid (p = 0.047) and
taurodeoxycholic acid (p = 0.036).

Conclusion: BAs are important signaling molecules with roles in metabolic and
endocrine function. BMI and TBF were inversely associated with BAs, and two
BAs were nominally positively associated with FT in girls across a spectrum of
body weights. These results suggest novel biological links between altered BA
signaling, overweight/obesity, and androgen production among pubertal girls.
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Introduction

In conducting the Body Weight and Puberty Study (BWPS), a
4-year longitudinal study of healthy pubertal, pre-menarchal girls in
the Triangle region of North Carolina, we recently observed that
girls with higher total body fat (TBF), as determined by dual x-ray
absorptiometry (DXA), developed higher levels of total testosterone
(TT) and free testosterone (FT) and androstenedione (AD) than
girls with lower body fat in mid- to late puberty (1). These data are
consistent with cross-sectional studies demonstrating an association
between higher body mass index (BMI) and higher serum androgen
levels in peri-pubertal and pubertal girls (2-7), including a notable
recent study by Kim et al. that included a large, nationally
representative sample of U.S. girls (8).

Insulin resistance in girls with overweight/obesity has been
proposed to mediate their relative hyperandrogenism (4).
However, we recently conducted an exploratory, untargeted
metabolomics study in serum collected from BWPS participants
that suggested a potential role for bile acids (BAs): we identified
nominally significant associations between BAs and (1) BMI and
TBF (inverse relationship) and (2) AD (positive relationship) (9).

BAs are cholesterol derivatives synthesized in the liver by the
rate-limiting enzyme cholesterol 7 alpha-hydroxylase (CYP7A1).
The primary BAs, cholic acid (CA) and chenodeoxycholic acid
(CDCA), are conjugated with either glycine or taurine in the liver,
secreted into bile, and stored in the gallbladder until they are
released into the small intestine in response to fatty or protein-
rich foods. BAs are further modified into secondary BAs by colonic
bacteria (Figure 1). BAs have recently been recognized as important
signaling molecules with functions well beyond lipid digestion and
absorption. By binding to two receptors, the nuclear receptor
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farnesoid X receptor (FXR) and the cell membrane G-protein
coupled BA receptor (TGR5), they have been shown to influence
a diverse set of biological systems, including metabolic, endocrine,
and immune/inflammatory (10).

There has been very limited investigation into the relationship
between body weight/composition or androgens and BAs in children.
For example, while the composition of the BA pool was shown to be
altered in one cross-sectional study of Italian children and
adolescents with obesity (11), the majority of these children had
obesity-related complications (e.g., hepatic steatosis, hypertension),
limiting the generalizability of these findings. An additional study of
Chinese youth whose main focus was on BAs in pediatric non-
alcoholic fatty liver disease demonstrated that a subset of BAs were
lower in children with overweight/obesity than in controls (12), and a
small cross-sectional study of Canadian youth also demonstrated an
inverse correlation between BAs and body fat percentage (13). The
relationship between BAs and androgen levels has only been
investigated in women with polycystic ovarian syndrome (PCOS)
relative to regularly cycling adult controls (14-20), with mixed results.

To further explore the relationship between body weight/
composition or androgens and BAs in healthy pubertal girls, we
took advantage of our longitudinal BWPS cohort to assay a panel of
clinically important BAs using mass spectrometry.

Materials and methods
Study participants

The characteristics of the BWPS participants have been
reported previously (1, 21). All participants were healthy pre-
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Bile acid synthesis pathways, including both classical and alternative routes. The classical BA pathway is the main route by which the liver converts
cholesterol into BAs, starting with the enzyme CYP7AL. This process produces the two primary BAs—cholic acid (CA) and chenodeoxycholic acid
(CDCA). Once secreted into the intestine, these two BAs can be modified by gut bacteria into secondary BAs such as deoxycholic acid (DCA) and
lithocholic acid (LCA). In addition to this pathway, the synthesis of BAs such as ursodeoxycholic acid (UDCA), hyocholic acid (HCA), and
hyodeoxycholic acid (HDCA) is thought to occur through an alternative route
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menarchal girls with some breast development, per parental report,
recruited from the community. They had no chronic medical
conditions (including hepatic disease), were not taking any
medications known to affect puberty, and did not have moderate
or severe acne or hirsutism. The study was approved by the
National Institute of Environmental Health Sciences (NIEHS)
institutional review board. Signed informed assent and consent
were obtained from each participant and her parent, respectively.

Protocol

The participants who contributed samples for this Body Weight
and Puberty sub-study completed one to seven study visits (mean +
SD: 2.59 + 1.46 visits). All visits included anthropometrics (height,
weight, waist-hip ratio), a physical exam with Tanner staging of the
breast and pubic hair, breast ultrasound for breast morphological
staging, non-fasting blood collection (optional after visit 1), and DXA
(at the first two study visits) to determine percent body fat and the
fat-free mass index [FEMI; fat-free mass (kg) divided by height (m?)],
as previously described (1, 22). Parents were questioned regarding the
participant’s onset of menarche at each study visit and through
follow-up phone calls. All study procedures were conducted at the
Clinical Research Unit of the National Institute of Environmental
Health Sciences or off-site at a private medical imaging facility.

Laboratory measurements

Serum TT, AD, and dehydroepiandrosterone sulfate (DHEAS)
levels were measured by liquid chromatography-tandem mass
spectrometry (LC-MS/MS; Triple Quad 6500 LC-MS/MS System,
AB SCIEX) at the Division of Laboratory Sciences, National Center
for Environmental Health, Centers for Disease Control and
Prevention, as previously described (1). The assay limits of
detection and limits of quantification are TT 0.57 ng/dl and 1.91
ng/dL; AD 0.82 ng/dl and 2.75 ng/dl; and DHEAS 0.22 mcg/dl and
2.83 mcg/dl, respectively. Sex hormone-binding globulin (SHBG)
was measured using a chemiluminescent immunoassay (Siemens
Immulite 2000 XPi analyzer). FT was calculated from TT, SHBG,
and albumin (set at 4.3 g/dl) using the equation developed by
Vermeulen et al. (23). Values below the limit of detection were
imputed with one-half the minimum observed value. A panel of 18
BAs (including primary, secondary, conjugated, and unconjugated
forms; Figure 1) was measured using LC-MS/MS at NIEHS. Liver
function tests were not performed.

Statistical analysis

BA and hormone values were natural log transformed and
standardized. Body composition variables were analyzed as BMI Z-
scores and TBF percent. Generalized estimating equations (GEE)
with an autoregressive covariance structure were used to examine
associations (1): between TBF or BMI, time since baseline, and
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menarchal status (exposures) and BAs (outcomes), and (2) between
BAs (exposure) and hormone level (outcome) with the given
exposure taken from the preceding study visit (e.g., lagged). A
similar exploratory analysis was also conducted to investigate the
association between fat-free mass (using the FFMI) and waist-hip
ratio (exposures) and total BA levels (outcome). Models were
adjusted for time since baseline visit, age at baseline, menarchal
status [pre- (ref.) or post-], race [White (ref.) vs. non-White], and
breast morphological stage [A, B, C, D, D/E, or E (ref.)]. Benjamini-
Hochberg false discovery rate (FDR) adjusted P-values were
calculated to account for multiple testing.

Results

Eighty-two participants (aged 10.9 = 1.4 SD years at baseline;
Table 1) were included in the analyses. Participants contributed an
average of 2.59 blood samples over 1.20 years of follow-up (total =
215 samples). The majority were non-Hispanic White and of
normal weight. At baseline, all were pre-menarchal, and most
were mid-pubertal (59% Tanner IIT breasts). Average age at
menarche was 12.46 years (data available in 62 subjects).

BA distributions from participants’ first samples are shown in
Figure 2. Consistent with previous studies in non-fasting
adolescents (13, 24), the BA pool was dominated by glycine-
conjugated BAs, with glycochenodeoxycholic acid (GCDCA)
representing 40.1% of total BA species. Primary BAs made up
approximately three-fourths of the BA pool. Of note, hyocholic acid
(HCA) has recently garnered attention as a novel biomarker of
metabolic syndrome (25) and has not been measured in other
pediatric cohorts. We observed very low levels of HCA and
hyodeoxycholic acid (HDCA, an HCA species) in adolescent girls
(<1% BA pool), consistent with studies in adults (25). BA levels
were stable over time (Figure 3). BAs and composition did not
change following the attainment of menarche (total BAs: pgpr =
0.85; individual BAs pgpg: 0.33-1.0), and total BAs were not related
to breast morphological stage (Type III joint test ppominal = 0.11).

Both BMI and TBF were significantly negatively associated with
total BAs [BML: B = —-0.34 (95% confidence interval (CI): —0.51,
~0.17), ppr = 0.001; TBE: B = —0.06 (95% CI: —0.09, —0.04), prpg =
0.0001] as well as with 11 of 18 individual BA species (Figure 4).
Fat-free mass index and waist-hip ratio were not associated with
total BA levels [fat-free mass index: B = —0.11 (—0.30, 0.08), Prominal
= 0.25; waist-hip ratio: B = —0.007 (-0.014, 0.001), Ppomina = 0.07].
FT was nominally positively associated with two primary,
conjugated BAs: taurocholic acid [TCA; B = 0.45 (95% CI: 0.01,
0.89), p = 0.047] and taurodeoxycholic acid [TDCA; B = 0.77 (95%
CI: 0.05, 1.49), p = 0.036]. There were no associations between TT,
AD, DHEAS, and BAs (Figure 5).

Discussion

While traditionally thought to primarily aid in lipid digestion,
BAs are now recognized as key signaling molecules that regulate
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TABLE 1 Baseline characteristics of participants from the body weight and puberty study who contributed blood samples for bile acid analyses (n =

82).

Characteristic

OW/OB N = 29

Overall N = 82

Age (years; mean, SD) ! 11.3 (1.3)
Race and ethnicity (n, %)?

Black Or African American 13 (24.5%)

10.1 (1.2) 10.9 (1.4)

11 (37.9%) 24 (29.3%)

Hispanic 2 (3.8%)

Non-Hispanic White 35 (66.0%)

7 (24.1%) 9 (11.0%)

10 (34.5%) 45 (54.9%)

Other 3 (5.7%)

BMI (kg/m?)’ 17.7 (16.4, 18.7)

1 (3.4%) 4 (4.9%)

23.7 (22.0, 25.5) 18.8 (17.0, 22.1)

BMI z-score’ -0.1(0.7) 1.7 (0.4) 0.5 (1.1)
Percent total body fat! 26.7 (6.5) 414 (4.7) 319 (9.2)
Fat-free mass index (kg/m?) ! 11.7 (1.1) 12.9 (1.3) 12.1 (1.3)

Waist:hip ratio® 0.80 (0.78, 0.84)

Breast Tanner stage (n, %)°

0.89 (0.86, 0.92) 0.84 (0.79, 0.88)

I 1 (1.9%) 5 (17.2%) 6 (7.3%)
11 0 (0.0%) 2 (6.9%) 2 (2.4%)
111 36 (67.9%) 12 (41.4%) 48 (58.5%)
v 8 (15.1%) 4 (13.8%) 12 (14.6%)
% 8 (15.1%) 6 (20.7%) 14 (17.1%)
Pubic hair Tanner stage (n, %)?
I 6 (11.3%) 6 (20.7%) 12 (14.6%)
11 7 (13.2%) 2 (6.9%) 9 (11.0%)
I 19 (35.8%) 7 (24.1%) 26 (31.7%)
v 16 (30.2%) 9 (31.0%) 25 (30.5%)
A 5 (9.4%) 5 (17.2%) 10 (12.2%)
Breast morphological stage (n, %)?
A 1 (1.9%) 8 (27.6%) 9 (11.0%)
B 2 (3.8%) 4 (13.8%) 6 (7.3%)
C 10 (18.9%) 5 (17.2%) 15 (18.3%)
D 15 (28.3%) 8 (27.6%) 23 (28.0%)
D/E 18 (34.0%) 1 (3.4%) 19 (23.2%)
E 7 (13.2%) 3 (10.3%) 10 (12.2%)

"Mean (SD); 2y (%); 3Median (Q1, Q3).

NW, normal weight; OW/OB, overweight or obese; SD, standard deviation, QI, first quartile, Q3, third quartile.

inflammation, glucose and energy metabolism, appetite (26, 27),
and perhaps even puberty (24). We were motivated to investigate
the relationship between BAs, body composition, and androgens in
children based on a growing body of literature linking BAs to
metabolism in adults (28) and to PCOS (18). In the current studies,
we demonstrate that in healthy pubertal girls there is an inverse
relationship between body fat and BAs, as determined by DXA. Our
studies also suggest a positive association between BAs and
testosterone but not with adrenal androgens.

Frontiers in Endocrinology

Some (25, 29, 30), but not all (31-33), studies in adults have also
demonstrated an inverse relationship between BMI or body fat
indicators and BAs either in the fasting state or after a liquid meal.
The corresponding literature in children is more limited. A cross-
sectional study by Higgins et al. of 30 Canadian children with
obesity and 15 children of normal weight (mean age: 15 years) also
demonstrated that most postprandial BAs were negatively
correlated with BMI z-score and body fat percentage; however,
BAs were measured using immunoassay with only a small subset
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FIGURE 2

Distribution of bile acid levels by type. Boxplots of bile acid distribution as measured in Visit 1 samples. Boxes represent the interquartile range (IQR),
with the line indicating the median. Whiskers extend to 1.5*IQR width from the box; data outside this range are outliers.
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FIGURE 3

Log-transformed and standardized bile acid levels over time. Each black line represents the trajectory of a participant’s bile acid. The blue line
represents the average of each bile acid over time in the cohort. Blue shading indicates the 95% confidence interval for the cohort average.
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(White vs. non-White), and breast morphological stage. **Statistical significance after multiple testing correction, *Nominal significance.

also profiled by LCMS (n = 6 per group). A larger study of healthy
Chinese children (12) reported that several BAs were lower in
children with obesity than in normal-weight controls, whereas a
study of Italian youth did not report a difference (11). Lastly, two
metabolomic studies using fasting serum samples identified a
negative association between a BA (HDCA or taurolithocholate 3-
sulfate) and BMI in children (34, 35), whereas a third study using
fecal samples reported a positive association (36).

The mechanism underlying the observed inverse relationship
between body fat and BAs in girls is unclear but may involve insulin
resistance. Of note, we did not measure insulin in the current
studies, but adiposity is known to be the strongest predictor of
insulin resistance in children (37). Two recent studies in children
(13) and adults (25) demonstrated that greater insulin resistance or
higher insulin levels after an oral glucose load were associated with
lower levels of BAs. Hyperinsulinemic-euglycemic clamp studies
demonstrated that insulin acutely decreases serum BAs in healthy
adults of normal weight (33), and studies in mouse hepatocytes and

Frontiers in Endocrinology

HepG2 cells found that hyperinsulinemia suppressed hepatic
transcription of CYP7A1 (38). It is interesting to speculate that
insulin induction of BA production may be blocked selectively as an
adaptive response to obesity. For example, BAs have an anorectic
effect via action at hypothalamic TGR5 receptors (26, 27) and
promote GLP-1 (39) and peptide YY (40) secretion. BAs also act on
FXR and TGR5 receptors in white adipocytes to modulate adipocyte
differentiation, lipid accumulation, adipokine and insulin signaling,
and inflammation (41) and induce energy expenditure via
activation of the TGR5/adenylate cyclase/deiodinase type 2
pathway in brown adipose tissue and skeletal muscle (42).

An alternative explanation for the inverse relationship between
body fat and BAs in the current studies involves differences in the
microbiome. The gut microbiome plays an important role in BA
metabolism (i.e., deconjugation, dehydroxylation, and oxidation)
and has been shown to be affected by body weight/composition
(43). Adults with obesity have been shown to have both gut
dysbiosis and changes in the BA pool composition, leading to the
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FIGURE 5

Associations between bile acids and hormones. Values represent the estimated mean change in androgen hormone z-score (outcome) for a 1 SD
increase in bile acid z-score (exposure). Models were adjusted for time since baseline visit, age at baseline, menarche status, race (White vs. non-

White), and breast morphological stage.

initiation of clinical trials to test microbiome-based treatments (e.g.,
fecal microbiota transplantation) and BA-based treatments (e.g.,
FXR agonists) to manage obesity and related conditions [reviewed
in (44)].

We also observed a nominally significant positive association
between FT and two primary, conjugated BAs. To date, the
association between androgens and BAs has only been
investigated in one specific population—Chinese women with
PCOS—with mixed results. For example, Zhang et al., 2019 and
Zhu et al., 2024 both reported that women with PCOS had higher
concentrations of primary BAs than controls as well as a positive
correlation between a subset of BAs and TT (16, 17). In line with
these findings, a third study (14) found that women with PCOS with
hyperandrogenism had higher fasting levels of primary BAs than
women with PCOS without hyperandrogenism. However, two other
studies reported lower BAs in women with PCOS compared with
controls in stool and serum (18) and no correlation between serum
TT and follicular fluid BA levels in women with PCOS (45). The
connection between BAs and androgens remains unclear; however,
a recent translational study suggests that in PCOS, alterations in the
gut microbiota and BA profile may play a role in ovarian
dysfunction: transplantation of fecal microbiota from women with
PCOS into mice altered BA metabolism, disrupted estrous cycles,
and caused infertility through a pathway involving interleukin-22
and small intestinal immune cells (18). Thus, it is possible that in
healthy girls, as in women with PCOS, androgens may modulate
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BAs by influencing the landscape of the gut microbiome, but this
hypothesis requires further study.

Most BAs were relatively stable during our longitudinal study.
Of note, we did not identify changes in BA composition relative to
menarche. This finding contrasts with that of Vanden Brink et al.,
who observed changes in the BA composition (e.g., ratio of
conjugated to unconjugated species) in 10 healthy girls (average
age: 7 years) presumed to be pre-pubertal or early pubertal
compared with 10 post-menarchal girls (average age: 12 years). A
similar pattern was observed by the authors in BAs during pubertal
maturation in female rats (24). Importantly, however, these clinical
studies were cross-sectional in nature, pubertal status was unknown
in the younger girls, and samples from the younger girls were
collected in the fasting state, whereas samples from post-menarchal
girls were non-fasting.

Our study was strengthened by its longitudinal design with
multiple samples (2-3, on average) collected from each participant.
We also utilized gold standard techniques, including mass
spectrometric analysis of serum BAs and androgens and
determination of body composition via DXA. However, the
sample size was relatively small, BAs were measured in non-
fasting samples, no dietary information was collected, and the
stool microbiome, insulin sensitivity (or surrogate markers, such
as adiponectin), serum amino acids, and liver function were not
assessed. Hormone levels may have also been influenced by
menstrual cycle phase in a subset of samples. In contrast to our
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previous exploratory study that utilized untargeted metabolomics in
this cohort and reported nominal, positive associations between
three BAs and serum AD (9), we only found a nominally positive
association between BAs (total and most BA species) and FT. The
cause of these discrepant results is unclear but may reflect the
significant differences in methodology and/or that the association
between BAs and AD in the untargeted metabolomics investigation
was only nominally significant.

In summary, alterations in BA profiles have been reported
among adults with obesity, insulin resistance, and PCOS. The
current studies reinforce our previous finding that in healthy
pubertal girls, there is a negative association between BMI (or
TBF) and BAs across a spectrum of body weights. These analyses
did not replicate the nominal, positive associations we observed
between BAs and AD in untargeted metabolomics analyses. We also
observed a positive association between two BAs and FT that
warrants further exploration, with particular attention to
differences in the gut microbiome. Together, these results suggest
potential biological links between altered BA signaling, overweight/
obesity, and androgen production among pubertal girls.
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